中考数学中的面积问题

合集下载

中考数学压轴题:由动点引出的几种面积问题

中考数学压轴题:由动点引出的几种面积问题

中考数学压轴题:由动点引出的几种面积问题动点题是近年来中考的一个热点问题也是难点问题,而因动点产生的面积问题是这类题目考查的重点。

解这类题目要掌握几个基本图形及思路,而后“以静制动”、“转化求解”。

即把动态问题变为静态问题,变为我们所熟知的模型来解。

基本方法:铅锤法!即利用“铅垂高、水平宽”求三角形面积.类型一、一次函数由动点问题引出的面积问题【分析】(1)Rt△AOH中利用勾股定理即可求得菱形的边长;(2)根据(1)即可求得OC的长,则C的坐标即可求得,利用待定系数法即可求得直线AC的解析式;(3)根据S△ABC=S△AMB+SBMC求得M到直线BC的距离为h,然后分成P在AM上和在MC上两种情况讨论,利用三角形的面积公式求解.【点评】本题考查了待定系数法求一次函数的解析式以及菱形的性质,根据三角形的面积关系求得M到直线BC的距离h是关键.类型二、二次函数由动点问题引出的面积问题【分析】(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x^2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q 的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S△APC=﹣1.5x^2﹣1.5x+3,再利用二次函数的性质,即可解决最值问题;【点评】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图像上点的坐标特征、一次函数图像上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S△APC=﹣1.5x^2﹣1.5x+3;(3)利用二次函数图像的对称性结合两点之间线段最短找出点M的位置.类型三、利用相似三角形求解由动点问题引出的面积问题【分析】(1)利用待定系数法即可;(2)①分别用t表示PE、PQ、EQ,用△PQE∽△QNC表示NC及QN,列出矩形PQNM面积与t的函数关系式问题可解;②由①利用线段中点坐标分别等于两个端点横纵坐标平均分的数量关系,表示点M坐标,分别讨论M、N、Q在抛物线上时的情况,并分别求出t值.【点评】本题是代数几何综合题,考查了二次函数、一次函数、三角形相似和矩形的有关性质,解答时应注意数形结合和分类讨论的数学思想.类型四、利用转化思想解决由动点问题引出的面积问题【分析】(1)根据待定系数法,可得函数解析式,根据自变量与函数值的对应关系,可得答案;(2)根据勾股定理,可得BC的长,根据等角的正切值相等,可得HO的长,根据待定系数法,可得BE的解析式,根据解方程组,可得E点坐标;(3)由题意△PMN是等腰直角三角形,得PM=PN=1,设M(a,a^2+3a﹣4)则N(a+1,a^2+3a+1)或(a+1,a^2+3a﹣5),代入抛物线的解析式即可求解.【点评】本题考查二次函数的有关知识、一次函数、直角三角形等知识,掌握两个函数的交点问题转化为方程组的解的问题是解题的关键,还要记住一个结论斜边为定值时直角边相等时面积最大.。

中考数学 阴影部分面积-含答案

中考数学 阴影部分面积-含答案

阴影部分面积未命名一、填空题1.如图,已知水平放置的圆柱形污水排水管道的截面半径12cmOB=,截面圆心O到污水面的距离6cmOC=,则截面上有污水部分的面积为________.【答案】48π【分析】连接OA,阴影部分的面积等于扇形AOB的面积与三角形AOB的面积差,计算圆心角∠AOB的大小即可.【详解】如图,连接OA,∵OB=12,OC=6,OC⊥AB,∴sin∠OBA=12OCOB=,AC=BC,∴∠OBA=30°,BC AB=2BC ∵OA=OB,∴∠OAB=∠OBA=30°,∴∠AOB=120°,∴212012=360AOB S π⨯⨯扇形=48π,∴11=622AOB S AB OC ⨯=⨯△∴阴影部分的面积为-AOB AOB S S △扇形=48π故答案为:48π【点睛】本题考查了垂径定理,特殊角的三角函数,扇形的面积,三角形的面积,熟练进行图形面积分割,并运用相应的公式计算是解题的关键.2.如图,已知Rt ABC 中,6AB =,8BC =,分别以点A 、点C 为圆心,以2AC 长为半径画圆弧,则图中阴影部分的面积为____________.(结果保留π)【答案】2524.4π-【分析】 先计算,,A C AC ∠+∠ 再由阴影部分的面积等于三角形ABC 的面积减去一个圆心角为90,︒ 以12AC 为半径的扇形面积,再分别计算ABC 的面积,圆心角为90,︒ 以12AC 为半径的扇形面积,从而可得答案. 【详解】 解: Rt ABC 中,6AB =,8BC =,90,B ∠=︒90,10,A C AC ∴∠+∠=︒===115,6824,22ABC AC S ∴==⨯⨯= 又阴影部分的面积等于三角形ABC 的面积减去一个圆心角为90,︒ 以12AC 为半径的扇形面积,290525,3604S ππ⨯∴==扇形 2524.4S π∴=-阴影 故答案为:2524.4π- 【点睛】本题考查的是勾股定理的应用,扇形面积的计算,掌握扇形面积的计算是解题的关键.3.如图,在等腰Rt ABC △中,90BAC ∠=︒,BC =A ,B ,C 为圆心,以12AB 的长为半径画弧分别与ABC 的边相交,则图中阴影部分的面积为______.(结果保留π)【答案】82π-【分析】三角形面积公式S=1AC AB 2⨯,扇形面积公式:S =2360n r π,阴影面积=三角形面积—180°扇形的面积,计算即可.【详解】∵等腰Rt ABC △中,90BAC ∠=︒,BC =∴AB=BC•sin45°==42, ∴S △ABC =144=82⨯⨯, ∵∠A+∠B+∠C=180°, ∴1=4=2212AB ⨯, 以2为半径,180°扇形是半圆=212=22ππ⨯, 阴影面积=8-2π.故答案为:8-2π.【点睛】本题主要考查扇形的面积公式,三角形面积,熟知扇形的面积公式的运用,解题的关键是阴影面积=等腰直角三角形的面积-以2为半径180°扇形面积.4.如图,在正方形ABCD 的边长为6,以D 为圆心,4为半径作圆弧.以C 为圆心,6为半径作圆弧.若图中阴影部分的面积分别为12S S 、时,则12S S -=_____________.(结果保留π)【答案】1336π-【分析】根据割补法可进行求解.【详解】解:由题意可得:设以以D 为圆心,4为半径作圆弧所在的扇形面积为S ,则有: 222906904636,==94360360ABCD DCB S S S ππππ⨯⨯====正方形扇形,, ∴12=1336ABCD DCB S S S S S π-=+--正方形扇形;故答案为1336π-.【点睛】本题主要考查扇形面积,熟练掌握扇形面积计算是解题的关键.5.如图,矩形ABCD 的对角线交于点O ,以点A 为圆心,AB 的长为半径画弧,刚好过点O ,以点D 为圆心,DO 的长为半径画弧,交AD 于点E ,若AC =2,则图中阴影部分的面积为_____.(结果保留π)【答案】4π 【分析】由图可知,阴影部分的面积是扇形ABO 和扇形DEO 的面积之和,然后根据题目中的数据,可以求得AB 、OA 、DE 的长,∠BAO 和∠EDO 的度数,从而可以解答本题.【详解】解:∵四边形ABCD 是矩形,∴OA =OC =OB =OD ,∵AB =AO ,∴△ABO 是等边三角形,∴∠BAO =60°,∴∠EDO =30°,∵AC =2,∴OA =OD =1,∴图中阴影部分的面积为:22601301+=3603604ππ⨯⨯⨯⨯π, 故答案为:4π. 【点睛】本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键.6.如图,在△ABC 中,∠A =90°,AB =AC =2,以AB 为直径的圆交BC 于点D ,求图中阴影部分的面积为_____.【答案】1【分析】连接AD ,由图中的图形关系看出阴影部分的面积可以简化成一个三角形的面积,然后通过已知条件求出面积.【详解】解:连接AD ,∵AB =BC =2,∠A =90°,∴∠C =∠B =45°,∴∠BAD =45°,∴BD =AD ,∴BD =AD∴由BD ,AD 组成的两个弓形面积相等,∴阴影部分的面积就等于△ABD 的面积,∴S △ABD =12AD•BD =121.故答案为:1.【点睛】本题考查的是扇形面积的计算,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键.7.如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =2,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过△ABC 的直角顶点C ,以点D 为顶点,作∠EDF =90°,与半圆交于点E 、F ,则图中阴影部分的面积是_______.【答案】142π- 【分析】连接CD ,作DM ⊥BC ,DN ⊥AC ,证明△DMG ≌△DNH ,则S 四边形DGCH =S 四边形DMCN ,求得扇形FDE 的面积,则阴影部分的面积即可求得.【详解】。

中考数学压轴题---增长率(面积问题)例题讲解

中考数学压轴题---增长率(面积问题)例题讲解

中考数学压轴题---增长率(面积问题)例题讲解例1、(2022•无锡)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为36m2,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?【解答】解:(1)根据题意知:较大矩形的宽为2xm,长为=(8﹣x)m,∴(x+2x)×(8﹣x)=36,解得x=2或x=6,经检验,x=6时,3x=18>10不符合题意,舍去,∴x=2,答:此时x的值为2;(2)设矩形养殖场的总面积是ym2,∵墙的长度为10m,根据题意得:y=(x+2x)×(8﹣x)=﹣3x2+24x=﹣3(x﹣4)2+48,∵﹣3<0,∴当x=时,y取最大值,最大值为﹣3×(﹣4)2+48=(m2),答:当x=时,矩形养殖场的总面积最大,最大值为m2.【变式1-1】(2022•湘潭)为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度AE=1m 的水池,且需保证总种植面积为32m2,试分别确定CG、DG的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?【解答】解:(1)∵(21﹣12)÷3=3(m),∴Ⅰ、Ⅱ两块矩形的面积为12×3=36(m2),设水池的长为am,则水池的面积为a×1=a(m2),解得a=4,∴DG=4m,∴CG=CD﹣DG=12﹣4=8(m),即CG的长为8m、DG的长为4m;(2)设BC长为xm,则CD长度为21﹣3x,∴总种植面积为(21﹣3x)•x=﹣3(x2﹣7x)=﹣3(x﹣)2+,∵﹣3<0,∴当x=时,总种植面积有最大值为m2,即BC应设计为m总种植面积最大,此时最大面积为m2.【变式1-2】(2021•重庆)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份.为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低a%.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加a%,这两种小面的总销售额在4月的基础上增加a%.求a的值.【解答】解:(1)设每份“堂食”小面的价格为x元,每份“生食”小面的价格为y元,根据题意得:,解得:,答:每份“堂食”小面的价格为7元,每份“生食”小面的价格为5元;(2)由题意得:4500×7+2500(1+a%)×5(1﹣a%)=(4500×7+2500×5)(1+a%),设a%=m,则方程可化为:9×7+25(1+m)(1﹣m)=(9×7+25)(1+ m),375m2﹣30m=0,m(25m﹣2)=0,解得:m1=0(舍),m2=,∴a=8.【变式1-3】(2022•大渡口区校级模拟)草莓是大家非常喜欢的水果,3月份是草莓上市的旺季.某水果超市销售草莓,第一周每千克草莓的销售单价比第二周销售单价高10元,该水果超市这两周共销售草莓180千克,且第一周草莓的销量与第二周的销量之比为4:5,该水果超市这两周草莓销售总额为11600元.(1)第二周草莓销售单价是每千克多少元?(2)随着草莓的大量上市,3月份第三周,草莓定价与第二周保持一致,且该水果超市推出会员优惠活动,所有的会员均可享受每千克直降a元的优惠,而非会员需要按照原价购买,第三周草莓的销量比第二周增加了20%,其中通过会员优惠活动购买的销量占第三周草莓总销量的,而第三周草莓的销售总额为(6200+100a)元,求a的值.【解答】解:(1)设第一周草莓销售单价是每千克x元,第二周草莓销售单价是每千克y元,依题意得:,解得:,答:第二周草莓销售单价是每千克60元.(2)依题意可知,3月份第三周草莓的销售单价为60元/千克,第三周草莓的销售量为:180×(1+20%)=120(千克),其中会员购买的销量为:120×=20a(千克),非会员购买的销量为:(120﹣20a)千克,由题意得:20a(60﹣a)+(120﹣20a)×60=6200+100a,整理得:a2+5a﹣50=0,解得:a1=5,a2=﹣10(不符合题意,舍去).答:a的值为5.【变式1-4】(2021•湖州)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;(2)若该景区仅有A,B两个景点,售票处出示的三种购票方式如下表所示:并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【解答】解:(1)设四月和五月这两个月中该景区游客人数平均每月增长率为x,由题意,得4(1+x)2=5.76,解这个方程,得x1=0.2,x2=﹣2.2(舍去),答:四月和五月这两个月中该景区游客人数平均每月增长率为20%;(2)①由题意,得100×(2﹣10×0.06)+80×(3﹣10×0.04)+(160﹣10)×(2+10×0.06+10×0.04)=798(万元).答:景区六月份的门票总收入为798万元.②设丙种门票价格降低m元,景区六月份的门票总收入为W万元,由题意,得W=100(2﹣0.06m)+80(3﹣0.04m)+(160﹣m)(2+0.06m+0.04m),化简,得W=﹣0.1(m﹣24)2+817.6,∵﹣0.1<0,∴当m=24时,W取最大值,为817.6万元.答:当丙种门票价格下降24元时,景区六月份的门票总收入有最大值,最大值是817.6万元.。

