离散数学试卷A答案
《离散数学》试题及答案
《离散数学》试题及答案一、选择题(每题5分,共25分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},则A∩B的结果是()A. {1,2,3,4,5}B. {2,4}C. {1,3,5}D. {1,2,3,4,5,6,8,10}答案:B2. 下列关系中,哪个是等价关系?()A. ≤B. ≠C. |D. ≠答案:A3. 设图G有5个顶点,每两个顶点之间都有一条边相连,则图G的边数是()A. 5B. 10C. 15D. 20答案:C4. 下列哪一个图是欧拉图?()A. 无向图B. 有向图C. 树D. 环答案:D5. 下列哪一个命题是正确的?()A. 若p→q为真,则p为真B. 若p∧q为假,则p为假C. 若p∨q为真,则q为真D. 若p→q为假,则p为假答案:B二、填空题(每题5分,共25分)1. 设集合A={a,b,c,d},B={c,d,e},则A-B=________。
答案:{a,b}2. 设p是命题“今天是晴天”,q是命题“我去公园玩”,则命题“如果今天不是晴天,那么我不去公园玩”可以表示为________。
答案:¬p→¬q3. 设图G有n个顶点,e条边,则图G的度数之和为________。
答案:2e4. 一个连通图至少有________个顶点。
答案:25. 设图G的邻接矩阵为A,则A的转置矩阵表示________。
答案:图G的转置图三、判断题(每题5分,共25分)1. 离散数学是研究离散结构的数学分支。
()答案:正确2. 两个集合的笛卡尔积是这两个集合的直积。
()答案:正确3. 有向图中,顶点u和顶点v之间的长度为2的路径是指路径上有3条边。
()答案:错误4. 树是一种无向图。
()答案:正确5. 哈夫曼编码是一种贪心算法。
()答案:正确四、应用题(每题25分,共50分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},C={3,6,9,12,15},求A∪(B∩C)。
离散数学试题(A卷答案)
离散数学试题(A 卷答案)一、(10分)求(P ↓Q )→(P ∧⌝(Q ∨⌝R ))的主析取范式 解:(P ↓Q )→(P ∧⌝(Q ∨⌝R ))⇔⌝(⌝( P ∨Q ))∨(P ∧⌝Q ∧R ))⇔(P ∨Q )∨(P ∧⌝Q ∧R ))⇔(P ∨Q ∨P )∧(P ∨Q ∨⌝Q )∧(P ∨Q ∨R ) ⇔(P ∨Q )∧(P ∨Q ∨R )⇔(P ∨Q ∨(R ∧⌝R ))∧(P ∨Q ∨R ) ⇔(P ∨Q ∨R )∧(P ∨Q ∨⌝R )∧(P ∨Q ∨R ) ⇔0M ∧1M⇔2m ∨3m ∨4m ∨5m ∨6m ∨7m二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。
乙说:王教授不是上海人,是苏州人。
丙说:王教授既不是上海人,也不是杭州人。
王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。
试判断王教授是哪里人?解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。
则根据题意应有: 甲:⌝P ∧Q 乙:⌝Q ∧P 丙:⌝Q ∧⌝R王教授只可能是其中一个城市的人或者3个城市都不是。
所以,丙至少说对了一半。
因此,可得甲或乙必有一人全错了。
又因为,若甲全错了,则有⌝Q ∧P ,因此,乙全对。
同理,乙全错则甲全对。
所以丙必是一对一错。
故王教授的话符号化为:((⌝P ∧Q )∧((Q ∧⌝R )∨(⌝Q ∧R )))∨((⌝Q ∧P )∧(⌝Q ∧R ))⇔(⌝P ∧Q ∧Q ∧⌝R )∨(⌝P ∧Q ∧⌝Q ∧R )∨(⌝Q ∧P ∧⌝Q ∧R ) ⇔(⌝P ∧Q ∧⌝R )∨(P ∧⌝Q ∧R ) ⇔⌝P ∧Q ∧⌝R ⇔T因此,王教授是上海人。
三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。
证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。
离散数学期末试题A答案及评分标准
--北京工商大学离散数学试卷(A)答案及评分标准题号 一 二三 四 五 六 七总分得分一、(30分)设A ={1,2,3,4},给定A 上二元关系R 如下:R ={<1,1>, <1,2>, <2,3>, <3,3>, <4,4>}请回答以下各问题:1.写出R 的关系矩阵. (3分)2.画出R 的关系图. (3分)3.求包含R 的最小的等价关系,并写出由其确定的划分. (6分)4.分别用关系矩阵表示出R 的自反闭包r (R )、对称闭包s (R ). (6分)5.求传递闭包t (R ).(写出计算步骤)(6分)6.求R 2的关系矩阵. (3分)7.集合A 上最多可以确定多少个不同的二元关系?说明理由。
(3分)[解] (1)⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000010001000011R M 。
……(3分)(2) ……(3分)(3)法一:直接由等价关系与划分之间的一一对应可知,包含R 的最小等价关系为: {<1, 2>, <1, 3>, <2, 1>,<2, 3>, <3, 1> <3, 2>}∪I A , ……(3分) 对应的划分为{{1, 2, 3},{4}}. ……(6分) 法二:包含R 的最小的等价关系就是tsr (R ), 计算过程如下:⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=100001000110001110000100001000011000010001000011)(E M M R R r,100001100111001110000110001100011000010001100011][)()()(⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+=T R r R r R sr M M M ,3,10001110111011110000110011100111000011001110011)]([)()()]([2≥=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯=k M M M M k R sr R sr R sr R sr 从而,10000111011101111000011101110111100001110111011110000111011101111000011001110011432)]([)]([)]([)()(⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+++=R sr R sr R sr R sr R tsr M M M M M即}2,3,1,3,3,2,1,2,3,1,2,1{)(><><><><><><⋃=A I R tsr =包含R 的最小的等价关系, ……(3分) 故其对应的划分为{{1, 2, 3},{4}}. ……(6分) 法三:由于4=A ,包含R 的最小的等价关系就是4131211)()()()()()(----⋃⋃⋃⋃⋃⋃⋃⋃==R R R R R R R R I R rts R tsr A ,计算过程如下:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=-⋃100001100101001110000110000100011000010001000011][1TR R R R M M M ⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=-⋃10000111011101111000011001010011)][(22)(21T R R R R M M M412131)()(33)(10000111011101111000011001010011)][(---⋃⋃⋃==⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=R R R R T R R R R M M M M M 考试纪律承诺本人自愿遵守学校考试纪律,保证以诚信认真的态度作答试卷。
