汽油加氢装置原理简介.

合集下载

加氢装置介绍

加氢装置介绍
2013-8-17 2
加氢裂化装置原理、流程及特点
加氢裂化是将大分子的重质油转化为广泛使用的小分子 的轻质油的一种加工手段。可加工直馏柴油、催化裂化循环 油、焦化馏出油,也可用脱沥青重残油生产汽油、航煤和低 凝固点柴油。加氢裂化装臵是炼油厂最重要的的生产装臵之 一,在高温、高压、临氢状态下操作。 加氢裂化装臵的工艺流程主要有三种类型方法: ⑴ 一次通过法:所产尾油不参加循环。 ⑵ 部分循环法:所产尾油一部分参加循环,一部分排出 装臵。 ⑶ 全部循环法:所产尾油全部参加循环,不排尾油。 加氢裂化装臵主要设备有加氢精制反应器、加氢裂化反 应器、加热炉、高压热交换器、高压空冷器、高、低压分离 器、高温高压临氢管道、高温阀门等。详见图1、图2、图3、 图4。
2013-8-17 12
H1
H2
H3
凸台
H4
H5
s-k H6
1
图5
2013-8-17
热壁加氢反应器
13
加氢裂化装置常用材料
设备名称
加氢精制、裂化反应器 (设计温度≤ 450 ℃/设 计压力8~20MPa) 高压热交换器(温度≤ 260 ℃)
选用材质
板2.25Cr-1Mo(SA387Gr22CL2) +6.5mm(Tp309+347) 堆焊层 或+4mm(TP347)单层浅熔深堆焊 锻2.25Cr-1Mo(SA336F22CL2) + 6.5mm(Tp309+347) 堆焊层或+4mm(TP347)单层浅熔深堆焊 管程:反应流出物:管箱(碳钢、碳钼钢+4~6mm CA;铬钼钢+3mm CA)管板(碳钢、碳钼钢、铬钼钢 + 8mmTP309+347) 壳程:循环氢、原料:壳体(碳钢、碳钼钢、铬钼 钢+ 3mm CA) 管程:反应流出物:管箱(铬钼钢+3mm 1Cr18Ni9Ti 复合板 或 +6.5mm Tp309+347堆焊层 或 +4mmTP347) 管板(铬钼钢+8mmTP309+347或铬 钼钢+8mmTP410) 壳程:循环氢、原料:壳体(铬钼钢+4mm CA;或 +3mm 1Cr18Ni9Ti 复合板;或+4mmTP347;或 +6.5mm Tp309+347堆焊层) 14

汽油加氢装置工艺流程培训教案

汽油加氢装置工艺流程培训教案

汽油加氢装置工艺流程培训教案汽油加氢装置工艺流程培训教案1汽油加氢装置简介1.1概况乙烯装置来的裂解汽油〔C —C馏份〕中含有大量的苯、甲苯、5 9二甲苯等芳烃成份,是获得芳烃的贵重原料。

裂解汽油中除芳烃外,还含有单烯烃,双烯烃和烯基芳烃,还含有硫、氧、氮杂质。

由于有不饱和烃的存在,裂解汽油是不稳定的。

裂解汽油加氢的目的就是使不饱和烃变成饱和烃,并除去硫、氮、氧等杂质,为芳烃抽提装置供给稳定的高浓度芳烃含量的原料—加氢汽油。

1.2原辅料及成品的特性本装置在工艺上属于易燃、易爆、高温生产线,易发生着火、爆炸和气体中毒等事故。

裂解汽油为淡黄色芳香味挥发性液体,是芳香族和脂肪碳氢化合物的混合体。

主要是由苯、甲苯、二甲苯、乙苯及 C -C以上烃类组5 9成。

对人体存在危害作用。

氢气是种易燃易爆气体。

氢气与空气混合,爆炸范围为 4-74% 〔V〕。

加氢汽油主要是由由苯、甲苯、二甲苯、乙苯及 C -C饱和烷烃5 8组成,对人体也存在危害作用。

过氧化氢异丙苯为无色或黄色油状液体,有特别臭味,易分解引起爆炸。

硫化氢属于高危害毒物,密度比空气重,能沿地面集中,燃烧时会产生二氧化硫有毒蒸汽,对人体存在危害作用。

进料泵 G-P101A/B,以 45 吨/小时的流量送至脱 C5塔 G-T101。

从塔顶部蒸出气体,经脱 C5塔冷凝器 G-E102 冷凝〔循环水〕后,进入脱 C5塔回流罐G-V102 中缓冲,冷凝液相用脱 C5塔回流泵G-P102A/B,一局部送至 G-T101 塔回流,其余局部送至界区外 C 产5品贮罐,从塔底出来的釜液,经脱 C5塔塔底出料泵 G-P103A/B 送至脱砷反响器 G-R101。

脱 C5塔再沸器 G-E101 用 1.4MPa(表压)的中压蒸汽加热,向 G-T101 塔供热。

G-T101 主要操作参数塔顶温度60~65℃塔顶压力0.12~0.16Mpa〔表压〕塔底温度128~136℃塔底压力0.14~0.18Mpa〔表压〕回流因数/回流比 0.56/1.6进料板第20 块全塔板数50 块B.脱砷反响器由脱 C5塔底送来的 C —C6 9馏份与由 CHP 注入泵 G-P112A/B 送来的过氧化氢异丙苯相混合后,从底部进入脱砷反响器G-R101,C—C6 9 馏份与微量的过氧化氢异丙苯混合,并使油中的砷重质化,从脱砷反应器 G-R101 顶部出来进入脱 C9塔,重质化的砷通过脱 C9塔精馏操作从塔底与 C9馏份一起分别出来,而塔顶 C —C6 8馏份中砷含量就大大地削减了,从而保证一段加氢催化剂的连续运转。

汽油加氢循环氢胺洗系统带油带烃的原因及对策

汽油加氢循环氢胺洗系统带油带烃的原因及对策

汽油加氢循环氢胺洗系统带油带烃的原因及对策【摘要】:胺洗系统带油带烃,不仅会降低加氢脱硫效果,还直接影响硫磺装置尾气环保达标排放。

通过分析汽油加氢装置胺液带油带烃的因素,提出控制脱硫塔液面、循环氢胺洗温差、定期撇油等对策,同时针对夏季装置加工负荷大时,后冷温度高等问题,提出改进措施,解决胺洗系统带油带烃问题。