2023年九年级数学中考专题:二次函数综合压轴题(面积问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(面积问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(面积问题)1.如图,二次函数25y ax bx =++的图象经过点(1,8),且与x 轴交于A 、B 两点,与y 轴交于点C ,其中点(1,0)A -,M 为抛物线的顶点.(1)求二次函数的解析式; (2)求MCB △的面积;(3)在坐标轴上是否存在点N ,使得BCN △为直角三角形?若存在,求出点N 的坐标;若不存在,请说明理由.2.如图,抛物线212y x bx c =-++(b 、c 为常数)经过()4,0A 和()0,4B 两点,其顶点为C .(1)求该抛物线的表达式及其顶点坐标;(2)若点M 是拋物线上第一象限的一个动点.设ABM 的面积为S ,试求S 的最大值; (3)若抛物线222y mx mx m =-++与线段AB 有两个交点,直接写出m 的取值范围. 3.如图,抛物线22(0)y ax ax c a =-+>与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点A 的坐标为(1,0),3OC OA -=.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上是否存在一点P ,使得PBC 的面积等于ABC 面积的三分之二?若存在,求出此时OP 的长;若不存在,请说明理由.(3)将直线AC 绕着点C 旋转45︒得到直线l ,直线l 与抛物线的交点为M (异于点C ),求M 点坐标.4.如图1,抛物线24y ax bx a =+-经过()10A -,,()04C ,两点,与x 轴交于另一点B .(1)求抛物线和直线BC 的解析式;(2)如图2,点P 为第一象限抛物线上一点,是否存在使四边形PBOC 面积最大的点P ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图3,若抛物线的对称轴EF (E 为抛物线顶点)与直线BC 相交于点F ,M 为直线BC 上的任意一点,过点M 作MN EF ∥交抛物线于点N ,以E ,F ,M ,N 为顶点的四边形能否为平行四边形?若能,请求出点N 的坐标;若不能,请说明理由. 5.如图,抛物线24y ax bx =+-与x 轴交于点()2,0A -,()4,0B ,与y 轴交于点C ,顶点为D .(1)求抛物线的解析式和顶点D 的坐标;(2)动点P ,Q 以相同的速度从点O 同时出发,分别在线段,OB OC 上向点B ,C 方向运动,过点P 作x 轴的垂线,交抛物线于点E . ①当四边形OQEP 为矩形时,求点E 的坐标;①过点E 作EM BC ⊥于点M ,连接,PM QM ,设BPM △的面积为1S ,CQM 的面积为2S ,当PE 将BCE 的面积分成1:3两部分时,请直接写出12S S 的值. 6.如图,抛物线2(0)y ax bx c a =++≠与x 轴相交于A ,B 两点,抛物线的对称轴为直线=1x -,其中点A 的坐标为(3,0)-.(1)求点B 的坐标;(2)已知1a =,C 为抛物线与y 轴的交点,求抛物线的解析式; (3)若点P 在抛物线上,且4POCBOCSS=,求点P 的坐标;(4)设点Q 是线段AC 上的动点,过点Q 作QD y 轴交抛物线于点D ,求线段QD 长度的最大值.7.如图,在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()30A -,,()10B ,两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △的面积最大时,求点P 的坐标;(3)Q 是x 轴上一动点,M 是第二象限内抛物线上一点,若以A ,C ,M ,Q 为顶点的四边形是平行四边形,直接写出点Q 的坐标.8.如图,直线132y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c =-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求四边形ABCM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90°得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.9.如图,已知抛物线与x 轴交于()1,0A - 、()4,0B 两点,与y 轴交于点()0,3C .(1)求抛物线的解析式; (2)求直线BC 的函数解析式;(3)在抛物线上,是否存在一点P ,使PAB 的面积等于ABC 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,抛物线26y ax bx =++与x 轴交于点()6,0B ,()2,0C -,与y 轴交于点A ,点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,PAB 的面积最大?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 作PE x ∥轴交抛物线于点E ,连接DE .是否存在点P ,使PDE △为等腰直角三角形?若存在,求点P 的坐标;若不存在,请说明理由.11.如图,直线l :112y x =-+与x 轴,y 轴分别交于点B ,C ,经过B ,C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A .(1)求该抛物线的解析式;(2)若点P 在直线l 下方的抛物线上,过点P 作PD ①x 轴交l 于点D ,PE ①y 轴交l 于点E ,求PD PE +的最大值;(3)若点P 在直线l 下方的抛物线上,F 为直线l 上的点,以A ,B ,P ,F 为顶点的四边形能否构成平行四边形?若能,直接写出点F 的坐标;若不能,请说明理由. 12.已知顶点为()1,5A 的抛物线2y ax bx c =++经过点()5,1B ,(1)求抛物线的解析式;(2)设C ,D 分别是x 轴、y 轴上的两个动点.①当四边形ABCD 的周长最小时,在图1中作直线CD ,保留作图痕迹并直接写出直线CD 的解析式;①点()(),>0P m n m 是直线y x =上的一个动点,Q 是OP 的中点,以PQ 为斜边按图2所示构造等腰Rt PQR △.在①的条件下,记PQR 与COD △的公共部分的面积为S ,求S 关于m 的函数关系式,并求S 的最大值.13.抛物线24y x x =-与直线y x =交于原点O 和点B , 与x 轴交于另一点A , 顶点为D .(1)填空: 点B 的坐标为___________, 点D 的坐标为___________.(2)如图1 , 连结OD P ,为x 轴上的动点, 当以O D P ,,为顶点的三角形是等腰三角形时, 请直接写出点P 的坐标;(3)如图2, M 是点B 关于拋物线对称轴的对称点, Q 是拋物线上的动点, 它的横坐标为 (05)m m <<, 连结MQ BQ MQ ,,与直线OB 交于点E . 设BEQ 和BEM △的面积分别为1S 和2S , 设12S t s =, 试求t 关于m 的函数解析式并求出t 的最值. 14.如图,二次函数的图象经过点()10A -,,()30B ,,()03C -,,直线22y x =-与x 轴、y 轴交于点D ,E .(1)求该二次函数的解析式(2)点M 为该二次函数图象上一动点.①若点M 在图象上的B ,C 两点之间,求DME 的面积的最大值. ①若MED EDB ∠∠=,求点M 的坐标.15.如图,在平面直角坐标系中,抛物线24y ax bx =+-与x 轴交于()2,0A -,B 两点,其对称轴直线2x =与x 轴交于点D .(1)求该抛物线的函数表达式为______;(2)如图1,点P 为抛物线上第四象限内的一动点,连接CD ,PB ,PC ,求四边形BDCP 面积最大值和点P 此时的坐标;(3)如图2,将该抛物线向左平移得到抛物线y ',当抛物线y '经过原点时,与原抛物线的对称轴相交于点E ,点F 为抛物线y '对称轴上的一点,点M 是平面内一点,若以点A ,E ,F ,M 为顶点的四边形是以AE 为边的菱形,请直接写出满足条件的点M 的坐标______.16.如图,已知抛物线2y x bx c =++与x 轴交于点()21,0A m -和点()2,0B m +,与y 轴交于点C ,对称轴轴为直线=1x -.(1)求抛物线的解析式;(2)点P 是直线AC 上一动点,过点P 作PQ y ∥轴,交抛物线于点Q ,以P 为圆心,PQ 为半径作P ,当P 与坐标轴相切时,求P 的半径;(3)直线()340y kx k k =++≠与抛物线交于M ,N 两点,求AMN 面积的最小值.17.如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于两点()1,0A -和()3,0B ,与y 轴交于点C ,抛物线上有一动点P ,抛物线的对称轴交x 轴于点E ,连接EC ,作直线BC .(1)求抛物线的解析式;(2)若点P 为直线BC 上方抛物线上一动点时,连接,PB PC ,当23EBC PBC S S =△△时,求点P 坐标;(3)如果抛物线的对称轴上有一动点Q ,x 轴上有一动点N ,是否存在四边形PQCN 是矩形?若存在,在横线上直接写出点N 的坐标,若不存在,请说明理由. 18.如图,直线122y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c=-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求三角形ACM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90︒得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围(直接写出结果即可).参考答案:1.(1)245y x x =-++; (2)15(3)存在,点N 的坐标为(5,0)-或(0,5)-或(0,0).2.(1)2142y x x =-++,91,2⎛⎫⎪⎝⎭(2)S 的最大值为4 (3)2m ≥或1249m -<≤-3.(1)抛物线的解析式为2=23y x x -- (2)不存在这样的点P , (3)M 点坐标是(45),或315()24-,4.(1)抛物线的解析式:234y x x =-++;直线BC 的解析式为4y x =-+;(2)当()26P ,时,四边形PBOC 面积最大; (3)能,点N 的坐标为52124⎛⎫ ⎪⎝⎭,或724⎛- ⎝或724⎛- ⎝.5.(1)2142y x x =--,91,2D ⎛⎫- ⎪⎝⎭.(2)①(-;①1215S S =或1279S S =6.(1)(1,0) (2)223y x x =+- (3)(4,21)或()4,5- (4)947.(1)224233y x x =--+(2)3(2P -,5)2(3)(5,0)-或(1,0)-8.(1)03A (,),20B -(,),60C (,),抛物线解析式为:2134y x x =-++; (2)3a =时,四边形ABCM 面积最大,其最大值为754,此时M 的坐标为153,4⎛⎫⎪⎝⎭;(3)当3m -≤≤-33m ≤≤时,线段O A ''与抛物线只有一个公共点.9.(1)239344y x x =-++(2)334y x =-+(3)存在,点P 的坐标为:()13,3P ,23P ⎫-⎪⎪⎝⎭,33P ⎫-⎪⎪⎝⎭10.(1)21262y x x =-++(2)153,2P ⎛⎫ ⎪⎝⎭(3)点P 坐标为()46,或()55.11.(1)2512y x x =-+ (2)3(3)13,2⎛⎫- ⎪⎝⎭或1(1,)212.(1)21119424y x x =-++(2)①4y x =-+;①当02m <≤时,218PQRSm =;当823m <≤时,27448S m m =-+-;当843m ≤≤时,21244S m m =-+;S 的最大值为:47答案第3页,共3页 13.(1)()5,5;()2,4-;(2)点P的坐标为()或()-或()4,0或()5,0; (3)()2150566t m m m =-+<<,当52m =时,t 的最大值为2524.14.(1)该二次函数的解析式是()()21323y x x x x =+-=--;(2)①DME 的面积的最大值为52;①点M的坐标为⎝⎭或()12--.15.(1)214433y x x =-- (2)PBDC S 四边形的最大值为17,此时点P 的坐标为()3,5-(3)⎛ ⎝⎭或⎛ ⎝⎭或⎛- ⎝⎭或8,⎛- ⎝⎭16.(1)223y x x =+-(2)2或4(3)817.(1)2=23y x x --(2)⎝⎭或⎝⎭ (3)存在,⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭18.(1)()0,2A ,()2,0B -,()4,0C ,211242y x x =-++ (2)2,()2,2(3)34m -≤≤-或32m -+≤。

