《一元二次方程的概念》教案设计
人教版一元二次方程教案
一元二次方程教案(人教版)
一、教学目标
1. 理解一元二次方程的概念,掌握一元二次方程的一般形式。
2. 掌握求解一元二次方程的方法,理解解的判别式。
3. 了解一元二次方程的根与系数的关系。
二、教学内容
1. 一元二次方程的概念。
2. 一元二次方程的一般形式。
3. 求解一元二次方程的方法。
4. 解的判别式。
5. 一元二次方程的根与系数的关系。
三、教学过程
1. 导入新课
(1)通过实际问题引入一元二次方程的概念。
(2)通过例题讲解一元二次方程的一般形式。
2. 新课学习
(1)介绍一元二次方程的概念:ax2+bx+c=0(a≠0)。
(2)通过例题讲解一元二次方程的一般形式,并强调a、b、c的符号规则。
(3)介绍求解一元二次方程的方法:开平方法、配方法、公式法。
并通过例题讲解使用方法。
(4)介绍解的判别式,并讲解如何判断方程是否有实数解。
(5)通过例题讲解一元二次方程的根与系数的关系。
3. 巩固练习
(1)通过具体题目练习求解一元二次方程。
(2)通过题目应用解的判别式。
(3)通过题目应用一元二次方程的根与系数的关系。
4. 归纳小结
(1)回顾一元二次方程的概念、一般形式、求解方法和解的判别式。
(2)总结一元二次方程的根与系数的关系及其应用。
(3)强调解题时需要注意的事项和步骤。
《一元二次方程的定义》教案
《一元二次方程的定义》教案一、教学目标1.知识与技能:o掌握一元二次方程的基本形式。
o理解一元二次方程的定义和构成要素。
o能够识别一元二次方程,并能将非标准形式的一元二次方程转化为准形式。
2.过程与方法:o通过观察、归纳、总结等活动,培养学生的数学逻辑思维和抽象概括能力。
o提高学生将实际问题抽象为数学模型的能力。
3.情感态度与价值观:o激发学生学习数学的兴趣和好奇心。
o通过合作学习,培养学生的团队协作精神。
二、教学重点和难点重点:一元二次方程的标准形式及其定义。
难点:如何正确判断一个方程是否为一元二次方程,以及如何将非标准形式的一元二次方程转化为标准形式。
三、教学过程1.导入新课(3分钟)o提出问题:“什么是方程?之前我们学过哪些类型的方程?”o回顾之前学习的方程概念,引出新课题《一元二次方程的定义》。
2.讲解新知识(10分钟)o讲解一元二次方程的标准形式:ax² + bx + c = 0 (a ≠ 0)。
o详细解释一元二次方程的三个要素:未知数(一元)、最高次数(二次)和等式(等号)。
o举例说明一元二次方程与非一元二次方程的区别。
3.课堂互动(10分钟)o组织学生进行小组讨论,找出生活中的一元二次方程实例。
o分享并点评学生的发现,强化一元二次方程与现实生活的联系。
o提出问题,让学生尝试将非标准形式的一元二次方程转化为标准形式。
4.练习巩固(10分钟)o布置课堂练习,包括判断方程类型、将非标准形式方程化为标准形式等。
o学生独立完成练习,教师巡视指导,及时纠正错误。
o小组内互相检查练习结果,讨论解题思路。
5.总结提升(5分钟)o总结一元二次方程的定义和转化方法。
o强调一元二次方程在数学和实际生活中的应用价值。
o布置课后作业,要求学生收集更多的一元二次方程实例,并尝试解决实际问题。
四、教学方法和手段●采用启发式教学法,引导学生主动思考和探索。
●利用多媒体教学工具,展示一元二次方程的实例和转化过程。
《一元二次方程》数学教案8篇
《一元二次方程》数学教案8篇作为一位兢兢业业的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
那么什么样的教案才是好的呢?这里作者为大家分享了8篇《一元二次方程》数学教案,希望在一元二次方程教案的写作这方面对您有一定的启发与帮助。
元二次方程教案篇一一、教材分析:1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。
本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;(2)能根据具体问题的实际意义,检验结果是否合理;(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
二.教法、学法分析:1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。
教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。
还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。
同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。
因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
三.教学流程分析:本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:活动1复习回顾解决课前参与活动2封面设计问题的探究活动3草坪规划问题的延伸活动4课堂回眸这有名程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
一元二次方程的概念教学设计
一元二次方程的概念教学设计教学设计:一元二次方程的概念1. 目标:学生能够理解和应用一元二次方程的概念,能够解决与一元二次方程相关的问题。
2. 引入:- 引导学生回顾线性方程的概念和解法,强调方程中只有一个未知数。
- 提问:如果方程中有两个未知数会怎样?学生可能会回答不知道如何解决。
- 引出一元二次方程的概念:一元二次方程是指只有一个未知数,并且该未知数的最高次数为2的方程。
3. 概念解释:- 解释一元二次方程的一般形式:ax^2 + bx + c = 0,其中a、b、c为已知常数,且a ≠ 0。
- 解释方程中的系数:a为二次项系数,b为一次项系数,c为常数项。
- 解释方程的解:解是使方程成立的未知数的值。
