电磁场_Matlab实验设计
应用MATLAB设计电磁场与电磁波模拟仿真实验
![应用MATLAB设计电磁场与电磁波模拟仿真实验](https://img.taocdn.com/s3/m/3ff8bcc49b6648d7c1c746cc.png)
第39卷 第9期 高 师 理 科 学 刊 Vol. 39 No.9 2019年 9月 Journal of Science of Teachers′College and University Sep. 2019文章编号:1007-9831(2019)09-0052-04应用MATLAB设计电磁场与电磁波模拟仿真实验凌滨,郭也,刘文川(东北林业大学 机电工程学院,黑龙江 哈尔滨 150040)摘要:由于电磁场与电磁波课程在电磁波传播部分授课中的理论和概念抽象,难以理解.利用MATLAB语言编程技术,针对电磁场和电磁波传播2个方面,设计2个模拟仿真实验:均匀平面波在无界空间中的传播和设定各参数实验数据获得分界面上波形的变化.2个具体仿真实验形象地再现了均匀平面电磁波在自由空间传播状态和在2个媒介边界上的变化特征,通过实验有助于学生对电磁场和电磁波基本规律的掌握.关键词:电磁场与电磁波;MATLAB;仿真实验;均匀平面波中图分类号:O441.4 文献标识码:A doi:10.3969/j.issn.1007-9831.2019.09.014Application of MATLAB to design electromagnetic field andelectromagnetic wave simulation experimentLING Bin,GUO Ye,LIU Wen-chuan(School of Mechanical and Electrical Engineering,Northeast Forestry University,Harbin 150040,China)Abstract:The theoretical and conceptual abstraction of the electromagnetic field and electromagnetic wave course in the teaching of electromagnetic wave propagation is difficult to understand.Using MATLAB language programming technology,two simulation experiments were designed for electromagnetic field and electromagnetic wave propagation,the propagation of uniform plane wave in unbounded space and setting experimental data of each parameter to obtain the waveform change on the interface.Two specific simulation experiments vividly reproduced the variation characteristics of uniform plane electromagnetic waves in free space and the boundary of two media.The experiment helps students master the basic laws of electromagnetic fields and electromagnetic waves.Key words:electromagnetic field and electromagnetic wave;MATLAB;simulation experiment;uniform plane wave电磁场与电磁波作为电子信息和通信工程的专业基础课之一,通过实验课程的环节来加深对电磁场理论知识的理解,并且可以将课堂上所学到的理论知识在实验课中进行验证,加深理解[1-2].由于目前教学过程中受到实验室的硬件环境的限制,在实验教学环节中以仿真验证为主,利用MATLAB软件对所学的理论知识进行实验,通过理论知识来指导实践.将两者相结合,可以达到提高学生发现并分析问题,利用所学知识解决问题能力的目的,进一步将所学的理论知识完善巩固,更加全面地了解电磁场与电磁波的概念[3-5].MATLAB仿真软件的数据分析和数据计算的能力十分强大,将实验数据以图形的形式进行展示,提供了一个数据可视化的平台[6].本文在电磁场与电磁波的实验教学中,利用MATLAB模拟了2种情况下的仿收稿日期:2019-04-10基金项目:东北林业大学教育教学研究课题项目(JG2016008)作者简介:凌滨(1962-),男,黑龙江哈尔滨人,副教授,硕士,从事电磁场与电磁波研究.E-mail:756595015@第9期 凌滨,等:应用MATLAB 设计电磁场与电磁波模拟仿真实验 53真实验,分别是自由空间和媒质空间中均匀平面电磁波传播波形的变化以及2种介质分界面上电磁波波形的变化.1 均匀平面波在真空和媒质中的传播仿真实验由麦克斯韦方程组可知,变化的电场和磁场相互作用下,产生的电磁波以光速在真空中传播;电磁波在理想介质中是横波,电场和磁场的方向与波的传播方向相互垂直,另外,电场方向与磁场方向也相互垂直[7].理想介质中均匀平面电磁波的波动方程可以由麦克斯韦方程组推理得到220022200200E E tH H t e m e m ì¶Ñ-=ïï¶í¶ïÑ-=ï¶îu vu v uu v uu v (1) 若电场为线极化方式,且电磁波沿x 轴方向,可以得到22000022(()E H H Ex t t x x tm m e m ¶¶¶¶¶¶=-=-=¶¶¶¶¶¶ (2) 同理220022H Hx te m ¶¶=¶¶,这2个公式都属于波动方程.电场与磁场的传播速度,也就是电磁波在真空中的传播速度,即81/310m/s c =»´.由此可见,电磁波的传播速度(在真空中)与光速等值,理论数据和实验数据一致,这为光的电磁波理论提供了一个重要的理论依据.由波动方程 220022220022E E x tH H x t e m e m 춶=ïï¶¶í¶¶ï=ﶶî (3) 在真空中当平面电磁波的电场强度和磁场强度的频率和相位相同时,2个波动方程的瞬时表达式为m (,)cos()x x E z t e E t z w b =-r r(4)m (,)cos()x y E H z t e t z w b h=-r r (5) 其中:m x E 是电场强度振幅;w 是电磁波的圆频率;b 是相位常数;h 是本征阻抗.设计的仿真均匀平面波形波动见图 1.