第五章 热分析

合集下载

热分析ppt幻灯片课件

热分析ppt幻灯片课件

结果解析与讨论
峰归属与物质鉴定
根据峰位、峰形等信息推断物质种类及结构 。
热稳定性评价
通过比较不同物质的热分解温度、热稳定性 参数等评估其热稳定性。
反应动力学分析
研究物质在加热过程中的反应速率、活化能 等动力学参数,揭示反应机理。
结果可靠性验证
采用多种方法对数据结果进行交叉验证,确 保结果准确性和可靠性。
04
原理
在程序控制温度下,测量 物质的质量与温度的关系 。
应用
用于研究物质的热稳定性 、分解过程、挥发过程等 热性质,以及进行物质的 定性和定量分析。
优点
设备简单,操作方便,可 测量宽温度范围内的热性 质。
缺点
对样品的均匀性要求较高 ,易受气氛影响。
热机械分析法
原理
在程序控制温度下,测量物质的尺寸或形状 变化与温度的关系。
反应平衡常数测定
利用热分析数据,可以计算化学反应的平衡常数 ,进而研究反应在不同温度下的平衡状态。
3
热化学方程式推导
基于热分析实验结果,可以推导化学反应的热化 学方程式,明确反应物和生成物之间的热力学关 系。
化学反应动力学研究
01
反应速率常数测定
通过热分析技术,可以测定化学 反应的速率常数,了解反应在不 同温度下的速率变化。
优点
可直观观察物质的尺寸或形状变化,对研究 物质的热机械性能有重要意义。
应用
用于研究物质的热膨胀、收缩、相变等热性 质,以及进行物质的定性和定量分析。
缺点
设备较复杂,操作要求较高,对样品的形状 和尺寸有一定要求。
04
热分析数据处理与解 析
数据处理基本方法
数据平滑处理
消除随机误差,提高数据信噪比。

热分析PPT课件下载

热分析PPT课件下载

04
差示扫描量热法
差示扫描量热法基本原理
差示扫描量热法(DSC)是一种热分析方法,用于测量样品与参比物之间的功率差随温度或时间的变 化。
DSC基本原理是,在程序控制温度下,测量输入到试样和参比物的功率差(如以热的形式)与温度的关 系。
DSC曲线可以反映样品在加热或冷却过程中的吸热或放热行为,从而得到样品的热性能参数,如熔点、 玻璃化转变温度等。
热分析PPT课件下载
目 录
• 热分析概述 • 热重分析法 • 差热分析法 • 差示扫描量热法 • 热机械分析法 • 热分析实验技术与方法
01
热分析概述
热分析定义与原理
热分析定义
热分析是一种研究物质在加热或冷却 过程中物理和化学性质变化的技术。
热分析原理
通过测量物质在温度变化过程中的各 种热力学参数(如热容、热导率、热 膨胀系数等)和化学反应参数(如反 应热、反应速率等),来研究物质的 组成、结构和性质。
热机械分析(TMA)
测量物质在温度变化过程中的尺寸变 化,用于研究物质的热膨胀系数和机 械性能等。
02
热重分析法
热重分析法基本原理
热重分析法定义
01
通过测量物质在程序升温过程中的质量变化,研究物质的热稳
定性和热分解等性质的一种技术。
热重分析仪构成
02
主要由加热系统、温度控制系统、天平测量系统和记录系统组
根据实验需要选择合适的气氛,如空气、氧气、氮气等。
数据处理与结果分析方法
数据采集
使用专业的热分析软件对实验数据进行采集和记录。
数据处理
对采集到的实验数据进行平滑、去噪、基线校正等处理,以获得更 准确的实验结果。
结果分析
根据实验目的和数据处理结果,对样品的热性质进行分析和解释,如 热稳定性、热分解温度、热焓等。

热分析

热分析

一、热分析概述1. 热分析定义:热分析是在程序控制温度下,测量物质的物理性质与温度关系的一类技术。

数学表达式: P=f(T 或t)P-物理性质T-温度 t-时间程序控制温度:线性升温(降温)、恒温、循环或非线性升温(降温)即:把温度看作是时间的函数物理性质:质量、温度、热焓、尺寸、机械、电、光、声、磁2. 热分析仪器的主要组成部分:1) 程序温度控制:加热器,制冷器,控温元件,程序温度控制器等。