【关键字】:循环氢;胺洗系统;带油带烃的因素1.汽油加氢装置循环氢胺洗系统流程简介一、二段选择性加氢脱硫产品分离罐顶部气相经加氢脱硫后冷器冷却后,液相回流至加氢脱硫产品分离罐,气相进入胺洗塔入口分液罐进一步冷凝分液,然后进入胺洗塔,与从胺洗塔上部注入的贫胺液逆向接触以脱除循环氢中的H2S,富胺液从塔底流出送出装置再生后循环使用。

脱硫气体进入循环氢压缩机分液罐除去尾气中夹带的胺液,然后进入循环氢压缩机升压后循环使用。

加氢脱硫产品分离罐底部液体在液位控制下至稳定塔进料/塔底出料换热器换热后进入稳定塔。

2.循环氢胺洗系统带油带烃的原因及分析2.1 脱硫塔液面汽油加氢装置循环氢胺洗系统正常操作时,一段脱硫塔C-201的液面LICA-20602一般控制为45%,二段脱硫塔C-401的液面LICA-40602一般控制为60%。

液面控制太高,容易造成气体夹带溶剂,液面如果超高,则容易对循环氢入塔口形成液封,影响装置的正常操作;液面控制的太低,容易造成循环氢穿透溶剂,直接进入到下游装置,严重影响到后续的硫磺装置安全正常生产。

2.2 操作波动汽油加氢装置一二段循环氢胺洗系统的进料主要为200单元与400单元高分罐顶气相以及来自系统的贫胺液。

具体数值见表1,其中温度、压力、流量均来自于DCS平均数据。

表1 汽油加氢装置循环氢胺洗系统进料情况项目D204罐贫液进200单元D-404罐贫液进400单元流量,t/h (Nm3/h)4878310.0695625.8压力,Mpa1.50.721.50.7温度,℃31.93933.138.2如果操作人员大幅度调整A-201、A-401的后冷温度、循环氢量与贫胺液进料量,气相中的重组分烃冷凝进入胺液系统,会使胺洗塔操作不平稳,造成胺液带烃、发泡等现象。

汽油加氢脱硫技术的应用与发展对策

汽油加氢脱硫技术的应用与发展对策

汽油加氢脱硫技术的应用与发展对策一、汽油加氢脱硫技术的应用汽油加氢脱硫技术是一种利用氢气将硫化物还原成硫化氢,再通过吸附剂将硫化氢去除的技术。

其主要原理是在催化剂的作用下,将汽油中的有机硫化合物转化为易于被吸附剂去除的硫化氢。

在汽油加氢脱硫装置中,首先将含硫汽油与氢气通过催化剂反应,生成硫化氢和未反应的氢气,然后将生成的硫化氢经过吸附剂的吸附,从而达到脱硫的目的。

汽油加氢脱硫技术在炼油厂和化工厂等工业领域得到了广泛的应用。

随着环保政策的不断加强,汽车尾气排放标准也越来越高,使得汽油加氢脱硫技术在汽车尾气处理领域也越来越受到关注。

目前市场上已经有一些汽车品牌在其高端车型中使用了汽油加氢脱硫技术,以满足严格的尾气排放标准。

二、汽油加氢脱硫技术的发展对策尽管汽油加氢脱硫技术在环保和尾气处理领域具有广阔的应用前景,但是在实际应用中还存在一些问题和挑战,需要采取相应的发展对策。

1. 技术改进汽油加氢脱硫技术还存在一定的技术瓶颈,需要不断进行技术改进和创新。

当前,汽油加氢脱硫技术在催化剂的选择、反应条件的控制和吸附剂的性能等方面仍然存在改进的空间。

需要加大研发投入,不断提高催化剂和吸附剂的稳定性和性能,提高汽油加氢脱硫技术的脱硫效率和稳定性。

2. 成本降低目前汽油加氢脱硫技术的成本相对较高,需要进行成本降低的工作。

尤其是在汽车尾气处理领域,要求汽油加氢脱硫技术具有良好的经济性。

需要通过优化工艺流程、提高设备利用率、降低催化剂和吸附剂的成本等途径,降低汽油加氢脱硫技术的成本,以提高其市场竞争力。

3. 快速推广应尽快将汽油加氢脱硫技术推广到更广泛的领域。

除了炼油厂和化工厂外,汽油加氢脱硫技术还可以在加油站、汽车修理厂等汽车维修保养场所得到广泛应用。

需要加强对汽油加氢脱硫技术的推广宣传,鼓励企业加大投入,推动技术在实际应用中的推广和落地。

汽油加氢装置

汽油加氢装置

TC1740: 225~300℃
内径:1600mm 塔高:24654mm 塔数:46 类型:浮阀 材质:16MnR 压力:0.69MPa 温度:190℃
TC1704: 35~110℃ TC1722: 139~147℃ TC1705: 70~160℃
去火炬
C5产品: 硫含量: ≤160ppm 碳五总量: ≥90% 碳四及轻组份:≤3% 碳六及重组分:≤7%
一、裂解汽油加氢装置简介
1、概况
裂解汽油是蒸汽裂解制乙烯的重要副产物,约占乙 烯产量的50~80%。在裂解汽油中芳烃(苯、甲苯、 混合二甲苯)的含量要占一半以上,其中含有相当 数量的双烯与单烯烃,如苯乙烯,需要经过两段加 氢,使不饱和烃转化为饱和烃,并除去硫、氮、氧 等杂质,才能作为下游芳烃抽提的原料。 裂解汽油加氢装置所处在的位置十分重要。它处在 乙烯装置和芳烃抽提装置之间,起到了承上启下的 作用。若裂解汽油加氢装置开得不好,有可能迫使 乙烯装置减产甚至停车,或者芳烃抽提装置因无原 料停车.
二段稀释泵
一段反应器
稳定塔
脱辛烷塔
氢气压缩机
二段反应器
脱戊烷塔
一、裂解汽油加氢装置简介
3、裂解汽油加氢装置的主要流程 C5和C9+馏分通常作为裂解汽油加氢装置的副产品,根据 是否经过加氢处理,有不同的用途。
C5馏分
不加氢
C9+馏分
含有50%-70%的双烯烃,可 可作综合利用,如 作为重要的基本有机原料, 生产石油树脂 尤其是精细化工的原料。 作为汽油调和剂或乙烯裂解 原料 作为汽油调和剂、 溶剂油
一段加氢反应器 R1710 裂解汽油 一段稀释泵
稳定塔 C1720
TC1730: 105~125℃