离散数学期末考试试卷a答案及评分细则
………密………封………线………以………内………答………题………无………效……电子科技大学英才学院2022 -2022学年第 1学期期 末 考试 A 卷离散数学 课程考试题 A 卷 〔 120分钟〕 考试形式:闭卷 考试日期 2022 年 月 日课程成绩构成:平时 分, 期中 分, 实验 分, 期末 100 分I.Multiple Choice (15%, 1.5 points each)〔A 〕 1. (p ∧q)→(p ∨q) is logically equivalent toa) T b) p ∨q c) F d) p ∧q〔A 〕 2. If P(A) is the power set of A, and A = ∅, what is |P(P(P(A)))|?a) 4 b) 24 c) 28 d) 216〔C 〕 3. Which of these statements is NOT a proposition?a) Today is Monday. ` b) 1+1=2.c) Am I right? d) Go and play with me.〔C 〕 4. Which of these propositions is not logically equivalent to the other three?a) (p → q) ∧ (r → q) b) (p ∨ r) → qc) (p ∧r) → q d) The contrapositive of ¬q → (¬p ^ ¬r)〔B 〕 5. Suppose | A | = 3 and | B | = 8. The number of 1-1 functions f : A → B isa) 24 b) P (8,3). c) 38 d) 83〔B 〕 6. Let R be a relation on the positive integers where xRy if x is a factor of y . Whichof the following lists of properties best describes the relation R ? a) symmetric, transitiveb) antisymmetric, transitive, reflexive c) antisymmetric, symmetric, reflexive d) symmetric, transitive, reflexive〔C 〕 7. Which of the following are partitions of },,,,,,,{h g f e d c b a U =?a)},,,,,{},,,{},{h g f e d c c b a a . b) },,,,,{},,{},{h g f e d c c b a c) }{},,{},,{},,,{h f e c b g d a . d) },,,,{},,{},,{h g f e d c b b a〔C 〕 8. The function f(x)=x 2log(x 3+78) is big-O of which of the following functions?a) x 2 b) x(logx)3 c) x 2logx d) xlogx〔A 〕 9.If 1010110111101101R ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦M , then R is: a) reflexive b) symmetric c) antisymmetric d) transitive.〔B 〕 10. Which of the followings is a function from Z to R ?………密………封………线………以………内………答………题………无………效……a) )1()(-±=n n f . ` b) 1)(2+=x x f . c) x x f =)( d) 21)(2-=n n fII. True or False (10%, 1 point each) 〔T 〕 1. If 1 < 0, then 5 = 6. 〔F 〕 2. (p ∧ q) ∨ r ≡ p ∧ (q ∨ r)〔F 〕 3. If A , B , and C are sets, then (A -C )-(B -C )=A -B . 〔T 〕 4. Suppose A = {a ,b ,c }, then {{a }} ⊆ P (A ).〔F 〕 5.()h x =is defined as a function with domain R and codomain R.〔T 〕 6. Suppose g : A → B and f : B → C , where f g is 1-1 and f is 1-1. g must be 1-1? 〔T 〕 7. If p and q are primes (> 2), then p + q is composite .〔F 〕 8.If the relation R is defined on the set Z where aRb means that ab > 0, then R is an equivalence relation on Z .〔T 〕 9. (A - B ) ⋃ (A - C ) = A - (B ⋂ C ).〔T 〕 10. The set{∅,{a },{∅},{a ,∅}} is the power set of some set III. Fill in the Blanks (20%, 2 points each)1. Let p and q be the propositions “I am a criminal 〞 and “I rob banks 〞. Express in simpleEnglish the proposition “if p then q 〞: If I am a criminal them I rob banks. 2. P (x ,y ) means “x + 2y = xy 〞, where x and y are integers. The truth value of ∃x ∀yP (x ,y )is False .3. T he negation of the statement “No tests are easy.〞 is some tests are easy.4. If 11{|}i A x x R x i i =∈∧-≤≤ then 1i i A +∞=is ∅.5. Suppose A = {x , y }. Then ()P A is {∅, {x}, {y},{x,y}}.6. Suppose g : A →A and f :A →A where A ={1,2,3,4},g = {(1, 4), (2,1), (3,1), (4,2)} andf ={(1,3),(2,2),(3,4),(4,2)}.Then fg ={(1,2),(2,3),(3,3),(4,2)}.7. The sum of 2 + 4 + 8 + 16 + 32 + ... + 210 is 211 - 2 .8. The expression of gcd(45, 12) as a linear combination of 12 and 45 is 12 ⋅ 4 + 45 ⋅ (1). 