4. 解题步骤:- 提供解题步骤,包括将方程转化为标准形式、判断方程的根的情况、求解方程的根的方法。
- 举例说明每个步骤的操作方法。
5. 解题示例:- 提供一些具体的一元二次方程问题,引导学生通过解题来加深对概念的理解。
- 例如:已知一元二次方程 x^2 - 5x + 6 = 0,求解该方程的根。
- 将方程转化为标准形式:x^2 - 5x + 6 = 0- 判断方程的根的情况:计算判别式 D = b^2 - 4ac,若 D > 0,则有两个不相等的实数根;若 D = 0,则有两个相等的实数根;若 D < 0,则没有实数根。
- 求解方程的根的方法:使用求根公式 x = (-b ± √D) / (2a) 求解方程的根。
6. 练习:- 提供一些练习题,让学生通过解题巩固对一元二次方程概念的理解和应用能力。
7. 总结:- 对本节课所学的一元二次方程的概念进行总结,强调关键点和解题技巧。
这样的教学设计可以帮助学生理解一元二次方程的概念,并通过具体的解题步骤和示例来加深对概念的理解和应用能力。
《一元二次方程》数学教案(优秀5篇)
《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一教学设计思想解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。
直接开平方法很简单,在这里不做过多的介绍。
为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。
我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。
在解一元二次方程的几种方法中,均需要用到转化的思想方法。
如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。
在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。
教学目标知识与技能:1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。
2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。
过程与方法:1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。
2.在探究一元二次方程的过程中体会转化、降次的数学思想。
情感态度价值观:在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。
教学重难点重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。
难点:根据方程的特点灵活选择适当的方法解一元二次方程。
教学方法探索发现,讲练结合元二次方程教案篇二一、教学目标1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
一元二次方程的概念教学设计
《一元二次方程的概念》教学设计
XX省景县洚河流镇中学秦艳茶
一、教案背景
1、面向学生:九年级学生
2、学科:九年数学
3、课时:1课时
4、学生情况:我校是一所农村学校,学生的基础较差,因此针对学生的实际特点和学习经验设计本节教案。
二、教材分析
本章的主要内容包括两个方面:1、一元二次方程的基本概念及其解法;2、一元二次方程在实际问题中的应用。
全章共包括三节:一元二次方程、降次——解一元二次方程、实际问题与一元二次方程。
本节以雕像问题、制作方盒问题和体育比赛中的组合问题这三个问题为背景,引出一元二次方程的概念,归纳出一元二次方程的一般形式,让学生感受一元二次方程这一概念的内涵,并通过提出问题,要求学生观察思考方程中未知数的个数和次数,引导学生联想并类比一元一次方程,以便更好地理解一元二次方程的有关概念。
这样编排,既有利于学生理解并接受新知识,又充分地反映出一元二次方程及其有关概念来源于现实世界,是刻画现实世界的一个有效数学模型。
四、教学流程安排
五、教学过程设计
六、教学设计说明
本节课是一元二次方程的第一课时,通过对本节课的学习,学生将掌握一元二次方程的定义、一般形式、及有关概念,并学会利用方程解决实际问题。
在教学过程中,注重重难点的体现。
在本节课的活动1中,利用学生复习熟悉的一元一次方程,让学生顺利过渡到后面的问题。
活动2中让学生观察活动1中得到的3个方程,并通过类比一元一次方程的定义和一般形式,从而获得本课的新知识。
活动3意在强化学生所学知识,并运用到实际问题中去。
教学过程中,应随时注意学生们出现的问题,及时进行反馈,使学生熟练掌握所学知识。
一元二次方程的相关教案【优秀3篇】
一元二次方程的相关教案【优秀3篇】元二次方程篇一[教材分析]中学阶段我们研究的多项式函数中有二次函数,研究的几何图形中有二次曲线。
因此一元二次方程便成为了方程中研究的重要内容。
一元二次方程有根与系数关系,求根公式向我们揭示了两根与系数间的密切关系,而根与系数还有更进一步的发现,这一发现在数学学科中具有极强的实用价值,本节内容既是代数式、一元一次方程和一元二次方程求根公式等知识的进一步深化,又蕴含有丰富的数学思想方法,也为学生们将来的学习打下了必要的基础。
[学生分析]进入了初二下半学期,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。
因此在学过了一元二次方程的解法后,自主探究其根与系数的关系是完全可能的。
再加上我所执教的学生,他们有着较强的认知力与求知欲,基于以上思考,我在设计中扩大了学生的智力参与度,也相对放大了知识探索的空间。
[教学目标]在学生探求一元二次方程根与系数关系的活动中,经历观察、分析、概括的过程以及“实践——认识——再实践——再认识”的过程,得出一元二次方程根与系数的关系。
能利用一元二次方程根与系数的关系检验两数是否为原方程的根;已知一根求另一根及系数。
理解数学思想,体会代数论证的方法,感受辩证唯物主义认识论的基本观点。