汽柴油加氢装置

汽柴油加氢装置

汽柴油加氢装置未来汽油要求进一步降低芳烃、烯烃、苯、硫、雷德蒸气压,RVP 尤其要降低汽油中含硫量。

由于催化裂化汽油、FCC汽油是汽油的主要成分,也是汽油中硫的主要来源,占86%以上。

因此,欲降低汽油总体硫含量,就必须降低FCC汽油的含硫量。

加氢精制技术不但能脱除汽油等馏分油中硫醇性硫,而且还能较好地脱除其他较高沸程汽油中含有的较多的噻吩和其他杂环硫化合物。

此外,十六烷值作为评价柴油质量的重要指标之一。

要求柴油加氢精制时除了深度脱硫外,还要尽可能降低柴油中芳烃的含量。

高质量的柴油应具备低硫、低芳烃和高十六烷值等性能。

为了满足不断苛刻的汽柴油标准的油品生产要求,加氢精制工艺必然得到广泛应用。

一、工艺流程简述1、反应部分原料油自装置外来进入原料油缓冲罐,经原料油泵加压后与精制柴油换热后进入自动反冲洗过滤器,过滤后进入滤后原料缓冲罐,再由反应进料泵抽出升压后与混氢混合,先与加氢精制反应产物进行换热,再经反应进料加热炉加热至要求温度;循环氢与新氢混合后与热高分气换热升温后原料油混合。

混氢原料油自上而下流经加氢精制反应器。

在反应器中,原料油和氢气在催化剂的作用下,进行加氢脱硫、脱氮、烯烃饱和等精制反应。

从加氢精制反应器出来的反应产物混氢原料油换热后,进入热高压分离器进行气液分离,热高分气与混氢换热并经空冷冷却后进入冷高压分离器,在冷高压分离器中进行气、油、水三相分离。

为防止反应生成的铵盐在低温下结晶堵塞热高分气空冷器管束,在热高分气空冷器前注入除盐水以洗去铵盐。

冷高压分离器顶出来的气体先经循环氢脱硫塔脱除硫化氢,再至循环氢压缩机,重新升压后与经压缩后的新氢混合,返回反应系统,冷高压分离器油相送至冷低压分离器油侧进行再次分离。

热高分油进入热低压分离器进一步闪蒸,热低分气经过冷凝后与冷高分油一起进入冷低压分离器,冷低分油先与低凝柴油换热后再同热低分油一起进入硫化氢汽提塔。

从冷高压分离器及冷低压分离器底部出来的含硫含铵污水经减压后,送出装置外处理。

汽柴油加制氢介绍.ppt

汽柴油加制氢介绍.ppt

2) 产品氢气压力
≥2.4 MPa.G
3) 产品氢温度
≤40 ℃
4) PSA部分解吸气排气压力
≥0.03 MPa
5) PSA部分氢气回收率(设计值) ≥83 %
3、30万吨/年催化汽油加氢装置 该装置设计点为28.80万吨/年催化汽油,最大加工量为36万吨/年,最小加工量为20
万吨/年。装置主要原料为催化汽油,其主要性质为 :
产品设计目标为: 1) 加氢后汽油产品硫含量<150PPm(主要由专利商保证)。 2) 加氢处理RON损失≯1.5个单位(主要由专利商保证)。 3) 重汽油加氢单元C5+以上液体收率>99.6 m %。 三套装置与一期项目装置共用一套公用工程,并在此基础上新增2台1000m3原料调合罐, 以保证装置进料的平稳性;新上10000m3气柜一台,以缓解火炬系统的压力,并能达到合 理利用装置废气的目的。
该装置设计点为38.56万吨/年,其中直馏柴油、催化柴油、直馏汽油的比例分别为 57.05%、35.17%、7.78%,最大加工量为46万吨/年,最小加工量为26万吨/年。装置原 料主要性质为:
装置产品设计目标为:
1) 精制柴油硫含量: 2) 精制汽油(石脑油)干点: 3) 精制柴油闪点:
≤350ppm ≤200℃ ≥55℃
2 、生产流程简述 1) 生产流程简述 ①反应部分
自罐区来的原料油,按预期的原料比例,首先进入原料调合罐进行调和,然
后在原料油缓冲罐(V3001)液面和流量控制下混合,经原料油脱水器 (SW3001)脱水(保证原料水含量低于350ppm),再通过原料油过滤器(FI3001) 滤去原料中大于25微米的颗粒,然后进入原料油缓冲罐(V3001)。原料油缓冲 罐采用燃料气进行保护。来自原料油缓冲罐(V3001)的原料油经加氢进料泵 (P3001A,B)增压至9.2MPa(G),在流量控制下,经反应流出物/原料油换热器 (E3003A,B)换热后,与混合氢混合进入反应流出物/反应进料换热器(E3001A、B、 C),然后经反应进料加热炉(F3001)加热至反应所需温度,进入加氢精制反应 器(R3001)。该反应器设置三个催化剂床层,床层间设有注急冷氢设施。来自 加氢精制反应器(R3001)的反应流出物,经反应流出物/反应进料换热器 (E3001A、B)、反应流出物/低分油换热器(E3002)、反应流出物/反应进料 换热器(E3001C)、反应流出物/原料油换热器(E3003A、B)依次与反应进料、 低分油、原料油换热,然后经反应流出物空冷器(A3001)冷却至50℃,最后经 反应流出物水冷器(E3011)冷却至45℃进入高压分离器(V3002)。为了防止 反应流出物中的铵盐在低温部位析出,通过注水泵(P3002A、B)将除盐水注至 反应流出物空冷器(A3001)上游侧的管道中。

汽油加氢培训总结汇报材料

汽油加氢培训总结汇报材料

汽油加氢培训总结汇报材料汽油加氢技术培训总结一、培训概述本次培训内容主要涵盖了汽油加氢的基本原理、操作流程以及安全注意事项。

通过培训,进一步提升了参训人员的技术水平和操作能力。

二、培训内容1. 汽油加氢原理汽油加氢是通过在汽油中加入一定的氢气,利用加氢反应使石脑油、汽油等不饱和烃类转化为饱和烃类。

通过培训,我们了解到了汽油加氢的化学反应机理和反应过程,深入理解了加氢技术的重要性和应用前景。

2. 操作流程培训中,我们学习了汽油加氢的具体操作流程。

包括加氢装置的启停及调试操作、催化剂的投料和灭活操作、燃料气体的控制操作等。

通过反复的理论和实践操作,我们掌握了汽油加氢操作的基本技能。

3. 安全注意事项在汽油加氢过程中,安全是至关重要的。

培训中,我们详细了解了加氢装置的安全防护装置和应急处理措施。

同时,我们学会了正确佩戴个人防护装备,掌握了使用消防器材及应对突发情况的方法。

这些安全培训措施的运用,有助于减少事故发生的可能性,保护员工的人身安全和设备的安全。

三、培训收获通过本次加氢技术培训,我们参训人员获得了以下收获:1. 知识增长:通过系统的学习和培训,我们对汽油加氢的原理和操作流程有了更为深入的了解,增进了我们的专业知识。