均匀平面波在导电媒质中具有传播特性:电媒质的典型特征是电导率 0s ¹;电磁波在导电媒质中传播时,由于传导电流J E s =的存在,同时还伴随着电磁能量的损耗;电磁波的传播特性与非导电介质中的传播特性有所不同[8-10].电场E 、磁场H 瞬时值形式m (,)e cos()z x x E z t e E t z a w b -=-v r(6) m (,)e cos()z x y cEH z t e t z a w b j h -=--r r (7)在导电媒质中衰减常数a 、相位常数b 和本征阻抗c h分别为a = (8)b = (9)54 高 师 理 科 学 刊 第39卷1arctg 2e j c c s weh h === (10)通过改变介电参数e 、磁导率m 、电导率s 和波的频率w ,电磁波在传播中是不断变化的,设计的仿真实验波形变化见图2.应用仿真实验可以形象直观地看到均匀平面波的传播特征,并通过改变介质各参数来观察电磁波的波形变化特性.2 均匀平面波的传播、反射及透射的仿真实验电磁波在入射到不同媒质分界面上时,一部分波会在分界面上进行反射,一部分波会透过分界面.入射波(已知)+反射波(未知)= 透射波(未知) (1) 0z <中,导电媒质1的参数为111s e m ,,;(2) 0z >中,导电媒质2的参数为222s e m ,,.沿x 方向极化的均匀平面波从媒质1 垂直入射到与导电媒质2 的分界平面上,电场和磁场的变化见图3. 媒质1中的入射波 1i im ()e zx E z e E g -=r r (11)1im i 1()e z y cEH z e g h -=r r (12)媒质1中的反射波1r rm ()e z x E z e E g -=r r(13) 1rm r 1()e z y cEH z e g h -=r r (14)媒质1中的合成波11im rm 1i r 12()()()e e z z y y c cE E H z H z H z e e g g h h --=+=-r r r r r H (15)111i r im rm ()()+()e e z z x x E z E z E z e E e E g g --==+r r r r r(16)其中传播常数1g 和波阻抗1c h为11211)j j s g we =- (17)11211c j s h we -==- (18) 媒质2中的透射波第9期 凌滨,等:应用MATLAB 设计电磁场与电磁波模拟仿真实验 5522tm t tm t 2()e ,()e zz x y cE E z e E H z e g g h --==r r r r (19)其中:传播常数2g 和波阻抗2c h为12222)j j s g we =- (20)12222c j s h we -=- (21) 改变各参数的数值,介质1,2为不同媒质时,设计的仿真实验波形见图4.改变各参数的数值,介质1为非导电媒质、2为导电媒质时,设计的仿真实验波形见图5.改变各参数的数值,介质1,2为相同电媒质时,设计的仿真实验波形见图6.通过该仿真实验系统操作,设定各参数实验数据,即获得分界面上波形的变化特征.对实验结果进行分析和解释,得到合理有效的结论.3 结束语本文提出了利用MATLAB 来完成电磁场与电磁波的仿真实验,通过仿真实验将理论教学有效地运用到实践教学中,能够使学生更加有效地理解所学的理论知识.电磁场与电磁波的仿真实验练习可以让学生对自己所学的知识有更深地理解,可以用更加灵活的方式掌握专业技能,并对所学专业的应用领域和前景有进一步的了解.在鼓励学生自己利用所学知识解决实际问题的同时,将书本知识与工程实践相结合,将复杂的电磁波问题简化,可以有效地提高授课效果. 参考文献:[1] 谢处方,饶克谨.电磁场与电磁波[M].北京:高等教育出版社,2006[2] 刘亮元,贺达江.电磁场与电磁波仿真实验教学[J].实验室研究与探索,2010,29(5):30-32[3] 王明军.MATLAB 在电磁场与电磁波课程教学中的应用[J].咸阳师范学院学报,2009,24(2):89-91 [4] 郭瑜,虞致国.电磁场与电磁波仿真实验教学研究[J].无锡职业技术学院学报,2018,17(2):28-31[5] 杨明珊,谭凤杰,李志中,等.电磁场与电磁波实验仿真系统[J].郑州大学学报:理学版, 2013,45(2):64-67 [6] 乔世坤.Matlab 在通信课程中的仿真应用[M].哈尔滨:东北林业大学出版社,2017 [7] 马冰然.电磁场与微波技术[M].广州:华南理工大学出版社,1999[8] William Hayt,John Buck.Engineering Electromagnetics[M].Beijing:Tsinghua University Press,2011[9] 万棣,范懿.电磁场与电磁波虚拟仿真系统的设计与开发[J].电气电子教学,2017,39(4):141-144[10]邓红涛,刘巧,田敏.利用仿真软件优化电磁场与电磁波教学[J].电脑知识与技术,2014,10(4):792-794。
MATLAB电磁场实验指导书
![MATLAB电磁场实验指导书](https://img.taocdn.com/s3/m/3c84513a10a6f524ccbf8595.png)
电磁场实验仿真指导书1、Matlab 基础2、实验内容2.1 预习点电荷电场分布2.2 实验一电偶极子电场分布仿真2.3 实验二特殊边界条件的电场分布2.4 实验三直导线的磁场分布2.5 实验四磁偶极子的磁场分布1 MATLAB 基础1.1 简介MATLAB是一门计算机程序语言,取名源于Matrix Laboratory,意在以矩阵方式处理数据。
一般认为MATLAB的典型应用包括:数值计算与分析、符号运算、建模与仿真、数据可视化、图形处理及可视化、基于图形用户界面的应用程序开发。
MATLAB7.3.0启动后界面如图1所示。
图1 MATLAB7.3.0启动后界面命令窗口(Command Window):(1) 用于执行MATLAB命令,正常情况下提示符为“>>”,表示MATLAB进入工作状态。
(2) 在提示符后输入运算指令和函数调用等命令(不带“;”),MATLAB将迅速显示出结果并再次进入准备工作状态。
(3) 若命令后带有“;”,MATLAB执行命令后不显示结果。
(4) 在准备工作状态下,如果按上下键,MATLAB会按顺序依次显示以前输入的命令,若要执行它,则直接回车即可。
工作空间(Workspace):(1) 显示计算机内存中现有变量的名称、类型、结构及其占用子节数等。
(2) 如果直接双击某变量,则弹出Array Editor窗口供用户查看及修改变量内容。
(3) 该窗口上有工具条支持用户将某变量存储到文件中或者从文件中载入某变量。
命令历史记录(Command History):(1) 保存并显示用户在命令窗口中输入过的命令,以及每次启动MATLAB的时间等信息。