[教学重难点]发现并掌握一元二次方程根与系数的关系,包括知识从特殊到一般的发生发展过程[教学过程](一)复习导入请学生求解表格内的方程,完成解法的交流以及求根公式的复习,求根公式向我们揭示了两根与系数间的关系,那么一元二次方程根与系数间是否还有更深一层的联系呢?由此疑问,导入新课。
(二)探求新知数学学科中由数到式的结构编排,让我们想到了从两根运算上的最简组合:和差积商展开进一步研究。
初探新知中,我将学生们分成两组,分别对二次项系数为1 的一元二次方程两根进行和差积商的运算,之后将结果汇总展示,共同观察与系数的联系。
我在这些方程中安排了两个无理根方程。
一元二次方程的教案(必备3篇)
一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
《一元二次方程》优秀教案(精选5篇)
《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1学习目标1、一元二次方程的求根公式的推导2、会用求根公式解一元二次方程.3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯学习重、难点重点:一元二次方程的求根公式.难点:求根公式的条件:b2 -4ac≥0学习过程:一、自学质疑:1、用配方法解方程:2x2-7x+3=0.2、用配方解一元二次方程的步骤是什么?3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?二、交流展示:刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?三、互动探究:一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是用求根公式解一元二次方程的方法称为公式法由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号.(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac<0时,方程没有实数解.就不必再代入公式计算了.四、精讲点拨:例1、课本例题总结:其一般步骤是:(1)把方程化为一般形式,进而确定a、b,c的值.(注意符号)(2)求出b2-4ac的值.(先判别方程是否有根)(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出的值,最后写出方程的根.例2、解方程:(1)2x2-7x+3=0 (2) x2-7x-1=0(3) 2x2-9x+8=0 (4) 9x2+6x+1=0五、纠正反馈:做书上第P90练习。
初三数学一元二次方程教案优秀5篇
初三数学一元二次方程教案优秀5篇数学《一元二次方程》教案设计篇一教学目标1、了解整式方程和一元二次方程的概念;2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:1、教材分析:1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析理解一元二次方程的定义:是一元二次方程的重要组成部分。
方程,只有当时,才叫做一元二次方程。
如果且,它就是一元二次方程了。
解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。
(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。
如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。
如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。
元二次方程的应用篇二12.6 一元二次方程的应用(三)一、素质教育目标(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题。
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识。
二、教学重点、难点1.教学重点:学会用列方程的方法解决有关增长率问题。
2.教学难点:有关增长率之间的数量关系。
下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了。
三、教学步骤(一)明确目标。
《一元二次方程》优秀教案(精选5篇)
《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1教学目标:1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
教学重点1、一元二次方程及其它有关的概念。
2、利用实际问题建立一元二次方程的数学模型。
教学难点1、建立一元二次方程实际问题的数学模型.2、把一元二次方程化为一般形式教学方法:指导自学,自主探究课时:第一课时教学过程:(学生通过导学提纲,了解本节课自己应该掌握的内容)一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。
2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗?3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)1、下列哪些是一元二次方程?哪些不是?①②③④x2+2x-3=1+x2 ⑤ax2+bx+c=02、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?三、反思:(学生,进一步加深本节课所学内容)这节课你学到了什么?四、自查自省:(通过当堂小测,及时发现问题,及时应对)1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。
一元二次方程的概念及解法教案(用心整理)
练习:判断下列方程是否为ቤተ መጻሕፍቲ ባይዱ元二次方程?
