电子管功放简易设计
30瓦电子管5.1声道功放制作
30瓦电子管5.1声道功放制作一提起5.1 声道,很多朋友都会联想起家庭影剧院,其实,这是个误解。
不论是两个声道的立体声,还是多声道的 5.1、7.1 声道,都是从单声道发展而来的,家庭影剧院的多声道,同样也是如此,5.1 的出现,最早还是因为人们想用两个音箱,达到“炸弹在背后爆炸”“飞机在头顶盘旋”的感觉,也因此发展了环绕声(SRS)、重低音的音频信号处理技术。
笔者曾经在双声道胆功放电路中,采取过“分信号交叉处理”(就是将左(或右)声道的音频信号取出一部分,通过电容耦合到右(左)声道进行放大),通过调整耦合电容的大小,获得过“SRS”的感觉。
上了 50 岁年纪的胆机爱好者一定还记得,上个世纪七八十年代之前,听惯了一个音箱放音的人们,为了获取好的听感,采取过功放分级、分频电路、大小扬声器搭配、音箱分频、高低音调提升等等措施,还费劲心思的在箱子上大做文章,什么迷宫式、多级反射式,甚至于箱子的材质也很讲究,有木材、塑料、水泥混凝土、石头、玻璃钢等等,还有障板、全频等等。
当然,这些努力没有白费,对于改善人的听感还是起到了一定的作用,至今仍然不少烧友还在坚持玩。
但,真正能够满足人们愿望的,还是继模拟 5.1 声道之后的数字解码技术。
对数字解码技术,笔者是外行,不敢妄加评论。
只是知道,数字解码技术采用电子管电路(以下简称'胆机’)实现实在是极其麻烦!而采用晶体管,集成电路(以下简称'石机’)却是小菜一碟!数字音频解码设备的价位,从初期的千元级别,现在已经降到几百元甚至于数十元即可购得。
胆机和石机,从听音角度看,各有其长短,喜爱玩胆机的朋友,何不来个胆石混合?不需要再纠结胆解码的问题了。
好了,以上纯属个人观点,还是书归正传。
这台石解码的30 瓦电子管5.1 声道功放,是在本人尝试过6*1瓦的电子管5.1 声道的美声之后,再一次的实验。
本机机架由铝、木混合,手工加工,见图 1---图 3。
机器由 6 个声道(3 个相同的双声道独立功放)组成,每个声道设计输出功率为5 瓦左右,总输出功率为30 瓦。
用EL34制作的合并式电子管功放(上)
用EL34制作的合并式电子管功放(上)电子管功放音色纯真而柔美,谐韵丰富,胆味浓郁,深受广大发烧友青睐。
今特推荐一款适合普通家庭使用和欣赏音乐的电子管合并式功放。
本机通用性强,制作简便,成功率高,升级换代方便。
电子管功放的负载能力很强,当额定输出功率能达到30W+30W 时,其音乐功率可达120W+120W,可带动一对中型音箱,完全能满足家庭影院和欣赏各种室内乐的要求。
本功放电路采用通用型设计方案,功率放大管可采用6L6、6P3P、EL34、6CA7、KT88、6550等,工作状态根据制作者的偏爱,可分别制成A类或AB类放大形式,电路基本不变,只要调整功放栅极负压与部分元件参数即可。
常用功率管作A类与AB类推挽功放应用参考数据表:一、合并式功放电路简析图1为电子管合并式功放电原理图。
输入电压放大级采用目前最流行的SBPP电路,由双三极电子管6N11担任,该管屏流与跨导值大,屏极线性范围宽,输入动态范围大。
输入的音频信号由下管栅极输入,工作于共阴极方式;上管工作于共栅极方式,经放大后的音频信号由上管阴极输出。
本输入级的特点是:输入阻抗高,输出阻抗低,因此,本前级放大具有传输损耗小,抗干扰性能好,频率响应特性好,特别是高频特性极佳,高频瞬态响应特性好的优点。
倒相放大级采用长尾式倒相电路,将输入级的音频信号直接耦合至倒相级。
这样不但拓宽了频响;同时又减少了因极间耦合电容带来的相位失真。
本电路由双三极电子管6N1l或6N6来担任。
上管为激励管;下管为倒相管。
两管共用阴极电阻,并具有深度电流负反馈的作用,故稳定性能好,相移失真小,共模抑制能力强。
对上管来说是串联输入;对下管来说是并联输入。
当有音频信号输入时,利用两管阴极的互耦作用,使屏极与阴极电流均随之变化,由于两管屏极负载电阻的阻值相同,两管输出电压的幅值相等,而两管屏极的输出电压方向相反,从而完成了倒相放大工作。
值得注意的是:前级输入放大管与倒相级放大管的阴极电位均接近100V,所以在选用双三极电子管代用时不能忽视,因为一般的双三极电子管,其阴极与灯丝之间的耐压均不超过100V,超过此极限电压时,将会导致灯丝与阴极间的击穿。
用EL34制作的合并式电子管功放(下)(组图)
用EL34制作的合并式电子管功放(下)(组图) 用EL34制作的合并式电子管功放(下)(组图) 七、合并式功放的装配在通用底板上先将各种开关、电位器、接线支架、输入与输出接线端子、电子管灯座等小零件逐一装上,陶瓷灯座在安装时必须注意图示方位,这样可以保持接线距离最近。
其中电源变压器,左、右声道输出变压器由于体积庞大而笨重,故应该在全部小零件焊接完毕后再安装,因为在安装过程中底板要四面翻动,容易损伤外表。
图6图6 电子管合并式功放布线图1(布接地线接地线的布局以电源变压器为起始点,分为左、右两个声道,采用直径1mm左右的裸铜丝或镀银铜丝,分别焊接在预先安装好的铜质焊片上,由末级输出端子至功放级,然后至倒相级、前置输入级。
并注意电源变压器和输出端的大电流接地线不可与输入级的小电流接地线直接形成回路,虽然用万用表测量机内所有接地线均为0Ω,但对交流信号而言电位差较大,布线不当会引起杂声干扰。
2(布灯丝线合并式功放的灯丝供给分为3组,左声道与右声道功放管各接一组,前级左、右声道合用一组,为防止交流感应,灯丝接线应全部采用绞链方式两根绞合起来,这样交流电磁场即可相互抵消。
为减少交流声干扰,灯丝中心抽头必须接地,对未设灯丝中心抽头的电源组可在灯丝两端各接100Ω—200Ω一只,用电阻的中心抽头接地,亦可收到同样的效果。
3(屏蔽隔离线输入管栅极的灵敏度很高,极易产生交流杂波信号的干扰,由于输入管栅极与输人接线端子与音量控制电位器引线较长,所以必须采用金属屏蔽隔离线,其外层金属编织线的接地端,应安排在输入管阴极接地处。
4(装高压电源部分电子管功放的高压电源部分比晶体管功放电源线路简单,调试容易,无需稳压与大电容滤波等,这主要因为电子管功放为高电压小电流型,功放级的静态电流与满载电流变化较小,一般在0(2—0(5A之间波动,故滤波电容器的容量有几十μF 已能满足;而晶体管功放属于低电压大电流型,零信号与满信号时电流变化很大,一般在0(5—5A之间变化,所以滤波电容必须用几千至几万μF才行。
FU7电子管功率放大器制作
