中科院田捷教授:基于 AI 和医疗大数据的影像组学研究及其临床应用 丨CCF-GAIR 2018
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中科院田捷教授:基于 AI 和医疗大数据的影像组学研究及其临床应用丨CCF-GAIR 2018
雷锋网
百家号07-0415:42
2018 全球人工智能与机器人峰会(CCF-GAIR)于6月29日在深圳召开。本次大会共吸引超过2500余位 AI 业界人士参会,其中包含来自全球的 140 位在人工智能领域享有盛誉的演讲与圆桌嘉宾。
在大会第二天的 【计算机视觉专场】中,上午计算机视觉前沿与智能视频环节的演讲嘉宾有:ICCV 2011和CVPR 2022大会主席权龙教授、旷视科技首席科学家孙剑等人。
下午环节为计算机视觉与医学影像分析,出席的嘉宾分别是包揽7大模式识别与医学影像Fellow的田捷教授,国际顶级医学影像分析大会MICCAI 2019 联合主席沈定刚教授,微软亚洲研究院副院长张益肇博士,飞利浦中国首席技术官王熙博士等。
作为计算机视觉与医学影像分析环节的重量级嘉宾,本次大会,田捷教授向与会观众分享了题为“基于人工智能和医疗大数据的影像组学研究及其临床应用”的精彩专题报告。
田捷教授现任中国科学院自动化所研究员、分子影像重点实验室主任。自2010年起,田捷教授连续获得计算机视觉与医学影像分析领域的7大Fellow:IEEE Fellow、IAMBE Fellow、SPIE Fellow、AIMBE Fellow、IAPR Fellow、OSA Fellow、ISMRM Fellow。同时也是两项国家重点基础研究发展计划(973计划)首席科学家。
田捷教授认为,人工智能等技术给医学领域带来的改变是毋庸置疑的,并列举了几个医学常见案例进行辅证。
在他看来,医疗大数据里最常见的是影像数据,而且影像数据格式标准,容易获取、容易使用。但是医疗大数据不仅限于影像,还包括病理、临床治疗信息等,只有这些信息融合在一起,我们才能建模,才能解决人工智能真正在医学上的应用。
田捷教授在研究学术的同时,也在积极探索AI技术的应用前景。他认为,AI技术只有跟临床挂钩才有价值,经过企业家的转化才能变成生产力。
现在我们需要更多人工智能和大数据在医疗问题上的典型应用,来拉动产业,拉动人工智能进一步深度应用。这是相辅相成的,空喊方法,不形成规模化、典型应用,是解决不了问题的。只有得到外科、内科大夫承认的技术和临床应用,才能更加有意义。
与此同时,他还表示,人工智能在医学上应用一定要“医工交叉”,工科的人要穿上医学的马甲,了解医学的问题,参加医学的会,了解医生的需求;作为医生也要对工科的方法知其然,这样才能源于临床,高于临床,又回归临床。
以下为田捷教授的现场演讲内容,雷锋网作了不改变原意的编辑及整理:
我下面汇报的是人工智能和医疗大数据在医学上的应用,这是大家比较关注的热门话题,我想从“临床”和“商业”两个方面来做一下简要的归纳。
人工智能在医学上的应用和传统中医非常相像。我国中医几千年以来,通过“望闻问切”的方式积累了几百万人甚至几千万人的医疗大数据,后期主要通过人脑
来“加工”这些数据;现代社会与此前不同的是,我们使用电脑加人脑,利用此前积累的经验以及大数据与人工智能技术,实现了现在所说的智能医疗。
人工智能目前是国家战略,健康中国2030也是国家战略。从这两个角度来说,通过人工智能技术和医疗大数据,提高人们的健康水平是国家下一步的重点发展战略;与此同时,国家也有计划要将我们的医疗和健康占GDP的比重从3%提升到30%。
从商业角度出发,人工智能在医学上的应用机会很多,包括通过计算能力驱动肺癌、糖网、乳腺癌等疾病的筛查。
今天,我想重点与大家分享的是人工智能对于临床医疗的重要性,它能提高我们的临床医疗水平,实现精准医疗,具体涉及到术前、术中、术后三个方面。
从目前医学发展背景来看,人工智能、大数据等技术在医学上的应用是众势所趋。去年北美放射医学大会上给出描述:未来的影像中心就像飞机驾驶舱一样,是各种各样信息的综合体;而未来的医生则相当于飞行员,要处理各种各样的信息。这里还需重点阐述一个观点:如今很多声音表示,AI未来将要替代医生。在我看来,AI 不会替代医生,只会更有效地辅助医生。而医生也不应惧怕新兴技术,而是积极地去利用它,使用它。
当今,我们处于信息变革的时代,医学大数据也在不断的增长和积累,平均每73天,医学数据就会增长一倍。因此,基于医疗大数据的人工智能医疗必将辅助甚至改变传统的临床诊疗流程。
国际影像战略策略研讨会副主席Donoso说了一句很经典的话,人工智能是否会完全替代影像科医生无法下定论,但我们肯定的是,那些使用人工智能技术的影像科医
生,势必会代替那些不使用人工智能技术的医生。
不跟随时代的发展,面临的就是残酷的淘汰,无论是北美放射年会,还是欧洲放射年会,都不断的在突出人工智能在影像学中的异军突起的作用。
所以,未来的影像科医生,不仅仅要会看片子,还要从影像大数据中挖掘大量的潜在知识,学会利用人工智能技术,站在科技潮流的前端,不是惧怕新兴的人工智能
技术,而是利用它,使用它,成为新时代下的影像信息学专家。
上个月刚刚结束的美国临床肿瘤年会ASCO2018,该年会的参与者大多为内科大夫、肿瘤大夫,他们也提出,要将人工智能技术作为辅助新一代无创诊疗技术发展的重要工具。
Dana-Farber癌症研究所首席研究员Geoffrey指出,无创的液体活检技术可以更加便捷的实现肺癌的早期检测和筛查,血液中游离DNA可以成功检测出早期肺癌。而随着这种无创检测手段的进步,医学数据不断积累,机器学习方法将有效提高检测精度、提高测试性能。
此外,南加州大学生物科学学院院长在大会指出,在肿瘤疗效评估中,结合基于液体活检技术的基因蛋白组学和基于深度学习方法的智能影像评估可有效预测患者的预后生存。
由此可见,无论是在癌症诊断还是治疗中,人工智能技术都是辅助新一代无创诊疗技术发展的重要工具。
一、影像组学的本质