2. 技能提升:通过实践操作,我们掌握了汽油加氢的操作技能,能够独立进行相关工作,并具备一定的解决问题的能力。

3. 安全意识加强:培训中的安全注意事项提醒我们,安全是首要的,我们要时刻保持警惕,遵守规章制度,确保工作安全。

4. 团队协作能力:培训现场的小组合作,加强了我们之间的沟通和配合,使我们更加懂得团队合作的重要性。

四、总结与展望本次汽油加氢技术培训为我们提供了一个宝贵的学习机会,使我们进一步强化了汽油加氢技术的应用。

通过学习和培训,我们掌握了汽油加氢的基本原理和操作流程,并在实践中将其熟练应用。

在未来的工作中,我们将更加注重安全,准确把握技术细节,为企业的发展贡献自己的力量。

通过本次培训,我们相信我们的业务和技术水平能够得到进一步提升,为企业的发展和提升竞争力做出更大的贡献!。

裂解汽油加氢装置

裂解汽油加氢装置

氢油比优化
根据原料性质和反应要求, 调整氢油比,以降低能耗 和减少副反应。
设备升级与改造
新型催化剂的研发与应用
设备结构优化
采用高效、稳定的催化剂,提高加氢 反应活性和选择性。
改进设备布局和流程,降低能耗和物 耗,提高装置处理能力。
设备材质升级
采用耐腐蚀、高强度的新型材料,提 高设备使用寿命和安全性。
节能减排技术应用
余热回收利用
利用余热进行发电或供热, 降低装置能耗。
废气处理技术
采用高效、环保的废气处 理技术,减少对环境的影 响。
能效监测与控制
建立能效监测与控制系统, 实时监测和调整装置运行 状态,降低能耗。
05
裂解汽油加氢装置的未来发展
新材料的应用
高性能材料
采用耐高温、高压、腐蚀的新型 材料,提高装置的稳定性和寿命。
石油化工领域
石油炼制
裂解汽油加氢装置在石油炼制过程中用于处理裂解汽油,通过加氢处理,将其 中含有的不饱和烃转化为饱和烃,以生产高品质的汽油产品。
柴油生产
裂解汽油加氢装置也可用于柴油的生产,通过调整工艺参数,将裂解汽油转化 为柴油燃料。
化学工业领域
化学品合成
裂解汽油加氢装置能够将裂解汽油中的某些组分转化为重要的化学品,如苯、甲 苯等芳烃类化合物,这些化学品可用于进一步合成其他化学物质。
产品分离与精制
产品分离
将反应产物分离成不同组分,如氢气、轻油、重油等。
产品精制
对重油进行进一步精制,如加氢脱硫、脱氮、脱氧等,以生产高纯度、高质量的产品。
04
裂解汽油加氢装置的优化与改进
工艺参数优化
01
02
03
反应温度优化

裂解汽油加氢装置

裂解汽油加氢装置

THE END THANKS!
二、裂解汽油加氢装置中塔板的选型 裂解汽油加氢装置中的脱C5塔和脱C9塔,此处虽说是选型, 其实下面叙述的是实际生产中演变过程。 在国内的不少乙烯装置中,裂解汽油加氢是乙烯装置中的一 个工段,乙烯装置和裂解汽油加氢装置都是引进的。引进的 脱C5塔和脱C9塔一般都是浮阀塔。V-1型(国内称F1型)用 在脱C5塔和脱C9二个塔中,如金山、扬子、齐鲁石化公司 的裂解汽油加氢装置。而T型浮阀(国内称十字架)阻力降 较小,但造价稍贵,只用在负压操作的脱C9塔中,如燕山石 化的裂解汽油加氢装置。
尽管塔板上流动缓慢的区域已经有许多自聚物在降液管的边角上发现有4cm厚的自聚物但生产仍可进对于脱c9塔由于分离的物料中含有大量的苯乙烯甲基苯乙烯和双环戊二烯等物质也存在自聚的问题但该塔由于物料沸点较高在图11的流程中普遍采用负压操作保持塔釜温度在140左右
裂解汽油加氢装置中分馏塔的选 型和操作经验
--王鑫泉 (中国石化工程建设公司)
裂解汽油加氢装置中分馏塔的选型和操作经验 摘要: 摘要:裂解汽油加氢装置甚为重要,它所处理的物料含有较 多的双烯烃和苯乙烯。裂解汽油加氢装置的分馏塔,尤其是 脱C5塔宜采用抗堵性能较好的板式塔。脱C9塔是否可用规 整填料塔,还有待时间来检验。文中还介绍了若干实际操作 经验。 关键词: 关键词:裂解汽油加氢装置; 自聚倾向; 板式塔; 操作经 验
二、裂解汽油加氢装置中塔板的选型
此后,国内裂解汽油加氢装置的扩能改造中,脱C5塔和脱 C9塔普遍用板式,有二种选择:其一是仍用浮阀塔,但浮阀 采用导向条型浮阀,即在条型浮阀上开孔,开孔方向朝着降 液管,这种浮阀液面梯度及塔板压降较F1型阀小,通量大。 齐鲁、金山、扬子石化的扩能改造采用了此方案。其二是选 用斜孔塔板[1]。斜孔塔板是清华大学开发的,它的特点 是板上液层低而均匀,塔板压降较浮阀板小1/3,通量大。 斜孔塔板在燕山石化裂解汽油加氢装置中得到了良好的应用。 斜孔塔板操作一年后,塔板上无自聚物堆积;连续操作三年, 塔釜的泵入口过滤器已进行多次清理,但塔的操作却不受自 聚物的影响,操作平稳。