FU-7电子管功放电路图FU-7电子管功放电路电路图·[图文]电子管发威!CAV日本发布新款迷你音...·[图文]用6p1制作的电子管短波发射机·[图文]四灯电子管发射机电路·[图文]电子管组成的无线对讲机的制作与设...·[图文]直流放大器静电电子管·用电子管收音机修复断丝显像管·[图文]判断电子管衰老的简单办法·[图文]电子管管脚排列图·[图文]部分电子管的图形符号·[图文]电子管FU29+6N9P组成的30W并联单端...·[图文]是-否电子管电压表电路图·[图文]电子管和晶体管混合式放大器电路图...·[图文]电子管交流电子稳压器电路图·[图文]电子管式稳压电源电路图·[图文]低噪声电子管前级电源原理图·电子管热丝和灯丝电流和电压的测试...·FU—113F 型电子管·浅析电子管机输出变压器·复件6159B.pdf 电子管资料数据手册...·GEC功放设计范例.pdf 电子管资料数...·G108-1K.pdf 电子管资料数据手册·G105-1D.pdf 电子管资料数据手册·G75-2D.pdf 电子管资料数据手册·ELC16J.pdf 电子管资料数据手册·ELC6J-A.pdf 电子管资料数据手册·ELC3J-A.pdf 电子管资料数据手册·ELC3J.pdf 电子管资料数据手册·ELC1K.pdf 电子管资料数据手册·ELC1B-A.pdf 电子管资料数据手册·EL6F.pdf 电子管资料数据手册FU-7推动的胆机功放电路图+电源电路图自制一款优质的胆功放,其电路原理如图1所示。
供电电路如图2所示。
电子管功放制作技巧和要领(转帖)
电子管功放制作技巧和要领(转帖)搭棚式接法普通将功放机内的各种元器件分为3—4层,装置元件的步骤是由下而上。
接地线与灯丝走线普通置于接近底板的最下层,其地线贴紧底板,并坚持最好的接触;第二层多为各电子管阴极与栅极接地的元器件。
留意同一管子阴极与栅极的相关元件接地最好就近在同一点接地;第三层是各缩小级之间的耦合电容等元件;最下层那么为以高压架空接法衔接的阻容等元件。
高压元件置于下层可以有效地防止高压电场对各级电路形成的搅扰。
二、关于一点接地一点接地,在电子管功放电路的布线中是一项值得注重的措施。
图8—2为一点接地表示图。
关于输入级与电压缩小级的元件接地效果尤为重要。
需务实行一点接地的元件,主要有栅极电阻、阴极电阻与旁路电容等。
最好仅用元件引线直接焊接,尽量不运用导线,否那么极易发生交流杂声搅扰。
栅极电阻敏理性最强,因此对前级功耗很小的栅极电阻,其体积越小越好,可采用0.25-0.5w的小体积电阻为宜。
其电阻一端应直接焊接在管座上;另一端直接通地。
假设因元件尺寸或位置关系,难以做到同一点接地时,亦可就近接在同一根粗的地线上。
图8—3为近端接地表示图。
三、焊接要领由于电子管功放的零部件尺寸较大,而且接地线又与金属底板直接相通,焊接时的散热性较强,所以在焊接时必需采用50W左右的内热式电烙铁才干保证焊锡的充沛熔化。
而普通用来焊接晶体管元件的25W左右电烙铁热量不够,容易发生假焊或脱焊等现象。
焊接时所运用的助焊剂,应该采用松香或一级的中性焊剂,防止运用酸性助焊剂。
由于酸性焊剂不但有腐蚀作用,而且会惹起电路漏电现象。
对普通元件的焊接,其电烙铁与元件间最好坚持45度左右的倾斜角,这样接触面较大,热量平均,容易焊牢。
其焊接时间普通应坚持1—2秒为宜,时间过长容易损坏元件;接地线的焊接时间可适当加长一些;元件焊上支架前应先将元件引线在支架绕牢,或穿进孔内勾牢,然后再停止焊接。
关于元件,在焊接前必需将引脚外表氧化层用砂皮擦清,并镀好焊锡后再焊接。
项目一制作电子管功率放大器课件
外部连接直热式阴极
内部连接直热式阴极
五极电子管的电路图形符号
项目一制作电子管功率放大器课件
内部连接旁热式阴极
内部连接旁热式阴极
五极电子管的电路图形符号
项目一制作电子管功率放大器课件
在四极管帘栅极外的两侧再加入一对与阴极相 连的集射极,这种电子管我们称为束射四极 管。
项目一制作电子管功率放大器课件
束射四极管的电路图形符号
项目一制作电子管功率放大器课件
项目束一制射作四电极子管管功的率内放部大器结课构件图
检测常用电子管
电子管的外观检查 用万用表检测 电子管的业余测试法
项目一制作电子管功率放大器课件
任务二 选择电子管功率放大器的制 作电路
电子管功放电路的选择原则 1.根据自己的技术能力和经济条件选择符合个人需
项目一制作电子管功率放大器课件
负反馈电路
所谓“反馈”,就是把输出信号的电流或电压的一 部分回送到输入端去调节输入信号的一种方法。 反送回输入端的信号削弱了输入情号,使放大 器放大倍数降低,称之为“负反馈”。对于放大 器来说则有电压反馈和电流反馈之分。
项目一制作电子管功率放大器课件
负反馈主要有如下作用:提高了放大器的稳定 性;改善了放大器的频率特性;减小了放大器 的非线性失真;负反馈可改变放大器的输入、 输出阻抗。
项目一制作电子管功率放大器课件
电子管也是放大电路,同样有两个信号回路。 一是栅极回路(输入回路):输入信号电压→ 电子管栅极→电子管栅极至阴极的空间→电子 管阴极→接地,其中在栅阴之间还要加上直流 电源Eg,使柵阴有一定的柵偏压,以保证电子 管有合适的工作状态。
项目一制作电子管功率放大器课件
二是屏极回路(输出回路):直流电源Ea→屏 极负载电阻→电子管屏极至阴极的空间→接地, 其中输出信号电压取自屏极负载电阻的下端。 屏极负载电阻的作用是把变化的屏极电流转变 为输出电压。
电子管6N1制作小型胆机功放电路
这里介绍一种微型胆机,给小电视或小收音机或小CD做放大,而且电耗小,又有胆机味。
采用6N3做自动平衡倒相放大,6N1做甲乙类功放,可获得不失真功率1W,推动高灵敏度小音箱,有较好的音色,尤其是听人声—女生歌唱,比大胆机更有一番清丽的感觉。
本机的特点是:所有的变压器均采用代替品,不用专门绕制,价格十分低廉。
高压直接采用市电。
重量较轻。
一、变压器的替代品。
1.输入变压器B1为输入隔离变压器,目的是使输入信号与本机电源隔离。
可直接使用微型变压器—铁心外长3.5cm,高3cm,厚2cm的仪表变压器,初级220V,次级36V或12V以上的即可,使用时,以低压端为外信号输入,以高压端接内电路输入端。
2.输出变压器B2为输出变压器,采用的是微型带110V抽头的电源变压器。
次级为双3V。
铁心外长4.5cm,高4cm,厚2cm的小变压器。
购置这种小变压器时,要注意110V抽头与两端的直流电阻要接近。
3V端可接4Ω扬声器,6V端可接8Ω扬声器。
笔者采用6v端接4Ω小音箱一对,串联接法。
3.灯丝变压器灯丝变压器,采用10W的220V:7.5V的变压器。