(1)3x+2=5y-3 (2)x2=4 (3) 3x2- =0 (4)x2-4=(x+2)2(5)ax2+bx+c=0
例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
方程x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?
、
例1:解方程:(1)(2x-1)2=5 (2)x2+6x+9=2 (3)x2-2x+4=-1
练习:一、选择题
1.若x2-4x+p=(x+q)2,那么p、q的值分别是().
因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:先把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.即A·B=0A=0或B=0
例1.用因式分解法解下列方程.
2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;
$
(4)因式分解法:
若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x2-9=0,这个方程可变形为(x+3)(x-3)=0,要(x+3)(x-3)等于0,必须并且只需(x+3)等于0或(x-3)等于0,因此,解方程(x+3)(x-3)=0就相当于解方程x+3=0或x-3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.
初中一元二次方程教案模板
初中一元二次方程教案模板一、教学目标:1. 知识与能力目标:学生能够理解一元二次方程的概念,掌握一元二次方程的解法,并能够应用一元二次方程解决实际问题。
2. 过程与方法目标:通过探索一元二次方程的解法,培养学生逻辑思维能力和解决问题的能力。
3. 情感、态度与价值观目标:培养学生对数学的兴趣,感受数学在生活中的应用,培养学生的团队合作意识。
二、教学重点、难点:1. 教学重点:一元二次方程的概念,一元二次方程的解法及其应用。
2. 教学难点:一元二次方程的解法,特别是因式分解法和求根公式的运用。
三、教学过程:1. 导入新课:通过生活中的实际问题,引导学生列出方程,从而引出一元二次方程的概念。
2. 自主学习:学生自主探究一元二次方程的解法,总结解题步骤和技巧。
3. 课堂讲解:讲解一元二次方程的概念,解析一元二次方程的解法,并通过例题演示解题过程。
4. 练习巩固:学生独立完成练习题,教师进行个别辅导,巩固所学知识。
5. 拓展应用:学生分组讨论,运用一元二次方程解决实际问题,分享解题心得。
6. 总结反思:教师引导学生总结一元二次方程的特点和解题方法,反思自己在学习过程中的优点和不足。
四、教学方法:1. 情境教学法:通过设置生活情境,激发学生的学习兴趣,引导学生主动参与。
2. 启发式教学法:教师提问引导学生思考,激发学生的探究欲望。
3. 合作学习法:学生分组讨论,培养学生的团队合作意识和沟通能力。
4. 案例教学法:通过讲解典型例题,培养学生解决问题的能力。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答和练习完成情况。
2. 练习作业:检查学生完成练习题的情况,评估学生的掌握程度。
3. 小组讨论:评估学生在团队合作中的表现,包括沟通能力和解决问题的能力。
4. 学生自评:让学生反思自己在学习过程中的优点和不足,鼓励自我提高。
六、教学资源:1. 教材:一元二次方程相关章节的内容。
2. 课件:教师制作的课件,包括图片、文字和动画等。
22.1一元二次方程数学教案
22.1一元二次方程数学教案
教案名称:《一元二次方程》
一、教学目标:
1. 知识与技能:理解并掌握一元二次方程的概念,能够解基本的一元二次方程;学会使用因式分解法、公式法等方法解决相关问题。
2. 过程与方法:通过观察、思考、讨论、合作等方式,提高学生分析问题、解决问题的能力。
3. 情感态度价值观:培养学生的数学思维,激发学生对数学的兴趣,增强学生的学习自信心。
二、教学重难点:
重点:理解和掌握一元二次方程的概念,学会使用因式分解法、公式法解一元二次方程。
难点:理解和运用一元二次方程的解法,解决实际问题。
三、教学过程:
1. 导入新课:通过生活实例或者历史故事引出一元二次方程的概念,激发学生的学习兴趣。
2. 新知探究:首先介绍一元二次方程的概念,然后引导学生学习如何用因式分解法解一元二次方程,再进一步介绍公式法,并举例说明。
在这个过程中,鼓励学生主动参与,提出自己的见解和疑问。