(2) 若双击某条命令记录,则MATLAB会再次执行该命令。
当前路径窗口(Current Directory):(1) 先是当前路径内的所有文件。
(2) 用户可以在这里新建或删除一个文件,也可以双击一个文件,在编辑/调试窗口中打开。
应用MATLAB设计电磁场与电磁波模拟仿真实验
![应用MATLAB设计电磁场与电磁波模拟仿真实验](https://img.taocdn.com/s3/m/23793411ff4733687e21af45b307e87101f6f894.png)
应用MATLAB设计电磁场与电磁波模拟仿真实验在当今科技飞速发展的时代,电磁场与电磁波在通信、电子工程、无线电技术等众多领域中发挥着至关重要的作用。
为了更深入地理解和研究电磁场与电磁波的特性和行为,借助先进的工具进行模拟仿真是一种极为有效的方法。
其中,MATLAB 凭借其强大的数学计算和图形处理能力,成为了设计电磁场与电磁波模拟仿真实验的理想选择。
一、MATLAB 简介MATLAB 是一种广泛应用于科学计算、数据分析和可视化的高级编程语言和交互式环境。
它提供了丰富的函数库和工具箱,使得用户能够轻松地进行数值计算、矩阵运算、信号处理、图像处理等各种复杂的任务。
对于电磁场与电磁波的研究,MATLAB 中的数值计算和绘图功能尤为重要。
二、电磁场与电磁波基础在开始设计模拟仿真实验之前,我们需要先了解一些电磁场与电磁波的基本概念和理论。
电磁场是由电荷和电流产生的物理场,包括电场和磁场。
电磁波则是电磁场的一种运动形式,它以光速在空间中传播,具有电场分量和磁场分量,并且两者相互垂直。
电磁波的特性可以用频率、波长、波速、振幅等参数来描述。
不同频率的电磁波在传播过程中会表现出不同的特性,例如在介质中的折射、反射、吸收等。
三、设计思路在利用 MATLAB 进行电磁场与电磁波模拟仿真实验时,我们的设计思路通常包括以下几个步骤:1、问题定义:明确要研究的电磁场与电磁波现象,例如电磁波在自由空间中的传播、在介质中的折射和反射等。
2、数学模型建立:根据电磁学理论,建立描述该现象的数学方程。
这可能涉及到麦克斯韦方程组的应用以及边界条件的设定。
3、数值求解:使用 MATLAB 提供的数值计算方法,如有限差分法、有限元法等,对数学方程进行求解,得到电磁场的数值解。
4、结果可视化:将求解得到的数值结果通过图形的方式展示出来,以便直观地观察和分析电磁场与电磁波的特性。
四、具体实验案例下面我们通过一个简单的例子来展示如何使用 MATLAB 设计电磁场与电磁波的模拟仿真实验。
电磁场中matlab仿真实现工具箱
![电磁场中matlab仿真实现工具箱](https://img.taocdn.com/s3/m/aeb3883a6bd97f192279e9d9.png)
实验六:使用偏微分方程工具箱对电磁场的仿真一、实验目的与要求1.掌握微分方程工具箱的使用方法;2.掌握使用偏微分方程工具箱分析电磁场。
二、实验类型设计三、实验原理及说明偏微分方程的工具箱(PDE toolbox)是求解二维偏微分方程的工具,MA TLAB专门设计了一个应用偏微分方程的工具箱的演示程序以帮助使用者快速地了解偏微分方程的工具箱的基本功能。
操作方法是在MA TLAB的指令窗口键入pdedemos,打开Command Line Demos窗口,如图所示。
只要单击任意键就会使程序继续运行,直至程序运行结束。
单击信息提示按钮(Info)是有关演示窗口的帮助说明信息。
8个偏微分方程的演示程序分别是泊松方程、亥姆霍兹方程、最小表面问题、区域分解方法、热传导方程、波动方程、椭圆型方程自适应解法和泊松方程快速解法。
(一)偏微分方程的工具箱的基本功能偏微分方程的工具箱可以求解一般常见的二维的偏微分方程,其基本功能是指它能解的偏微分方程的类型和边值条件。
用户可以不必学习编程方法仅仅在图形用户界面窗口进行操作,就能得到偏微分方程的数值解。
1.工具箱可解方程的类型定义在二维有界区域Ω上的下列形式的偏微分方程,可以用偏微分方程工具箱求解:椭圆型()f au u c =+∇∙∇- 抛物型()f au u c tu d =+∇∙∇-∂∂ 双曲型()f au u c tu d =+∇∙∇-∂∂22 本征值方程()du au u c λ=+∇∙∇-式中,u 是偏微分方程的解;c 、a 、d 、f 是标量复函数形式的系数,在抛物型和双曲型方程中,它们也可以是t 的函数,λ是待求的本征值。
当c 、a 、f 是u 的函数时,称之为非线性方程,形式为()()()()u f u u a u u c =+∇∙∇-也可以用偏微分方程工具箱求解。
2.工具箱可解方程的边值条件解偏微分方程需要的边值条件一般为下面两种之一:狄里赫利(Diriclet)边值条件 hu=r广义诺曼(Generalized Neumann)边值条件 ()g qu u c n =+∇∙式中,n为边界外法向单位向量;h 、q 、r 、g 是在边界上定义的复函数。
MATLAB实验电磁实验仿真
![MATLAB实验电磁实验仿真](https://img.taocdn.com/s3/m/fbb9f8f7c8d376eeaeaa3193.png)
实验四 电磁实验仿真 —点电荷电场分布的模拟一. 实验目的电磁场是一种看不见摸不着但又客观存在的物质,通过使用Matlab 仿真电磁场的空间分布可以帮助我们建立场的图景,加深对电磁理论的理解和掌握。
按照矢量分析,一个矢量场的空间分布可由其矢量线(也称力线)来形象表示。
点电荷的电场就是一个矢量场,模拟其电力线的分布可以得到电场的空间分布。
通过本次上机实验希望达到以下目的:1. 学会使用MATLAB 绘制电磁场力线图和矢量图的方法;2. 熟悉二维绘图函数contour 、quiver 的使用方法。
二. 实验原理根据库仑定律,真空中的一个点电荷q 激发的电场3r E q r=v v (高斯制) (1) 其中r 是观察点相对电荷的位置矢量。
考虑相距为d 的两个点电荷q 1和q 2,以它们的中点建立坐标(如图),根据叠加原理,q 1和q 2激发的电场为:12123312r r E q q r r =+v v v (2) 由于对称性,所有包含电荷的平面上,电场的分布一样,所以只需要考虑xy 平面上的电场分布,故121233331212(/2)(/2)ˆˆˆˆ()[]x y E E q x q x q y d q y d E j j r r r r i i -+==++++v (3)其中12 r r ==。
根据电动力学知识(参见谢处方,《电磁场与电磁波》,1.4.1节),电场矢量线(或电力线)满足微分方程: yx E dydx E = (4) 代入(3)式解得电力线满足的方程 1212(/2)(/2)q y d q y d r r C -++= (5) 其中C 是积分常数。