市售小变压器一般没有次级6.3V变压器,有的是6V(空载),7.5(空载)变压器。
若采用6V变压器,接电子管灯丝后,会有0.5V—0.8V的压降,会使电子管阴极加热不足。
采用7.5V的变压器,灯丝电压过高,会降低电子管寿命。
本机采用给变压器初级串联电阻的方式进行降压,这样不仅可以较准确地使次级在负载下输出6.3v,而且会使灯丝具有软启动特性。
二、电路特点倒相采用自动平衡式,不需要调整。
输出管6N1阴极电阻上并联的电容,对高低音特性有影响,可根据音箱特性调整。
整流管前串联的电阻不能取消,以防止电源开通时,瞬间充电电流过大,烧毁整流管或烧保险。
三、电路图四、器件表元件功用R1 音量控制电位器,100K C1 输入耦合电容,0.01μ,100VR2 栅漏电阻500K C2 阴极旁路电容,10μ,25VR3 阴极电阻1K,2w C3 倒相级供电滤波电解电容,10μ,400VR4R5 屏极负载电阻,150K,1w C4C5 功放栅极耦合电容,0.1μ,400VR6 倒相级供电滤波电阻,2k,1w C6 阴极旁路电容,10μ-50μ,25VR7R8 功放栅漏电阻,250k C8 功放屏极防震电容,2000P,600VR9 倒相电阻,100K C7C9 整流滤波电解电容,150μ,400VR10 功放阴极电阻,400Ω,2w C10 电源杂波滤波电容,0.1μ,600VR11 整流滤波电阻,500Ω,8W G1 6N3R13 灯丝变压器压降电阻500Ω,10w Z1 2A1000vR14 发光二极管限流电阻,数值根据二极管定。
花了点心思做的6N2推6P1电子管单端胆机功放
花了点心思做的6N2推6P1电子管单端胆机功放
花了点心思做的6N2推6P1电子管单端胆机功放
以前做了个6P1,但摆在那里总觉得不爽,于是就把它推倒重来。
这台机全是用旧物品作,所以说是廉价的。
1.木机箱框是梨木(朋友做柜子的角料)。
自己加工,比较粗糙。
(过程没拍下相片)
2.上下板是用旧的功放底盘一分为二刚好够用。
(开孔等也是自己做,过程省)
3.6P1、6N2为拆机管。
4.电牛是用拆老虎机的电牛,86片叠厚5CM自己绕,输出单230V石整流,两组6.3V,本来是要一组双3.15V的,但后来测量发现有一边是3.0V一边是3.3V,应该是绕的时候记错了。
电牛连续开一个早上,温度微温。
5.输出牛是用旧黑白电视机电牛拆了重做,用MM2绕法。
两只输出牛直流电阻基本一致。
6.电容、电阻都是拆机品。
7.牛盖是用角铁焊,(同学帮做)
8.电路图是用坛上的,在这就不发了。
9.音箱是自己用1.8CM(实际上只有1.68CM)粘合板自己做,喇叭是LG(在本地一个以前开音响店买的,4个喇叭一起50元。
)
10.使用体会:不接音源无电流声,接JVC车机放的CD无电流声,接LP无电流声,但接唱放的时候有电流声(应该是唱放没做好)。
声音自我感觉良好。
这个是用13秒爆光拍的。
右边光线是有一个JVC车机的背光。
全景图,在自家楼顶一个小房里,尚未整理。
内部图还算比较乱。
电子管功放简易设计
电子管功放简易设计首先,我们需要选择适合的电子管。
在电子管功放设计中,常用的电子管包括三极管(triode)和双三极管(dual-triode)。
三极管通常被用作电源放大器,而双三极管则用于信号放大。
在这个简易设计中,我们将使用一个双三极管进行放大。
为了简化电路设计,我们可以选择推挽(push-pull)电路结构。
推挽电路由两个输出级组成,一个管子用于推动音频信号的正半周期,另一个管子则用于推动负半周期。
这样可以减少交叉失真(cross-over distortion)的影响,提高音质。
在设计推挽电路时,我们需要在交流耦合(AC-coupling)的输入和输出级之间添加一个输出变压器(output transformer)。
输出变压器用于匹配负载阻抗和提供电压升压。
它还可以帮助控制输出级的相位,并提供一定的反馈。
接下来是电源部分的设计。
在这个简易设计中,我们将使用整流器(rectifier)和滤波器(filter)来提供电源电压。
整流器将交流输入电压转换为直流电压,滤波器则用于去除剩余的纹波(ripple)。
完成上述设计后,我们需要连接并测试电路。
在测试电路之前,确保所有的电子零件都正确连接。
检查焊接是否牢固,电路板是否正确布局。
一旦一切准备就绪,我们可以将音频信号输入电子管功放并连接扬声器。
然后,我们可以进行放大器的性能测试,包括音质、频率响应和失真等。
在测试过程中,您可能需要进行一些微调和调整,以获得最佳的音质效果。
您可以尝试调整电源电压、功率级的偏置、反馈等参数。
不断调整和测试,直到满意为止。
需要注意的是,电子管功放的设计和制造需要一定的电子知识和实践经验,对于初学者而言,可能还比较困难。
因此,我们建议您在制作电子管功放之前,多进行学习和练习,确保您具备足够的技术能力。
总而言之,电子管功放是一种独特而受欢迎的音频放大器。
通过选择适当的电子管、推挽电路结构、输出变压器以及合适的电源设计,我们可以设计和制造出一个具有出色音质的电子管功放。
12au7+el84+211电子管单端后级功率放大器胆机制作
12au7+el84+211电子管单端后级功率放大器胆机制作1.为什么会做211?要回答这个问题,大伙还得耐点性子听我讲一个小故事。
在以往的玩机实践中,我仅实做过一些中等功率电子管的单端放大器。
如300B、FD422、807的机器。
一直对211、845、805一类的大功率直热电子管的单端机心驰神往。
在听过一些机器后,对845这个管子情有独钟。
它被发烧友戏称“胆王”,第一次听到它时就被它君临天下的气势所震慑,那气势、那动态、那声音,真有点让人有“夫复何求”之感叹,从那儿之后,我四处搜集845单端放大器的资料,到处去“蹭听”别人的机器,也准备了一些它的元件。
但几年过去了,却迟迟没有动手。
何以然?在我听过的不下20余台厂家生产的和发烧友DIY的845机器来看。
真正能做到气势与细节兼备,音乐性与音响性兼顾的机器仅在绝少数。
要不然是一味的温暖醇厚、细节动态皆无,再不然就是声音粗糙不堪。
在听音的实践中和与发烧友的交流中,慢慢得到一个结论,845单端不好做。
要兼顾全面和平衡、声音的工整细致就更难。
特别是对于这个栅负压在—200V左右的胆管,真正要发挥其优势,除了特殊“度身”设计其推动线路外,就必须要推动变压器才行了。
而好的价格又能接受的推动变压器又何其难寻!我曾多次多方搜寻推动变压器(包括国外的一些厂商),但均因种种原因未果。