程序温度控制器通常由程序温度毫伏电压发生器,偏差放大器、PID 放大器和可控硅控制器等所组成。

2) 气氛控制 3)物性测量单元 4)显示记录应尽量满足下列几点:(1)有足够的均温区。

即使样品所放置的位置略有不同,仍使整个样品在均温区内。

如果炉膛的均温区不够或温度分布不均都会造成基线的偏移,影响检测精度。

(2)炉子的热容量要小,升降温要快。

(3)炉温控制精度要高,以保证样品线性升温或降温。

3. 热分析的应用范围:(1)具有可测的物性。

(2)所测的量必须直接或间接的与温度有关。

(3)必须在控制温度下进行测量。

二、差热分析(DTA )1. 原理:在程序温度控制(升温或降温)下,测量试样与参比物(热惰性物质)之间的温度差与温度关系的一种技术。

2. 基本组成:加热炉、温度控制器、信号放大系统、气氛控制设备、差热系统及记录系统。

•加热炉:加热试样的装置,种类繁多。

低温炉、高温炉、超高温炉;立式、卧式炉;加热炉中炉芯管和发热体材料根据使用温度及条件而不同。

•温度控制系统:保证炉内温度按给定的速率均匀稳定地升降温,常用速率为1-20C/min 。

•信号放大系统:通过直流放大器将差热电偶产生的微弱温差电动势放大、增幅、输出。

•记录系统:采用双笔记录仪自动记录。

3. DTA 测试存在缺陷:1) DTA 测量的温差△T 除与试样热量变化有关外,尚与体系的热阻有关。

热阻本身不是一个确定量,与热传导系数和热容系数有关,即与实验条件有关。

第五章热分析-1 DTA讲解

第五章热分析-1 DTA讲解

5.1 差热分析(Differential Thermal Analysis, DTA )
物质在受热或冷却过程中发生的物理变化和化学变化伴 随着吸热和放热现象。如晶型转变、沸腾、升华、蒸发、熔 融等物理变化,以及氧化还原、分解、脱水和离解等化学变 化均伴随一定的热效应变化。差热分析正是建立在物质的这 类性质基础之上的一种方法。
物理性质 质量
温度 焓
分析技术名称 热重法
等压质量变化测定 逸出气体分析 放射热分析 热微粒分析 加热曲线测定 差热分析
差示扫描量热法
物理性质 尺寸
力学特性
声学特性
光学特性 电学特性 磁学特性
分析技术名称 热膨胀法
热机械分析 动态热机械分析
热发声法 热声学法 热光学法 热电学法 热磁学法
热分析四大支柱
差热分析、热重分析、差示扫描量热分析、热机械分析
1)热重法:在程序控制温度下,测量物质质量随温度变 化的一种技术。 2)差热分析:在程序控制温度下,测量物质与参比物之 间的温度差随温度变化的一种技术。 3)热机械法:在程序控制温度下,测量物质在一定负荷 下的形变与温度关系的技术。 4)差示扫描量热法:在程序控温下,测量加入物质在与 参比物之间的能量差随温度变化的一种技术。
附、解吸、裂解、氧化还原、相图制作、物相分析、纯
度验证、玻璃化、固相反应、软化、结晶、比热、动力
学研究、反应机理、传热研究、相变、热膨胀系数测定
等。
2)热分析的主要优点
1. 可在宽广的温度范围内对样品进行研究;应用的广泛性 2. 可使用各种温度程序(不同的升降温速率); 3. 对样品的物理状态无特殊要求;动态条件下快速研究物质热特
第5章 热分析法
理学院郭敏杰

热分析方法学习课件学习绪论

热分析方法学习课件学习绪论
论。总之,在这一段时期内热分析在仪器、方法 和应用上发展较快。
• 七十年代,热分析仪在自动化、微量化方面更为 完善。1971年Bradley等介绍了一种可把装有 试样的试样盘自动送入炉膛的热天平,使热天平 技 术 完 全 自 动 化 。 Duval 和 Wunderlich 相 继 发表了DTA进展和应用方面的总结报告。在这一 段时期内新型热分析和热分析联用技术发展较快, 研 制 出 的 各 种 类 型 热 分 析 仪 有 EGA 、 TMA 、 DMA 、 TG-DTA 、 TG-EGA 、 TG-MS ( 质 谱)、TG-GC(气相色谱)、DTA-MS等等。 我国的热分析技术从七十年代开始在研究和应用
加热速率曲线 (Heating Rate Curve)
测量物质的温度与程控温度之 间的函数关系
加热曲线对时间的一次微商曲 线即dT/dt对时间作图所得的 曲线
温 度
加热速率倒数曲线
加热曲线对温度的一次微商曲 线即dt/dT对时间或温度作图
差热分析 (Differential Thermal Analysis,DTA)
一、热分析及其研究对象
热分析是一种很重要的分析方法。通常用毛 细管测定有机化合物的熔点和在坩埚中测定 物质的冷却曲线都属于热分析方法。随着科 学技术的发展,这些简单的热分析方法目前 已逐步被现代精密的热分析仪 DSC、DTA 和带程序控温装置的热台偏光显微镜所取代。 近年来,随着电子和计算机等高科技的飞速 发展,各种精密的热分析仪不断的改进和完 善,热分析技术已在科学技术的各个领域中 得到了广泛的应用。
(Dynamic
模量)和损失角正切
Thermomechanic Analysis, (tan)随温度的函数
DMA)