加氢技术培训资料PPT汽油加氢技术ppt

加氢技术培训资料PPT汽油加氢技术ppt
润滑油领域
加氢技术在润滑油领域用于生产高粘度指数润 滑油基础油,提高润滑油的性能和品质。
加氢技术的发展趋势
高效催化剂和反应器的研究与开发
01
加氢技术的发展趋势是研究和开发高效催化剂和反应器,提高
加氢效率和降低能源消耗。
清洁燃料的生产
02
加氢技术的研究和开发重点是生产清洁燃料,如氢燃料电池、
生物燃料等,以满足环保和可持续发展的需求。
汽油加氢技术的应急预案
应急预案制定
根据加氢技术的特点和可能发 生的事故类型,制定相应的应
急预案。
应急设施配备
根据应急预案需要,配备相应的 应急设施,如消防器材、急救箱 等。
应急演练
定期进行应急演练,提高员工应对 突发事件的能力和水平。
THANK YOU.
工业应用规模的扩大
03
随着加氢技术的不断发展和完善,其工业应用规模将不断扩大
,成为石油工业中不可或缺的技术之一。
02
汽油加氢技术
汽油加氢技术的定义和原理
定义
汽油加氢技术是指在炼油过程中,将汽油通过加氢反应器,使用氢气作为催 化剂,使汽油中的杂质和有害物质与氢气反应,进而转化为对人体和环境无 害的物质。
原理
汽油加氢技术的原理是利用氢气的还原性,将其通过催化剂在高温高压下与 汽油中的杂质和有害物质反应,转化为对人体和环境无害的物质。
汽油加氢技术的工艺流程
原料预处理
将汽油原料进行过滤、脱水和脱盐等预处理,去除其中的杂质和 有害物质。
加氢反应
将预处理后的汽油加入加氢反应器中,通入氢气,并加入催化剂 ,使汽油中的杂质和有害物质与氢气反应。
产品分馏
反应后的汽油通过分馏塔分离成不同沸点的组分,得到清洁的汽 油产品。

汽油加氢装置二段反应的数学模型和应用

汽油加氢装置二段反应的数学模型和应用

汽油加氢装置二段反应的数学模型和应用汽油加氢装置是一种重要的化学反应装置,其主要功能是将石油烃类化合物和氢气进行反应,生成高辛烷值的汽油产品。

然而,这一反应过程并非简单的单一反应,而是由多个反应组成的复杂反应过程。

本文将介绍汽油加氢装置中的二段反应过程,并推导出其数学模型。

汽油加氢装置中的二段反应过程是指,将石油烃类化合物和氢气分别在两个反应器中进行反应。

第一个反应器中主要进行裂解反应,将长链烃类分解成较短链的烃类。

第二个反应器中主要进行重构反应,将短链烃类重新组合成高辛烷值的汽油产品。

为了建立二段反应的数学模型,需要考虑以下几个因素:1. 反应物的浓度变化。

随着反应的进行,反应物的浓度会发生变化,从而影响反应速率。

2. 反应温度的变化。

反应温度对反应速率有着重要的影响,需要考虑反应温度的变化对反应速率的影响。

3. 反应产物的积累。

反应过程中,反应产物会逐渐积累,从而影响反应速率。

基于以上因素,可以建立二段反应的数学模型。

假设第一个反应器中的裂解反应为一级反应,重构反应为二级反应;第二个反应器中的重构反应为一级反应,则该反应系统的数学模型可以表示为:$frac {dC_1}{dt} = k_1C_1 - k_2C_1C_2$$frac {dC_2}{dt} = k_2C_1C_2 - k_3C_2$其中,$C_1$和$C_2$分别表示第一个反应器和第二个反应器中的反应物浓度;$k_1$、$k_2$和$k_3$分别表示反应速率常数。

该模型可以用来预测反应器中反应物浓度和反应产物浓度随时间的变化。

该模型在汽油加氢装置中有着重要的应用价值。

通过控制反应物的投加量、反应温度等条件,可以最大程度地提高反应速率,从而提高汽油产量和质量。

此外,该模型还可以用于设计反应器的尺寸和操作条件,从而实现更加高效的反应过程。

总之,汽油加氢装置的二段反应过程是一个复杂的化学反应系统,建立其数学模型可以为反应器设计和操作提供重要的指导意义。

VRDS渣油加氢装置工艺原理

VRDS渣油加氢装置工艺原理

VFIDS 渣油加氢装置工艺原理1.1工艺过程渣油加氢作为重油加工的重要手段,在整个炼厂的加工工艺中有着格外重要的地位oUFR/VRDS 工艺作为现代炼油厂重油加工的重要工艺,在优化原油加工流程,提高整个企业的效益,推动炼油行业的技术进步有着格外重要的意义。

其一,做为重油深度转化的工艺,它不仅本身可转化为轻油,还可与催化裂化工艺组合,使全部渣油轻质化,从而使炼厂获得最高的轻油收率。

其二,做为一种加氢工艺,它在提高产品质量,削减污染,改善环境方面具有其它加工工艺不行替代的优势,并且可生产优质的催化裂化原料,也为催化裂化生产清洁汽油创造了条件。

UFR/VRDS 装置釆用Chevron 公司专利技术,其工艺特点:原料选择范围宽,可加工多种原油的减渣。

在原油中, 经该过程验证的有:阿拉伯中、重质原油,科威特原油,加利福尼亚原油,北坡原油,美国中部大陆原油及孤岛原油等。

UFR/VRDS 工艺最初釆用了Chevron 公司的“ICR系”列催化剂,现在催化剂己全部国产化,石油化工科学争论院开发的UFR 和固定床渣油加氢RHT 系列催化剂,抚顺石油化工争论院开发的UFR 和固定床渣油加氢FZC 系列催化剂。

催化剂以多孔氧化铝为担体,浸渍银、钻、铜等金属,具有较高的金属容纳量和较高的脱硫、脱氮活性,其HDM 率达80%, HDN 率为50%产品名称石脑油、柴油、常压渣油原加工设计力量84 [(Tt/a 减压渣油120104t/a减压渣油及3010恤减压现加工设计力量装置建设时间投产日期蜡油1988 年10 月6 日1992 年5 月第一次装置改造日期1999 年10 月20 日第一次改造投产日期2023 年1 月7 日其次次装置改造日期2023 年10 月16 日70%。