每一个C 值对应一根电力线。
电场的分布也可以由电势U 的梯度(gradient ,为矢量)的负值计算,根据电磁学知识,易知两点电荷q 1和q 2的电势1212q q U r r =+(6)那么电场为 E gradU U =-=-∇v (7)或者 ()(),x y x y E U E U =-∇=-∇ (8)在Matlab 中,提供了计算梯度的函数gradient()。
基于MATLAB的电磁场可视化设计
![基于MATLAB的电磁场可视化设计](https://img.taocdn.com/s3/m/6d9f0bf9f705cc1755270951.png)
基于MATLAB的电磁场可视化设计——电偶极子的电场分布学院信息工程学院班级通信101姓名XXX基于MATLAB的电磁场可视化设计——电偶极子的电场分布一引言:电磁场理论比较抽象,学习起来难于理解,需要我们有丰富的想象力和创造力。
用matlab 可以使电磁场的学习可视化,使我们能清晰形象地观察到电磁场的分布情况,从而加深我们对电磁场理论的了解,使我们更好的学好电磁场理论。
二设计目的:1用MATLAB实现模拟电偶极子周围场分布,以实现物理模型的可视化2给定空间任意一点坐标,即可用给定的公式计算这一点的电位,对电位求梯度可得到空间任意一点的场强表达式3实现电偶极子近区场分布的模拟三设计原理:1 电偶极子电偶极子是指一对等值异号的点电荷相距一微小距离所构成的电荷系统,它是一种常见的场源存在形式。
2 理论推导图(1)表示中心位于坐标系原点上的一个电偶极子,它的轴线与Z轴重合,两个点电荷q和-q间的距离为L。
此电偶极子在场点 P 处产生的电位等于两个点电荷在该点的电位之和,即(1)其中与分别是q和-q 到 P 点的距离。
图(1)电偶极子一般情况下,我们关心的是电偶极子产生的远区场,即负偶极子到场点的距离r远远大于偶极子长度L的情形,此时可以的到电偶极子的远区表达式(2)可见电偶极子的远区电位与成正比,与的平方成反比,并且和场点位置矢量与轴的夹角有关。
为了便于描述电偶极子,引入一个矢量P,摸P=q L,方向由-q 指向q ,称之为此电偶极子的电矩矢量,简称为偶极矩,记作P=q L (3)此时(2)式又可以写成(4)电偶极子的远区电场强度可由(4)式求梯度得到。
因电位只是坐标和的函数,于是有(5)从(4)式和(5)式可以看到,电偶极子的远区电位和电场分别与的平方和的三次方成反比。
因此,其电位和场强随距离的下降比单个点电荷更为迅速,这是由于两个点电荷q和-q的作用在远区相互抵消的缘故。
根据(4)式,电偶极子的等电位面方程可由为定值得到。
用Matlab研究电磁场的可视化
![用Matlab研究电磁场的可视化](https://img.taocdn.com/s3/m/597ea3133d1ec5da50e2524de518964bcf84d2eb.png)
电磁场可视化的概念:将电磁场的信息以图形或图像的方式呈现出来帮助人们理解和分析电磁场的行为和特征。
电磁场可视化的重要性:对于科学研究、工程应用和教育教学等领域电磁场可视化能够提供直观、形象的表达方式有助于深入理解和掌握电磁场 的基本规律和特性。
电磁场可视化的基本原理:基于麦克斯韦方程组和电磁波理论通过计算和模拟电磁场中电场、磁场和波的传播等特性将电磁场信息转化为可视化 的图像或图形。
电磁场可视化的应用领域:包括电磁场仿真、电磁波传播、电磁辐射等领域是现代科技领域中不 可或缺的重要工具。
电磁场可视化的研究意义:通过研究电磁场可视化的方法和技术可以推动电磁场理论的发展和完 善为现代科技领域的发展提供更加可靠和精确的支撑。
电磁场可视化的未来发展:随着科技的不断进步和人们对电磁场认识的深入电磁场可视化的方法 和手段将不断得到改进和完善未来将会有更加广泛的应用前景。
电磁场数据采集:介绍采集电 磁场数据的方法和技术手段
可视化算法:介绍实现电磁 场可视化的算法和计算过程
电磁场理论:介绍电磁场的数学模型和基本原理 可视化技术:概述常用的电磁场可视化技术和方法 实现流程:详细介绍电磁场可视化的实现流程包括数据采集、处理、渲染等步骤 应用案例:列举几个电磁场可视化的典型应用案例并对其效果进行分析和评价
目的:帮助人们直观 地了解电磁场的分布、 强度和变化从而更好 地理解和应用电磁场 的相关理论和知识。
方法:通过数学模型 和计算机图形学等技 术手段将电磁场的信 息进行可视化呈现。
应用:在科学研究、工 程设计、教育等领域有 广泛的应用例如电磁场 模拟、天线设计、电磁 兼容性分析等。
电磁场可视化的基本原理:通过图形、图像等手段将电磁场的信息呈现出来帮助人们更好地理解 和分析电磁场。
电磁场实验指导书及实验报告
![电磁场实验指导书及实验报告](https://img.taocdn.com/s3/m/defc572026fff705cd170aca.png)
CENTRAL SOUTH UNIVERSITY题目利用Matlab模拟点电荷电场的分布姓名xxxx学号xxxxxxxxxx班级电气xxxx班任课老师xxxx实验日期2010-10电磁场理论 实验一——利用Matlab 模拟点电荷电场的分布一.实验目的:1.熟悉单个点电荷及一对点电荷的电场分布情况; 2.学会使用Matlab 进行数值计算,并绘出相应的图形;二.实验原理:根据库伦定律:在真空中,两个静止点电荷之间的作用力与这两个电荷的电量乘积成正比,与它们之间距离的平方成反比,作用力的方向在两个电荷的连线上,两电荷同号为斥力,异号为吸力,它们之间的力F 满足:R R Q Q k F ˆ212= (式1)由电场强度E 的定义可知:R R kQ E ˆ2= (式2)对于点电荷,根据场论基础中的定义,有势场E 的势函数为R kQU = (式3)而 U E -∇= (式4) 在Matlab 中,由以上公式算出各点的电势U ,电场强度E 后,可以用Matlab 自带的库函数绘出相应电荷的电场分布情况.三.实验内容:1. 单个点电荷点电荷的平面电力线和等势线真空中点电荷的场强大小是E=kq /r^2 ,其中k 为静电力恒量, q 为电量, r 为点电荷到场点P (x ,y )的距离。
电场呈球对称分布, 取电量q> 0, 电力线是以电荷为起点的射线簇。
以无穷远处为零势点, 点电荷的电势为U=kq /r,当U 取常数时, 此式就是等势面方程。
等势面是以电荷为中心以r 为半径的球面。
◆ 平面电力线的画法在平面上, 电力线是等角分布的射线簇, 用MATLAB 画射线簇很简单。
取射线的半径为( 都取国际制单位) r0=0.12, 不同的角度用向量表示( 单位为弧度) th=linspace(0,2*pi,13)。
射线簇的终点的直角坐标为: [x,y]=pol2cart(th,r0).插入x 的起始坐标x=[x ; 0.1*x]。
电磁场的Matlab仿真.