热分析方法ppt课件

热分析方法ppt课件

判定某项技术是否属于热分析技术应该具
备以下三个条件:
1 )测量的参数必须是一种“物理性质”,
包括质量、温度、热焓变化、尺寸、机械特
性、声学特性、电学及磁学特性等。
2 )测量参数必须直接或者间接表示成温度
的函数关系。
3)测量必须在程序控制的温度下进行.
热分析技术的分类
热分析方法的种类是多种多样 的,根据ICTA的归纳和分类,目前 的热分析方法共分为9类17种。
热分析的应用类型
4、材料质量测定:如纯度测定、物 质的玻璃化转变和居里点、材料的 使用寿命测定。 5、材料的力学性质测定:抗冲击性 能、粘弹性、弹性模量、损耗指数 和剪切模量等的测定。 6、环境监测:研究蒸汽压、沸点、 易燃性等。
热分析技术在药学领域中的应用
一、热分析技术在中药材鉴别中的应用 1、动物药材的鉴别
2、植物药材的鉴别
植物药材(菊花、丹参、白术、白芷、
黄芪、玄参、甘草、板兰根、薏仁、杜仲、
银杏等)的鉴别,通常需要一定的溶剂提取
等较复杂的化学前处理,且操作烦琐。同时
也仅能检测药材中某一类成分,故难于反映
药材的总体理化性质,对植物药材鉴别的专
属性、准确性也不够高,故鉴别较为困难。 应用 TA 技术对其鉴别,往往能取得较满意 的效果。 2018/10/30
应用领域:化学化工、冶金、地质、物理、陶瓷、建材、 生物化学、药学、地球化学、航天、石油、煤炭、环保、 考古、食品等。
热分析的应用类型
1 、成份分析:无机物、有机物、药 物和高聚物的鉴别和分析以及它们的 相图研究。 2 、稳定性测定:物质的热稳定性、 抗氧化性能的测定等。 3、化学反应的研究:比如固 - 气反应 研究、催化性能测定、反应动力学研 究、反应热测定、相变和结晶过程研 究。

热分析的原理

热分析的原理

热分析的原理
热分析是一种利用物质在升温过程中吸收或释放热量的特性来研究物质性质和组成的分析方法。

热分析方法主要包括热重分析和热量分析两种。

热重分析是利用物质在升温过程中失去质量的特性来研究物质的性质和组成,而热量分析则是利用物质在升温过程中吸收或释放热量的特性来研究物质的性质和组成。

热分析的原理可以总结为以下几点:
首先,热分析是基于物质在升温过程中吸热或放热的特性。

在升温过程中,物质会吸收热量使其温度升高,同时也会释放热量。

这种吸热或放热的过程可以反映出物质的性质和组成。

其次,热分析是基于物质在升温过程中发生物理和化学变化的特性。

在升温过程中,物质的性质和组成会发生变化,这些变化可以通过热分析方法来进行研究和分析。

另外,热分析是基于物质在升温过程中失去质量的特性。

在升温过程中,部分物质会发生分解或挥发,导致失去质量,这种失去质量的过程也可以用于研究物质的性质和组成。

最后,热分析是基于物质在升温过程中吸收或释放热量的特性。

在升温过程中,物质会吸收或释放热量,这种吸热或放热的过程可
以用于研究物质的性质和组成。

总的来说,热分析的原理是基于物质在升温过程中吸热或放热、发生物理和化学变化、失去质量以及吸收或释放热量的特性来进行
研究和分析。

通过热分析方法,可以了解物质的性质和组成,为科
学研究和工程应用提供重要的参考依据。

《热分析原理学习》课件

《热分析原理学习》课件

样品制备装置
样品制备装置用于准备热分析实验所需的样品, 如样品分粉、样品固化等。
热分析应用与分析实例
高分子材料的热降解行为分析
通过热重量分析和差热分析,可以研究高分 子材料的热降解过程和分解产物。
焊接材料的热物形行为。
复合材料的热行为分析
热力学基础知识
了解热力学基础知识对于 理解热分析原理和结果的 解释至关重要。
热重量分析原理
热重量分析是一种通过测量样品在加热过程 中质量的变化来研究样品的热性质和化学性 质的方法。
差热分析原理
差热分析是一种通过测量样品和参比物在加 热过程中的温度差异来研究样品的热性质和 化学性质的方法。
热分析仪器
热重量分析仪
热重量分析仪是一种用于测量样品在加热过程 中质量变化的仪器,常用于研究材料的热降解 行为。
差热分析仪
差热分析仪是一种用于测量样品和参比物在加 热过程中的温度差异的仪器,可用于研究样品 的热性质和反应动力学。
热流量计和热电偶
热流量计和热电偶是用于测量样品在加热过程 中的热量变化的仪器,常用于研究材料的热传
• 仪器性能的提高 • 数据处理和分析方法
的改进 • 多技术联用的发展
结语
热分析在材料研究和工业应用中的重要 性
热分析在材料研究和工业应用中发挥着重要的作 用,为材料的制备、改性和应用提供了重要参考。
热分析原理学习的意义和目的
热分析原理学习旨在使学生深入了解热分析的原 理和应用,为将来的科学研究和工程实践打下基 础。
通过热重量分析和差热分析,可以研究复合 材料的热性能和热行为。
生物材料的热重量分析
通过热重量分析,可以研究生物材料的热降 解行为和分子构型。
热分析的优缺点及未来发展趋势