9.There are 5! permutations of the seven letters A,B ,C ,D ,E ,F have A immediately to the left of E .10. The two's complement of -13 is 1 0011 . IV. Answer the Questions (32%, 4points each):1. Determine whether the following argument is valid:………密………封………线………以………内………答………题………无………效……p→rq→rq∨⌝r________∴⌝pAns: Not valid: p true, q true, r true2.Suppose you wish to prove a theor em of the form “if p then q〞.(a) If you give a direct proof, what do you assume and what do you prove?(b) If you give an indirect proof, what do you assume and what do you prove?(c) If you give a proof by contradiction, what do you assume and what do you prove? Ans: (a) Assume p, prove q.(b) Assume ⌝q, prove ⌝p.(c) Assume p∧⌝q, show that this leads to a contradiction.3.Prove that A B A B⋂=⋃by giving a proof using logical equivalence.Ans:()()()() A B x x A Bx x A Bx x A Bx x A x Bx x A x Bx x A x Bx x A x Bx x A B A B ⋂={|∈⋂}={|∉⋂}={|⌝∈⋂}={|⌝∈∧∈}={|⌝∈∨⌝∈}={|∉∨∉}={|∈∨∈}={|∈⋃}=⋃4.Suppose f:R→R where f(x) =⎣x/2⎦.(a) If S={x| 1 ≤x≤ 6}, find f(S).(b) If T={3,4,5}, find f-1(T). Ans: (a) {0,1,2,3}(b) [6,12).e the definition of big-oh to prove that5264473n nn+--is O(n3).………密………封………线………以………内………答………题………无………效……Ans: 5555322226446410573763n n n n n n n n n n +-+≤==--, if n ≥ 2. 6. Solve the linear congruence 5x ≡ 3 (mod 11).Ans: 5 + 11k .7. Use the Principle of Mathematical Induction to prove that 1311392732n n+-++++...+= for alln ≥ 0.Ans: P (0):13112-= , which is true since 1 = 1. P (k ) → P (k + 1):111211313123311333222k k k k k k ++++++--+⋅-++...+=+==.8.Encrypt the message NEED HELP by translating the letters into numbers, applying the encryption function f(p ) = (3p + 7) mod 26, and then translating the numbers back into letters.Ans: Encrypted form: UTTQ CTOA.V. (6%) Without using the truth table, show that the following are tautologiesa) [⌝p ∧(p ∨q)]→q b) [p ∧(p →q)]→qAns:a) ⌝p ∧(p ∨q)≡(⌝p ∧p)∨(⌝p ∧ q)≡flase[⌝p ∧(p ∨q)]→q ≡ false →q ≡⌝false ∨q ≡true ∨q ≡true (3points)b)[p ∧(p →q)]→q ≡(⌝[p ∧(⌝p ∨q)])∨q ≡(⌝p ∨(p ∧⌝q))∨q ≡((⌝p ∨p)∧(⌝p ∨⌝q))∨q ≡⌝p ∨⌝q ∨q ≡true (3points)VI. (6%) Devise an algorithm which will find the minimum of n integers. What is the worst case time………密………封………线………以………内………答………题………无………效……complexity of this algorithm?a) procedure min(a1, a2, …, an: integers)(4points)v := a1 {largest element so far}for i := 2 to n {go thru rest of elems}if ai < v then v := ai {found smaller?}{at this poi nt v’s value is the same as the smallest integer in the list}return vb) the worst case time complexity of this algorithm is O(n). (2points)VII.(5%) Give the definition of a transitive relation, and Prove or disprove that the union of two transitive relations is transitive.Ans: A relation R on a set A is called transitive if only if (a,b)∈R and (b,c)∈R ,then (a,c) ∈R ,for a,b,c ∈A. (2points)The union of two transitive relations may be not transitive. A counter-example:A={1,2,3}, R1= {<1,1>, <2,3>}, R2={<1,2><3,3> }R1∪R2={<1.1>, <2,3><1,2><3,3>}, which is not transitive. (3points)VIII.(6%) Give an argument using rules of inference to show that the conclusion follows from the hypotheses. List all the steps in your argument.Hypotheses: All computer scientists like Star Trek. Sarah does not like Star Trek. Therefore, Sarah is not a computer scientist.Solution:Hypotheses: ∀x(ComputerScientist(x) →Likes(x, StarTrek))¬Likes(Sarah, StarTrek)Conclusion: ¬ComputerScientist(Sarah)Step 1: ∀x(ComputerScientist(x) →Likes(x, StarTrek)) (Hypothesis)Step 2: ComputerScientist(Sarah) →Likes(Sarah, StarTrek) (Univ. Inst. Step 1)Step 3: ¬Likes(Sarah, StarTrek) (Hypothesis)Step 4: ¬ComputerScientist(Sarah) (Modus Toll. St. 2+3)The argument is sound.Grading rubric: -3 points for making wrong assumptions.-2 points for not being able to complete the proof.-1 to -3 points for illegal usage of inference rules.。