釆用多种催化剂组合的催化剂级配方案,实现渣油高转化率的同时又进展深度脱硫、脱氮、脱金属。

由于催化剂按尺寸、外形和活性进展合理级配, 从而使HDM 段达最长使用周期,同时延缓或尽可能避开了主要由铁、钙沉积引起的反响器床层压降上升的问题。

催化汽油加氢装置胺洗系统带油带烃原因分析及对策

催化汽油加氢装置胺洗系统带油带烃原因分析及对策

n _罐K卜糲H 诈蠓机K -I 0I2-K M «冲罐D ~I 02.v 选裨性加氢反叫SR-IOI 4■分馕塔(•丨01f 段Hi 氢K 錢反★S R -20I6*—»反应产W 分A »r >"2027-—段嫌定塔(-2«»•—段循环H K 藏塔r -2(M»•—段*环氬Hs «机K -20丨丨》■段加氧«癒进料缓冲雄D *4fllII -段加*LK *反应SR -W I 12•段反应产供分离器丨>~*02 IJ -段檐定塔C -402 14•段循环羝K 蟪塔C-WI If - «播环S •丨》>.«机》%:-401图装置原理流程图<t ^矣会払此2020年第18期环保技术催化汽油加氢装置胺洗系统带油带烃原因分析及对策王娟中国石油兰州石化公司炼油厂甘肃兰州730060摘要:在选择性加氢脱硫过程中,气相硫化氢浓度高会抑制加氢脱硫反应,因此,催化汽油 加氢装置设置胺洗系统,以脱除循环氢中的硫化氢气体,有利于加氢脱硫反应进行,保证加氢脱硫 效果。

胺洗系统带油带烃,不仅会降低加氢脱硫效果,还直接影响硫磺装置尾气环保达标排放。

通 过分析催化汽油加氢装置胺液带油带烃原因,提出控制胺洗温差、定期撇油.控制产品冷后温度等 对策,解决胺洗系统带油带烃问题。

关键词:汽油加氢装置;胺洗系统;带油带烃;对策硫化氢是加氢脱硫反应的强抑制剂,循环 氧中存在大量硫化氢会降低催化剂的活性和选 择性。

催化汽油加氢装置胺洗系统主要是用于 脱除循环氢中的硫化氢,胺洗系统带油带烃至 下游装置,在胺液的再生过程中,硫化氢中会 夹杂轻烃组分,既影响产品质量,又会影响环 保达标排放。

一、装置简介中国石油兰州石化分公司180万t /a 汽油加 氢装置于2010年12月30日投产。

生产满足全 厂调合国I V 排放标准要求的车用汽油组分。

加氢裂化装置生产原理及工艺流程

加氢裂化装置生产原理及工艺流程

分馏进料 加热炉
汽提蒸汽
汽提蒸汽 柴油汽提塔
尾油泵
柴油泵
航煤泵
重石脑油泵
轻石脑油泵 轻石脑油水冷器
轻石脑油
石脑油 重沸器
尾油空冷
尾油缓冲罐
重石脑油
重石脑 重石脑 油空冷 油水冷
尾油接力泵
尾油
注:粗线为主流程
2020年5月23日
分馏系统
▪ 冷低分油在航煤/冷低分油换热器(E-3208)和航煤 产品换热后与热低分油混合进入脱气塔(C-3201) 第26层塔板,在脱气塔中脱除轻烃和硫化氢。塔顶气 相经脱气塔顶空冷器(A-3201)和脱气塔顶水冷器 (E-3201)冷却后进入脱气塔顶回流罐(D-3201) ,回流罐顶气体去制氢装置,液体经脱气塔顶回流泵 (P-3202)打回脱气塔做塔顶回流。脱气塔底油经泵 (P-3201)送至柴油/分馏进料换热器(E-3211)和 尾油/分馏进料换热器(E-3202)分别与柴油和尾油 产品换热后,去分馏塔进料加热炉(F-3201)加热至 要求的温度(346℃),之后进入主分馏塔(C-3202 )第8层塔板,在主分馏塔内实现分馏过程。分馏塔 顶
装置内高温高压法兰、分馏塔、塔底热油泵、高温高压循环油泵、产品泵, 压缩机管线等部位容易着火。
2020年5月23日
二、生产方法及反应机理
加氢裂化指在加氢反应过程中,原料油的分子有 10% 以上变小的那些加 氢技术。烷烃(烯烃)在加氢裂化过程中主要进行裂化、异构化和少量环化 的反应。烷烃在高压下加氢反应而生成低分子烷烃,包括原料分子某一处 C—C键的断裂,以及生成不饱和分子碎片的加氢。烯烃加氢裂化反应生成相 应的烷烃,或进一步发生环化、裂化、异构化等反应。
2020年5月23日
反应系统

汽油加氢装置原理简介

汽油加氢装置原理简介

06
技术经济分析
装置的投资成本和运行费用
要点一
投资成本
汽油加氢装置的建设需要投入大量资金,包括设备购 置、安装费用、土地租赁或购置等。这些成本会受到 多种因素的影响,如装置规模、设备材质、能源价格 等。
要点二
运行费用
装置的运行需要持续投入燃料和其他维护费用,包括 劳动力、化学品、能源等。这些费用会受到设备效率 、能源价格、维护周期等因素的影响。
原料来源
这些原料主要来自于炼油厂的蒸馏、裂解、烷基化等装置,经过这些装置的处 理后,得到各种不同的汽油组分。
原料的预处理流程
脱水和脱盐
01
原料中含有一定量的水分和盐分,需要经过脱水和脱盐处理,
以防止后续反应中产生不良影响。
脱硫和脱氮
02
原料中可能含有硫和氮等杂质,这些杂质会对加氢反应产生不
利影响,因此需要进行脱硫和脱氮处理。
装置的环保经济分析和可持续发展要求
环保经济分析
汽油加氢装置在运行过程中会产生一定的污染物,如废 气、废水等。这些污染物会对环境造成一定的影响。因 此,需要对装置进行环保经济分析,评估其对环境的影 响及治理措施。
可持续发展要求
为了实现可持续发展,汽油加氢装置需要满足国家节能 减排政策要求,采用高效、环保的技术和设备,降低能 源消耗和污染物排放。同时,需要加强装置的维护和管 理,确保其安全、稳定、长周期运行。
感谢您的观看
THANKS
预分馏效果
经过预分馏处理后,原料 被分离成不同的组分,能 够满足后续加氢反应的不 同需求。
03
反应部分
反应的类型和目的
转化反应
将重质烃转化为轻质烃,提高汽油的辛烷值和产品质 量。
裂化反应