![电磁场的Matlab仿真.](https://img.taocdn.com/s3/m/507d43eb0342a8956bec0975f46527d3240ca632.png)
电磁场的Matlab仿真.Matlab 与电磁场模拟⼀单电荷的场分布:单电荷的外部电位计算公式:qφ=4πε0r等位线就是连接距离电荷等距离的点,在图上表⽰就是⼀圈⼀圈的圆,⽽电⼒线就是由点向外辐射的线。
MATLAB 程序:theta=[0:.01:2*pi]'; r=0:10;x=sin(theta*r; y=cos(theta*r; plot(x,y,'b' x=linspace(-5,5,100; for theta=[-pi/4 0 pi/4] y=x*tan(theta; hold on ; plot(x,y; end grid on 单电荷的等位线和电⼒线分布图:⼆多个点电荷的电场情况:模拟⼀对同号点电荷的静电场设有两个同号点电荷, 其带电量分别为 +Q1和+Q2(Q1、Q2>0 距离为 2a 则两电荷在点P(x, y处产⽣的电势为:由电场强度可得E = -?U, 在xOy 平⾯上, 电场强度的公式为:为了简单起见, 对电势U 做如下变换:。
Matlab 程序:q=1; xm=2.5; ym=2;x=linspace(-xm,xm; y=linspace(-ym,ym; [X,Y]=meshgrid(x,y;R1=sqrt((X+1.^2+Y.^2; R2=sqrt((X-1.^2+Y.^2; U=1./R1+q./R2; u=1:0.5:4; figure contour(X,Y,U,u grid onlegend(num2str(u' hold onplot([-xm;xm],[0;0] plot([0;0],[-ym;ym]plot(-1,0,'o' , 'MarkerSize' ,12 plot(1,0,'o' , 'MarkerSize' ,12 [DX,DY] = gradient(U; quiver(X,Y,-DX,-DY; surf(X,Y,U;同号电荷的静电场图像为:50403020100-22同理,将程序稍作修改,便可以得到异号电荷的静电场图像:403020100-10-20-30-4022.5三、线电荷产⽣的电位:设电荷均匀分布在从z=-L到z=L,通过原点的线段上,其密度为q(单位C/m,求在xy 平⾯上的电位分布。
MATLAB在电磁学中的应用
![MATLAB在电磁学中的应用](https://img.taocdn.com/s3/m/78900caff01dc281e43af04d.png)
电磁学一、1、点电荷的电场研究真空中.两个带正电的点电荷.在电量相同和电量不同情况下的电场分布。
V =V 1+V 2=101r 4q πε+2024q r πε.E=-▽V2、程序实现主程序文件名为point.mclear allep0=8.85*le-12; %真空中的电容率c0=1/<4*pi*ep0>;e=1.6e-10;h=0.018;x=-0.5:h:0.5;y=-0.5:h:0.5;str{1}=’两同号等量点电荷’;str{2}=’两同号不等量点电荷’;[X,Y]=meshgrid<x,y>;q=[e;1.9*e];for i=1:2V=c0*e./sqrt<<X+0.2>.^2+Y.^2>+c0.*q<i>./sqrt<<X-0.2>.^2+Y.^2>; %求电势[Ex,Ey]=gradient<-V,h>; %求电场figure<i>counter<X<:,:,1>,Y<:,:,1>,V,… %等势面[20,-20,19,-19,18,-18,17,-17,16,-16,15,-15,14,-14,13,-13,12,-12,11,-11,10,-10],’r ’>;Axis<[-0.38,0.38,-0.28,0.28]>hold onphi=0:pi/17:2*pi; %以下画电场线sx1=0.2+0.01*cos<phi>;sy1=0.01*sin<phi>;streamline<X<:,:,1>,Y<:,:,1>,Ex,Ey,sx1,sy1>;hold onsx2=-0.2+0.01*cos<phi>;sy2=0.01*sin<phi>;streamline<X<:,:,1>,Y<:,:,1>,Ex,Ey,sx2,sy2>;title<str<i>>text<-0.215,0,’+’,’fontsize ’,20>; %标示点电荷text<0.185,0,’+’,’fontsize ’,20>;end二、带电细棒的电场1、若电荷Q 均匀分布在长为L 的细棒上.求真空中.带电细棒的电场在xy 平面内的分布情况。
电磁场matlab仿真实验
![电磁场matlab仿真实验](https://img.taocdn.com/s3/m/70a10b12f78a6529647d5376.png)
电磁场matlab 仿真实验一实验一:[例7-5]试分析一对等量异号的电荷周围空间上的电位和电场分布情况。
分析:将等量异号的电荷的几何中心放置于坐标原点位置,则它们在空间某点p 处产生的点位为:()G q g g q r r q r q r q02102102010*******πξπξπξπξπξϕ=-=⎪⎪⎭⎫ ⎝⎛-=-=其中G 为格林函数()()22222cos 2/cos 2/1r dr d r r dr d r +-=+-=θθ将G 用片面积坐标表示为⎪⎪⎭⎫⎝⎛=12ln g g G 在编程时,将G 当作点位函数处理,并利用梯度求出唱腔E=-▽φ。
用matlab 的m 语言编写的程序如下:[x,y]=meshgrid(-10:0.1:10);[Q,R]=cart2pol(x,y);R(R<=1)=NaN;q=input('请输入电偶极子的电量q =')%原程序有误,以此为准d=input('请输入电偶极子的间距d =')%原程序有误,以此为准E0=8.85*1e-12;K0=q/4/pi/E0;g1=sqrt((d./2).^2-d.*R.*cos(Q)+R.^2);%原程序有误,以此为准g2=sqrt((d./2).^2+d.*R.*cos(Q)+R.^2);%原程序有误,以此为准G=log(K0*g2./g1);contour(x,y,G,17,'g');hold on[ex,ey]=gradient(-G);tt=0:pi/10:2*pi;%原程序未定义tt ,以此为准sx=5*sin(tt);sy=5*cos(tt);streamline(x,y,ex,ey,sx,sy);xlabel('x');ylabel('y');hold off;当运行此程序后,按提示输入电偶极子电量和嗲耨集子间距如下:请输入电偶极子的电量q =0.5*1e-10请输入电偶极子的间距d =0.01即可汇出入图说使得嗲耨集资周围的长的分布图。