热分析

热分析

热分析1.什么是热分析?热分析程序温度下,测物质的物理性质与温度关系的一类技术只要将总定义中的物理性质代换成诸如质量、温差等物理量,就很容易得到各种热分析方法的定义热重法程序温度下,测量物质的质量与温度关系的技术差热分析程序温度下,测物质和参比物的温度差与温度关系的技术2.热分析包括:差示扫描热量法差热分析热重法3.热重(TG)基本原理在程序温度(升/降/恒温及其组合)过程中,观察样品的质量随温度或时间的变化过程。

应用:质量变化热稳定性分解温度组分分析脱水腐蚀/氧化还原反应动力学4.同步热分析的优势样品的TG(质量变化) 和DSC(热量) 效应可以在一次测量中完成•缩短测试时间•确保了测试结果的可比性不会受测试条件的影响不会受样品制备的影响不会受材料的不均一性的影响5.常规 DTA测量方法恒定加热速率时,测样品温度的变化速率通常T稳速上升,熔化或吸/放热反应T平台参比物:在所测范围内不发生任何热效应记录样品与参比物之间的温差Al2O36.DSC 基本原理及应用在程序温度(升/降/恒温及其组合)过程中,测量样品与参考物之间的热流差,以表征所有与热效应有关的物理变化和化学变化。

7.第一次升温 :● 玻璃化转变在转变区域往往伴随有应力松弛峰● 热固性树脂:若未完全固化,第一次升温Tg 较低,伴有不可逆的固化放热峰 ● 部分结晶材料:计算室温下的原始结晶度 ● 吸水量大的样品(如纤维等):往往伴有水分挥发吸热峰,可能掩盖样品的特征转变高分子材料的二次升温● 玻璃化转变:消除了应力松弛峰,曲线形状应用:• 玻璃化转变 • 熔融、结晶 • 熔融热、结晶热 • 共熔温度、纯度 • 物质鉴别 • 相容性• 热稳定性、氧化稳定性 • 反应动力学 • 热力学函数 • 液相、固相比例典型而规整●热固性树脂(未完全固化):玻璃化温度一般会提高。

●部分结晶材料:经过特定冷却条件(结晶历史)研究结晶度、晶体熔程/熔融热焓与结晶历史关系。

热分析PPT课件

热分析PPT课件

热力学基础知识
热力学系统
研究对象,与周围环境有能量和 物质交换的体系
状态函数
描述系统状态的物理量,如温度、 压力、体积等
热力学第一定律
能量守恒定律在热力学中的应用, 表达式为ΔU=Q+W
热力学第二定律
热量不可能自发地从低温物体传 到高温物体,表达为ΔS≥0
热分析方法分类与特点
差热分析(DTA)
在程序控制温度下,测量物质与参比物之间的温度差随温 度变化的技术
06
热分析技术在材料科学中应用
材料性能表征与评估
热重分析(TGA)
通过测量材料在升温过程中的质量变化,研究其热稳定性、分解温 度、氧化稳定性等。
差热分析(DTA)
记录样品与参比物之间的温度差随温度变化的曲线,用于研究材料 的热效应、相变、反应动力学等。
差示扫描量热法(DSC)
测量样品与参比物之间的功率差随温度变化的曲线,用于研究材料 的熔点、结晶度、玻璃化转变温度等。
材料相变过程研究
01
相变温度的确定
通过热分析方法确定材料的固固相变、固-液相变、液-气相变 等相变温度。
02
相变动力学研究
03
相变机理探讨
研究材料在相变过程中的动力学 行为,如相变速率、相变活化能 等。
结合热分析数据与其他表征手段, 探讨材料相变的机理和影响因素。
材料老化、失效预测和寿命评估
热氧化稳定性评估
数据处理
将实验数据导入计算机,利用相关软件进行数据处理和 分析,如绘制热机械曲线、计算热膨胀系数等。
应用实例及优缺点分析
应用实例
研究材料的热稳定性、热膨胀性、相变等。
优点
可测量物质在宽温度范围内的热机械性能,提供丰富 的信息;实验操作简单,结果可靠。