裂解汽油加氢装置PPT培训课件

裂解汽油加氢装置PPT培训课件
关闭
在完成生产任务或需要维护时,按照操作规程关闭装置,确 保安全。
装置的运行监控
压力监控
监控装置内的压力变化,确保压 力在正常范围内,防止超压或欠
压。
温度监控
监控装置内的温度变化,确保温度 在正常范围内,防止过热或过冷。
液位监控
监控装置内的液位高度,确保液位 在正常范围内,防止过高或过低。
装置的异常处理
装置的应用场景
应用场景
裂解汽油加氢装置广泛应用于石油化工、煤化工等领域,主要用于生产高纯度 轻质油品,如航空煤油、车用汽油等。
市场需求
随着环保要求的提高和油品质量的升级,裂解汽油加氢装置的市场需求不断增 加,具有广阔的发展前景。
02 裂解汽油加氢装置操作流 程
装置的启动与关闭
启动
在确认装置准备就绪后,按照操作规程启动装置,并检查各 部分是否正常工作。
研发更高效、稳定的催化剂,提高裂解汽油加氢装置的转化率和 选择性。
节能减排技术
推广节能减排技术,降低装置能耗和污染物排放,提高环保性能。
智能化控制
应用先进的自动化和智能化控制技术,提高装置的稳定性和操作 效率。
应用领域拓展
化工领域
扩大裂解汽油加氢装置在化工领域的应用,如生产高品质燃料油、 石化原料等。
05 裂解汽油加氢装置经济效 益分析
能耗与成本分析
直接能耗
裂解汽油加氢装置的直接能耗 主要包括原料的加热、反应所 需的热量以及冷却等环节的能
耗。
间接需的能 耗。
原料成本
原料的采购、运输等成本是装 置总成本的重要组成部分。
人工成本
操作人员的工资、培训等费用 也是装置运行成本的一部分。
国际合作与交流
加强国际合作与交流,引进先进技术和管理经验,提高我国裂解汽 油加氢装置的国际竞争力。

汽油加氢装置原理简介

汽油加氢装置原理简介
(5) 公用系统流程说明 ①净化风系统: 净化风自装置系统外来,送到仪表用风部位。送至各服务点,用于吹扫用。 ②水系统:
a.循环水系统来,至E9101,至E9103,至E9104,至E9202,至E9204, 至E9206,至E9301,至E9304,至P9101,至P9102,至P9103,至P9104, 至P9201,至P9202,至P9203,至P9204,至P9301,至P9302,至P9303, 至P9304,至P9305,至P9101,至P9001,至P9002,至P9003,至压缩机 K9101,至压缩机K9301。 b.除盐水自系统来,至压缩机水箱,至D9201注水罐。 c.新水自系统来,至D-9102,至D-9103,至E-9102,至D-9203,至P-9204。
汽油加氢装置
稳定塔顶部产物经稳定塔顶空冷器(A-9202)冷却至55℃后进入稳定塔顶回流 罐(D-9203)。罐顶酸性气体经稳定塔顶气体冷却器(E-9204)冷却后送至硫磺装 置富气再生塔,回流罐底油由稳定塔顶回流泵(P-9203A/B)送回稳定塔顶部作 回流,回流罐底部含硫污水与加氢脱硫反应产物分离罐(D-9202)含硫污水合 并后送出装置。在稳定塔顶管线注入缓蚀剂,最大限度减少设备腐蚀。稳定塔底 物料一部分经稳定塔底重沸器(E-9205)加热后返回稳定塔,另一部分经重汽油产 品泵(P-9204A/B)和稳定塔进料/稳定塔底油换热器(E-9203A/B/C)换热后与 LCN混合,再经汽油产品空冷器(A-9203)、汽油产品后冷器(E-9206)换热 至40℃以下后作为汽油产品出装置。
汽油加氢装置
为防止反应生成的铵盐在低温下结晶堵塞管道和空冷器管束,在加氢脱硫反应产 物空冷器(A-9201)前注入除盐水以洗去铵盐。加氢脱硫反应产物进入加氢脱硫 反应产物分离罐(D-9202)进行气、油、水三相分离。加氢脱硫反应产物分离罐 (D-9202)顶部气体经循环氢冷却器(E-9202)冷却后进入循环氢脱硫塔入口分 液罐(D-9301)进一步分液,然后进入循环氢脱硫塔(C-9301),与从循环氢脱 硫塔(C-9301)上部注入的贫胺液逆向接触以脱除H2S,富胺液从循环氢脱硫塔 (C-9301)塔底流出进入溶剂再生以循环使用。脱硫后气体进入循环氢压缩机入 口分液罐(D-9304)除去其中夹带的胺液,然后进入循环氢压缩机(K-9301A/B) 升压后循环使用。加氢脱硫反应产物分离罐(D-9202)底部液体至稳定塔进料/稳 定塔底油换热器(E-9203A/B/C)换热后进入稳定塔(C-9201)。稳定塔的作用 是将重汽油产品中的轻烃和溶解的H2S分离出去。