中考数学专题---图形的面积

中考数学专题---图形的面积

中考数学专题---面积问题计算图中阴影部分面积是多少平方厘米?(圆的半径r =10厘米)如图,ABCG和CDEF都是正方形,DC等于12厘米,CB等于10厘米。

求阴影的面积。

如图,以小正方形四角的顶点为圆心,边长的一半为半径,作4个圆,在4个圆外作一正方形,每边都与其中两个圆各有一个接触点,求阴影部分的面积。

如图,图中是黄鹤楼公司某产品的商品图案,若每个小长方形的都是1,则阴影部分的面积为如图,正方形ABCD边长为1,E、F、G、H分别为其各边的中点,则图中阴影面积为_____ 在□ABCD中,E是AD的中点,若S□ABCD=1,则图中的阴影面积为已知,如图,正方形ABCD的面积为25,菱形PQCB的面积为20,则阴影部分的面积为.如图,E、F分别是矩形ABCD边AD、BC上的点,且△ABG,△DCH的面积分别为15和20,则图中的阴影部分面积为(2012安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.22aB. 32aC. 42aD.52a(2012安徽)如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4②S2+S4= S1+ S3③若S3=2 S1,则S4=2 S2④若S1= S2,则P点在矩形的对角线上。

其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上).(2012广东)如图,在□ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).(2012恩施州)如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是()A.B.2 C.3 D.(2012天门)如图,在Rt △ABC 中,∠C =90°,∠A =30°,AC =6cm ,CD ⊥AB 于D ,以C 为圆心,CD 为半径画弧,交BC 于E ,则图中阴影部分的面积为( )A. ﹣B.﹣C.﹣D.﹣(2012天门)如图,线段AC =n+1(其中n 为正整数),点B 在线段AC 上,在线段AC 同侧作正方形ABMN 及正方形BCEF ,连接AM 、ME 、EA 得到△AME .当AB =1时,△AME 的面积记为S 1;当AB =2时,△AME 的面积记为S 2;当AB=3时,△AME 的面积记为S 3;…;当AB=n 时,△AME 的面积记为S n .当n ≥2时,S n ﹣S n ﹣1=_________.(2012娄底)如图,正方形MNEF 的四个顶点在直径为4的大圆上,小圆与正方形各边都相切,AB 与CD 是大圆的直径,AB ⊥CD ,CD ⊥MN ,则图中阴影部分的面积是( ) A . 4π B . 3π C . 2πD .π(2012黄石)如图(2)所示,扇形AOB 的圆心角为120°,半径为2,则图中阴影部分的面积为( )A.43π43π-432π- D. 43π(2012临沂)如图,AB 是⊙O 的直径,点E 为BC 的中点,AB =4,∠BED =120°,则图中阴影部分的面积之和为( )A .1B .2C D .(2012烟台)如图,⊙O 1,⊙O ,⊙O 2的半径均为2cm ,⊙O 3,⊙O 4的半径均为1cm ,⊙O 与其他4个圆均相外切,图形既关于O 1O 2所在直线对称,又关于O 3O 4所在直线对称,则四边形O 1O 4O 2O 3的面积为( )A .12cm 2B .24cm 2C .36cm 2D .48cm 2(2012四川广安)如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为.(2012攀枝花)如图,以BC为直径的⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线交于点D,且∠ADC=60°,过B点的⊙O1的切线交其中一条外公切线于点A.若⊙O2的面积为π,则四边形ABCD的面积是.(2011福建泉州)如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B’,则图中阴影部分的面积是().A. 3πB. 6πC. 5πD. 4π(2011山东潍坊)如图,半径为1的小圆在半径为9 的大圆内滚动,且始终与大圆相切,则小圆扫过的阴影部分的面积为()A . 17πB . 32πC . 49πD . 80π(2011浙江台州)如图,CD是⊙O的直径,弦AB⊥CD,垂足为点M,AB=20,分别以DM,CM为直径作两个大小不同的⊙O1和⊙O2,则图中所示的阴影部分面积为______ (结果保留π)(2011福建泉州)如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC.那么剪下的扇形ABC (阴影部分)的面积为 ;用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r= .( 2011重庆江津)如图,点A 、B 、C 在直径为32的⊙O 上,∠BAC =45º,则图中阴影的面积等于______________,(结果中保留π).(2011安徽芜湖)如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE =6,EF =8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为___________.如图,在Rt △ABC 中,∠ABC = 900, AB = 8cm , BC = 6cm , 分别以A,C 为圆心,以2AC的长为半径作圆, 将 Rt △ABC 截去两个扇形,则剩余(阴影)部分的面积为 cm 2(结果保留π)第19题图(第17题)(2011贵州安顺)如图,在Rt △ABC 中,∠C =90°,CA =CB =4,分别以A 、B 、C 为圆心,以21AC 为半径画弧,三条弧与边AB 所围成的阴影部分的面积是 .8. (2011福建福州)如图,在ABC ∆中,90A ∠=o ,O 是BC 边上一点,以O 为圆心的半圆分别与AB 、AC 边相切于D 、E 两点,连接OD .已知2BD =,3AD =.图中两部分阴影面积的和.(2011山东枣庄,23,8分)如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,且AC =CD ,∠ACD =120°,若O ⊙的半径为2,求图中阴影部分的面积.(2011山东东营,21,9分)(本题满分9分)如图,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,BD 平分∠ABC ,∠BAD=120,四边形ABCD 的周长为15.B图9第18题图第15题求图中阴影部分的面积。

最全二次函数中的面积问题(中考数学必考题型)

最全二次函数中的面积问题(中考数学必考题型)

二次函数中的面积问题二次函数中的面积问题是中考的热点,面积问题如果是规则图形可以用常见的面积公式解决问题的就直接用面积公式,如果不能直接用面积公式在坐标系中处理面积问题,通常有以下三种思路:第一是割补法:分割求和、补形作差,其中用的最多的是铅垂线法;第二是同底等高利用平行线转化求面积;第三如果遇到的是面积比可以考虑用相似的性质得到线段比去解决相关问题。

【引例1】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【铅垂法】()11112222ABCACDBCDC D B A SSSCD AE CD BF CD AE BF y y x x =+=⋅+⋅=+=-⋅-【方法梳理】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ; (3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标; (4)根据C 、D 坐标求得铅垂高; (5)12S =⨯水平宽铅垂高.二、转化法——借助平行线转化:若S △ABP =S △ABQ , 若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,PQ △AB . 当P ,Q 在AB 异侧时,AB 平分PQPABQQBA PDEF OyxCBA 铅垂高水平宽DA BCxyOE三、面积比类型例1.如图,在平面直角坐标系中,直线y =﹣5x +5与x 轴,y 轴分别交于A 、C 两点,抛物线y =x 2﹣6x +5经过A 、C 两点,与x 轴的另一交点为B .若点M 为x 轴下方抛物线上一动点,当点M 运动到某一位置时,△ABM 的面积等于△ABC 面积的,求此时点M 的坐标;例2.如图,抛物线223y x x =-++与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC ,抛物线在线段BC 上方部分取一点P ,连接PB 、PC .(1)过点P 作PH△x 轴交BC 边于点H ,求PH 的最大值;(2)求△PBC 面积的最大值(可以用铅垂线法和平行线法);PyxO CB A变式1.如图,已知二次函数y=﹣x2+2x+3的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.点D为抛物线的顶点,直线BC的解析式为y=﹣x+3,求△BCD 的面积;变式2.如图,抛物线y=﹣x2+4x﹣3;与x轴交于A,B两点,与y轴交于C 点,直线BC方程为y=x﹣3.点P为抛物线上一点,若S△PBC=S△ABC,求P 的坐标;变式3.已知抛物线y=x2﹣2x﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.变式4.如图,在直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴相交于点A (﹣1,0)和点B(3,0),与y轴交于点C.若点D为第四象限内二次函数图象上的动点,设点D的横坐标为m,△BCD的面积为S.求S关于m的函数关系式,并求出S的最大值.例3.如图,抛物线y=﹣x2+4x﹣3与x轴交于点A(1,0)、B(3,0),与y轴交于点C,连接AC,BC.P为抛物线上一点,若S△PBC=S△ABC,求出点P的坐标;【引例2】如图,抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P 是第一象限内抛物线上的一点且横坐标为m.当CP与x轴不平行时,求的最大值;(化斜为直)例4.如图,抛物线y=﹣x2+2x+3与x轴交于点A和点B,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF =3:2时,求点D的坐标.变式1.抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.变式2.已知:如图,二次函数y=﹣x2+x+4;点Q是线段AB上的动点,过点Q作QE△AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;变式3.已知二次函数解析式为y=3x2﹣3,直线l的解析式为y=,点P 为抛物线上第四象限上的一动点,过P作y轴的平行线交AD于M,作PN△AD 于N,当△PMN面积有最大值时,求点P的坐标;例4.如图抛物线y=﹣x2+2x+3经过点A(﹣1,0),点C(0,3),点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.变式1.已知抛物线y=x2﹣2x﹣3.与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).若直线y=mx﹣m﹣4将四边形ACDB的面积分为1:2两部分,则m的值为多少作业:1.已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足===m,则m的值是()A.1B.C.2D.42.已知抛物线y=x2﹣x+3;经过A(3,0)、B(4,1)两点,且与y轴交于点C.设抛物线与x轴的另一个交点为D,在抛物线上是否存在点P,使△P AB 的面积是△BDA面积的2倍?若存在,求出点P的坐标;若不存在,请说明理由.3.如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点,点P为线段MB上一个动点,过点P作PD△x轴于点D,若OD=m.设△PCD 的面积为S,试判断S有最大值或最小值吗?若有,求出其最值,若没有,请说明理由;。