matlab电磁场
![matlab电磁场](https://img.taocdn.com/s3/m/2156b2362379168884868762caaedd3383c4b5ee.png)
matlab电磁场
Matlab是一种强大的数学软件,可以用来模拟电磁场的分布。
使用Matlab模拟电磁场分布时,需要使用相关的工具箱来进行计算和绘图。
下面将介绍如何使用Matlab模拟电磁场分布。
1. 安装Matlab及相关工具箱
首先需要在计算机上安装Matlab软件,并安装相应的工具箱。
其中,电磁场分布模拟需要使用的工具箱包括电磁场仿真工具箱、数值方法
工具箱和曲面拟合工具箱等。
2. 建立电磁场模型
在Matlab中建立电磁场模型时,需要先定义所要模拟的物理场问题。
例如,可以定义三维空间内的坐标系、电荷分布、电流分布等。
通过
输入这些参数,可以建立电磁场的数学模型。
3. 进行电磁场仿真计算
在建立好电磁场模型后,就可以进行仿真计算了。
Matlab提供了快速、高精度的数值方法工具箱,可以用来计算电场、磁场、电流密度等参
数的分布情况。
在进行仿真计算时,可以通过调整不同的参数,来得
到不同的电磁场分布结果。
4. 绘制电磁场分布图
在得到电磁场仿真计算结果后,还需要将其以图形化的方式展示出来。
Matlab中提供了丰富的绘图函数,可以将电磁场的分布情况绘制成三维图形或二维图形,并对其进行动画效果展示。
综上所述,使用Matlab来模拟电磁场分布可以帮助分析电磁场的分
布情况,为电磁场应用领域提供有力的支持。
电磁场相关的matlab程序
![电磁场相关的matlab程序](https://img.taocdn.com/s3/m/1080f32b1fb91a37f111f18583d049649a660e5b.png)
一、概述电磁场是物理学中一个重要的研究领域,对于电磁场的研究不仅在理论方面有重要意义,也在工程应用中起着关键作用。
MATLAB作为一种强大的科学计算软件,可以被广泛应用于电磁场的数值模拟和分析。
本文将介绍与电磁场相关的MATLAB程序的编写和应用,希望能够对相关领域的研究者和工程师有所帮助。
二、电场计算程序1. 电场的数值计算是电磁场研究的重要内容之一。
在MATLAB中,可以通过使用有限差分法(finite difference method)来进行电场的数值模拟。
需要定义空间网格和边界条件,然后利用差分格式来离散化Maxwell方程组,最后通过迭代计算来求解电场分布。
这样的程序可以用于分析不同几何形状的电场分布和电场中的电势等情况。
2. 电场在介质中的传播也是电磁场研究的重要内容。
可以通过编写MATLAB程序来模拟介质中电场的传播情况。
对于各向同性介质,可以利用Maxwell方程组在介质中的形式来推导出传播方程,然后通过数值方法求解得到电场的传播情况。
这样的程序可以用于分析不同介质中电场的传播特性,并且可以进一步扩展到非各向同性介质的情况。
三、磁场计算程序1. 磁场的数值计算同样是电磁场研究的重要内容之一。
在MATLAB中,可以通过使用有限元法(finite element method)来进行磁场的数值模拟。
需要定义空间网格和边界条件,然后利用有限元方法来离散化Maxwell方程组,最后通过迭代计算来求解磁场分布。
这样的程序可以用于分析不同几何形状的磁场分布和磁场中的磁感应强度等情况。
2. 磁场在介质中的传播也是电磁场研究的重要内容。
可以通过编写MATLAB程序来模拟介质中磁场的传播情况。
同样可以利用Maxwell 方程组在介质中的形式来推导出传播方程,然后通过数值方法求解得到磁场的传播情况。
这样的程序可以用于分析不同介质中磁场的传播特性,并且可以进一步扩展到非线性介质的情况。
四、电磁场耦合计算程序1. 在实际应用中,电磁场的耦合效应也是一个重要的研究内容。
电磁场与电磁波 【matlab】实验三 平面电磁波的反射和干涉实验
![电磁场与电磁波 【matlab】实验三 平面电磁波的反射和干涉实验](https://img.taocdn.com/s3/m/e9233ab6482fb4daa48d4b0b.png)
电磁场与电磁波实验实验三平面电磁波的反射和干涉实验成绩:请务必填写清楚姓名、学号、班级及理论课任课老师。
实验三平面电磁波的反射和干涉实验一、实验目的:1.通过虚拟仿真观察并理解平面电磁波的传输特性。
2.利用平面线极化电磁波投射到介质板上产生反射波和透射波的干涉现象来了解平面电磁波传播的一些基本特性。
3.利用干涉条纹(即空间驻波)的分布学习一种测量微波波长的方法,观察在介质中电磁波的传播从而测量其相对介电常数。
二、实验装置:实验装置如图1所示,微波源与各透射板、反射板有足够的距离以保证近似为平面波。
分束板应与入射电磁波成45°,与两反射板也成45°,A、B两反射板互相垂直。
图1微波干涉仪三、实验原理:1.平面电磁波的传播、反射及透射电磁波在传播过程中遇到两种不同波阻抗的介质分界面时,在介质分界面上将有一部分电磁能量被反射回来,形成反射波;另一部分电磁能量可能透过分界面继续传播,形成透射波。
设分界面为无限大平面,位于z=0处。
入射波的电场和磁场分别依次为:10ˆjk z i x i E aE e -= 1011ˆjk z i y i H a E e η-= 其中,0i E 是z=0处入射波的振幅,k 1和η1为介质1的相位常数和波阻抗,且有:1k =,1η=(1)当平面电磁波向理想导体垂直入射时如图2所示,因为介质2为理想导体,其中的电场和磁场均为零,即:20E = ,20H = 。
因此,介质2中没有透射波,电磁波不能透过理想导体表面,而是被分界面全部反射,在介质1中形成反射波r E 和r H。
图2平面电磁波向理想导体垂直入射则反射波的电场和磁场为:0r x r 1011ˆjk z r y r H a E e η=- 其中,0r E 为z=0处反射波的振幅,负号表示磁场方向发生了变化。
在分界面两侧,电场强度E 的切向分量连续,即:001r i E E Γ==-在z<0区域,也就是区域I 中,复振幅表示的合成电场和磁场分别为:()111001ˆˆ()2sin jk z jk z x i x i E aE e e a jE k z -=-=- ()110101111ˆˆ()2cos jk z jk z i y i y E H a E e e a k z ηη-=+= (2)当平面电磁波向理想介质垂直入射时如图3所示,均匀平面电磁波向理想介质的垂直入射时,因介质参数不同,到达分界面上的一部分入射波被分界面反射,另一部分入射波透过分界面进入区域II 传播。