《离散数学》试卷A及答案
《离散数学》试卷(A)适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一、单项选择题(本大题共8小题,每小题3分,共24分)1、下述哪一个不是命题?( ) A 、离散数学是计算机系的一门必修课 B 、不存在最大偶数。
C 、若我有空,我就看书。
D 、请勿随地叶痰!2、设A={a,b,c},B={1,2,3},以下哪一个关系是从A 到B 的双射函数?( ) A 、f={<a,2>,<b,2>,<c,1>} B 、f={<a,3>,<b,1>,<c,2>} C 、f={<a,1>,<b,2>,<c,3>,<a,3>} D 、f={<a,1>,<b,2>,<a,3>}3.设<G, 。
>是群,且|G|>1,则下列命题不成立的是( )A.G 中有幺元B. G 中有零元C.G 中任一元素有逆元D. G 中除幺元外无其它幂等元 4、设A={}c b a ,,,则下列是集合A 的划分的是( ) A.{}{}{}c c b ,, B. {}{}{}c a b a ,,, C.{}{}c b a ,, D.{}{}{}c b a ,, 5.设集合A={a,{b}},下面四个命题为真的是A.a 包含于AB.φ∈AC.{b}包含于AD.φ包含于A 6、下列是命题公式p ∧(q ∨⌝r)的成真指派的是( ) A.110,111,100 B.110,101,011 C 所有指派 D.无 7、与一阶公式P(x)→VxQ(x)等值的公式是A.P(y)→VyQ(y)B.P(y)→VxQ(y)C.P(x)→VyQ(y)D.P(z)→VyQ(y)8、设A 和B 都是命题,则A →B 的真值为假当且仅当( ) A 、A 为0 ,B 为1 B 、A 为0 ,B 为0 C 、A 为1 ,B 为1 D 、A 为1 ,B 为0二、填空题(本大题共7小题,每空3分,共21分)1..设A={a,b,c},F 是A 上的二元关系,F={<a,c>,<b,a>,<c,b>},则其自反闭包为r(F)= 。
离散数学期末试题及答案A
学年第二学期期末考试《离散数学》试卷( A )使用班级:命题教师:主任签字:一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q,*〉Q是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算C.〈Z,ο〉,Z是整数集,ο定义为xοxy=xy,∀x,y∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上二元关系R的关系图如下:R具有的性质是A.自反性B.对称性C.传递性D.反自反性8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪I AB.RC.R∪{〈c,a〉}D.R∩I A9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.下列式子正确的是( )A. ∅∈∅B.∅⊆∅C.{∅}⊆∅D.{∅}∈∅11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.下列公式在R下为真的是( )A.( ∀x)( ∀y)( ∀z)(A(x,y))→A(f(x,z),f(y,z))B.( ∀x)A(f(a,x),a)C.(∀x)(∀y)(A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(∀x)(A(x)→B)等价于( )A.(∃x)A(x)→BB.(∀x)A(x)→BC.A(x)→BD.(∀x)A(x)→(∀x)B13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为( )A.P∨QB.P∧┐QC.P→┐QD.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。
离散数学试题及答案
离散数学考试试题(A卷及答案)一、(10分)某项工作需要派A、B、C和D 4个人中的2个人去完成,按下面3个条件,有几种派法?如何派?(1)若A去,则C和D中要去1个人;(2)B和C不能都去;(3)若C去,则D留下。
解设A:A去工作;B:B去工作;C:C去工作;D:D去工作。
则根据题意应有:A→C⊕D,⌝(B ∧C),C→⌝D必须同时成立。
因此(A→C⊕D)∧⌝(B∧C)∧(C→⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧(⌝B∨⌝C)∧(⌝C∨⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧((⌝B∧⌝C)∨(⌝B∧⌝D)∨⌝C∨(⌝C∧⌝D))⇔(⌝A∧⌝B∧⌝C)∨(⌝A∧⌝B∧⌝D)∨(⌝A∧⌝C)∨(⌝A∧⌝C∧⌝D)∨(C∧⌝ D∧⌝B∧⌝C)∨(C∧⌝ D∧⌝B∧⌝D)∨(C∧⌝ D∧⌝C)∨(C∧⌝ D∧⌝C∧⌝D)∨(⌝C∧D∧⌝B∧⌝C)∨(⌝C∧D∧⌝B∧⌝D)∨(⌝C∧D∧⌝C)∨(⌝C∧D∧⌝C∧⌝D)⇔F∨F∨(⌝A∧⌝C)∨F∨F∨(C∧⌝ D∧⌝B)∨F∨F∨(⌝C∧D∧⌝B)∨F∨(⌝C∧D)∨F⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D∧⌝B)∨(⌝C∧D)⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D)⇔T故有三种派法:B∧D,A∧C,A∧D。
二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且是工人,有些成员是青年人,所以,有些成员是青年专家。
解:论域:所有人的集合。
S(x):x是专家;W(x):x是工人;Y(x):x是青年人;则推理化形式为:∀x(S(x)∧W(x)),∃x Y(x)∃x(S(x)∧Y(x))下面给出证明:(1)∃x Y(x) P(2)Y(c) T(1),ES(3)∀x(S(x)∧W(x)) P(4)S( c)∧W( c) T(3),US(5)S( c) T(4),I(6)S( c)∧Y(c) T(2)(5),I(7)∃x S((x)∧Y(x)) T(6) ,EG三、(10分)设A、B和C是三个集合,则A⊂B⇒⌝(B⊂A)。
离散数学考试试题(A、B卷及答案)
离散数学考试试题(A 卷及答案)一、证明题(10分) 1) (P ∧Q ∧AC )∧(A P ∨Q ∨C ) (A ∧(P Q ))C 。