3. 实践应用:设计一些练习题让学生独立完成,以此来检验他们对新知识的理解和掌握程度。
同时,还可以设置一些实际问题,让学生利用所学知识去解决,以提升他们的应用能力。
4. 总结归纳:带领学生回顾本节课的主要内容,强调重要知识点,解答学生在课堂上提出的疑问。
5. 布置作业:布置适量的习题,让学生在课后巩固和复习所学知识。
四、教学评价:
通过课堂观察、小组讨论、练习反馈等方式,评价学生对一元二次方程的理解和掌握程度,以及他们的问题解决能力。
五、教学反思:
在课程结束后,教师需要反思本次教学的效果,包括教学设计是否合理,教学方法是否有效,学生的学习效果如何等等,以便于下次改进教学。
初中数学教学课例《一元二次方程的概念》课程思政核心素养教学设计及总结反思
学,让每一个学生都得到不同的发展。 为了真正做到有效的合作学习,我在活动中大胆地
让学生自主完成,先让学生把问题提出来,然后让学生 带着问题去讨论,这样学生在讨论时就有目的,就会事 半功倍。也让不同层次的学生得到不同的了展。也符合 新课程的教学理念。
教学过程 产量为 a,翻一番的意思就是 a 变为 2a,那么 (1)用代数式表示 2006 年的产量; (2)2007 年蔬菜的产量比 2005 年增加了 2x,对
吗?为什么?你能用代数式表示出来吗? 学生思考交流得出方程 a(1+x)2=2a 整理得,x2+2x-1=0…………① 二、通过得出的方程都是一元二次方程,与以前所
通过这节课的点评与自我反思,以后要在师生交流 方面都下工夫,重视学生的想法,多给学生一点"自主" 学习的时间,同时加强板书教学,提高学生课堂学习的" 实效"。
学生练习 1.说出下列一元二次方程的二次项系数、一次项 系数、常数项:(由学生以抢答的形式来完成此题,并 让学生找出错误理由.) (1)x2 十 3x 十 2=O (2)x2—3x 十 4=0; (3)3x2-5=0 (4)4x2 十 3x—2=0; (5)3x2—5=0; (6)6x2—x=0。 讲解例 1 后学生练习 1、把下列方程化成一般形式,并写出它的二次项 系数、一次项系数和常数项: ⑴2(x2-1)=3x ⑵3(x-3)2=(x+2)2+7 六、设计简单练习题以理解一元二次方程的概念。 复习一元一次方程的概念和一般形式,为后面学习 一元二次方程的有关内容做好铺垫 例 1 把方程 3x(x-1)=2(x 十 2)—4 先化成二元二次方程的一般形式,再写出它的二次 项系数、一次项系数、常数项
一元二次方程教案 一元二次方程数学教学教案8篇
一元二次方程教案一元二次方程数学教学教案8篇元二次方程教案篇一一、素质教育目标(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.二、教学重点、难点1.教学重点:一元二次方程的意义及一般形式.2.教学难点:正确识别一般式中的“项”及“系数”.三、教学步骤(一)明确目标1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.(二)整体感知通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.(三)重点、难点的学习及目标完成过程1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?九年级数学《一元二次方程》教案篇二教学目标知识与技能目标1、构建本章的部分知识框图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一元二次方程的概念》
教学目标:
知识与技能
1、理解一元二次方程的概念。
2、掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项。
过程与方法:
1、通过观察、分析、探索、小组合作,列出方程,使学生经历一元二次方程概念的发生过程,培养学生的概括、类比能力。
2、通过经历代数式、等式变形,培养学生化归的数学思想。
情感、态度与价值观
1、培养学生自主学习、积极探究知识和合作交流的意识。
2、激发学生学习数学的兴趣,从中体会学习数学的乐趣,培养学生应用数学的意识。
重点:一元二次方程的概念及一般形式。
难点:从实际问题中抽象出一元二次方程;正确识别一般形式中的项及系数。
《一元二次方程》
(第1课时教学设计)
教师行为学生学习活动设计意图(一)情境引入
出示问题:
问题1
有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?