就这样,一拖又是几年。
两年前,一位邻近城市相交多年的发烧好友给我打来了一个电话,神秘地说要送一份重礼给我做新年礼物。
一个星期过去了,一个沉重的大纸箱被如期送上门,带着满腹狐疑打开了纸箱。
映入我眼帘的是插着两个象矿泉水瓶的电子管的放大器。
845单端机!我心中一阵惊悸和欢呼,急忙打开包装,抬出机器,上下左右端详了好一阵。
咦?不对呀?!机器是双单声道设计,一个声道有两小一大三只电子管,两个小管是6N8P和6N9P。
光靠这两个管推不动845吧?推动变压器呢?没有!拔下大管子仔细一看:上面印有一行小字—211。
电子管功放简易设计,写给初学者!
电子管功放简易设计,写给初学者!常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。
电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。
一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。
以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。
功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。
这里的初学者指有一定的电路理论基础,最好有一定的实做基础且对电子管工作原理有一定了解的(1)整机及各单元级估算1,由于功放常根据其输出功率来分类。
因此先根据实际需求确定自己所需要设计功放的输出功率。
对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W 左右输出功率,80db音箱需要120W左右输出功率。
当然实际可以根据个人需求调整。
2,根据功率确定功放输出级电路程式。
对于10W以下功率的功放,通常可以选择单管单端输出级;10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。
3,根据音源和输出功率确定整机电压增益。
一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。
由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。
例如某8W输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A=Uout/Uin=16倍4,根据功率和输出级电路程式确定电压放大级所需增益及程式。
(OTL功放不在讨论之列)目前常用功率三极管有2A3,300B,811,211,845,805常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P (807),EL34,FU50,KT88,EL156,813束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。
一款靓音的2×25W电子管功放的制作
一款靓音的2×25W电子管功放的制作 2003-3-6 动网先锋电源猫推荐时下“胆机”这个字眼,恐怕发烧友没有不知道的,然而对胆机的认识却是褒贬不一。
有的爱之若狂,无胆不欢。
有的则认为胆机指标远远达不到高保真的要求,不能算Hi-Fi音响。
的确,胆机的音色甜美,柔顺自然,高频细腻,低频柔和,很符合人耳的听音需要,尤其是中高频很丰满,很耐听------其实说白了,这就是一种失真,与Hi-Fi背道而驰,但却被音响发烧友所接受。
世界上越是发达的国家,胆机则越流行。
日本是胆机“苏醒”最早、最流行的国家。
那么无法以Hi-Fi标准来衡量的胆机为何受宠呢?港台朋友很幽默的这样说:“因为晶粒(晶体管)是‘半’导体,而电子管是‘全’导体”?!“胆管放大信号是靠空间来传输电子流的,而晶体管则是靠“半导体”来传导的,胆管的传输特性更接近与我们自然界的声音传播规律------人耳听到的声音是靠空间传播的”?!这些话虽然很荒谬,但胆机的流行却是“爱你没商量”。
音响用电子管的分类我国在世界上可以讲是“产胆”大国,起初大多数电子管都是仿制前苏联的,比如早期的常用胆还都使用前苏联的型号,6H8C、6H3n、6H13C、6H1n等。
后来才使用了统一的国标型号,6H8C改用了6N8P。
音响用电子管的管脚,一般有小七脚(如6J1等)、小九脚(如6N3等)、大八脚(如6P3P等)、平板四脚(如2A3、300B等)、平板五脚(如807)等,211、845等则为专用四脚管座。
近来一些发射胆也常见于音响电路,其声音的表现也相当不错,但管脚一般都很特殊,如FU-50、FU-46(6146)、FU-33、FU-29等。
电子管如下几个参数我们需要了解:跨导(S)、放大系数(μ)、内阻(Ri)。
跨导(S):即电子管栅偏压对屏极电流的控制能力,S=⊿Ia/⊿Ug;三极管的S与直流工作点有关,工作点处的电流大则S也大,反之S也小;放大系数(μ):即放大量,μ=S·Ri;三极管的μ值基本上不随工作点的变化而变化,这是因为μ主要取决于电子管的结构;内阻(Ri):它是这样定义的,即让栅极电压固定不变,屏极电压的变化量⊿Ua与屏极电流的变化量⊿Ia之比,即Ri=⊿Ua/⊿Ia。
自制5W全电子管吉它功放
自制5W全电子管吉它功放对于电吉他爱好者来说,都想拥有一台电子管吉他功放用于自娱自乐。
电子管功放具有极高的输入阻抗,能很好地与高输出阻抗(一般具有几十kΩ)的电吉他匹配,而且电子管功放音质醇厚、柔润、层次感强。
电子管功放电路简洁、元件少、组装容易,基本不用调试就能达到理想的音质效果,组装成功率高。
下面介绍一款只用2 支电子管的小功率吉他功放,再配一只小音箱,即组成一套完整的吉他功放系统。
1 电路原理功放电路原理图如图1 所示。
吉他信号通过J2输入,在高输入阻抗的12AX7 进行一级放大,再经过具有高频补偿的音量电位器VR1调节,输入12AX7另一三极管进行下一级放大。
放大后的信号经由C2输入到高跨导五极管EL84 进行功率放大。
该电路是典型的单端甲类功放电路。
功率放大后的信号最后由TX1音频输出变压器输出。
为了与不同阻抗的音箱匹配,音频输出变压器次级具有4 Ω/8 Ω/16 Ω 三个绕组。
总增益为60 dB(1 kHz)。
电源变压器TX2次级输出两组电压,一组供给电子管的灯丝,另一组作为电子管的屏极高压。
经桥堆D5整流后的灯丝电压约为6.3 V。