P<->Q=(p->Q)合取(Q->p )证明: (P ∧Q ∧A C )∧(A P ∨Q ∨C ) (P ∨Q ∨A ∨C )∧(A ∨P ∨Q ∨C )((P ∨Q ∨A )∧(A ∨P ∨Q ))∨C 反用分配律 ((P ∧Q ∧A )∨(A ∧P ∧Q ))∨C( A ∧((P ∧Q )∨(P ∧Q )))∨C 再反用分配律( A ∧(PQ ))∨C(A ∧(P Q ))C 2) (PQ)PQ 。
证明:(P Q)((P ∧Q))(P ∨Q))PQ 。
二、分别用真值表法和公式法求(P (Q ∨R ))∧(P ∨(Q R ))的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值(15分)。
主析取范式与析取范式的区别:主析取范式里每个括号里都必须有全部的变元。
主析取范式可由 析取范式经等值演算法算得。
证明:公式法:因为(P (Q ∨R ))∧(P ∨(Q R ))(P ∨Q ∨R )∧(P ∨(Q ∧R )∨(Q ∧R ))(P ∨Q ∨R )∧(((P ∨Q )∧(P ∨R ))∨(Q ∧R ))分配律 (P ∨Q ∨R )∧(P ∨Q ∨Q )∧(P ∨Q ∨R )∧(P ∨R ∨Q )∧(P ∨R ∨R )(P ∨Q ∨R )∧(P ∨Q ∨R )∧(P ∨Q ∨R )4M ∧5M ∧6M 使(非P 析取Q 析取R )为0所赋真值,即100,二进制为4 0m ∨1m ∨2m ∨3m ∨7m所以,公式(P (Q ∨R ))∧(P ∨(Q R ))为可满足式,其相应的成真赋值为000、001、010、011、111:成假赋值为:100、101、110。
真值表法:P Q RQRP(Q∨R)P∨(Q R)(P(Q∨R))∧(P∨(Q R ))0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1 1111111111111111111111为000、001、010、011、111:成假赋值为:100、101、110。
离散数学考试试题(A卷及答案)
离散数学考试试题(A 卷及答案)一、 (10 分)判断下列公式的类型(永真式、永假式、可满足式)?1)((P Q)∧Q)一 ((Q∨R)∧Q) 2)((Q P)∨P)∧ (P∨R)3)((P∨Q)R)((P∧Q)∨R)解: 1)永真式; 2) 永假式; 3)可满足式。
二、 (8 分) 个体域为{1, 2},求x3y (x+y=4)的真值。
解:x3y (x+y=4) 一 x ((x+1=4)∨(x+2=4))一((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+1=4))一(0∨0)∧(0∨1)一1∧1一0三、 (8 分) 已知集合 A 和 B 且|A|=n, |B|=m,求 A 到 B 的二元关系数是多少? A 到 B 的函数数是多少?解:因为|P(A×B) |=2|A×B|=2|A| |B|=2mn,所以 A 到 B 的二元关系有 2mn 个。
因为|BA|= |B| |A|=mn,所以 A 到 B 的函数 mn 个。
四、 (10 分) 已知 A={1,2,3,4,5}和 R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求 r(R) 、s(R)和 t(R)。
解: r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>}t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}五、 (10 分) 75 个儿童到公园游乐场,他们在那里可以骑旋转木马,坐滑行铁道,乘宇宙飞船,已知其中20 人这三种东西都乘过,其中 55 人至少乘坐过其中的两种。
大学《离散数学》期末考试试卷及答案(1)
大学《离散数学》期末考试试卷及答案(1)一、选择题1. 离散数学的主要研究对象是()。
A. 连续的数学结构B. 有限的数学结构C. 数学的综合应用D. 数学的哲学思考2. 命题逻辑是离散数学的一个重要组成部分,它主要研究()。
A. 命题之间的真假关系B. 变量之间的关系C. 函数之间的关系D. 集合之间的关系3. 集合的基本运算包括()。
A. 并、交、差、补B. 加、减、乘、除C. 包含、相等、不等、自反D. 大于、小于、等于、不等于二、填空题1. 若集合A={m|2m-1>3},则A中的元素为______。
2. 有一个集合A={1,2,3},则集合A的幂集为______。
3. 若命题p为真,命题q为假,则复合命题“p∧q”的真值为______。
三、解答题1. 请写出离散数学中常用的数学符号及其含义。
2. 请解释命题逻辑中的充分必要条件及其符号表示,并给出一个例子。
3. 请定义集合的笛卡尔积,并给出两个集合进行笛卡尔积运算的例子。
四、问答题1. 离散数学在计算机科学中有着重要的应用,请列举三个与计算机科学相关的离散数学应用领域并简要介绍。
2. 请简要解释归纳法在离散数学中的作用,并给出一个使用归纳法证明的例子。
3. 什么是有向图?请给出一个有向图的例子,并解释该图中的关系。
参考答案:一、选择题1. B2. A3. A二、填空题1. A={m|2m-1>3}2. {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}3. 假三、解答题1. 常用数学符号及含义:- ∪:并,表示集合的合并操作。
- ∩:交,表示集合的交集操作。
- ∖:差,表示减去一个集合中的元素。
- ⊆:包含,表示一个集合包含于另一个集合。
- =:相等,表示两个集合具有相同的元素。
2. 充分必要条件是指一个命题的成立与另一个命题的成立互为必要条件,若A是B的充分必要条件,那么当A成立时B一定成立,且当A不成立时B也一定不成立。
离散数学参考答案
1.(单选题)A.明年“五一”是晴天。
B.这朵花多好看呀!。
C.这个男孩真勇敢啊! D.明天下午有会吗?答题: A. B. C. D. (已提交)参考答案:A问题解析:2.(单选题) 在上面句子中,是命题的是( )A.1+101=110 B.中国人民是伟大的。
C.这朵花多好看呀! D.计算机机房有空位吗?答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(单选题) 在上面句子中,是命题的是( )A.如果天气好,那么我去散步。
B.天气多好呀!C.x=3。
D.明天下午有会吗?答题: A. B. C. D. (已提交)参考答案:A问题解析:4.(单选题) 在上面句子中( )是命题下面的命题不是简单命题的是( )A.3 是素数或4 是素数B.2018 年元旦下大雪C.刘宏与魏新是同学 D.圆的面积等于半径的平方与π之积答题: A. B. C. D. (已提交)参考答案:A问题解析:5.(单选题) 下面的表述与众不一致的一个是( )A.P :广州是一个大城市 B.ØP :广州是一个不大的城市C.ØP :广州是一个很不小的城市 D.ØP :广州不是一个大城市答题: A. B. C. D. (已提交)参考答案:C问题解析:6.(单选题) 设,P:他聪明;Q:他用功。
在命题逻辑中,命题:“他既聪明又用功。
”可符号化为:()A.PÙQ B.P®QC.PÚØQ D.PÙØQ答题: A. B. C. D. (已提交)参考答案:A问题解析:7.(单选题) 设:P :刘平聪明。
Q:刘平用功。
在命题逻辑中,命题:“刘平不但聪明,而且用功”可符号化为:()A.PÙQ B.ØPÚQC.PÚØQ D.PÙØQ答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(单选题)设:P:他聪明;Q:他用功。
离散数学试题及答案解析
________________________,R2R1 =____________________________,
R12
=________________________.