电磁场的matlab仿真实验--m语言1
![电磁场的matlab仿真实验--m语言1](https://img.taocdn.com/s3/m/4cca0dcf050876323112127b.png)
实验三:等量异号点电荷的电势分布一、实验目的与要求1.掌握命令窗口中直接输入语句,进行编程绘制等量异号点电荷的电势分布图;2.掌握二维网格和三维曲面绘图的语句。
二、实验类型设计三、实验原理及说明这里在命令窗口中直接输入简单的语句进行编程设计。
MATLAB有几千个通用和专用五、实验内容和步骤(一)建立等量异号点电荷的电势方程物理情景是oxy平面上在x=2,y=0处有一正电荷,x= -2,y=0处有一负电荷,根据计算两点电荷电场中电势的分布,由于(二)利用MA TLAB的函数, 绘制等量异号点电荷的电势分布图首先选定一系列的x和y后,组成了平面上的网络点,再计算对应每一点上的z值。
例如-5:0.2:5,-4:0.2:4分别是选取横坐标与纵坐标的一系列数值,meshgrid是生成数据网格的命令,[x,y]是xy平面上的坐标网格点。
z是场点(x ,y)的电势,要求写出z的表达式。
这里用到MA TLAB的函数mesh()描绘3D网格图,meshgrid()描绘在3D图形上加坐标网格,sqrt()求变量的平方根。
mesh()是三维网格作图命令,mesh(x,y,z)画出了每一个格点(x,y)上对应的z值(电势)。
在命令窗口中直接输入简单的语句,如下。
解1解2当场点即在电荷处时,会出现分母为零的情况,因此在r里加了一个小量0.01,这样既可以完成计算,又不会对结果的正确性造成太大影响。
另外需要注意的是表达式中的“./ ”、“.^ ”是对数组运算的算符,含义与数值运算中的“./ ”、“.^ ”相同,不同之处是后者只对单个数值变量进行运算,而前者对整个数组变量中的所有元素同时进行运算。
解2为了减少计算量,增加精确度,与先前的示例相比,计算范围由原先的-5<x<5 ,-4<y<4改为-2<x<2 ,-2<y<2 ;步长由0.5改为0.1,电荷位置也改在(-1,0)和(1,0)处。
Matlab 在电磁场中的应用
![Matlab 在电磁场中的应用](https://img.taocdn.com/s3/m/bef393763b3567ec102d8ae6.png)
任意条电场线应满足方程 求解式(1)可得
2 ( ya ) y
1 22
dy E y ( x, y ) dx E x ( x, y )
(1)
C 1 1 2 2 22 2 22 (2) [ ( ya ) x ] ( y x ) [ ( ya ) x ]
q ( ya )
单电荷的等位线和电力线分布图
二、点电荷电场线的图像
考虑一个三点电荷系所构成的系统。如图所示, 其中一个点电荷-q位于坐标原点,另一个-q位于y轴 上的点,最后一个+2q位于y轴的-点,则在xoy平面 内,电场强度应满足
. .
y -q
-q +2q x
E x, y
2 q x q x q x i 3 3 3 2 2 2 2 2 2 2 2 2 4 y x 4 ya x 4 ya x 0 0 0
L0=linspace(-L,L,N+1); L1=L0(1:N);L2=L0(2:N+1); Lm=(L1+L2)/2;dL=2*L/N; R=linspace(0,10,Nr+1); for k=1:Nr+1 Rk=sqrt(Lm.^2+R(k)^2); Vk=C0*dL*q./Rk; V(k)=sum(Vk); end [max(V),min(V)] 5 e y j t y d j t y
其分量的公式可以写成:
Fx q1q2 ( x2 x1 ) / 4 0 r r
2
3 3 2
Fy q1q2 ( y2 y1 ) / 4 0 r
( x2 x1 ) ( y2 y1 )
电磁场_Matlab实验设计1
![电磁场_Matlab实验设计1](https://img.taocdn.com/s3/m/34d08f196c175f0e7cd13760.png)
电磁场_Matlab 实验设计1一、 实验目的1)熟悉matlab 在时变电磁场仿真中的运用;2)掌握matlab 动画功能来分析时变场的极化特性二、 实验原理1)原理:matlab 动画功能2)所选题目:参见汉版教材(P-323)7-21第.1.、.2.问.相关知识点:极化的概念概念:在垂直于传播方向的平面内,场的矢端在一个周期内所画出的轨迹。
在这里,我们仅以电场为例。
分类:根据场的矢端轨迹,分为线极化、圆极化、椭圆极化三类。
假设:,极化类型取决于、 及 、题目真空中一平面波得电磁场强度矢量为22()j z x y E a j a e π-=+1)此波属于何种极化?若是旋极化,属于指出旋向;2)写出对应磁场强度矢量;3)写出与此波旋向相反且传播方向相反的波的电场强度和磁场强度矢量。
解答:1)圆极化波,属于右旋2)22()120j z y x H a j a e ππ-=-瞬时表达式分别为:81.510/rad s ωπ=⨯2cos()2sin()22x y E a t z a t z ππωω=-+- 22cos()sin()12021202y x H a t z a t z ππωωππ=---三、 实验平台 Matlab四、 实验步骤程序代码:左旋圆极化clear;figure; %创建图形窗口grid on; %加网格box on; %加框架t=linspace(-4*pi,4*pi,101);z=linspace(-4*pi,4*pi,101);l=zeros(size(z));k=120*pi;for n=0:100;x1=sqrt(2)*sin(0.5*t-n/10*pi); %x=sqrt(2)*c os(0.5*t-n/10*pi)右旋y1=sqrt(2)*cos(0.5*t-n/10*pi); %y=sqrt(2)*s in(0.5*t-n/10*pi)右旋x2=sqrt(2)*cos(0.5*t-n/10*pi)/k*100;y2=-sqrt(2)*sin(0.5*t-n/10*pi)/k*100;quiver3(l,l,z,x1,y1,l,'b');hold onquiver3(l,l,z,x2,y2,l,'r');title('左旋圆极化波的传播');xlabel('x','fontsize',16) % 用16号字体标出X 