经D1~D4桥式整流后的高压V1+(约346 V)供给功放管屏极;降压后的高压V2+(约300 V)作为前级管的屏极高压。
整机消耗功率约35 W。
2 元件的选择整机电路只有48 个元件。
除交流输入保险丝外,在灯丝端也增加了保险丝。
因为冷态下开机电流较大,保险丝选用T 型(延迟型)保险丝。
考虑到工作温度较高,电解电容全部选用耐高温电解(105℃);C13,C14使用温度系数小(SL 或NPO)的瓷片电容;其他为CBB21金属化聚丙烯薄膜电容。
小电阻选用1/4W碳膜电阻,其他功率电阻选用氧化膜电阻。
前级电子管选择国产12AX7B,功放管为国产EL84。
开关选择带指示灯的电源开关。
音量电位器选择A 型(指数型)变化曲线的1 MΩ 电位器,以便补偿非线性人耳听感得到线性的音量变化。
6N1电子管差分前置放大的6P3P功放制作方法
6N1 电子管差分前置放大的6P3P 功放制作方法
笔者是焊机爱好者,从20 世纪50 年代组装矿石收音机开始,从未间断过。
1997 年开始组装电子管功放,试装了好几种电路,总觉得音质不是很理想,经过不断挑选、改进和装试,总结出如图l 的线路图。
本人觉得按此图制作的电子管功放音色甜润,音质醇厚,底韵十足,零件经济,测试容易,极易成功,供焊机爱好者参考。
电路由“差分放大”+“电压推动”+“末级功率放大”组成,整机为全对称放大电路。
该机信噪比高,失真小,灵敏度和增益都比较高,音量力度感强,弹性好,功放末级未使用现在常用的三极管和超线性接法,而是传统式接法,为的是保护输出功率充沛,同时为负反馈调整留有足够的空间。
一、元件选择
1.电阻除了标注了功率的以外,均选用2W 的金属膜电阻。
栅漏电阻、屏极负载电阻、阴极电阻在选购时用数字三用表测量其阻值,要求每声道对称且误差尽可能小,最好相等。
本人使用的是“大红袍”电阻。
电子管2A3功放DIY
--实验2A3功放/耳放两用机--- 实验2A3功放/耳放两用机(图片添加中)古老的2A3由于内阻低,线性好,音质甜美; 在电子管音频放大器的历史长河中弥久历新,和300B一样保持了旺盛的生命力.2A3/300B同为三极管,这是最初的功率放大管. 由于三极管的效率低,在后来追求大功率的角逐中逐渐被功率五级管和束射四级管所取代,以至于后来家用电子管功放都几乎被807/6L6/KT88这类四,五级管所垄断.上个世纪70年代,晶体管的长足进步,逐渐把电子管置于了死地,无论是三极管四级管还是五极管统统被打入冷宫.据一个资深收音机收藏家回忆:当年他听说有一个收破烂的老头收走了一万多只电子管,他赶去准备为收音机配一些备管,结果老人告诉他:个头大一点的管子已经全部被砸烂收集里面的金属片当废铁卖给废品收购站了....只剩下一些砸半天弄不到多少金属片的小管子....到了电子管起死回生的时代,电子管扮演的角色有了很大变化:人们不再追求大功率(再大也大不过石机),而是惊讶地发现在数码音源(CD)时代,胆机能够很好地祛除所谓的"数码声",使得在相对廉价的条件(与天价的HI-END石机相比),获得还原度比较高的音质.基于人们追求的是音质而不是效率/功率,这时候线性好,失真度低的三极管就脱颖而出,以甜美的音色战胜了它们的后辈:失真度较大的束射四级管和五极管,成为一代新宠.....闲话休叙,言归正传....典型的2A3电路有单5级管推动和双三极管推动等等(当然还有用SRPP推动的,因为我前面在做6C33胆机时发现SRPP电路有诸多不稳定的因素,请参见:/read.php?tid=102677&keyword= 当然也可能是眼高手低,未能伺候好.总之这次实验就排除在外了).<先上两个实验参考图,实验样机明天上图>功率放大级:拿到一个功率输出电子管,如何确定它的工作参数呢?首先,作为一个功率放大级,以一个四端网络模型来分析,无非是输入和输出两大要素:输出端口:要有一个初级阻抗与所用电子管匹配的输出变压器.不同的电子管,不同的工作参数设置都会影响到功率管的输出阻抗;好在2A3这样的名管已经有很多前辈作出了大量的实验,我们就选取初级阻抗为2.5-3.2K左右的输出变压器(在实验中修改参数,取得最佳值),而不去用它的输出特性曲线来求解了.(对输出变压器的设计有兴趣的同学可以参考:/read.php?tid=133153&keyword=)输入端口:简单的设计原则--看一个电子管的栅负偏压数据就可以判知其输入特性.2A3的参数表参见附图,可见其栅偏压高达-45V.由于三极管的放大倍数远低于束射四级管/五极管,所以加在其输入栅极上的信号电压就远比后者高得多,换句话说就是说三极管远没有束射四级管/五极管好推.例如4P1S只需要+/- 6V的信号电压就能推动了,而2A3需要的推动电压是它的7倍多!如此高的信号推动电压就决定了三极管对前置电压放大级有着很苛刻的要求:既要大摆幅还得低失真.前置放大级:一般而言,采用两级中u三极管放大的前级放大电路比较容易满足增益/摆幅,对于功放来说,是没有问题的.但是耳放对信噪比有着特殊的要求: 在耳朵紧贴喇叭都听不到噪声的功放电路,插上灵敏度高达100多分贝/mW的耳机,就有可能有严重底噪! 所以对于以耳放为主的放大器中,在能够满足放大摆幅的前提下,电压放大级数是越少越好.因此,单5级管的前置放大电路就成为首选.现代CD的输出摆幅已经高达2Vrms, 考虑到放大量的富裕度, 以0.5 Vrms的设计值来计算:由2A3的输出特性曲线可知,当输入信号在工作点-43.5V摆动时,电路可以取得最大输出功率.43.5(单峰值电压)/(根号2)=31(Vrms)31/0.5 = 62(倍)这对于一个五极管放大电路来说,只要仔细选择工作点和负载电阻,还是可以做到的.<相关的实验数据随后附上>此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:[此贴子已经被作者于2006-5-27 20:44:21编辑过]-- 作者:neo-- 发布时间:2006-5-26 22:40:00--一直想要做的JJ.....-- 作者:南海赢民-- 发布时间:2006-5-26 22:58:00--S版又有大动作啦~~-- 作者:sword_yang-- 发布时间:2006-5-27 10:51:00--资料添加中....-- 作者:昔日情怀-- 发布时间:2006-5-28 10:59:00--关注,学习中。
电子管功放布局工艺---------------------摘自网络