10. 设有限集 A, B,|A| = m, |B| = n, 则| |(AB)| = _____________________________.
合映射•,•, •, •,••.
4. 设 I 是如下一个解释:D = {2, 3},
a
b
f (2) f (3)
3
2
3
2
试求 (1) P(a, f (a))∧P(b, f (b));
P(2, 2) P(2, 3) P(3, 2) P(3, 3)
0
0
1
1
(2) xy P (y, x).
5. 设集合 A={1, 2, 4, 6, 8, 12},R 为 A 上整除关系。
第 2 页 共 18 页
是( ).
(A)恒真的 (B)恒假的 (C)可满足的 (D)前束范式.
8 设命题公式 G=(PQ),H=P(QP),则 G 与 H 的关系是( )。
(A)GH (B)HG (C)G=H (D)以上都不是.
9 设 A, B 为集合,当( )时 A-B=B.
(A)A=B
(B)AB
=_________________________;A-B= _____________________ .
7. 设 R 是集合 A 上的等价关系,则 R 所具有的关系的三个特性是______________________,
________________________, _______________________________.
离散数学考试试题及答案
离散数学考试试题及答案离散数学考试试题及答案离散数学是计算机科学和数学中的一门重要学科,它研究的是离散的结构和对象。
离散数学的理论和方法在计算机科学、信息科学、通信工程等领域具有广泛的应用。
下面将为大家提供一些离散数学考试试题及答案,希望对大家的学习和复习有所帮助。
1. 集合论题目(1) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∪B的结果。
答案:A∪B={1,2,3,4,5,6,7}(2) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∩B的结果。
答案:A∩B={3,4,5}(3) 设A={1,2,3,4,5},B={3,4,5,6,7},求A-B的结果。
答案:A-B={1,2}2. 图论题目(1) 给定一个无向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(A,C),(B,D),(C,D),(D,E)},求该图的邻接矩阵。
答案:邻接矩阵为:A B C D EA 0 1 1 0 0B 1 0 0 1 0C 1 0 0 1 0D 0 1 1 0 1E 0 0 0 1 0(2) 给定一个有向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(B,C),(C,D),(D,E),(E,A)},求该图的邻接表。
答案:邻接表为:A ->B ->C ->D ->E -> AB -> CC -> DD -> EE -> A3. 命题逻辑题目(1) 判断以下命题是否为永真式:(p∨q)∧(¬p∨r)∧(¬q∨¬r)。
答案:是永真式。
(2) 给定命题p:如果天晴,那么我去游泳;命题q:我没有去游泳。
请判断以下命题的真假:(¬p∨q)∧(p∨¬q)。
答案:是真命题。
4. 关系代数题目(1) 给定关系R(A,B,C)和S(B,C,D),求R⋈S的结果。
《离散数学》试卷及答案精选全文完整版
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
置换规则。
3、设集合|A|=101,S ,且|S|为奇数,则这样的S有2101/2或2100个。
4、设mi是公式G的的主析取范式中的一个极小项,则mi的对偶式不一定是(填“是”/“不是”/“不一定是” ) G的主合取范式中的一个极大项。
5、由3个元素组成的有限集上所有的等价关系有5个
6、给定解释I如下: (1) Di:={2,3}; (2) a=3; (3) 函数f(x)为f(2)=2,f(3)=3; (4) 谓词:F(x)为F(2):=1,F(3):=0;G(x,y)为当i=j时,G(i,j):=1;当i≠j时,G(i,j):=0;其中i,j=2,3;
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0, 也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
2.设A={1,2,3…10},定义A上的二元关系R={<x,y>|x,y∈A∩x+y=10},试讨论R关于关系的五个方面的性质并说明理由(5分)
解答:R={<1,9>,<9,1>,<2,8>,<8, 2 >,<3,7>,<7,3>,<4,6>,<6, 4 >,<5, 5 >}
离散数学试题及答案解析
离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。
B. 有些天鹅不是白色的。
C. 所有天鹅都不是白色的。
D. 没有天鹅是白色的。
答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。
答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。
答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。
答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。
答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。
答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。
证明:假设p成立,由于p是q的充分条件,所以q成立。
又因为q是r的充分条件,所以r成立。
因此,p成立可以推出r成立,即p是r的充分条件。
2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。
离散数学试卷及参考答案