热分析原理学习课件

热分析原理学习课件
T=() 其中是时间,则
F=f(T)或f()
热分析原理学习
概述
在不同温度下,物质有三态:固、液、气,固态物质又有不同的结晶 形式。
对热分析来说,最基本和主要的参数是焓(ΔH),热力学的基本公 式是: ΔG=ΔH-TΔS
存在三种情况:ΔG<0,ΔG=0,ΔG>0 常见的物理变化有:熔化、沸腾、升华、结晶转变等; 常见的化学变化有:脱水、降解、分解、氧化,还原,化合反应等。 这两类变化,首先有焓变,同时常常也伴随着质量、机械性能和力学
图17-9 带光敏元件的热重法 装置——热天平示意图
热分析原理学习
图10 聚酰亚胺在不同气氛中的TG曲线
热分析原理学习
微商热重(DTG)曲线
热重曲线中质量(m)对时间(t)进行一次微商从而得到dm/dt-T(或 t)曲线,称为微商热重(DTG)曲线。
它表示质量随时间的变化率(失重速率)与温度(或时间)的关系; 相应地称以微商热重曲线表示结果的热重法为微商热重法。
典型的DSC曲线
典型的差示扫描量热(DSC) 曲线以热流率(dH/dt)为纵 坐标、以时间(t)或温度(T) 为横坐标,即dH/dt-t(或T) 曲线。 曲线离开基线的位移即代表样 品吸热或放热的速率(mJ·s1),而曲线中峰或谷包围的 面积即代表热量的变化。 因而差示扫描量热法可以直接 测量样品在发生物理或化学变 化时的热效应。
热分析原理学习
热重法的应用
无机物及有机物的脱水和吸湿; 升华过程;
无机物及有机物的聚合与分解; 液体的蒸馏和汽化;
矿物的燃烧和冶炼;
吸附和解吸;
金属及其氧化物的氧化与还原; 催化活性研究;
物质组成与化合物组分的测定; 固态反应;
煤、石油、木材的热释;

热分析技术PPT课件

热分析技术PPT课件
终止温度Tf:曲 线开始回到基线 的温度;
峰顶温度Tp:吸、 放热峰的峰形顶 部的温度,该点 瞬间
d(ΔT)/dt=0;
峰宽—— B′D′;
峰高—— CF;
峰面积——BCDB; 外推起始点(出峰点)一峰前沿最大斜率点与
基线延长线的交点(G),对应温度最为接近 热力学平衡温度。
3、DTA数据的记录方式
理想
实际
K[Al3(OH)6](SO4)2 热重曲线
• 结晶硫酸铜的热分析
实验条件为试样质量为10.8mg,升温 速率为10℃/min,采用静态空气,在
mo=10.8mg。曲线bc为第一台
铝坩埚中进行
阶,质量损失率为:
曲线de 为第二台阶,质量损失 率为:
曲线fg为第三台阶,质量损失率:
推导出CuSO4·5H2O 的脱水方程如下:
4、影响TG曲线的主要因素
任何一种分析测量技术都必须考虑到测定结 果的准确可靠性和重复性。为了要得到准确性和复 现性好的热重测定曲线,就必须对能影响其测定结 果的各种因素仔细分析。
① 升温速度: ② 试样周围气氛:C02、空气中或N2气氛 ③ 坩埚和支架的影响: ④ 试样因素:试样量、粒度大小 ⑤ 走纸速度:
据。 ⑩ 标明试样重量和试样稀释程度。 ⑪ 标明所用仪器的型号、商品名称及热电偶的几何
形状、材料和位置。 ⑫ 纵坐标刻度用测定温度下每度的偏移表示,吸热
峰指向下方,放热峰指向上方。
2023/9/13
4、DTA曲线的影响因素
① 升温速率不同,得到的峰的形状会有些差异,升温速率不 稳,则会造成基线偏移、弯曲、甚至造成假峰。
(Differential Scanning Calorimetry)
3、 热分析应用范围