电子管功放布局工艺---------------------摘自网络电子管功放布局工艺摘自网络有过装机实践的发烧友一定明白,制作一台胆机,即使使用统一器材,用统一电路,倘若整机的结构装配工艺水平不同,质量性能就可能有很大差异。
由于工艺结构不妥,可能人为地千万噪声和其他干扰,甚至引起自激啸叫;整机放大器级数愈多,增益越高,结构工艺的要求就愈严格。
高增益和稳定性是一对矛盾,增益越高不稳定的可能性越大,矛盾的解决,除电路上采取各种稳定措施加以控制外,还有赖于整机的结构工艺来实现,何况在胆机的噪声电平中,电路设计原因造成的只占30%,而70%取决于整机工艺结构设计和安装。
为此笔者根据自己在装实践过程中经验和体会,对胆机的整机布局结构及装配工艺谈几点意见。
一、元器件的排列布局1、电子管功放的主要元件是电子管、输出变压器、电源变压器、电位器和电阻、电容等元件。
它们都座落在金属底板上,因为金属底板是导体,对隔离电磁场是有效的,但应尽量避免使用磁性金属材料做底板,因为磁性金属材料是顺磁性的,它会使各种变压器的漏磁在底板上传播造成干扰源,一般采用金属铁底板较好。
为了防止放大器前后级之间电场和磁场的影响,排线电路布局要合理,电路布局的不合理,易造成高寄生振荡,一般都按电路的前后顺序作一字型排列,不能随意胡乱安排,切不可前后级排成U型。
元件的分布要考虑信号传输路径最短,干扰最小,立体声胆机的整体布局要对称,分布均衡,以保证多声道电路的对称性和平衡性。
2、电源变压器与输出变压器都必须是磁感应器件,由于制作工艺、采用材料等原因,难免会产生较大的泄漏磁场,它们之间的摆位应尽量相距远些,并注意它们磁通的方向,使相应位置昼避免电磁感应交连,一般采取远离或垂直放置。
周围元件的引线不要距离变压器输入端引线太近,否则易产生交流声和自激。
也可在变压器周围包上一层铜皮,且两头焊接,使至短路。
有条件的话,可把变压器装在有良好导磁率的屏蔽罩内。
原创 如何制作简单电子管功放
原创如何制作简单电子管功放(更新中)解决方法, 电烙铁, 电子管, 开孔器, 氯化锌现在好多人都喜欢电子管功放,但是没有经验,为了让大家少走弯路,我准备写写我的经验与大家分享工具篇最主要的工具是电烙铁,功率最好是50W的尖头外热烙铁,我一直用的就是.助焊剂最好用松香,如果松香不好用,应该使用更厉害的氯化锌水溶液,他的腐蚀性强,焊接后一定要洗净.还有一种重要的工具是止血钳,医生手术用的,非常好用.电钻很有用,机壳制造有了电钻和锉刀就不难了机壳篇大家最头疼的就是机壳了,简单解决方法就是使用光驱铁壳,电钻在上面一出溜一个洞.管座的孔是用开孔器打的,开孔器有个中间钻头,最好不用,钻头的作用是固定开孔器,固定的很不好.解决办法是制作个铁质模板,上面有个和开孔器尺寸一样的孔,把这个板固定在需要打孔的工件上,用螺丝固定,这样开孔器旋转时就不会乱跑了.钻孔时一定要浇水冷却,千万不要让水进到电钻里,也不要让电线碰水,否则后果很严重.零件篇电子管前级管建议使用6N3,它的SRPP接法很棒,功放管建议使用6P1 6P6P6P14,这些管都不错.6P14有假的,是6P15擦掉型号印上6P14,真的管第三栅是与阴极相通的,云母片上没有屏蔽,6P15有.电阻电阻建议使用金膜电阻,金膜电阻时蓝色的.普通地方用1W的就够. 电容高压电解市售的良莠不齐,最好用品牌家用电器的开关电源高压滤波电容,一般质量不错.耦合电容用开关电源EMI滤波的安规电容,质量可靠.阴极电容可以用开关电源上的低压滤波电容,但是要测测好坏.退偶电容用云母不错变压器输出变压器可以使用成品,但是贵得很,可以找变压器厂定做.如果做6P1输出变压器,就让厂家按220V输出6V9V定做C形变压器,铁心留0.08毫米气息,铁心要20W的,最重要的是铁心的硅钢片一定不能有断点.输出9V的是8欧,6V的是4欧.电源变压器直接给参数到厂家就可以了.电感电感用日光灯镇流器就行,也可以把40W的电源变压器拆开,铁心顺插,垫层打印纸再装好,使用初级绕组.制作篇一定要一点接地,不能有接地回路否则很闹心.有的管座经过反复插拔接触不良了,一定要用新管座,否则有故障很难发现.音量输入的插座一定不能安装在底板上,不能与底板直接相通,接地端一定要用屏蔽线接到前级管的地上,否则有噪音.灯丝电位要垫高,要30V左右,一定要加强这个电压的滤波,10微法电解加4700P云母.这个电压可以在高压电源上用电阻分压得到,这样能有效减少噪声.接上负反馈后如果自激,对调输出变压器次级接线就好了.布线篇支持使用接线架,焊接之前一定要画出来草图,每个零件位置必须确定,这样就不至于过乱。
自制300B电子管功放
⾃制300B电⼦管功放⼀、电⼦管选型1.功率管功率电⼦管的选型与放⼤器输出功率直接有关。
电⼦管时代专供欣赏⾳乐⽤的⾼传真⾳频放⼤器⼤多是⼩功率放⼤器。
20世纪60年代前期,笔者在上海⼯作,节假⽇喜欢到西藏中路⾳乐书店,在唱⽚柜台前流连忘返,被那台10W输出的推挽放⼤器发出的“天籁之声”深深吸引。
那时候的纸盆纸折环扬声器,灵敏度很⾼,⽽且⾳箱没有分频⽹络的损耗。
本机为家庭欣赏休闲⾳乐之⽤,⽆需很⼤的输出功率,每声道⽤⼀只古典直热式三极管300B 已⾜够。
有关300B的⽂章⼤量见诸于许多⾳响杂志,在此不必赘述。
但需要指出的是在使⽤功率电⼦管时,如何控制屏极耗散功率是⾮常重要的。
超过最⼤屏耗将导致管⼦迅速烧毁,那是绝对不容许的,现实中这种情况也很少发⽣。
相反,⼤多数发烧友过分爱惜管⼦,屏耗调得很低,只有最⼤屏耗的⼀半甚⾄1/3,那也是不恰当的。
正确的做法是,实际屏耗控制在最⼤屏耗的80%~90%,这样可以在管⼦寿命与输出功率之间取得平衡。
本机300B屏极⼀阴极(灯丝)之间电压拟取300V,屏极电流73mA,耗散功率22w,保证有6W的有效输出功率。
玩300B还存在另⼀个趣味问题:灯丝电源⽤交流电还是直流电?不少玩家从技术⾓度进⾏探讨。
笔者的意见是,这不是技术优劣⽐较⽽是个⼈爱好取向。
笔者⽤交流电点燃300B灯丝,是取其那种怀旧的氛围!2.电压放⼤管输⼊级电压放⼤选⽤荷兰产的Amperex牌7119,这是⼀个精选级⾼品质双三极电⼦管。
管⼦为九脚花⽣管,直径22.2mm,管⾼60ram。
在计算机的电⼦管年代,7119多⽤于限幅电路中。
灯丝电压Uf=6.3V/12.6V,电流If=0.64A/0.32A,内阻1.6k Ω,放⼤因数µ=24,屏极电流Ia=36mA,单屏最⼤屏耗Pa.1=4.5W,双屏最⼤屏耗Pa.2=8w。
低内阻、⼤屏流、品质控制严格、两只三极管参数⼀致性好是选⽤该管的原因。
类似的管⼦有5 6 8 7和E182CC。