济南大学继续教育学院离散数学试卷(A)学年:学期:年级:专业:学习形式:层次:(本试题满分100分,时间90分钟)一、选择(每题2分,共18分)1.设简单图G所有结点的度之和为12,则G一定有 ( ) 条边。
A. 3B. 4C. 5D. 62.设G是一棵树,则G 的生成树有 ( B ) 棵A. 0B. 1C. 2D.不能确定3. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( )。
A. (1,2,2,3,4,5)B. (1,2,3,4,5,5)C. (1,1,1,2,3)D. (2,3,3,4,5,6).4. 命题∀xG(x)取真值1的充分必要条件是( )。
A.对任意x,G(x)都取真值1.B.有一个x0,使G(x0)取真值1.C.有某些x,使G(x0)取真值1.D.以上答案都不对.5.设集合A={2,{a},3,4},B = {{a},3,4,1},E为全集,则下列命题正确的是( )。
A. {2}∈AB. {a}⊆AC. ∅⊆{{a}}⊆B⊆ED. {{a},1,3,4}⊂B.6. 下列关于集合的表示中正确的为( )。
A.{a}∈{a,b,c}B. {a}⊆{a,b,c}C. ∅∈{a,b,c}D. {a,b}∈{a,b,c}7.下列式子正确的是 ( )。
A. p →q = q →pB. p →q = ⌝q ∨ pC. p →q,q →s ⇒ p →sD. p ↔q = (p → q) ∨ (q→ p)8.下列语句中,( )是命题。
A.请把门关上B.地球外的星球上也有人C. x + 5 > 6D. 下午有会吗?9.设G、H是一阶逻辑公式,P是一个谓词,G=∃xP(x), H=∀xP(x),则一阶逻辑公式G→H是( )。
A. 恒真的第 1 页共 13 页。
离散数学`试卷A
一、基础知识(40分)1.判断下列句子是否是命题,若是命题将其符号化。
(4分)①.李平虽然聪明,但不用功。
②.除非你陪伴我或代我雇辆车子,否则我不去。
2.在一阶逻辑中将下列命题符号化。
(4分)①.任何自然数不是奇数就是偶数,偶数均能被2整除,奇数均不能被2整除。
②.任意实数的平方都不小于0。
3.求下列集合的幂集。
(4分)①.A={φ,{φ}}②.B={{φ,a},{a}}4.设f,g,h∈R R,且有f(x)=x+3,g(x)=2x+1,h(x)=x/2。
求g◦g,h◦f,g◦h,f◦h,f◦h◦g.(6分)5.设集合A={0,1,2,3,4},定义A上的二元关系R为:R={<x,y>⎪x,y∈A∧(x=y∨x+y∈A)},请写出二元关系R的集合表达式,并判断R具有的性质。
(6分)6.已知图G中有10条边,4个3度顶点,其余顶点的度数均小于等于2,则G中至少有多少个顶点?(4分)7.在下面各图中,哪些是欧拉图,哪些是哈密尔顿图?(4分)8. 设代数系统<A,*>,其中A={a,b,c},A 上的二元运算*定义如下表:请分析*运算的封闭性、交换性、等幂性。
A 中关于*是否有幺元和零元?如有幺元,每个元素是否有逆元?如有,求出逆元。
(8分)二、理解运用(30分)9. 证明逻辑等价式A ↔B ⇔ (A ∧B)∨(┐A ∧┐B)成立。
(6分)10. 求下列命题公式的主析取范式和所有成假赋值。
)())((r q p r q p ∧∧→∧∨(6分)11. 求谓词公式的前束范式。
(6分)12. 令A={1,2,3,4,5,6}, 画出偏序集<A ,整除>的哈斯图,并求(1)集合A 的最大元、最小元、极大元和极小元;(2)集合B ={2,3,6}的上界、下界、最小上界、最大下界。
(6分)13. 求带权图1的最小生成树及权(6分)图1三、综合能力(30分)14.用推理理论证明下面结论是否有效?如果今天是星期三,那么我有一次离散数学或数字逻辑测验。
离散数学试题A卷及答案
离散数学试题A卷及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}中,子集的个数是多少?A. 3B. 7C. 8D. 9答案:C2. 以下哪个命题是真命题?A. ∃x∈R, x^2 = -1B. ∀x∈R, x^2 ≥ 0C. ∀x∈R, x^2 = 1D. ∃x∈R, x^2 = 2答案:B3. 函数f: N → N定义为f(x) = 2x,该函数是:A. 单射B. 满射C. 双射D. 非函数答案:A4. 以下哪个逻辑表达式等价于p∧(q∨¬p)?A. p∧qB. p∨qC. ¬p∨qD. p∧¬p答案:A5. 以下哪个图是二分图?A. 完全图K5B. 完全二分图K3,3C. 环图C5D. 星形图K1,4答案:B二、填空题(每题3分,共15分)1. 若A={1,2,3},B={2,3,4},则A∩B=______。
答案:{2,3}2. 命题“若x>0,则x^2>0”的逆否命题是:若x^2≤0,则______。
答案:x≤03. 在一个有向图中,若存在从顶点u到顶点v的有向路径,则称v可到达u,若图中每个顶点都可到达其他所有顶点,则称该有向图是______。
答案:强连通的4. 一个集合的幂集包含该集合的所有______。
答案:子集5. 在逻辑中,合取(AND)操作符用符号______表示。
答案:∧三、解答题(每题10分,共20分)1. 证明:若A⊆B且B⊆C,则A⊆C。
证明:设x∈A,则由A⊆B,可得x∈B。
又由B⊆C,可得x∈C。
因此,A⊆C。
2. 给定一个图G,包含顶点集V={v1, v2, v3, v4}和边集E={(v1,v2), (v2, v3), (v3, v4), (v4, v1), (v1, v3), (v2, v4)},请判断该图是否是欧拉图,并说明理由。
答案:该图是欧拉图。
因为该图是连通的,且每个顶点的度都是偶数。
结束语:本试题涵盖了离散数学中的基本概念和原理,通过这些题目的练习,可以加深对离散数学知识的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1学期
《离散数学》试卷 A
1、从集合分类的角度看,命题公式可分为( )
A.永真式、矛盾式
B. 永真式、可满足式、矛盾式
C. 可满足式、矛盾式
D. 永真式、可满足式 2、设B 不含有x ,))((B x A x →∃等值于 ( )
A.