中考数学复习《面积问题》经典题型含答案

中考数学复习《面积问题》经典题型含答案

中考数学复习 面积问题一、选择题1.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S 1,正八边形外侧八个扇形(阴影部分)面积之和为S 2,则S 1S 2=( B )A.34B.35C.23D .1 【解析】∵正八边形的内角和为(8-2)×180°=6×180°=1080°,正八边形外侧八个扇形(阴影部分)的内角和为360°×8-1080°=2880°-1080°=1800°,∴S 1S 2=1080°1800°=35.故选B.,第1题图) ,第2题图)2.如图,在5×4的方格纸中,每个小正方形边长为1,点O ,A ,B 在方格纸的交点(格点)上,在第四象限内的格点上找点C ,使△ABC 的面积为3,则这样的点C 共有( B )A .2个B .3个C .4个D .5个 二、填空题3.如图,在矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,AD AB =12,△CEF 的面积为S 1,△AEB 的面积为S 2,则S 1S 2的值等于__116__.【解析】设△CEB 面积为S ,由△BEC ∽△AEB ,BC =1,AB =2,知S 2S =(AB CB )2=41,同理S S 1=41,∴S 1S 2=116. ,第3题图) ,第4题图)4.如图,在四边形ABCD 中,∠ABC =90°,AB =BC =22,E ,F 分别是AD ,CD的中点,连结BE ,BF ,EF .若四边形ABCD 的面积为6,则△BEF 的面积为__52__.【解析】连结AC ,过B 作EF 的垂线交AC 于点G ,交EF 于点H ,∵∠ABC =90°,AB=BC =22,∴AC =AB 2+AC 2=(22)2+(22)2=4,∵△ABC 为等腰三角形,BH⊥AC ,∴△ABG ,△BCG 为等腰直角三角形,∴AG =BG =2,∵S △ABC =12AB ·BC =12×22×22=4,∴S △ADC =2,∵S △ABC S △ACD=2,∴GH =14BG =12,∴BH=52,又∵EF =12AC =2,∴S △BEF =12EF ·BH =12×2×52=52. 三、解答题5. 如图,设反比例函数的解析式为y =3kx(k >0).(1)若该反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2,求k 的值;(2)若该反比例函数与过点M (-2,0)的直线l :y =kx +b 的图象交于A ,B 两点,如图所示,当△ABO 的面积为163时,求直线l 的解析式.解:(1)由题意A (1,2),把A (1,2)代入y =3k x ,得到3k =2,∴k =23(2)把M (-2,0)代入y =kx +b ,可得b =2k ,∴y =kx +2k ,由⎩⎪⎨⎪⎧y =3k x ,y =kx +2k消去y 得到x 2+2x -3=0,解得x =-3或1,∴B (-3,-k ),A (1,3k ),∵△ABO 的面积为163,∴12·2·3k++12·2·k =163,解得k =43,∴直线l 的解析式为y =43x +83.6.如图,在平面直角坐标系中,点A 的坐标为(0, 1),直线y =2x -4与抛物线y =14x 2相交于点B ,与y 轴交于点D .将△ABD 沿直线BD 折叠后,点A 落在点C 处.(1)试判断四边形ABCD 的类型,并证明你的结论.(2)在抛物线上是否存在点P ,使得S △PCD =3S △P AB ?如果存在,请求出所有满足条件的点P 的坐标;如果不存在,请说明理由.解:(1)由A (0, 1),B (4, 4),D (0,-4),可得AB =AD =BC =CD =5,四边形ABCD 是菱形(2)如果S △PCD =3S △PAB ,那么点P 到直线CD 的距离等于它到直线AB 距离的3倍.如果过点P 与CD 平行的直线与y 轴交于点Q ,那么点Q 到直线CD 的距离等于它到直线AB距离的3倍.所以QD =3QA.点Q 的位置有两个,在DA 的延长线上或AD 上.易得Q (0,72)或(0,-14),如图,过点Q (0,72)画CD 的平行线,得P (3+652,37+3658)或(3-652,37-3658).如图,过点Q (0,-14)画CD 的平行线,得P (3+52,7+358)或(3-52,7-358).。

中考数学专题复习和训练--求阴影部分的面积

中考数学专题复习和训练--求阴影部分的面积

合 .在解此类问题时,要注意观察和分析图形,会分析和组合图形,常常借助
阴影部分(不规则图形)转化为规则的易求的图形求解
.
转化化归 思想,将
典例精析:
例 1.如图 , AB 是⊙ O 的直径,弦 CD AB, C 30 ,CD 2 3 ,则 S 阴影 =
A.
B. 2
2 C. 3
3
分析: 本题的阴影部分是不规则的,要可以转化到规则的阴影部分,比
形中心的对角线长为 2,间隔一个顶点的对角线长为 3 ,则 CE 4 ;若 △AEC 和 △BEC 都以 CE 为求其面积的底边 ,则它们相应的高怎样化归在直角三角形中来求出呢? 解:(由同学们自我完成解答过程)
师生互动练习:
1.如图已知网格中每个小正方形的边长为 2,图中阴影部分的
每个端点位置情况计算图中的阴影部分的面积之和为
小圆⊙ O′向右 平移 至大圆⊙ O 使圆心重合(见 图① 的第二个图) ,这样来求圆环的面积更容易O;
图② 虽然是半圆也可以采用相同的方法求阴影部分半圆环的面积
.
A
B
A
C B
O O'
O
O' O
O
A
B
A
B
C
图① 三 .补转化为一个整体:
图②
如图第一个图是以等腰 Rt△AOB 的直角顶点 O 为圆心画出的直角扇形 OAB 和以 OA 、 OB 为
如转化为扇形 AOD 的面积来求;利用垂径定理和三角函数计算可以得出
C
EC ED,EO EA ,由此可以证明⊿ AEC ≌⊿ DEO ; 所以阴影部分等于
扇形 AOD 的面积,利用扇形面积的计算公式求出结果为
2 . 选D

中考数学中的三角形与四边形面积计算技巧总结

中考数学中的三角形与四边形面积计算技巧总结

中考数学中的三角形与四边形面积计算技巧总结在中考数学考试中,求解三角形与四边形的面积是一个常见的题型。

正确运用计算技巧可以快速准确地得出结果。

本文将总结中考数学中常用的三角形与四边形面积计算技巧,帮助同学们提高解题效率。

一、三角形面积计算技巧1. 直角三角形面积计算直角三角形是最简单的三角形,其面积计算公式为:面积 = 底边长度 ×高其中,底边是直角边,高是与底边垂直的边。

在解题时,可以利用勾股定理求得直角三角形的底边与高,从而计算出面积。

2. 一般三角形面积计算对于一般的三角形,我们可以利用海伦公式计算面积。

海伦公式的表达式为:面积= √[s × (s - a) × (s - b) × (s - c)]其中,s是三角形的半周长,等于三边长之和的一半;a、b、c分别是三角形的边长。

二、四边形面积计算技巧1. 矩形面积计算矩形是一种特殊的四边形,其面积计算公式为:面积 = 长 ×宽矩形的特点是四个角都是直角,且相对的两边长度相等。

在考试中遇到矩形的面积计算问题时,只需知道其长和宽即可直接计算出结果。

2. 平行四边形面积计算平行四边形也是一种常见的四边形,其面积计算公式为:面积 = 底边长度 ×高平行四边形的特点是两对边平行且相等,且相对的两个角也相等。

在计算平行四边形面积时,只需知道底边的长度以及与底边平行的高的长度即可。

3. 梯形面积计算梯形是一种具有两对平行边的四边形,其面积计算公式为:面积 = (上底 + 下底) ×高的一半梯形的关键是知道上底、下底和高的长度,通过将梯形划分为两个三角形和一个矩形,可以利用三角形和矩形的面积计算公式得出最终结果。

4. 菱形面积计算菱形是一种具有四个边相等的四边形,其面积计算公式为:面积 = 对角线1长度 ×对角线2长度的一半在计算菱形面积时,只需知道两条对角线的长度即可。

总结:在中考数学中,掌握三角形与四边形的面积计算技巧对解题非常重要。

中考数学复习考点知识归类讲解08 一次函数中的面积问题

中考数学复习考点知识归类讲解08 一次函数中的面积问题

中考数学复习考点知识归类讲解专题08 一次函数中的面积问题知识对接考点一、怎样解一次函数中的面积问题(1)如果三角形有一边在坐标轴上(或平行于坐标轴)直接用面积公式求面积.(2)如果三角形任何一边都不在坐标轴上,也不平行于坐标轴,则需转化为几个有边在坐标轴上的三角形面积之和(或差).专项训练一、单选题1.在平面直角坐标系中,点O(0,0),A(5,3),B(4,0),直线y=mx﹣5m+3将△OAB 分成面积相等的两部分,则m的值为()A.1 B.2 C.3 D.﹣12.将一次函数y=2x+4的图象与坐标轴围成的三角形面积是()A.4 B.5 C.6 D.73.如图,在平面直角坐标系中,已知点A坐标为(4-,5),点B坐标为(0,3),点D在x轴上.若线段DB交直线12y x=-于点C,当点D从点O向x轴负半轴方向运动时,△ABC面积的变化趋势是()A .先变大再变小B .先变小再变大C .无法确定D .保持不变 4.直线24y x =-与两坐标轴所围成三角形的面积等于()A .2B .4C .8D .165.一次函数y =2x +4的图象与坐标轴分别交于A ,B 两点,O 为坐标原点,则△AOB 的面积()A .6B .8C .2D .46.如图,点A ,B ,C 在一次函数y = -2x +m 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中的阴影部分的面积之和是()A .1B .3C .3(m -1)D .()322m -7.如图,直线l 分别与x 轴,y 轴相交于点A (5,0),B (0,4),点E (2.5,m )在l 上,直线y =kx +b 经过点E ,并与x 轴相交于点F .若EF 将△AOB 分割为左右两部分,且四边形OFEB 与△FEA 的面积之比为3:2,则线段OF 的长为( )A .0.5B .1C .1.5D .28.已知a ,b ,c 分别是Rt △ABC 的三条边长,c 为斜边长,∠C =90°,我们把关于x的形如y =a b x c c 的一次函数称为“勾股一次函数”.若点P (﹣1)在“勾股一次函数”的图象上,且Rt △ABC 的面积是92,则c 的值是( )A .6B .12C .D .9.如图①,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,ABP △的面积为y ,如果y 关于x 的函数图像如图②所示,则ABC 的面积是()A .6B .12C .16D .2110.如图,在平面直角坐标系xOy 中,半径为2的⊙O 与x 轴的正半轴交于点A ,点B 是⊙O 上一动点,点C 为弦AB 的中点,直线y =34x ﹣3与x 轴、y 轴分别交于点D 、E ,则△CDE 面积的最小值为( )A .3.5B .2.5C .2D .1.2二、填空题 11.在平面直角坐标系中,□OABC 的边OC 落在x 轴的正半轴上,且点C (4,0),B (6,2),直线y =2x +1以每秒1个单位的速度向右平移,经过_______秒该直线可将□OABC 的面积平分.12.已知平行四边形ABCD 三个顶点的坐标分别为A (﹣1,0),B (5,0),C (7,4).直线y =kx +1将平行四边形ABCD 分成面积相等的两部分,则k 的值为______.13.在平面直角坐标系xOy 中,直线24y x =-+与两坐标轴围成三角形的面积_______.14.直线m 过A (1,﹣4)和B (5,4)两点,则它与坐标轴围成的面积=__.15.如图,已知一次函数y =kx +b 的图象与反比例函数y =m x的图象交于点A (3,a ),点B (14﹣2a ,2).若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,则△ACD 的面积____.三、解答题16.(1)如图1,梯形ABCD 中对角线交于点O ,AB ∥CD ,请写出图中面积相等的三角形;(2)如图2,在直角坐标系中,O 是坐标原点,点A (﹣2,3),B (2,1).①分别求三角形ACO 和三角形BCO 的面积及点C 的坐标;②请利用(1)的结论解决如下问题:D 是边OA 上一点,过点D 作直线DE 平分三角形ABO 的面积,并交AB 于点E (要有适当的作图说明).17.如图,已知四边形ABCD 的四个顶点的坐标为(1,1),(3,1)A B ---,(1,2),(1,1)C D -.请用不含刻度的直尺和圆规作图并解答问题:(1)请在图中作出这个平面直角坐标系;(2)过点A 作一条直线把四边形ABCD 的面积二等分,并直接写出该直线对应的函数表达式.18.如图,在平面直角坐标系中,过点()0,6C 的直线AC 与直线OA 相交于点()4,2A ,动点M 在线段OA 和射线AC 上运动,试解决下列问题:(1)求直线AC 的表达式;(2)求OAC 的面积;(3)是否存在点M ,使OMC 的面积是OAC 的面积的14?若存在,求出此时点M 的坐标;若不存在,请说明理由.19.ABC 在平面直角坐标系中的位置如图所示,点C 在y 轴正半轴上,6OC =,OA ,OB60OB -=.过点A 的直线交BC 于点D ,ABD △的面积等于ABC 面积的13,请解答下列问题:(1)求点A ,点D 的坐标:(2)过点B 作BH AC ⊥于H ,交y 轴于点G ,求线段OG 的长;(3)点M 在y 轴上,平面内是否存在点N ,使以A ,B ,M ,N 为顶点的四边形是菱形?若存在,直接写出点N 坐标;若不存在,请说明理由.20.设一次函数11y k x b =+(10k ≠)的图像为直线1l ,一次函数22y k x b =+(20k ≠)的图像为直线2l ,若12k k =,且12b b ≠,我们就称直线1l 与直线2l 互相平行.解答下面的问题:(1)求过点()1,4P 且与已知直线21y x =--平行的直线l 的函数表达式;(2)设(1)中的直线l 分别与x 轴、y 轴交于A 、B 两点,直线21y x =--分别与x 轴、y 轴交于C 、D 两点,求四边形ABCD 的面积.21.如图,已知直线11:l y x b =+经过点()5,0A -,交y 轴于点B ,直线22:24l y x =--与直线11:l y x b =+交于点C ,交y 轴于点D .(1)求b 的值.(2)求BCD △的面积(3)当210y y ≤<时,则x 的取值范围是________.(直接写出结果)22.如图,已知直线AB 过点A (5,0)、B (0,﹣5),交直线OC 于点C ,且直线OC 的解析式为y 32x =-.(1)求直线AB 的解析式;(2)求△AOC 的面积;(3)若点P 在直线OC 上,且△BCP 的面积是△AOC 面积的2倍,求点P 的坐标.23.如图,直线1l :23y x =-与x 轴交于点A ,直线2l 经过点()()4,0,0,2B C ,与1l 交于点D .l的解析式;(1)求直线2(2)求ABD△的面积.。