采用6n8P+EL156自制的电子管功放电路
采用6n8P+EL156自制的电子管功放电路下图是采用6n8P+EL156构成的功率放大器电路原理,笔者这台机器的所有参数都标注在图上,包括各点实测电压等等,基本是按照厂家推荐的单端甲类功放数据制作的。
本机线路简洁,爱好者只要按图焊接无误就可基本达到要求。
图中是一个声道的电路,另一声道完全相同。
本机采用两级放大,前级用6N8P并联,功放级用EL156管组成单端甲类放大电路。
通常前级包括前置放大与推动两级,以满足功放胆的推动要求。
然而EL156属高跨导、低栅压管,所以前置级与推动级合并为一级就可以了。
在Hi—Fi功放中,放大级数越少,信号在放大过程中的噪声、失真也越小。
前级放大管6N8P为双三级胆,采用并联方式,也可根据个人喜好更换成6N6等“小个头”,或其他个人音色喜好的前级管,使整机在视觉上更显个性,当然换管音色也会发生变化,总之,胆功放是个性的东西,音色的改变只要满足自己的喜好就行。
电源部分比较简单,笔者不再提供电源部分的原理图,这台机器采用了高、低压两只电源变压器,一只低压变压器提供6N8P和EL156的三组灯丝6. 3V绕组,另一只高压变压器提供整流管5Z8的一组灯丝5V绕组和两组450V/0.2A的高压绕组,然后由两只电感滤波后分别供给左右声道。
足够的灯丝预热对电子管的寿命有积极作用,所以开机时要先开低压开关,等电子管完全预热后再开高压开关,关机过程正好相反。
单端甲类胆机输出变压器的绕制要求是比较高的。
笔者这台机器上的4个变压器和2个电源滤波电感都是在深圳一家专业厂绕制的,数据、绕法由笔者提供,采用4夹3分层、交叉绕制,两只采用96#硅钢片制作的输出变压器,经测试各项指标达到设计要求,低频、中频、高频的方波测试也不错。
由于元件很少,本机采用了“搭棚焊”工艺,C1、C2、C3采用大家熟悉的红色“WIMA'’,C4、C5采用金属化无感涤纶电容。
关于胆机的布线、结构以及调试在很多文章中都有详细的介绍,本文就不再叙述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子管功放简易设计电子管功放简易设计,写给初学者!发烧之路 2009-06-10 12:15:30 阅读202 评论0字号:大中小常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。
电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。
一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。
以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。
功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。
这里的初学者指有一定的电路理论基础,最好有一定的实做基础且对电子管工作原理有一定了解的(1)整机及各单元级估算1,由于功放常根据其输出功率来分类。
因此先根据实际需求确定自己所需要设计功放的输出功率。
对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率; 84db音箱需要60W左右输出功率,80db音箱需要120W左右输出功率。
当然实际可以根据个人需求调整。
2,根据功率确定功放输出级电路程式。
对于10W以下功率的功放,通常可以选择单管单端输出级;10,20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。
3,根据音源和输出功率确定整机电压增益。
一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。
由输出功率确定输出电压有效值:Uout,?,(P?R),其中P为输出功率,R为额定负载阻抗。
例如某8W输出功率的功放,额定负载8欧姆,则其Uout,8V,输入电压Uin 记0.5V,则整机所需增益A,Uout/Uin,16倍4,根据功率和输出级电路程式确定电压放大级所需增益及程式。
(OTL功放不在讨论之列)目前常用功率三极管有2A3,300B,811,211,845,805常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,FU50,KT88,EL156,813束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。
下面提到的“三极管“也包括这些多极管的三极管接法。
通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%,25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。
工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%,30%。
而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右关于电子管特性曲线的知识可以参照三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况等多种因素左右,所以一般由手册给出,供选择。
在决定输出级用管和电路程式之后,根据输出级功率管满功率输出时所需推动电压Up(峰峰值)和输入音源信号电压U'in(这里的U'in需要折算成峰峰值)确定电压放大级增益。
Au,Up/U'in。
例如2A3单管单端所需推动电压峰峰值为90V,输入信号峰峰值为1.4V,则所需增益Au,90/1.4=64倍,若为开环放大,则取1.1倍余量,实际所需开环放大量Au',70倍。
对于多极管或者推挽功放,常施加整机环路负反馈,这时取2倍余量Au'=128倍,整机反馈量也可以控制在6db以内。
如所需增益小于50倍,可以采用三极管或者五极管做单级电压放大。
如所需增益大于50倍,可以采用三极管的多级电压放大或者五极管做单级电压放大,这些将在下面的电压放大级设计里提到。
2,电压放大级设计概要电子管电压放大级通常由单管共阴放大器组成,其基本电路如下图所示:放大电路分为无信号输入时的静态工作情况和有信号输入后的动态工作情况。
对放大电路工作情况分析有两种方法:图解分析法和等效电路分析法。
作为简易设计,这里主要介绍图解分析法。
