分数应用题知识点总结
分数乘除法应用题解题方法总结汇总(全面完整)
分数乘除法应用题解题方法总结汇总在初中数学的学习过程中,分数乘除法是一个很重要的知识点。
而应用题更是能够帮助我们更好地掌握这个知识点。
因此,在本文中,我们将会就分数乘除法的应用题解题方法进行详细的总结和归纳,以便同学们更好地掌握和运用这一知识点。
一、分数的乘法1.1 两个分数相乘实际应用题中,两个分数相乘时,需要转化为通分后再相乘,最后再约分。
例如:有一块长方形土地,面积为$\frac{3}{4}$ 亩,宽度是$\frac{3}{5}$ 亩。
求这块土地的长度。
解法:由于面积为$\frac{3}{4}$ 亩,宽度是$\frac{3}{5}$ 亩,所以这块土地的长度可以表示为:$\text{长度} = \dfrac{\text{面积}}{\text{宽度}}=\dfrac{\frac{3}{4}}{\frac{3}{5}}=\dfrac{5}{4}\times\dfrac{5}{3}=\dfrac{25}{12}$ 亩。
因此,这块土地的长度为$\frac{25}{12}$ 亩。
1.2 分数与整数相乘实际应用题中,分数与整数相乘时,先将整数化为分数,然后再进行通分运算。
例如:小明拥有$\frac{3}{5}$ 米宽的布料,他要用这些布料为客户定制长为2.6 米的窗帘。
他需要多少米的布料?解法:首先,将 2.6 米化为$\frac{26}{10}$ 米,然后将$\frac{26}{10}$ 与$\frac{3}{5}$ 相乘,即$\text{所需布料}=\frac{26}{10}\times\frac{3}{5}=\frac{26\times3}{10\times5}=\frac{ 39}{25}$ 米。
因此,小明需要$\frac{39}{25}$ 米的布料。
二、分数的除法2.1 分数与整数相除在实际应用题中,分数与整数相除时,可将整数化为分数,然后将两个分数相除,最后约分。
例如:某场馆共有150 个座位,其中$\frac{2}{5}$ 的座位已售出。
分数的应用题解析知识点
分数的应用题解析知识点一、引言分数是数学中的重要概念,具有广泛的应用。
在日常生活和工作中,我们经常遇到涉及分数的应用题。
本文将围绕分数的应用题,从数学的角度进行深度解析,帮助读者更好地理解和应用分数。
二、分数的基本概念分数是由分子和分母两部分组成的数,用分子除以分母表示。
其中,分子表示份数,分母表示总分。
例如,1/2表示一份中的一半。
三、分数的四则运算1. 分数的加法和减法当分数的分母相同时,只需将分子相加或相减,并保持分母不变。
例如,1/3 + 2/3 = 3/3 = 1。
当分数的分母不同时,可以通过求最小公倍数,将分数化为相同分母,然后再进行加法或减法运算。
2. 分数的乘法和除法分数的乘法运算可以直接将分子相乘,分母相乘。
例如,1/2 × 3/4= 3/8。
而分数的除法运算,可以将除法转化为乘法,即将被除数乘以倒数作为除数。
例如,1/2 ÷ 3/4 可转化为 1/2 × 4/3 = 4/6 = 2/3。
四、分数在实际问题中的应用1. 分数在长度和距离的应用在现实生活中,我们经常使用分数来表示长度和距离。
例如,一辆车以每小时3/4的速度行驶100千米,我们可以通过分数的乘法计算出车行驶的时间为 100 ÷ (3/4) = 100 × (4/3) = 400/3 = 133.33小时。
2. 分数在面积和体积的应用分数在求解面积和体积问题时也发挥着重要的作用。
例如,一个长方形的长度是3/5米,宽度是2/3米,我们可以通过分数的乘法计算出它的面积为 (3/5) × (2/3) = 6/15 = 2/5 平方米。
3. 分数在比例和百分比的应用分数在比例和百分比的计算中起到了重要的桥梁作用。
例如,一加工厂中的男女比例为3:7,我们可以通过分数的乘法计算出男性人数为3/10 ×总人数,女性人数为 7/10 ×总人数。
而百分比可以看作是分数的一种表示方式,例如,将分数转化为百分比可以通过乘以100并加上百分号表示。
分数除法应用题类型总结
分数除法应用题类型总结分数除法是小学数学中的一个重要知识点,它在日常生活中也有广泛的应用。
下面将对分数除法应用题进行总结。
一、整体分数除以整数这类应用题通常涉及到将一个整体分成若干等份,求每份的大小。
例如:1. 如果一块蛋糕重2/3千克,要分给6个人吃,每人可以得到多少克?解:首先将2/3千克转化为克,即2/3×1000=666.67克。
然后将666.67克平均分给6个人,即666.67÷6=111.11克。
因此,每个人可以得到111.11克蛋糕。
二、整体分数除以带分数这类应用题通常涉及到将一个整体分成若干等份,然后再将这些等份平均地分给若干个人或物品。
例如:1. 小明买了一箱苹果,共有30个苹果,他想把这些苹果平均地分给他和他的两个朋友吃,请问每人可以得到多少个苹果?解:首先计算出每个人所能得到的总共的苹果数量,即30÷3=10个。
然后再将这10个苹果平均地分给每个人,即10÷3=3又1/3个。
因此,每个人可以得到3又1/3个苹果。
三、带分数除以整数这类应用题通常涉及到将一个带分数平均地分给若干个人或物品。
例如:1. 小明有5又2/5斤鱼,他想把这些鱼平均地分给他和他的两个朋友,请问每人可以得到多少斤鱼?解:首先将5又2/5斤鱼转化为总共的斤数,即5×5+2=27。
然后将27斤鱼平均地分给每个人,即27÷3=9。