中考数学专题探究-----面积问题(含详细解答)

中考数学专题探究-----面积问题(含详细解答)

中考数学专题探究-----面积问题面积问题在中考中占有很重要的地位,一般情况下,计算一些基本图形的面积,可以直接运用图形的面积公式,对于一些不规则的图形面积的计算,可以对图形进行转化,这类问题虽然解题方法比较灵活多样,但难度一般不太大。

但是,在中考压轴题中,有关面积的问题常常以动态的方式出现,经常与函数知识联系起来,有时还需要分类讨论。

因此,对考生要求较高,在解题时,要注意分清其中的变量和不变量,并把运动的过程转化成静止的状态,做到动静结合,以静求动。

考点一:面积的函数关系式问题典型例题:1、(2009年湖南衡阳)如图12,直线4+-=x y 与两坐标轴分别相交于A 、B 点,点M 是线段AB 上任意一点(A 、B 两点除外),过M 分别作MC ⊥OA 于点C ,MD ⊥OB 于D . (1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由;(2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少?(3)当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为)40<<a a (,正方形OCMD 与△AOB 重叠部分的面积为S .试求S 与a 的函数关系式并画出该函数的图象.解:(1)设点M 的横坐标为x ,则点M 的纵坐标为-x+4(0<x<4,x>0,-x+4>0); 则:MC =∣-x+4∣=-x+4,MD =∣x ∣=x ;∴C 四边形OCMD =2(MC+MD )=2(-x+4+x )=8∴当点M 在AB 上运动时,四边形OCMD 的周长不发生变化,总是等于8; (2)根据题意得:S 四边形OCMD =MC ·MD =(-x+4)· x =-x 2+4x =-(x-2)2+4∴四边形OCMD 的面积是关于点M 的横坐标x (0<x<4)的二次函数,并且当x =2,即当点M 运动到线段AB 的中点时,四边形OCMD 的面积最大且最大面积为4; (3)如图10(2),当20≤<a 时,42121422+-=-=a aS ; 如图10(3),当42<≤a 时,22)4(21)4(21-=-=a a S ;∴S 与a 的函数的图象如下图所示:图12(1)图12(2)图12(3)2、(2009宁夏)已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边A B 上沿A B 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作A B 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形M N Q P 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形M N Q P 的面积为S ,运动的时间为t .求四边形M N Q P的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. 解:(1)过点C 作CD AB ⊥,垂足为D . 则2A D =,当MN 运动到被CD 垂直平分时,四边形M N Q P 是矩形, 即32A M =时,四边形M N Q P 是矩形,32t ∴=秒时,四边形M N Q P 是矩形.tan 60PM AM = °=,M N Q P S ∴=四边形(2)1°当01t <<时,1()2M N Q P S P M Q N M N =+四边形·11)2t ⎤=++⎦2=+))4<≤aC PQBA M NC PQBA MN2°当12t ≤≤时1()2M N Q P S P M Q N M N =+四边形·1)12t ⎤=+-⎦·= 3°当23t <<时,1()2M N Q P S P M Q N M N =+四边形·1))2t t ⎤=-+-⎦=+3、(2010年辽宁丹东)如图,平面直角坐标系中有一直角梯形OMNH ,点H 的坐标为(-8,0),点N 的坐标为(-6,-4).(1)画出直角梯形OMNH 绕点O 旋转180°的图形OABC ,并写出顶点A ,B ,C 的坐标(点M 的对应点为A , 点N 的对应点为B , 点H 的对应点为C ); (2)求出过A ,B ,C 三点的抛物线的表达式;(3)截取CE =OF =AG =m ,且E ,F ,G 分别在线段CO ,OA ,AB 上,求四边形...BEFG 的面积S 与m 之间的函数关系式,并写出自变量m 的取值范围;面积S 是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFG 是否存在邻边相等的情况,若存在,请直接..写出此时m 的值,并指出相等的邻边;若不存在,说明理由.解:(1) 利用中心对称性质,画出梯形OABC . ∵A ,B ,C 三点与M ,N ,H 分别关于点O 中心对称, ∴A (0,4),B (6,4),C (8,0)CPQA M N CPQA MN(2)设过A ,B ,C 三点的抛物线关系式为2y ax bx c =++, ∵抛物线过点A (0,4),∴4c =.则抛物线关系式为24y ax bx =++. 将B (6,4), C (8,0)两点坐标代入关系式,得3664464840a b a b ++=⎧⎨++=⎩,. 解得1432a b ⎧=-⎪⎪⎨⎪=⎪⎩,.所求抛物线关系式为:213442y x x =-++.(3)∵OA =4,OC =8,∴AF =4-m ,OE =8-m .∴AG F EO F BEC EFG B ABC O S S S S S =---△△△四边形梯形 21=OA (AB +OC )12-AF ·AG 12-OE ·OF 12-CE ·OAm m m m m 421)8(21)4(2186421⨯-----+⨯⨯=)(2882+-=m m ( 0<m <4)∵2(4)12S m =-+. ∴当4m =时,S 的取最小值. 又∵0<m <4,∴不存在m 值,使S 的取得最小值. (4)当2m =-+GB =GF ,当2m =时,BE =BG .4、如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、QO MN HA CE FDB↑→ -8(-6,-4)x y运动的时间为x 秒时,APQ △与ABC △重叠部分....的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题:(1)点P 、Q 从出发到相遇所用时间是 秒;(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒; (3)求y 与x 之间的函数关系式. 解:(1)6. (2)8.(3)①当03x <≤时,2111sin 6022222AP Q y S AP AQ x x x ==︒==13△1·····. ②当3x <≤6时,1222222121sin 6021(12-2)22A P Q y S A P P Q A P C Q x x ==︒=△= ····=2.2x -+③当69x ≤≤时,设33P Q 与AC 交于点O . (解法一)过3Q 作3,Q E CB ∥则3CQ E △为等边三角形.33333212..Q E C E C Q x Q E C B C O P EO Q ∴===-∴ ∥△∽△(第28题)Q 1B C D Q 2 P 3 Q 3 EP 2 P 1 O3361,212211(212),33C P O C x O EEQ x O C C E x -∴===-∴==-3333311sin 60sin 6022AQ P AC P C O P y S S C P AC O C C P ===-△△△-S ··°··°111(6)(212)(6)22232x x x =-⨯-⨯--⨯·6.262x x =-+-.(解法二)如右图,过点O 作3OF CP ⊥于点F ,3O G C Q ⊥,于点,G 过点3P 作3P H DC ⊥交DC 延长线于点H .,.A CB ACD O F O G ∠=∠∴=又33,6,2122(6),C P x C Q x x =-=-=-3312C Q P C O Q S S ∴=△△3333321,3113211(212)(6)322(6).6C O P C P Q S S C Q P H x x x ∴==⨯=⨯--=-△△···又331sin 602AC P S C P AC =△··°1(6)6226).2x x =-⨯⨯=-P 3OABC DQ 3G H F3A O P y S ∴=△3326)6)26AC P O C P S S x x =-=---△△262x x =-+-考点2、面积最值问题典型例题:1、(2008年广东广州)如图11,在梯形ABCD 中,AD ∥BC ,AB=AD=DC=2cm ,BC=4cm ,在等腰△PQR 中,∠QPR=120°,底边QR=6cm ,点B 、C 、Q 、R 在同一直线l 上,且C 、Q 两点重合,如果等腰△PQR 以1cm/秒的速度沿直线l 箭头所示方向匀速运动,t 秒时梯形ABCD 与等腰△PQR 重合部分的面积记为S 平方厘米 (1)当t=4时,求S 的值(2)当4t ≤≤10,求S 与t 的函数关系式,并求出S 的最大值解.(1)t =4时,Q 与B 重合,P 与D 重合, 重合部分是BDC ∆=3232221=⋅⋅(2)当时,如图104≤≤tQB=DP=t-4,CR=6-t,AP=6-t 由PQR ∆∽BQM ∆∽CRN ∆图11得2)324(-=∆∆t S S PQRBQM2)326(t S S PQRCRN -=∆∆22)4(43)324(-=-=∆∆t S t S PQR BQM ,22)6(43)326(t S t S PQR CRN -=-=∆∆S =3255)-(t 23t)-(6434t 4333222+-=---)(当t 取5时,最大值为325当t 取6时,有最大值32 综上所述,最大值为325二、名题精练:1、(2009湖南永州)如图,在平面直角坐标系中,点A C 、的坐标分别为(10)(0--,、,,点B在x 轴上.已知某二次函数的图象经过A 、B 、C 三点,且它的对称轴为直线1x =,点P 为直线BC 下方的二次函数图象上的一个动点(点P 与B 、C 不重合),过点P 作y 轴的平行线交BC 于点F .(1)求该二次函数的解析式;(2)若设点P 的横坐标为m ,用含m 的代数式表示线段P F(3)求PBC △面积的最大值,并求此时点P 的坐标. 解:(1)设二次函数的解析式为2(0)y ax bx c a a b c =++≠,、、为常数,由抛物线的对称性知B 点坐标为(30),,依题意得:093a b c a b c c ⎧-+=⎪++=⎨⎪=⎩(第25题)解得:33a b c ⎧=⎪⎪⎪⎪=-⎨⎪⎪⎪=⎪⎩∴所求二次函数的解析式为233y x x =--(2)P 点的横坐标为m ,P ∴点的纵坐标为233m m --设直线BC 的解析式为(0)y kx b k k b =+≠,、是常数,依题意,得30k b b +=⎧⎪⎨=⎪⎩3k b ⎧=⎪∴⎨⎪=⎩ 故直线BC的解析式为3y x =-∴点F的坐标为3m ⎛-⎝⎭2(03)3PF m ∴=-+<<(3)PBC △的面积12C P F B P F S S S P F B O =+=△△·=2213323228m ⎛⎫⎫⨯-+⨯=--+ ⎪⎪ ⎪⎝⎭⎝⎭∴当32m =时,PBC △的最大面积为8把32m =代入233y m m =--4y =-∴点P的坐标为324⎛⎫-⎪ ⎪⎝⎭,(第25题)2、(2007年淮安)在平面直角坐标系中,放置一个如图所示的直角三角形纸片AOB ,已知OA=2 ∠AOB=30°,D 、E 两点同时从原点O 出发,D 点以每秒3个单位长度的速度沿x 轴的正方向运动,E 点以每秒1个单位长度的速度沿y 轴的正方向运动,设D 、E 两点运动的时间为t 秒。