《热分析法》课件

《热分析法》课件

检测材料相变
热分析法可以检测材料在加热或 冷却过程中的相变温度和相变热 量,有助于了解材料的热性能和 相变行为。
评估材料热导率
通过热分析法可以测量材料的热 导率,这对于材料在高温或低温 环境下的热传导性能评估具有重 要意义。
化学领域的应用
反应动力学研究
热分析法可以用于研究化学反应的动 力学过程,通过测量反应速率常数和 活化能等参数,有助于理解反应机理 和反应速率控制步骤。
加强热分析标准化和规范化的宣传与培训,提高相关人员的意识和素质,促进热分析的广泛应用和深入发展。
THANK YOU
随着科学技术的不断发展,热分析与光谱、色谱、质谱等分 析方法的联用将进一步提高热分析的准确性和可靠性。
热分析软件的开发
未来将有更多专门针对热分析的软件出现,这些软件将能够 实现数据的自动采集、处理、分析和可视化,提高热分析的 效率和精度。
交叉学科的研究与应用
热分析与材料科学的交叉
随着材料科学的快速发展,热分析将在材料性能表征、材料合成与制备等领域发 挥更加重要的作用。
03息量。ຫໍສະໝຸດ 热分析法的优势与局限性• 可用于研究物质在温度变化时的 性质变化,具有较高的灵敏度和 准确性。
热分析法的优势与局限性
01
局限性
02 对测试条件要求较高,如温度控制、气氛 控制等。
03
对于某些物质,可能存在较大的热历史效 应,影响测试结果的准确性。
04
对于某些复杂体系,可能需要结合其他分 析方法进行综合分析。
《热分析法》ppt课件
• 热分析法简介 • 热分析法的基本类型 • 热分析法的实验技术与操作 • 热分析法的应用实例 • 热分析法的未来发展与展望
01
热分析法简介

第5章 热分析(高等教学)

第5章 热分析(高等教学)

高级教育
29
5.2.3 DTA曲线的解析
(1)含水矿物的脱水
——普通吸附水脱水温度:100-110℃ 。
——层间结合水或胶体水:400 ℃内,大多数200 或300 ℃内。
——架状结构水:400 ℃左右。
——结晶水:500 ℃内,分阶段脱水。
——结构水:450 ℃以上。
高级教育
30
高级教育
31
高级教育
将两个反极性的热电偶串联起来,就构成了用 于测定两个热源间温度差的温差热电偶。
高级教育
13
差热分析原理图
将差热电偶的一个热端插 在被测试样中,另一个热 端插在待测温度区间内不 发生热效应的参比物中, 试样和参比物同时升温, 测定升温过程中两者的温 度差。
高级教育
14
➢ 差热分析曲线
温差
温度 高级教育
高级教育
9
第二节 差热分析(DTA)
Differential Thermal Analysis
高级教育
10
差热分析
——是在程序控制温度下测定物质和参比物之间 的温度差和温度关系的一种技术。
参比物: 在测定条件下不产生任何热效应 的惰性物质
高级教育
11
5.2.1 差热分析原理
高级教育
12
➢ 热电偶与差热电偶
峰:指曲线离开基线又回到
基线的部分,包括放热
峰和吸热峰。
峰宽:峰的温度间距。
峰高:表示试样与参比物之
间的最大温差,峰顶到
高级教育Βιβλιοθήκη 基线的垂直距离。19
差热反应起始温度的确定
外延始点温度:指峰的起始边陡峭部分的切线与外沿基 线的交点。
国际热分析协 会(ICTA) 采用外延起始 温度表示反应 的起始温度。

热分析法PPT课件

热分析法PPT课件
将实验数据、分析结果和 讨论整理成完整的报告, 以供后续研究或应用参考 。
04
热分析法在材料科学中的应用
材料热稳定性的研究
热重分析(TGA)
通过测量材料在升温过程中的质 量变化,研究其热分解、氧化等 反应,评估材料的热稳定性。
差热分析(DTA)
记录材料在升温或降温过程中的 热量变化,分析材料的热效应, 判断其热稳定性。
要点二
原理
物质在加热过程中会伴随质量的变化 ,这种变化是由于物质的分解、挥发 、升华等物理或化学过程引起的。通 过测量物质质量随温度的变化,可以 得到物质的热稳定性、热分解温度、 热分解过程等信息。
要点三
应用
热重分析广泛应用于无机物、有机物 及聚合物的热分解研究,以及固体物 质的成分分析等领域。
差热分析
热机械分析(
TMA)
测量材料在温度变化过程中的形 变和应力,研究材料的热膨胀、 收缩等性能,评估其热稳定性。
材料相变过程的探究
差示扫描量热法(DSC)
测量材料在升温或降温过程中的热量变化,研究材料的熔融、结 晶、固化等相变过程。
热光分析
通过观察材料在加热过程中的光学性质变化,研究材料的相变过程 和机理。
生物医学
用于研究生物组织的热性质、生物大分子的 热稳定性以及药物的热分析。
环境科学
用于研究环境污染物的热性质、热分解以及 环境样品的热分析。
热分析法的发展历程
早期阶段
热分析法的起源可以追溯到18世纪,当时人们开始使用天平测量物质在加热过程中的质 量变化。
发展阶段
19世纪末至20世纪初,随着热力学和物理化学的发展,热分析法逐渐成为一种重要的分 析方法,出现了多种热分析方法,如差热分析(DTA)、热重分析(TGA)等。