对于电子管工作原理及特性曲线尚不了解的,\一、静态工作情况分析分析静态工作情况,主要分析其屏极电压Ua,屏极电流Ia和栅极偏压Ug。
下面采用图解分析法进行分析。
简易分析参照链接如下:/二、动态工作情况分析静态工作情况选择是为了动态工作具备良好的条件。
电压放大级工作于小信号,只要电路设计得当,非线性失真度较小,基本可以忽略不计。
所以,对电压放大级动态情况分析主要有电压放大倍数,频率失真程度及输入、输出阻抗等。
(一)电压放大倍数简易分析根据图一所示,其交流等效负载R'L=Ra?RL/(Ra+RL)其放大倍数(中频段)A=????????1,ra/RL+ra/Ra式中,u为电子管放大系数,ra为电子管内阻。
对于五极管,由于其内阻远大于R'L,所以其放大倍数可由下式计算:A,gm?R'L式中,gm为五极管跨导(二)幅频响应简易定性分析在其他参数一定的情况下,低频响应主要受到输出耦合电容C和阴极旁路电容Ck的影响输出耦合电容越大,阴极旁路电容越大,低频截至频率越低高频响应主要受到信号源内阻,电子管极间电容(主要是Cga,屏栅间电容,由它产生密勒电容效应,粗略估算为u倍的Cga),本级输出阻抗和下一级输入对地电容的影响。
信号源内阻减小,电子管极间电容减小,本级输出阻抗减小以及下一级输入对地电容的减小都可以有效的提高高频上限截至频率。
(三)输入、输出阻抗简易分析在一般情况下,输入阻抗主要由输入栅漏电阻Rg决定。
高频段由于输入电容开始显现作用,逐渐成容性。
输出阻抗:在忽略分布电容的影响下,输出阻抗为电子管工作实际内阻和R'L 的并联值因此尽量选择较小内阻的电子管以降低输出阻抗,避免分布电容对高频段的影响。
做放大倍数简易分析:设6N1 u,35,ra,10k,图中RL,150K,Ra,75K则放大倍数A,35/(1+10/150+10/75)=29倍另外需要注意的地方是1、电压放大级的最大输出电压能力要大于下一级需要的最大输入电压2、实际电子管手册中往往给出电压放大管做共阴放大的各种工作条件和特性给出的参数主要有电压放大倍数A,最大输出电压Eo例如6SN7电子管手册中,所给出的条件如图所示:可以方便的查阅,以供设计便利电子五极管和电子三极管做RC耦合单级共阴放大的选择问题:当输出信号幅值远小于可能输出最大电压幅值时,则选用五极管电路失真较小当输出信号幅值较大时,则选用三极管电路失真较小但五极管电路增益较高,输出幅值较高u三极管来得大由于五极管电路输出阻抗较大,不适于后级输入电容较大的电路,因此五极管更适宜做为小信号输入级,或者驱动输入电容较小的束射四极管、五极管标准接法电路。
电压放大级信号相位的判断:对于电子管电压放大器,共有三种电路放大程式,共阴放大器、共栅放大器、阴极输出器他们的特点一一对应晶体管电路中的共发射极电路、共基极电路、射极输出器(共集电极电路)。
在常见的电子管共阴放大器中,如果把栅极看作对地短路,没有信号输入,此时在阴极施加信号,则形成了共栅放大。
共阴放大中,栅极输入信号和屏极输出信号反相,此时阴极和栅极信号同相共栅放大中,阴极输入信号和屏极输出信号同相用(,)表示同相,(,)表示反相,则同时标注在图中如下:图中黑色标号表示栅极做输入端,红色表示阴极做输入端采用这种相位标注法可以为日后判断反馈相位提供一定的基础倒相级简易介绍倒相级也属于电压放大器的一种,它的分析计算方法原理同普通电压放大单元,它负责产生一对幅值相等,相位相反的信号以提供推挽输出级使用。
常见的倒相电路如图所示:相位已经标注在图上分析。
这种倒相主要是从上管的输出信号Usc1中取出一部分信号Usr2供给下管进行放大,得到一对倒相信号Usc1和Usc2。
此种倒相形式较为简单,其原理是利用了电子管栅极输入信号时,屏极和阴极输出信号相反来达到目的的。
长尾倒相级是差分放大器的变形。
相位已经标注在图上。
信号由V1管栅极输入,同时通过屏极和阴极输出一对相位相反的信号V1管阴极输出阴极信号耦合到V2管阴极输入,V2管栅极交流信号对地通过电容C短路,是共栅放大器。
由V2管屏极输出和V2管阴极相位相同的信号,可见是和V1阴极信号同相的,和V1屏极反相的,从而获得了一对倒相信号。
由于电子管屏阴放大倍数不同,阴极耦合程度越高倒相对称度越好,因此可以增加阴极电位,即通过Rk2来抬高电位,增加耦合度,Rk1,Rg1,Rg2保证两管的正常静态工作点。
较大的阴极电阻Rk2就是通常称作的”长尾巴“,在差分电路里常用恒流源替代,因为恒流源等效交流内阻趋向无穷大。
Rg1和Rg2是和普通共阴放大器电路中Rg一样的栅漏电阻。
由于长尾电路V1管栅极需要高电位来确保”长尾巴“,所以常和前一级电路进行直耦,变形为我们熟悉的长尾电路,如图所示,其电路原理是相同的由于长尾倒相的尾巴不可能无限长,故对称性始终受到限制,上管的放大倍数略大于下管一般设计时,使下管的屏极电阻值为上管的1.1倍,以平衡输出电压幅值。
而差分放大则没有这个缺点。
3,功率放大级设计概要功率放大级设置在放大通道的末级,工作于大信号状态,屏极接的是输出变压器、负载是具有电抗性质的扬声器,所以是非线性失真、频率失真的主要产生级。
功率放大级着重考虑的问题是失真尽可能的小,在满足这点的情况下,输出信号功率尽可能的大,转换效率尽可能的高。
功率放大管主要有如下的重要定额和特性:1,最大屏极耗散功率,最大屏极电流,最大屏极脉冲电流多极管和工作于有栅流电路的功率管还有这些特性:最大帘栅极耗散功率,最大栅极耗散功率,最大栅极电流。
2,输出功率。
所能输出功率的大小,主要决定于功率管的型号和功放级采用的电路程式。
不同型号的功率管采用不同的电路程式。
功率管栅极的推动信号电压或功率强度也有不同的要求,3,非线性失真。
功放级工作于大信号状态,所以正常情况下整机的非线性失真主要主要产生于功率放大级。
功放级的非线性失真程度除了与电路设计有关外,功放管本身产生的非线性失真常达5%左右,有的甚至达到10%左右。
静态情况分析:功率放大级基本工作电路结构如图所示:图中所示的是束射四极管,屏极直流回路是变压器初级绕组,绕组的直流电阻很小,所以屏极电压Ua近似等于供电电压Ea分析功率放大级的静态工作情况,主要分析他的屏极功耗Pa,屏流Ia,静态屏压Ua,静态栅偏压Ug。
其分析方法主要和电压放大级类似,但是直流负载线是过Ua的一条垂直于横坐标的直线。
动态情况分析和其他的简易分析参见如下链接:功率放大级的放大类型与工作状态分析:电压放大级和单管单端放大级为了减小非线性失真,静态工作点Q应该选择在负载直线的中央部分。