中考数学复习之因动点产生的面积问题解题策略

中考数学复习之因动点产生的面积问题解题策略

因动点产生的面积问题解题策略一.解题策略解读:面积的存在性问题常见的题型和解题策略有两类:图1 图2 图3 计算面积常用到的策略还有:图4 图5 图6例1.已知抛物线y=mx2+(1-2m)x+1-3m与x轴交于不同的两点A、 B.(1) 求m的取值范围;(2) 证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3) 当<m≤8时,由(2)求出的点P和点A、 B构成的△ABP的面积是否有最值,若有,求出最值及相应的m的值;若没有,请说明理由.思路:1. 已知的抛物线的解析式可以因式分解的,抛物线过x轴上的定点(-1, 0).2. 第(2)题分两步,先对m赋予两个不同的值,联立求方程组的解,再验证这个点是确定的.3. 第(3)题中△ABP的高为定值,点A为定点,求△ABP的最大面积,其实就是求点B的横坐标的最大值.例2.问题提出(1) 如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2) 如图2,在矩形ABCD中,AB=4, AD=6, AE=4, AF=2.是否在边BC、CD上分别存在点G、 H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3) 如图3,有一块矩形板材ABCD, AB=3米, AD=6米,现想从此板材中截出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,米,∠EHG=45°.经研究,只有当点E、 F、 G分别在边AD、 AB、 BC上时,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能截出符合要求的部件.试问能否截得符合要求的面积尽可能大的四边形EFGH部件?若能,求出截得的四边形EFGH 部件的面积;若不能,请说明理由.图1 图2 图3思路:1. 第(2)题的模型是“打台球”两次碰壁问题,依据光的反射原理.2. 第(3)题需先设AF的长并求解,再验证点H在矩形内部,然后计算面积.例3.如图1,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8, OE=17.抛物线y=x2-3x+m与y轴交于点A,抛物线的对称轴与x轴交于点B,与CD交于点K.(1) 将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①求点F的坐标;②请直接写出抛物线的函数表达式;(2) 将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连结OG,折痕与OG交于点H,点M是线段EH上的一个动点(不与点H重合),连结MG, MO,过点G作GP⊥OM于点P,交EH于点N,连结ON.点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1·S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化的范围;若不变,请直接写出这个值.温馨提示: 考生可以根据题意,在备用图中补充图形,以便作答.图1 备用图思路:1. 第(1)题中点F的位置是由A、 B两点确定的,A、 B两点的坐标都隐含在抛物线的解析式中.2. 第(2)题思路在画示意图过程中,点G是关键点.以E为圆心,EO为半径画弧,交CD于点G.例 4.如图,已知平行四边形ABCD的三个顶点A(n, 0)、 B(m, 0)、 D(0,2n)(m>n>0),作平行四边形ABCD关于直线AD的对称图形AB1C1 D.(1) 若m=3,试求四边形CC1B1B面积S的最大值;(2) 若点B1恰好落在y轴上,试求的值.思路:1. 第(1)题先说理再计算,说理四边形CC1B1B是矩形.2. 第(2)题根据AB1=AB列关于m、 n的方程,整理就可以得到m与n的关系.例5.如图,在平面直角坐标系中,抛物线y=-x2+bx+c经过点A(3, 0)和点B(2, 3),过点A的直线与y轴的负半轴相交于点C,且tan∠CAO=.(1) 求这条抛物线的表达式及对称轴;(2) 连结AB、 BC,求∠ABC的正切值;(3) 若点D在x轴下方抛物线的对称轴上,当S△ABC =S△ADC时,求点D的坐标.解析:1. 直觉告诉我们,△ABC是直角三角形.2. 第(3)题的意思可以表达为: B、 D在直线AC的两侧,到直线AC的距离相等.于是我们容易想到,平行线间的距离处处相等.例6.如图,半圆O的直径AB=10,有一条定长为6的动弦CD在弧AB上滑动(点C、D分别不与点A、 B重合),点E、 F在AB上,EC⊥CD, FD⊥CD.(1) 求证:EO=FO;(2) 连结OC,如果△ECO中有一个内角等于45°,求线段EF的长;(3) 当动弦CD在弧AB上滑动时,设变量CE=x,四边形CDFE的面积为S,周长为l,问:S与l是否分别随着x变化而变化?试用所学过的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.思路:1. 用垂径定理和平行线等分线段定理证明点O是EF的中点.2. 第(2)题的△ECO中,∠ECO是定值,45°的角分两种情况.3. 第(3)题用x表示OE的长,在△ECO中,∠ECO是定值.例7.直线y=2x+m与抛物线y=ax2+ax+b都过点M(1, 0),且a<b.(1) 求抛物线顶点Q的坐标(用含a的式子表示);(2) 试说明抛物线与直线有两个交点;(3) 设抛物线与直线的另一个交点为N.①若-1≤a≤-时,求MN的取值范围;②求△QMN的面积最小值.思路:1. 将M(1, 0)分别代入直线和抛物线的解析式,可以确定m的值,用a表示b.2. 联立直线与抛物线的解析式,消去y,得到关于a的一元二次方程,判断Δ>0.3. 第(3)题①,分别求a=-1和a=-时直线与抛物线的交点M、 N的坐标,再求MN的长,两个MN的长,就是MN的取值范围的两端值.例8.已知Rt△EFP和矩形ABCD如图1摆放(点P与点B重合),点F、 B(P)、 C 在同一直线上,AB=EF=6cm, BC=FP=8cm, ∠EFP=90°.如图2, △EFP从图1位置出发,沿BC方向匀速运动,速度为1cm/s, EP与AB交于点G;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连结AF、 PQ.当点Q停止运动时,△EFP也停止运动.设运动时间为t(s)(0<t<6).解答下列问题:(1) 当t为何值时,PQ∥BD?(2) 设五边形AFPQM的面积为y(cm2),求y与t之间的函数关系式;(3) 在运动过程中,是否存在某一时刻t,使S五边形AFPQM ∶S矩形ABCD=9∶8?若存在,求出t的值;若不存在,请说明理由;(4) 在运动过程中,是否存在某一时刻t,使点M在线段PG的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.图1 图2思路:1. 把线段BP、 PC、 CQ、 DQ的长用t表示出来.再把线段BG、 DM的长用t表示出来.2. 用割补法求五边形AFPQM的面积,等于直角梯形减去两个直角三角形的面积.3. 第(3)题用第(2)题的结果,直接解方程就可以了.4. 第(4)题是根据MP2=MG2列方程,需要构造以MP为斜边的直角三角形.例9.如图1,在平面直角坐标系中,过原点O及点A(8, 0)、 C(0, 6)作矩形OABC,连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从点A出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1) 如图1,当t=3时,求DF的长;(2) 如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值;(3) 连结AD,当AD将△DEF分成的两部分的面积比为1∶2时,求相应的t的值.图1 图2思路;1. 作DM⊥AB于M, DN⊥OA于N,那么△NDF与△MDE的相似比为3∶4.2. 面积比为1∶2要分两种情况讨论.把面积比转化为两个同高三角形底边的比.3. 过点E作OA的平行线,构造“8字型”相似,这样就把底边的比利用起来了.例10.如图1,二次函数y=x2+bx+c的图象与x轴交于A、 B两点,与y轴交于点C, OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1) 求b、 c的值;(2) 如图1,连结BE,线段OC上点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3) 如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.图1 图2思路:1. 由已知抛物线的解析式可得C(0, c),再用c表示B、 D两点的坐标,然后将B、 D代入抛物线的解析式列关于b、 c的方程组.2. 第(2)题: 通过点C、 F分别与点D、 F'关于直线l对称,得到点F'是BE的中点,从而求得点F的坐标.3. 第(3)题: 设点P的横坐标为m,用m表示点M、 N的坐标,进而用m表示线段PM、 PN、 PA的长,根据两个三角形的面积相等,求出PN边上的高QH.最后讨论NQ与QH的关系.例11.如图,在平面直角坐标系中,直线y=12x+2与x 轴交于点A,与y 轴交于点C.抛物线y=-x 2+bx+c 经过A 、 C 两点,与x 轴的另一个交点为点B.(1) 求抛物线的函数表达式;(2) 点D 为直线AC 上方抛物线上一动点.① 连结BC 、 CD.设直线BD 交线段AC 于点E, △CDE 的面积为S 1, △BCE 的面积为S 2,求 12S S 的最大值; ② 过点D 作DF ⊥AC,垂足为F,连结CD.是否存在点D,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求出点D 的坐标;若不存在,请说明理由.图1 备用图思路: 1. △CDE 与△BCE 是同高三角形,面积比等于底边的比.构造“8字型”,把底边的比转化为竖直线段的比.2. 第(3)题的第一种情况∠DCF=2∠BAC,过点C 作x 轴的平行线,通过内错角相等,再作轴对称的角,很容易找到点D 的位置.3. 第(3)题的第二种情况∠CDF=2∠BAC,先要探求2∠BAC的大小(正切值),如果这一步探究不出来,基本上进行不下去.例12.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O 顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= ;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN 的面积为y,求当x为何值时y取得最大值?最大值为多少?思路:(1)由旋转的性质可以证明△OBC是等边三角形,从而可得∠OBC的度数;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤83时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E,利用面积公式表示出△OMN的面积(y值);②当8 3<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H,利用∠CBO=60°表示出MH,再利用面积公式表示出△OMN的面积(y值);③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G,易求OG,再利用面积公式表示出△OMN的面积(y值),最后分别求出三种情况下面积最大值,从而求出整个运动过程中y的最大值.例13. 在平面直角坐标系中,抛物线2y ax bx c=++交x轴于A、B两点,交y轴于点C(0,43-),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=34.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方向以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由;②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.思路:本题是代数几何综合题,以平面直角坐标系为背景,考查了求二次函数解析式,二次函数的性质,,方程组的解法,几何图形面积的表示,相似三角形的判定与性质,分类讨论思想,三角形的面积的最值问题,综合性强,难度大,解题的关键是需要学生有良好的运算能力及分析问题和解决问题的能力,还得富有耐心.(1)利用A、B、C三点的坐标确定二次函数的解析式.(2)利用题目的已知条件表示出相关线段的长,①中利用三角函数值探索出∠PAQ=∠ACD,再根据题目中的要求使得△ADC与△PQA相似,进行分类讨论得到对应线段成比例,列出关于t的方程求解即可;②直接利用三角形的面积公式列出△APQ与△CAQ 的面积之和与时间t之间的函数关系式,再将所得的二次函数的解析式配方确定最值即可得到答案.。