材料研究方法-第五章热分析PPT课件

材料研究方法-第五章热分析PPT课件
9
• 热分析四大支柱 差热分析、热重分析、 差示扫描量热分析、热机械分析
——用于研究物质的晶型转变、融化、升华、吸 附等物理现象以及脱水、分解、氧化、还原等化 学现象。 ——快速提供被研究物质的热稳定性、热分解产 物、热变化过程的焓变、各种类型的相变点、玻 璃化温度、软化点、比热、纯度、爆破温度和高 聚物的表征及结构性能等。
(3)氧化反应 ——放热峰
(4)非晶态物质的析晶 ——放热峰
(5)晶型转变 ——吸热峰或放热峰
熔化、升华、气化、玻璃化转变:吸热峰
32
水泥水合反应DTA曲线(P241)
33
玻璃形成能力判据
• ΔT=Tx-Tg,ΔT越大,玻璃越稳定。 • 热稳定参数 H´=(Tx-Tg)/Tg,H’越大,玻璃越稳定 • 热稳定参数 S=(Tp-Tx)×(Tx-Tg)/Tg,S越大,玻
反应前基线低于反应 后基线,表明反应后 试样热容减小。
反应前基线高于反应 后基线,表明反应后 试样热容增大。
24
(2)试样的颗粒度 ——试样颗粒越大,峰形趋于扁而宽。反之,颗 粒越小,热效应温度偏低,峰形变小。 ——颗粒度要求:100目-300目(0.04-0.15mm)
25
(3)试样的结晶度、纯度和离子取代 ——结晶度好,峰形尖锐;结晶度不好,则峰面 积要小。 ——纯度、离子取代同样会影响DTA曲线。
常用的参比物:α-Al2O3
(经1270K煅烧的高纯氧化铝粉, α-Al2O3晶型) 27
6、影响DTA曲线的操作因素
(1)加热速度 加热速度快,峰尖而窄,形 状拉长,甚至相邻峰重叠。 加热速度慢,峰宽而矮,形 状扁平,热效应起始温度超 前。 常用升温速度:1-10K/min, 硅酸盐材料7-15K/min。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章热分析
1.何谓热分析?简述热分析的三个条件。

答:在程序温度控制下测量物质的物理性质与温度关系的一类方法的统称。

三个条件:a.必须是测量物质的某种物理性质
b.测量的物理量必须直接或间接的与温度之间有某种依赖关系
c.必须在程控温度下测定
2.简述热重分析(TG)分析的定义、原理和影响因素。

定义:是一种在程控温度下的测量物质质量随温度变化的热分析技术
原理:许多物质在加热过程中会在特定温度下发生分解,脱水,氧化,还原和升华等物理变化而出现质量变化,其质量变化的温度T和质量变化百分
数%随物质的结构和组成而异。

影响因数:1.分析仪器因数:a.加热炉内的气体的浮力和对流作用 b.坩埚和支架的影响
2.实验条件和实验参数:a.升温速度b.实验气氛c.试样用量d.试样
粒度
3.DTG(微分热重分析)曲线中的峰是何物理含义,峰的积分面积
与质量变化是何种关系?
峰的物理含义:DTG曲线上的峰表示质量变化速率最大点,作为质量变化/分解过程的特征温度,代替TG曲线上的阶梯。

关系:峰面积正比于试样质量。

4.TG-DTG综合分析有何优势和注意事项?
1.同时获得TG和DTG两条曲线;
2.DTG曲线可准确显示出起始反应温度,到达最大反应速率温度和反应终止
温度;
3.当TG曲线不能清楚显示某些受热过程中出现的台阶时,可采用DTG曲线
使其清楚显示,但需将TG曲线和DTG曲线重叠,并分析各个反应阶段的起始温度、最大反应速度温度和终止温度;
4.利用DTG曲线峰面积与样品质量之间的依赖关系,可开展热过程中质量变
化的定量分析;
5.DTG能精确显示微小质量变化的起点;
6.不能将DTG曲线的峰顶温度当成分解温度,DTG的峰顶温度表示在这个温
度下质量变化速率最大,绝对不是样品开始分解和质量损失的温度.
5.何谓DTA(差热分析)分析?DTA分析的基本原理是什么?
答:一种在程控温度下测量试样温度Ts和参比物温度Ty的温度差与温度之间依赖关系的热分析方法。