汽油加氢操作规程

汽油加氢操作规程
第三章开工规程
3.1 开工统筹图.................................................................17
3.2 开工纲要(A级).............................................................17
加氢精制的操作压力一般均为3.0MPa~8.0MPa,也有高达20MPa~30MPa。温度为200℃~500℃,多数在300℃~400℃之间。氢油体积比一般为300:1~800:1,也有高达1000:1的。耗氢量则依原料油性质有所不同。
1.1.2.1脱硫反应
在加氢条件下,含硫化合物转化为相应的烃和H2S,从而脱除硫。如脱硫醇,反应式如下:
10.3装置防冻防凝措施.........................................................147
10.4 本装置历史上发生的主要事故、处理方法及经验教训............................148
10.5 本装置易燃易暴物的安全性质...............................................148
7.3 事故处理预案..............................................................114
7.4 事故处理预案演练规定......................................................128
第八章 操作规定
1.1.4 工艺原则流程图 ...........................................................3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽油加氢装置
(2)加氢脱硫部分
来自加氢脱硫进料泵(P-9201A/B)的重汽油(HCN)与来自循环氢压缩机
(K-9301A/B)的循环氢混合,混氢油经加氢脱硫进料/反应产物换热器(E9201A/B)换热后进入加氢脱硫反应器(R-9201)。加氢脱硫反应器(R9201)分两个床层,采用GHC-11催化剂。在两床层之间注入冷氢以控制床 层的温升。加氢脱硫反应器的反应产物进入加氢脱硫反应产物加热炉(F9201),加热后进入稳定塔底重沸器(E-9205)为稳定塔提供热源,然后 进入辛烷值恢复反应器(R-9202)。辛烷值恢复反应器(R-9202)分两个 床层,采用GHC-11催化剂。在两床层之间注入冷氢以控制床层的温升。反 应产物依次经过加氢脱硫进料/反应产物换热器(E-9201A/B)和预加氢进料 /反应产物换热器(E-9102A/B)换热,再经加氢脱硫反应产物空冷器(A9201)冷却至55℃后进入加氢脱硫反应产物分离罐(D-9202)。
FCC汽油重馏份的辛烷值RON提高到加氢精制前的水平或更高,才能达到调
合后的汽油RON不变。在该过程中提高辛烷值的主要反应机理是正构烷烃异 构化、烷烃分子的芳构化、部分低辛烷值的长链烃分子裂解为高辛烷值的碳 五、碳六短链烃分子,部分烃类分子的叠合。
汽油加氢装置
5 预加氢反应
在预加氢过程中,轻的硫化物转变为重的硫化物,且二烯烃含量降低,
汽油加氢装置
预加氢反应器(R-9102)采用GHC-22B催化剂。在催化剂的作用下,主要进 行二烯烃转化为单烯烃,轻的硫醇转化为重的硫化物等反应。 预加氢反应产物进入分馏塔(C-9101)进行轻汽油(LCN)、重汽油 (HCN)的分离。分馏塔顶油气在分馏塔顶空冷器(A-9101)中部分冷凝,然
后进入分馏塔顶回流罐(D-9103)。罐顶气体经分馏塔顶气体冷却器(E-9104)
第一章 工艺技术规程
汽油加氢装置
一、装置简介
1 设计能力
装置设计规模为8万吨/年,年开工时间为8400小时,装置主要组成分为 催化汽油脱砷与选择性加氢单元、分馏单元、加氢脱硫单元、稳定塔单元、 循环氢脱硫和溶剂再生单元、制氢单元和公用工程几个部分组成。装置操 作弹性60%-110%。 2 装置特点 装置由中国石油工程建设公司新疆设计分公司设计,采用DSO-M催化汽 油加氢脱硫降烯烃组合技术,装置预加氢部分催化剂为GHC-22B,加氢脱 硫部分催化剂为GHC-11,原料油过滤,原料油保护,空冷器前注水,催化 剂采用器外再生,设催化剂预硫化设施,为确保操作人员和装置的安全,
汽油加氢装置
7 工艺流程说明
(1) 预过催化汽油脱砷过滤器(SR9101/AB),滤除原料中大于10µm的固体颗粒后进入原料油聚结器(M9101) 后进入脱砷反应器(R-9101A/B)除去原料中的砷化物,然后进入原料油过 滤器(SR-9102A/B),再进入原料油缓冲罐(D-9102),经原料油进料泵 (P-9101A/B)升压至2.55 MPa,原料油缓冲罐(D-9102)设氢气气封设施, 使原料油不接触空气。来自膜分离装置的新氢经新氢分液罐(D-9101)分液, 然后经新氢压缩机(K-9101A/B)升压至2.93MPa。与原料油进料泵(P9101A/B)来的原料油,在流量比值控制下混合,混氢油经过预加氢进料/加 氢脱硫反应产物换热器(E-9102A/B)加热后进入预加氢反应器(R-9102)。
液罐(D-9301)进一步分液,然后进入循环氢脱硫塔(C-9301),与从循环氢脱
硫塔(C-9301)上部注入的贫胺液逆向接触以脱除H2S,富胺液从循环氢脱硫塔 (C-9301)塔底流出进入溶剂再生以循环使用。脱硫后气体进入循环氢压缩机入
口分液罐(D-9304)除去其中夹带的胺液,然后进入循环氢压缩机(K-9301A/B)
装置设置紧急泄压系统。
汽油加氢装置
3 原料及产品 原料油来自催化裂化汽油,制氢单元所需的氢气由化肥厂氢氮气、重整氢气 提供,产品为低硫汽油,副产品为燃料气。 4 工艺原理
装置采用低压固定床加氢工艺,通过优化工艺条件最大程度降低烯烃的饱和
及因烯烃饱和而带来的辛烷值损失。预加氢的主要目的是将二烯烃转化为单烯 烃,轻的硫化物转化为重的硫化物。预加氢反应产物分离为轻、重汽油组分, 重汽油送至加氢脱硫部分,进行深度脱硫。加氢脱硫后的重汽油与轻汽油混合 作为精制汽油产品。
汽油加氢装置
DSO技术预加氢和加氢脱硫部分分别采用GHC-22B和 GHC-11催化剂, 反应条件缓和。重汽油加氢脱硫选择较低的氢分压,较高的氢油比。通过催 化剂的选择性来实现脱硫,同时减少辛烷值损失。具有改质性能的M催化剂, 加氢后FCC汽油重馏份的辛烷值恢复是本技术的核心技术之一。在该过程中,
避免在加氢脱硫反应器中二烯烃聚合生成胶质,造成催化剂床层压降升高, 缩短运转周期。预加氢反应器中主要发生如下反应。
汽油加氢装置
6 加氢脱硫反应
在加氢脱硫过程中,使用脱硫率高、选择性好的催化剂,在保证高脱硫水
平的情况下控制烯烃饱和率尽量低,使辛烷值损失在可允许范围内。加氢脱 硫反应器中主要发生如下反应。
汽油加氢装置
为防止反应生成的铵盐在低温下结晶堵塞管道和空冷器管束,在加氢脱硫反应产 物空冷器(A-9201)前注入除盐水以洗去铵盐。加氢脱硫反应产物进入加氢脱硫 反应产物分离罐(D-9202)进行气、油、水三相分离。加氢脱硫反应产物分离罐 (D-9202)顶部气体经循环氢冷却器(E-9202)冷却后进入循环氢脱硫塔入口分
冷却后送至燃料气管网,液相经分馏塔顶回流泵(P-9102A/B)送回分馏塔顶 作回流。分馏塔上部抽出的轻汽油(LCN)产品经轻汽油产品泵(P-9103A/B) 后并入汽油产品空冷器(A-9203)冷却,再经汽油产品后冷器(E-9206)冷却 至40℃后出装置。塔底的重汽油(HCN)产品经加氢脱硫进料泵(P-9201A/B) 加压后送至加氢脱硫部分。分馏塔(C-9101)底热源由柴油加氢分馏塔底重沸 炉(F-8301)提供。
相关文档
最新文档