B
x xA →∀)( B.))((B x A x ∨∃
C.B x xA →∃)(
D.))((B x A x ∧∃
3、设S,T,M 是集合,下列结论正确的是( )
A .如果S ∪T=S ∪M ,则T=M
B .如果S-T=Φ,则S=T
C .S S S =⊕
D .)(~T S T S =- 4、设R 是集合A 上的偏序关系,则R 不一定是( )
A.自反的
B. 对称的
C. 反对称的
D. 传递的
5 设R 为实数集,定义R 上4个二元运算,不满足结合律的是( )。
A. f 1(x,y)= x+y B. f 2(x,y)=x-y
C. f 3(x,y)=xy
D. f 4(x,y)=max{x,y}
6、设<L,∨∧,>是一个格,则它不满足( )
A.交换律
B. 结合律
C. 吸收律
D. 消去律 7、设A={1,2},则群>⋂<),(A P 的单位元和零元是( )
A. Φ与A
B. A 与Φ
C. {1}与Φ
D. {1}与A
8、下列编码是前缀码的是( ).
A.{1,11,101}
B.{1,001,0011}
C. {1,01,001,000}
D.{0,00,000}
9、下图中既是欧拉图又是哈密顿图的是( )
A . 9K
B .10K
C .3,2K
D .3,3K 10、下图所示的二叉树中序遍历的结果是( )
.edcba C .bdeca D .badce 二、填空题(每题3分,共24分)
1、含3个命题变项的命题公式的主合取范式为
76430M M M M M ∧∧∧∧,
则它的主析取范式为 。
(的形势表示成m m ∨)
2、〈4Z ,⊕〉模4加群, 则3是 阶元,3⊕3= ,3的逆元是 。
3、设V=<Z,+>,其中“+”是普通加法。
Z x ∈∀,
令ϕ1(x)=x, ϕ2(x)=-x,ϕ3(x)=x+5, ϕ4(x)=2x ,其中有 个自同构.
4、设⎪⎪⎭⎫ ⎝⎛=645132654321π是集合A={1,2,3,4,5,6}上的一个置换,则
把它表示成不相交的轮换的积是 。
4、已知n 阶无向简单图G 有m 条边,则G 的补图有 条边。
5、一个有向图是强连通的充分必要条件是 。
7、已知n 阶无向图G 中有m 条边,各顶点的度数均为3。
又已知2n-3=m , 则m= .
8、在下图中从A 点开始,用普里姆算法构造最小生成树,加入生成树的第三条边是 ( )。
三、计算题(每题9分,共 36分)
1、已知命题公式)()(p q q p ∨⌝→→⌝,
(1) 构造真值表。
(2) 求主析取范式(要求通过等值演算推出)。
2、R 1={<1,2>,<1,3>,<2,3>}, R 2={<2,2>,<2,3>,<3,4>},求:
(1)21R R - (2)11-R (3) 求12R R 3、设<A,R>为一个偏序集,其中,A={1,2,3,4,6,9,12,24},R 是A 上的整除关系。
(1)画R 出的哈斯图; (2)求A 的极大元和极小元; (3)求B={4,6}的上确界和下确界。
4、画一棵带权为1,1,1,3,3,5,8的最优二叉树T ,并计算它的权W (T )。
四、证明题(共 20分)
1、(7分)前提: r p q s q p ⌝∨→→,),(
结论: s r →
2、(7分)A={(0,0),(0,1),(1,0),(1,3),(2,2),(2,3),(3,1)}, R={<(a,b),(c,d)>| (a,b),(c,d)∈A 且a+b=c+d }. (1)证明:R 是A 上的等价关系. (2)给出R 确定的对A 的划分(分类).
3、(6分)设>< ,G 是群, },|{x y y x G y G x x S =∈∀∈=且对于, 证明S 是G 的子群.
《离散数学》试卷 A
参考答案
一、选择题(每小题 2分,共 20 分。
请将答案填在下面的表格内)
521、4,2,1
3、2
4、(123)(45)。
4、
n n n --2
)
1( 5、存在经过每个顶点的回路 7、 9 . 8、 d,c 或 c ,d
三、计算题(每题9分,共 36分)
12、(每小题3分)
(1)21R R -= {<1,2>,<1,3>} (2)11-R ={<2,1>,<3,1>,<3,2>}
(1) 求12R R ={<1,2>,<1,3>,<1,4>,<2,4>}
3、 (每小题3分)
(1)(4分)
(2)(3分)A 的极大元9,24; 极小元1;
(3)(2分)B={4,6}的上确界12 下确界2。
4、画图(7分) W (T )=55(2分)
四、证明题(共 20分)
1、(7分)证明:附加前提证明法..1分 ① r
② p ①②………….. 3分 ③ s q → ③④ ………….. 5分 ④ s ⑤⑥ …………. 7分 2、证明:(1)(5分)
自反性。
对于),(),(,
),(b a R b a b
a b a A b a +=+∈∀ 自反性成立
对称性。
对于d c b a d c R b a A d c b a +=+∈∀),,(),(,),(),,(如果
),(),(b a R d c b a d c 所以+=+ 对称性成立 传递性。
),,(),(),,(),(,),(),,(),,(y x R d c d c R b a A y x d c b a 如果∈∀
传递性成立
(2)A/R={{(0,0)},{(0,1),(1,0)},{(1,3),(2,2),(3,1)},{(2,3)}}
(2分)
3、证明:(每步各2分)
(1)S 不空:>< ,G 是群,设e 是>< ,G 的单位元,那么 S e ye ey G y ∈=∈∀,,都有,所以 S 不空。
(2)221121,,,,yx y x yx y x G y S x x ==∈∀∈∀都有那么对于
所以,,21S x x ∈
(3)1111,,,----==∈∀∈∀yxx x xyx x yx xy S y S x 都有那么对于
所以,S x ∈-1
S是G的子群.。