轴ylabel('y','fontsize',16) % 用16号字体标出Y 轴zlabel('z','fontsize',16)view(20,30+2*n);hold offpause(0.1);end实验结果如图:图1图2图3将程序改成线极化波观察其空间分布,修改如下:x1=sin(0.5*t-n/10*pi); %x=cos(0.5*t-n/10*pi) 右旋y2=-sin(0.5*t-n/10*pi)/k*100;quiver3(l,l,z,x1,l,l,'b');hold onquiver3(l,l,z,l,y2,l,'r');title('线极化波的传播');实验图如下图1图2再将程序改成椭圆极化观察其空间分布,程序修改如下:x1=0.5*sin(0.5*t-n/10*pi);y1=cos(0.5*t-n/10*pi+pi/4);x2=0.5*sin(0.5*t-n/10*pi)/k*100; y2=-cos(0.5*t-n/10*pi+pi/4)/k*100;quiver3(l,l,z,x1,y1,l,'b');hold onquiver3(l,l,z,x2,y2,l,'r');实验结果如下:图1图2图3五、实验结果及分析1、圆极化波,从图1可以看出其按正弦波传播,从图2可以观察出其矢端在空间中的传播的轨迹为圆,图3中可以看出电场和磁场相差pi/的相位。
电磁场与电磁波 【matlab】实验四 电磁波的极化实验
![电磁场与电磁波 【matlab】实验四 电磁波的极化实验](https://img.taocdn.com/s3/m/aeeb6b4755270722182ef73a.png)
电磁场与电磁波实验实验四电磁波的极化实验成绩:请务必填写清楚姓名、学号、班级及理论课任课老师。
实验四电磁波的极化实验一、实验目的:1.通过虚拟仿真观察并理解电磁波极化的概念2.学习电磁波极化的测量方法3.学会判读线极化波,圆极化波的方法二、实验装置实验装置如图1所示。
图中:①为微波源;②为隔离器;③为负载;④为可变衰减器;⑤为T 型接头;⑥和⑦为发射天线;⑧为可变相移器;⑨为接收天线;⑩为检波器;⑪为指示电流表。
图1电磁波极化实验系统T 型接头用以将传来的微波功率分成等强度的两束波。
衰减器用于调节支路中的功率强弱。
相移器用以调节支路中的初相位φ,从而产生相位的变化。
三、实验原理:平面电磁波沿轴线前进没有z E 分量,一般情况下,存在x E 分量和y E 分量,如果y E 分量为零,只有x E 分量我们称其为X 方向线极化。
如果只有y E 分量而没有x E 分量我们称其为Y 方向线极化。
在一般情况下,x E 和y E 都存在,在接收此电磁波时,将得到包含水平与垂直两个分量的电磁波。
如果此两个分量的电磁波的振幅和相位不同时,可以得到各种不同极化形式的电磁波。
1.如果电磁波场强的X 和Y 分量为:()1cos x xm E E t kz ωϕ=+-\*MERGEFORMAT (1)()2cos y ym E E t kz ωϕ=+-\*MERGEFORMAT (2)其中1ϕ、2ϕ为初相位,2k πλ=。
若1ϕ等于2ϕ,或1ϕ与2ϕ相位差为2n π时,其合成电场为线极化波,其幅度为:()1E t kz ωϕ==-+\*MERGEFORMAT (3)电场分量与X 轴的夹角为:arctan arctan yym x xm E E E E α===常数\*MERGEFORMAT (4)2.如果1ϕ与2ϕ相位差90°或270°,则:()1cos x xm E E t kz ωϕ=-+\*MERGEFORMAT (5)()2cos y ym E E t kz ωϕ=-+\*MERGEFORMAT (6)合成电磁场为:E ==常数\*MERGEFORMAT (7)它的方向是:()1tan tan yx E t kz E αωϕ==-+\*MERGEFORMAT (8)1t kz αωϕ=-+\*MERGEFORMAT (9)表示合成场振幅不随时间变化,其方向是随时间而旋转的圆极化波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共享资料,下载后仅供参考,务请自主完成
实验一
Matlab工具在时变电磁场题目解答分析中的运用
姓名:
学号:
时间:2011年6月15日
一、实验目的
1)熟悉matlab在时变电磁场仿真中的运用;
2)掌握matlab动画功能来分析时变场的极化特性
二、实验原理
1)原理:matlab动画功能
2)所选题目:参见汉版教材(P-323)7-21第.1.、.2.问.
相关知识点:极化的概念
概念:在垂直于传播方向的平面内,场的矢端在一个周期内所画出的轨迹。
在这里,我们仅以电场为例。
分类:根据场的矢端轨迹,分为线极化、圆极化、椭圆极化三类。
假设:,极化类型取决于
、及、
题目
真空中一平面波得电磁场强度矢量为 22()j z x y E a ja e π-=+
1)此波属于何种极化?若是旋极化,属于指出旋向;
2)写出对应磁场强度矢量; 3)写出与此波旋向相反且传播方向相反的波的电场强度和磁场强度矢量。
解答:
1)圆极化波,属于右旋
2)22()120j z y x H a ja e ππ
-=- 瞬时表达式分别为:81.510/rad s ωπ=⨯ 2cos()2sin()22x y E a t z a t z π
π
ωω=-+- 22cos()sin()12021202
y x H a t z a t z ππωωππ=--- 三、 实验平台 Matlab
四、 实验步骤
程序代码:
w=1.5*pi*10e+8;
z=0:0.05:20;
k=120*pi;
for t=linspace(0,1*pi*10e-8,200)
e1=sqrt(2)*cos(w*t-pi/2*z);
e2=sqrt(2)*sin(w*t-pi/2*z);
h1=sqrt(2)/k*cos(w*t-pi/2*z);
h2=-sqrt(2)/k*sin(w*t-pi/2*z);
subplot(2,1,1)
plot3(e1,e2,z);xlabel('x');ylabel('y');zlabel('z'); title('电场强度矢量');grid on
subplot(2,1,2)
plot3(h2,h1,z);xlabel('x');ylabel('y');zlabel('z'); title('电场强度矢量');grid on
pause(0.1);
end
五、实验结果及分析
在Matlab运行环境中的动画过程可以清楚看到圆极化波的传播特性,以及电磁场作为TEM波的特性。