【中考数学难点】图形面积专项练习题

【中考数学难点】图形面积专项练习题

【中考数学难点】图形面积专项练习题一、选择题1、一个三角形的边长都是整数,且周长为8,则这个三角形的面积是( ) A 24 B 22 C 32 D 3452或2、如图,已知△ABC 的面积为1,且21===FD AF EF CE DC BD ,则△DEF 的面积为( )A 81B 94C 41D 2783、如图,△ABC 的面积为182cm ,点D 、E 、F 分别位于AB 、CB 、CA 上,且AD=4cm ,DB=5cm ,如果△ABE 的面积和四边形BEFD 的面积相等,则△ABE 的面积是( ) A 82cmB 92cmC 102cmD 122cm4、如图,把△ABC 沿AB 边平移到△A’B’C’的位置,它们的重叠部分的面积是△ABC 的面积的一半,若AB=2,则此三角形一定的距离AA’是( ) A 12- B 22C 1D215、不等边三角形ABC 的两条高的长度为4和12,若第三条高也是整数,那么它的长度最大值是( ) A 4 B 5 C 6 D 76、如图,E 、H 三等分AD ,F 、G 三等分BC ,P 、S 三等分AB ,Q 、R 三等分DC ,则四边形TVNM 的面积是四边形ABCD 面积的( )A 31B 41C 61D 91二、填空题7、如图,在梯形ABCD 中,AB ∥CD ,E 为DC 中点,△ACD 的面积为1,则△ECB 的面积为__________.8、将一矩形切去一角后得一边长分别是13、19、20、25和31的五边形(顺序不一定按此),则此五边形的面积为___________.9、在周长是94,各边的长都是整数的各个矩形中,最大的面积是__________.10、平行于三角形一边的9条直线,将另一条边10等分,同时把三角形分成10个不同的部分,已知这些部分中最大面积是57,则原三角形的面积为_________.11、如图所示,在矩形ABCD 中,△AMD 的面积为15, △BCN 的面积为20,则四边形MFNE 的面积为_________.12、△ABC 的中线AD=1,AB+AC=25,BC=2,则ABC S ∆=___________.三、解答题13、如图,M 是△ABC 的边AC 的中点,过M 作AC 的垂线交AB 的延长线于E ,过B 作BF ∥EM 交AC 于F ,求证:ABC AEF S S ∆∆=21.14、在△ABC 内任取一点O ,设AO 、BO 、CO 的延长线各交对边于A’、B’、C’.求证:1''''''=++CC OC BB OB AA OA .15、如图,设△ABC 的面积为1,AD=m 1AB ,BE=n1BC ,CF=p 1CA.试求△DEF 的面积.16、如图,P 为△ABC 内任一点,三边a 、b 、c 的高分别为a h 、b h 、c h ,P 到a 、b 、c 的距离分别为a t 、b t 、c t ,求证:1=++ccb b a a h t h t h t .17、如图,已知平行四边形ABCD 中,E 、F 分别在CD 、AD 上,且AE=CF ,AE 与CF 相交于G ,求证:BG 平分∠AGC.18、如图,EFGH 是正方形ABCD 的内接四边形,∠BEG 与∠CFH 都是锐角,已知EG=3,FH=4,四边形EFGH 的面积为5,求正方形ABCD 的面积.19、如图,四边形PQMN 是平行四边形ABCD 的内接四边形. (1)若MP ∥BC 或NQ ∥AB ,求证:ABCD PQMN S S 平行四边形四边形21=. (2)若ABCD PQMN S S 平行四边形四边形21=,问能否推出MP ∥BC 或QN ∥AB ?证明你的结论.20、如图,梯形ABCD 中,AD ∥BC ,AB=CD=3cm ,∠C=60°,BD ⊥CD. (1)求BC 、AD 的长度;(2)若点P 从点B 开始沿BC 边向点C 以2cm/秒的速度运动,点Q 从点C 开始沿CD 边向点D 以1cm/秒的速度运动,当P 、Q 分别从B 、C 同时出发,写出五边形ABPQD 的面积S 与运动时间t 之间的函数关系式,并写出自变量t 的取值范围(不包含点P 在B 、C 两点的情况) (3)在(2)的前提下,是否存在某一时刻t ,使线段PQ 把梯形ABCD 分成两部分的面积比为1:5?若存在,求出t 的值;若不存在,请说明理由.。

2021年中考数学复习-图形面积问题(解析版)

2021年中考数学复习-图形面积问题(解析版)

图形面积问题【典例1】小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?【答案】:宽6米,长10米【解析】:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=x x 3442+-= 4289)417(42+--=x ∵104340≤-<x ∴2176<≤x ∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.【典例2】某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?【答案】:(1)四边形EFGH 是正方形x(2)当CE =CF =0.1米时,总费用最省.【解析】:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+ )24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.【典例3】某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m ²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?【答案】:(1)y=200)10(22+--=x (2)187.5【解析】:)240(x x y -=)20(22x x --= 200)10(22+--=x∵152400≤-<x∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内,而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.【典例4】如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论? 【答案】:(1)25(2)25 【解析】:(1)∵长为x 米,则宽为350x -米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x 米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.即:使面积最大的x 值与中间有多少道隔墙无关.【典例5】小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?【答案】:(1) (2)15,225【解析】:(1)根据题意,得x x x x S 3022602+-=⋅-=自变量的取值范围是(2)∵01<-=a ,∴S 有最大值当时, 答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.【典例6】如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.【答案】:(1)1(2)40.5(3)最大面积为cm 2 【解析】:(1)设正方形的边长为cm , 则. 即. 解得(不合题意,舍去),. 剪去的正方形的边长为1cm .(2)有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2, 则与的函数关系式为:.即. 改写为. 当时,.即当剪去的正方形的边长为2.25cm 时,长方体盒子的侧面积最大为40.5cm 2.(3)有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2. 若按图1所示的方法剪折, 则与的函数关系式为: x x x x y ⋅-⋅+-=22102)28(2 即.当时,.若按图2所示的方法剪折,则与的函数关系式为:x x x x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm 2. 【典例7】某中学为初一新生设计的学生单人桌的抽屉部分是长方体,抽屉底面周长为180cm ,高为20cm.请通过计算说明,当底面的宽x 为何值时,抽屉的体积y 最大?最大为多少?(材质及其厚度等暂忽略不计)【答案】解:根据题意,得y =20x(1802-x),整理得 y =-20x 2+1800x =-20(x 2-90x +2025)+40500=-20(x -45)2=40500.∵-20<0,∴当x =45时,函数有最大值,y 最大值=40500,即当底面的宽为45cm 时,抽屉的体积最大,最大为40500cm 3.【典例8】 小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40cm ,这个三角形的面积S(单位:cm 2)随x(单位:cm)的变化而变化.(1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)当x 是多少时,这个三角形的面积S 最大?最大面积是多少?(参考公式:当x =-b 2a 时,二次函数y =ax 2+bx +c(a ≠0)有最小(大)值4ac -b 24a) 【答案】解: (1)S =12x ·(40-x)=-12x 2+20x ; (2)S =-12x 2+20x =-12(x 2-40x)=-12[x 2-40x +(-20)2-(-20)2]=-12[(x -20)2-400]=-12(x -20)2+200.∵a =-12<0,∴抛物线的开口向下, ∴当x =20时,S 最大值=200,即当x =20时,这个三角形的面积S 最大,最大面积为200cm 2.【典例9】某农场拟建一间矩形种牛饲养室,饲养室的一面靠墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m 2).(1)如图1,问饲养室长x 为多少时,占地面积y 最大?(2)如图2,现要求在图中所示位置留2m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m 就行了.”请你通过计算,判断小敏的说法是否正确.【答案】解:(1)∵y =x ·50-x 2=-12(x -25)2+6252,∴当x =25时,占地面积最大,即饲养室长x 为25m 时,占地面积y 最大;(2)∵y =x ·50-x -22=-12(x -26)2+338,∴当x =26时,占地面积最大,即饲养室长x 为26m 时,占地面积y 最大;∵26-25=1≠2,∴小敏的说法不正确.。

中考数学复习:专题9-15 例谈求阴影部分面积的几种常见方法

中考数学复习:专题9-15 例谈求阴影部分面积的几种常见方法

例谈求阴影部分面积的几种常见方法【专题综述】在初中数学中,求阴影部分的面积问题是一个重要内容,在近年来的各地中考试题中屡见不鲜.这类试题大多数都是求不规则图形的面积,具有一定的难度,因此,正确把握求阴影部分面积问题的解题方法,显得尤为重要.本文举例介绍解决这类问题的常见方法.【方法解读】一、直接求解法例1 如图1,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,AD变到AD1位置,折痕为AE.再将△AED1以D1E为折痕,向右折叠,AE变到A1E位置,且A1E交BC于点F.求图中阴影部分的面积.分析因为阴影部分是一个规则的几何图形Rt△CEF,故根据已知条件可以直接计算阴影部分面积.解如图1,根据对称性可得AD=AD1=A1D1=6.由已知条件易知:EC=D1B=4,BC=6;Rt△FBA1∽Rt△FCE.设FC为x,则FB=6-x.二、间接求解法例2 如图2,⊙O1与⊙O2外切于点C,且两圆分别和直线l相切于A、B两点,若⊙O1半径为3cm;⊙O2半径为1cm,求阴影部分面积.分析这是求一个不规则图形的面积,没有现成的面积公式,因此应采用间接的方法,设法转化为规则图形的面积的和或差去计算.三、整体合并法例3 如图3,⊙A、⊙B、⊙C两两不相交,且半径都是0.5cm,求三个阴影部分面积之和.分析所求的阴影部分面积是三个扇形面积之和,因为三个扇形圆心角度数不知道,所以无法单独求解,但仔细观察发现,三个扇形的圆心角分别是△ABC的三个内角,其和为180°,而扇形半径都相等,所以三个扇形能合并成一个半圆.于是问题获解.解如图3,因为三个圆的半径相等,三个扇形圆心角之和是180°,所以其面积就是半圆面积.四、等积变换法例4 如图4,A是半径为R的⊙O外一点,弦BC为3R,OA∥BC,求阴影部分面积.分析本题的阴影部分是不规则的图形,求其面积较困难,但灵活运用等积变换,就可以把它的面积转化为扇形OBC的面积,从而获解.解连接OC,OB,五、分割法例5 如图5,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,求阴影部分面积.分析阴影部分图形不规则,不能直接求面积,可以把它分割成几个部分求面积的和.解如图5,连接CD.∵AC、BC是直径,∴∠ADC=∠BDC=90°,∴A、D、B三点共线.设阴影部分面积被分割为S1、S2、S3、S4四部分.则六、转化法例6如图(1),大半圆O与小半圆O1相切于点C,大半圆的弦AB与小半圆相切于点F,且AB∥CD,AB =4cm,求阴影部分面积.分析如果想直接求阴影部分面积,无法求解,因为它不是规则图形.但要采取转化思想,把小半圆平移到与大半圆的圆心重合的位置,作OE⊥AB于点E.连接OB,可知BE=2cm,阴影部分面积等于大半圆面积减去小半圆的面积.解如图(2),将小半圆O1移至与大半圆圆心重合,作O E⊥AB于点E,则BE=12AB=2cm.设大圆半径为R,小圆半径为x,在Rt△OEB中,有七、割补法例7 如图7,点P(3a,a)是反比例函数y=12x与⊙O在第一象限内的一个交点,求阴影部分的面积.分析阴影部分分两部分,难于逐一求解,但考虑反比例函数的对称性,结合割补原理,问题变得特别简单.解如图7,把右上角的S1部分分割下来,移到左下方补在S3处,与S2就组成了一个扇形OAB.易知:∵P(3a,a)在反比例函数y=12x的图象上,∴3a=12a.解得:a1=2,a2=-2(舍去).∴P坐标为(6,2).连接OP,作PC⊥x轴于点C,得:八、方程建模法例8如图8,正方形边长为a,以每边为直径在正方形内画四个半圆,求阴影部分的面积.分析本题直接求阴影部分面积较复杂,但观察图形特点引入方程的思想,问题变得非常简单.解正方形由四个阴影花瓣和四个空白图形组成,如图8,设一个阴影花瓣面积为x,一个空白图形面积为y.根据题意得:因此阴影部分面积为.222aaπ-.【强化训练】1.(2017内蒙古包头市)如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=42,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+12.(2017四川省凉山州)如图,一个半径为1的⊙O1经过一个半径为2的⊙O的圆心,则图中阴影部分的面积为()A.1B.12C.2D.223.(2017四川省资阳市)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将Rt△ABC绕点A逆时针旋转30°后得到△ADE,则图中阴影部分的面积为()A.1312πB.34πC.43πD.2512π4.(2017衢州)运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.252πB.10πC.24+4πD.24+5π5. (2017云南省)如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为.6.(2017吉林省)如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画BE,CE.若AB=1,则阴影部分图形的周长为(结果保留π).7. (2017四川省达州市)如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=33,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=92CE;④32S阴影.其中正确结论的序号是.8. (2017湖北省恩施州)如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=23,则图中阴影部分的面积为.(结果不取近似值)9. (2017内蒙古赤峰市)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD 与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:A M是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).10.(2017新疆)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:B E是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.。