△T=Ts-Ty=f(T或t) T—程控温度t—时间基本原理:物质在加热过程中的某一特定温度下发生的失水、分解、相变、氧化还原、升华、熔融。

晶格破坏和重建、以及物质间的相互作用等一系列物理、化学变化,并伴有吸、放热现象。

将有热效应的试样和一个在一定温度范围内无任何热效应的参比物(如a -A12Q3)在相同条件下同时加热或冷却时,试样与参比物的温度差△T与温度T的关系会出现下列现象:
1.产生热效应
△T=正值,差热曲线出现放热峰
△T=负值,差热曲线出现吸热峰
2.试样没产生热效应
△T=0,差热曲线平直(基线)
6.DTA曲线的纵、横坐标标识的含义是什么?DTA曲线上吸热过程
和放热过程的体现形式如何?DTA曲线上峰、谷面积与什么热学参量有关?
含义:横坐标为温度,纵坐标为试样与参比物的温度差(△T)
形式:曲线向上表示放热,向下表示吸热
关系:与试样热焓有关
7.影响DTA分析和DSC(差示扫描量热)分析的主要因素有哪些?
DTA分析:
仪器因素的影响:加热方式、坩埚、炉子形状、尺寸,温度测量、样品支持器、热电偶
实验条件的影响:升温速率、气氛、压力
试样的影响:样品、样品密度、样品粒度、装填方式
DSC分析:
实验条件影响:升温速率、所通气体
试样性质影响:试样量、试样粒度、试样厚度、试样热历史
8.DTA分析和DSC分析有何区别?
DTA测定的是试样与参比物之间的温度差△T
DSC测定的是热流率dH/dt,定量方便
DTA优点:快速简便
缺点:重复性较差,分辨率不够高
DSC优点:热量定量方便、分辨率高、灵敏度好
缺点:非曲直使用温度低
DTA适用于矿物、冶金等领域
DSC适用于对温度要求不高、灵敏度要求高的有机、高分子及生物化学领域9.何谓DSC分析? DSC分析的基本原理是什么?
在程控温度下,测量输入到物质和参比物之间的能量差(或用温度差换算成能量差)与温度的关系
原理:将有物相变化的样品和在所测定温度范围内不发生相变且没有任何热效应产生的参比物,在相同的条件下进行等温加热或冷却,当样品发生相变时,在样品和参比物之间就产生一个温度差。

放置于它们下面的一组差示热电偶即产生温差电势UΔT,经差热放大器放大后送入功率补偿放大器,功率补偿放大器自动调节补偿加热丝的电流,使样品和参比物之间温差趋于零,两者温度始终维持相同。

此补偿热量即为样品的热效应,以电功率形式显示于记录仪上。

10.功率补偿型DSC和热流型DSC的分析原理、试样要求和升温速率
有何不同?
功率补偿型DSC
分析原理:整个仪器由两个控制系统进行监控,试祥和参比物分别由独立的加热器和传感器的检测。

无论试样是吸热还是放热,均通过功率补偿使试样和参比物的温度保持相同,即处于动态零位平衡状态。

试样要求:两种独立、少量的试样
升温速率:可达500℃/min
热流型DSC
分析原理:△H = k△T将温差转变成热流信号
试样要求:单一大量的试样
升温速率:升温速率慢
11.如何确定外推起始点温度?其物理意义是什么?
在峰的前沿最大斜率的切线与外推基线的交点,意义:反应的起始温度12.DTA分析和DSC分析鉴定物相的依据是什么?
根据物质加热过程所产生的:①峰谷的吸、放热性质②峰值温度③峰谷数目
④峰谷形态
分析放热峰和吸热谷产生原因,解析复杂的DTA(DSC)曲线通常需要与其它解分析测试结果进行综合分析。

13.简述DSC分析技术的主要应用领域。

1.物质鉴定
2.热力学研究
3.物质结构与物质性能关系研究
4.反应动力学研究
14.何谓同步热分析?简述TG-DTA、TG-DSC、TG-DTG-DTA和TG-DTG-DSC主要同步热分析方法的特点和优点。

同步热分析指在同一时间对同一样品使用两种或两种以上的热分析手段,如TG--DTA, TG-DSC,TG-DTG-DTA, TG-DTG-DSC等。

优点:
1.根据某一热效应是否对应质量变化,有助于判别该热效应所对应的物化过程
(如区分熔融峰、结晶峰、相变峰与分解峰、氧化峰等)。

2.在反应温度处找到样品的当前实际质量,有利于反应热焓的准确计算。

3.广泛应用于陶瓷、玻璃、金属/合金、矿物、催化剂、含能材料、塑胶高分
子、涂料、医药、食品等各种领域。

15.DTA与TG在综合热分析曲线DTA-TG上有怎样的对应关系?
从热重法派生出微商热重法(DTG),即TG曲线对温度(或时间)的一阶导数。

实验可同时得到DTG线和TG线。

DTG 曲线能精确地反映起始反应温度、达到最大反应速率的温度和反应终止的温度。

在TG上,对应于整个变化过程中各阶段的变化互相衔接而不易区分开,同样的变化过程在DTG曲线上能呈现出明显的最大值。

故DTG能很好地显示出重叠反应,区分各个反应阶段,这是DTG的最可取之处。

另外,DTG曲线峰的面积精确地对应着变化了的质量,因而DTG能精确地进行定最分析。

相关文档
最新文档