问题2
要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。
根据场地和时间等条1.学生拿出事先准备
好的纸片和剪刀,实
际操作无盖方盒的
折叠过程,揭示问
题。
2.学生通过分析问题,
然后设未知数、列方
程,整理方程。
3.交流、展示所得方
程。
通过列方程将实际问题转化
为数学问题,经历模型化的过
程,体会数学建模的思想方
法,体会知识来源于实际又为
实际服务,进一步培养学生用
数学的意识。
件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?
按以下步骤分析:
①全部比赛共有几场?
②若设应邀请x个队参赛,那么每个队要与其他()个队各赛1场,,全部比赛共有()场?
③.由此我们可以列方程(),化简得()。
(二)探究新知
观察所得方程:
x2-75x+350=0 ①
x2-x=56 ②
思考:(1)方程①中未知数的个数和未知数的最高次数是多少?方程②呢?(2)它们有什么共同特点?学生观察这两个方程之后,先
独立思考,然后组内交流、全
班交流。
引导学生从已得方程入手,分
析方程共同特点。
(三)归纳概念
1、和学生一起得出方程的共同特点:
(1)方程两边都是整式;(2)方程中只含有一个未知数;(3)未知数的最高次数是2.
2、引导学生对照一元一次方程,对此类新方程下定义。
(板书)
3、对照一元一次方程的一般形式,探讨一元二次方程的一般形式。
(板书)
4、引导学生关注二次项系数的取值范围,并回答为什么?
5、学习识别方程中各项名称及系数。
(板书)学生进行归纳、认识、理解。
通过“观察—类比—概括
—表达”,展现知识的形成过
程,让学生在获取知识的过程
中,领会数学思想和思维方
法,并体会特殊到一般的认识
规律。
(四)例题解析
例:将方程3x(x-1)=5(x+2) 化成一元二次方程的一般形式并写出其中的二次项系数,一次项系数及常数项系先由学生独立完成,然后交流
意见。
例题的设置是为了及时巩固
概念,规范书写。
数。
(板书解答过程)(五)巩固练习
1、判断下列方程是否是一元二次方程。
(1)x2+2x-4=0 (2)3y2-5x=7 (3)(x+2)2 =(x-1)2(4)3x=0 (5) 4x2=9
2、将方程(8-2x)(5-2x)=18 化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.3.当m 为何值时,下列方程为一元二次方程?
(1)(m-1)x2+3x=5;
(2)4x m+3-x-1=0.
4.方程(x-4)2=3x+12 的二次项系数是______,
一次项系数是______,常数项是______.学生先独立完成,再交流。
巩固一元二次方程的概念,使
学生全面深刻地理解其本质。
(六)小结心得
通过这节课的学习,你有什么收获?学生谈收获,进行小结。
通过小结,使知识成为体系,
帮助学生全面理解和掌握所
学知识,同时培养了归纳能
力。
(七)布置作业
1、必做题:教科书第28—29
页习题22.1第1、2、5
题。
2、选做题:
教科书第29页习题22.1第6、7题。
学生课后练习结合学生的实际水平,满足不
同层次的学生学习所需,进行
巩固知识。