中考数学几何图形与面积计算专题

中考数学几何图形与面积计算专题

中考数学几何图形与面积计算专题在中考数学中,几何图形与面积计算是一个重要的考点,它不仅要求我们掌握基本的几何图形性质,还需要熟练运用各种面积计算公式来解决问题。

这一专题对于培养我们的空间想象力、逻辑思维能力和数学运算能力都具有重要意义。

首先,让我们来回顾一下常见的几何图形及其面积公式。

三角形是最基本的几何图形之一。

对于一个底为 b,高为 h 的三角形,其面积 S = 1/2 × b × h。

如果已知三角形的两边 a、b 及其夹角 C,那么面积可以通过 S = 1/2 × a × b × sinC 来计算。

矩形的面积计算则相对简单,长为 a,宽为 b 的矩形面积 S = a × b。

平行四边形的面积等于底乘以高,即 S = a × h,其中 a 是底边长,h 是这条底边对应的高。

梯形的面积公式为 S = 1/2 ×(上底+下底)×高。

圆形的面积 S =πr²,其中 r 是圆的半径。

接下来,我们通过一些具体的例子来看看如何运用这些公式解决问题。

例 1:如图,在直角三角形 ABC 中,∠C = 90°,AC = 6,BC =8,求三角形 ABC 的面积。

解:因为∠C = 90°,所以这是一个直角三角形,根据直角三角形的面积公式,S = 1/2 × AC × BC = 1/2 × 6 × 8 = 24 。

例 2:已知平行四边形 ABCD 的底边长为 10,高为 6,求其面积。

解:平行四边形的面积 S =底 ×高= 10 × 6 = 60 。

在解决几何图形面积计算问题时,常常会遇到一些复杂的图形,这时需要我们通过合理的分割或组合,将其转化为我们熟悉的基本图形。

例如,对于一个不规则的多边形,我们可以通过连接对角线,将其分割成若干个三角形,然后分别计算这些三角形的面积,最后相加得到多边形的面积。

中考数学专题复习 专题28 求几何图形面积及面积法解题的问题(学生版)

中考数学专题复习 专题28 求几何图形面积及面积法解题的问题(学生版)

中考专题28 求几何图形面积及面积法解题的问题一、几何图形面积公式1.三角形的面积:设三角形底边长为a ,底边对应的高为h ,则面积S=ah/22.平行四边形的面积:设平行四边形的底边长为a ,高为h ,则面积S=ah3.矩形的面积:设矩形的长为a ,宽为b ,则面积S=ab4.正方形的面积:设正方形边长为a ,对角线长为b ,则面积S=222b a = 5.菱形的面积:设菱形的底边长为a ,高为h ,则面积S=ah若菱形的两条对角线长分别为m 、n ,则面积S=mn/2也就是说菱形的面积等于两条对角线乘积的一半。

6.梯形的面积:设梯形的上底长为a,下底长为b ,高为h ,则面积S=(a+b)h/27.圆的面积:设圆的半径为r,则面积S=πr 28.扇形面积计算公式9.圆柱侧面积和表面积公式(1)圆柱的侧面积公式S 侧=2πrh(2)圆柱的表面积公式:S 表=2S 底+S 侧=2πr 2+2πrh2360r n s π⋅=lr s 21=或10.圆锥侧面积公式从右图中可以看出,圆锥的母线L 即为扇形的半径,而圆锥底面的周长是扇形的弧长2πr ,这样,圆锥侧面积计算公式:S 圆锥侧=S 扇形=πrL注意:有时中考专题题还经常考查圆的周长、扇形的弧长的公式的应用。

(1)圆的周长计算公式为:C=2πr(2)扇形弧长的计算公式为:(3)其他几何图形周长容易计算,不直接给出。

二、用面积法解题的理论知识1.面积方法:运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

2.面积法解题的特点:把已知量和未知量用面积公式联系起来,通过运算达到求证的结果。

所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

三、面积方法问题主要涉及以下两部分内容1.证明面积相等的理论依据(1)三角形的中线把三角形分成两个面积相等的部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学中的面积问题(一)
一、教学目标
(一)知识目标:
1.掌握三角形、平行四边形、扇形的面积计算公式;
2.熟悉平行线、三角形、四边形以及多边形等基本几何图形的性质;
3.熟悉圆的性质.
(二)能力目标:
1.能运用平移、旋转、轴对称等图形变换等方法对图形进行再构造;
2.在解决问题的过程中能合理运用转化的数学思想把复杂图形转化为基本几何图形求解.
(三)情感目标:
通过本专题的学习,培养学生自主探究与合作交流的能力,收获解题的成功感,并受到数学图形美的熏陶.
二、过程与方法
1、指导学生经历观察、猜想、验证、计算,归纳平移、旋转、轴对称、割补、等积变换等方法,掌握平行线、三角形、圆的有关性质定理的运用;
2、鼓励学生在认真观察之后进行小组讨论,交流解题方法,探索最优解题途径;
3、引导学生利用知识把复杂图形转化成简单几何图形进行求解,掌握转化的思想.
三、教学重难点:
重点:面积计算;
难点:如何将复杂问题(图形)转化为简单问题(图形).
四、教学过程:
让学生回顾知识,归纳出解决面积计算5种的基本思路和方法。

问题学生活动教师活动
例1:在四边形ABCD中,AB=2,BC=5,CD=5,DA=4,∠B=90°.求四边形ABCD的面积本题是一道
基础题;图
形简单,解
题思路明
确,计算简

教师引导
学生发现
常用面积
计算方法:
割补法.
练习1:有一块田地的形状和尺寸如图所示,求它的面积.图形简单,
学生自行完
成.
割补法强

例2:如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C
重合),且PE∥BC交于E,PF∥CD交于
AD于F,则阴影部分的面积为.采用先让学
生独立思考
探究,然后
鼓励学生在
自己独立思
考探究的基
础上,充分
的发表自己
的意见.
教师参与
到小组的
讨论中,引
导学生发
现把阴影
部分转化
为三角形
求解.教师
要关注学
生能否利
用平行四
边形性质
进行等积
变换.
练习2.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.本题由学生
独立完成。

要能说出解
题时用了哪
些图形变换
方法.
教师提问:
常用的图
形变换方
法有哪
些?
例3.如图,以BC为直径,在半径为2,圆心角为900的扇形内作半圆,交AB于点D,则阴影部分的面积是()学生分小组
进行交流和
讨论,充分
说明思路和
解题方法.
由于该题
难度不大,
在提问时
要多关注
中下学生.
练习3.如图6,半圆的直径AB = 10, P为AB上一点,点C, D为半圆的三等分点,则阴影部分的面积等于教师可先适当引导学生分析,利用平行线的性质进行转化.
例4.如图, AB//CD,已知△AOB 和△BOC 的面积, 分别为25 cm 2和35 cm2, 那么△DOC的面积是cm. 学生:
1.仔细观察
图形特点;
2.结合条件
能联系起哪
些相关知
识?
教师引导:
1.图形整体
有什么特
点?
2.平行线联
想到什么
知识可以
应用到面
积上?
3.相似?
练习4:
探索:在如图8至图10中, △ABC的面积为a.
(1)如图8,延长△ABC的边BC到点D,使CD =BC,
连结DA,若△ACD的面积为S1,则S1=. (用
含a 的代数式表示)1.学生分小
组进行讨
论;
2.由学生分
批次讲述他
们阶段性的
发现和结
论.
教师提问:
1.阴影部分
是什么图
形?
2.三角形面
积怎样
求?
3.相似三角
形中的面
D
C B A
(2)如图9,延长△ABC 的边BC 到D,延长边CA 到E,使CD = BC, A E = CA,连结D E,若△DEC 的面积为S 2,则S 2 = (用含a 的代数式表示) ,并写出理由.
(3) 在图9的基础上延长AB 到点F, 使B F = AB ,连结FD 、FE,得到△D EF (如图10) ,若阴影部分的面积为S 3 , 则S 3 = (用含a 的代数式表示) .
积怎么求?教师关注学生是否存在畏难情绪,鼓励学生进行猜想、验证、计算.
例5.将n 个边长都为1 cm 的正方形按如图所示的方法摆放, 点A 1、A 2、⋯、An 分别是正方形的中心, 则n 个这样的正方形重叠部分(阴影部分) 的面积和为( )
学生: 1.仔细观察图形特点; 2.结合条件能联系起哪些相关知识?
教师提问: 1.阴影部分是什么图形?
2.四边形面积怎么求,怎么转化?
3.多尝试找规律
练习5:如图,∠AOB = 45°,过OA 上到点O 的距离分别为1, 3,5, 7, 9, 11⋯的点作OA 的垂线与OB 相交, 得到并标出一组黑色梯形, 它们的面积分别为S 1 , S 2 ,S 3 , ⋯,观察图中的规律,求出第10个黑色梯形的面积S 10 = .
E D C B A
F
E D C B A
例6、小明在操场上做游戏,发现地上有一个不规则的封闭图形ABC, 为了知道它的面积, 小明在封闭图形内划出了一个半径为1米的圆, 如图,在不远处向圈内掷石子,且记录如下:图形简单,学生自行完成
有关知识:三角形、四边形、圆的面积公式,涉及解直角三角形等有关知识.主要有五种方法:
•1、割补法
•2、变换法
•3、比例法
•4、规律法
•5、实验法。

相关文档
最新文档