因此,每个人可以得到9斤鱼。
四、带分数除以带分数这类应用题通常涉及到将一个带分数平均地分给若干个人或物品,并且要求计算出每份的大小。
例如:1. 小明有7又1/4千克糖果,他想把这些糖果平均地分给他和他的两个朋友,请问每人可以得到多少克糖果?解:首先将7又1/4千克糖果转化为总共的克数,即7×1000+1/4×1000=7250克。
然后将7250克糖果平均地分给每个人,即7250÷3=2416.67克。
分数应用题知识点总结(7篇)
分数应用题知识点总结第1篇分数与除法【知识点】:理解分数与除法的关系:被除数除数=(除数不为0)。
分数的分母不能是0。
因为在除法中,0不能做除数,因此根据分数与除法的关系,分数中的分母相当于除法中的除数,所以分母也不能是0。
运用分数与除法的关系解决实际问题。
用分数来表示两数相除的商。
根据分数与除法的关系把假分数化成带分数的方法。
用分子除以分母,把所得的商写在带分数的整数位置上,余数写在分数部分的分子上,仍用原来的分母作分母。
把带分数化成假分数的方法。
(两种)把带分数分成整数与真分数的和的形式,把整数化成用真分数的分母作分母的假分数,再加上原来的真分数,就可以把带分数转化成假分数。
将整数与分母相乘的积加上分子作分子,分母不变。
分数基本性质【知识点】:理解分数的基本性质。
分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。
联系分数与除法的关系以及商不变的规律,来理解分数的基本性质。
分子相当于被除数,分母相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。
因此分数的分子和分母都乘或除以相同的数(0除外),分数的大小也是不变的。
运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
找最大公因数【知识点】:理解公因数和最大公因数的意义。
两数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数。
找两个数的公因数和最大公因数的方法。
运用找因数的方法先分别找到两个数各自的因数,再找出两个数的因数中相同的因数,这些数就是两个数的公因数;再看看公因数中最大的是几,这个数就是两个数的最大公因数。
会找分子和分母的最大公因数。
补充【知识点】:其他找最大公因数的方法。
找两个数的公因数和最大公因数,可以先找出两个数中较小的数的因数,再看看这些因数中有哪些也是较大的数的因数,那么这些数就是这两个数的公因数。
其中最大的就是这两个数的最大公因数。
例如:找15和50的公因数和最大公因数:可以先找出15的因数:1,3,5,15。
分数乘除法应用题解题方法总结汇总
分数乘除法应用题解题方法总结汇总在小学数学中,分数乘除法应用题是一个重点和难点。
很多同学在面对这类题目时,常常感到困惑,不知道如何下手。
其实,只要掌握了正确的解题方法和思路,这类问题就能迎刃而解。
接下来,我将为大家详细总结分数乘除法应用题的解题方法。
一、分数乘法应用题1、求一个数的几分之几是多少这是分数乘法应用题中最常见的类型。
例如:“小明有 120 元零花钱,花去了 1/3,花了多少钱?”解题思路:单位“1”的量×分率=对应量在这个例子中,单位“1”的量是小明原有的 120 元零花钱,分率是1/3,所以用 120×1/3 = 40(元),即小明花了 40 元。
2、连续求一个数的几分之几是多少例如:“果园里有苹果树 180 棵,梨树的棵数是苹果树的 2/3,桃树的棵数是梨树的 3/4,桃树有多少棵?”解题思路:先求出梨树的棵数,即 180×2/3 = 120(棵),再求出桃树的棵数,120×3/4 = 90(棵)。
二、分数除法应用题1、已知一个数的几分之几是多少,求这个数例如:“一本书,已经看了 1/4,正好是 50 页,这本书共有多少页?”解题思路:对应量÷分率=单位“1”的量在这里,对应量是 50 页,分率是 1/4,所以用 50÷1/4 = 200(页),即这本书共有 200 页。
2、已知比一个数多(或少)几分之几的数是多少,求这个数例如:“一件衣服,现价 120 元,比原价降低了 1/5,原价是多少元?”解题思路:如果单位“1”的量未知,设单位“1”的量为 x,根据数量关系列出方程求解。
设原价为 x 元,则(1 1/5)x = 120,解得 x = 150 元。
三、解题关键1、找准单位“1”单位“1”是分数乘除法应用题中的关键。
通常情况下,“是”“比”“占”后面的量就是单位“1”。
例如“男生人数是女生人数的3/4”,这里女生人数就是单位“1”。
六年级数学分数乘分数应用题
六年级数学分数乘分数应用题一、知识点回顾1. 分数乘分数的意义分数乘分数,表示求一个分数的几分之几是多少。
例如:公式表示公式的公式是多少。
2. 计算方法分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
例如:公式。
二、典型例题1. 例1题目:一块地的公式种白菜,种白菜的地中公式种萝卜。
种萝卜的地占这块地的几分之几?解析:我们知道这块地的公式种白菜,而种萝卜的地是种白菜的地中的公式。
根据分数乘分数的意义,求种萝卜的地占这块地的几分之几,就是求公式的公式是多少,所以用乘法计算,即公式。
按照分数乘分数的计算方法,分子相乘公式,分母相乘公式,所以结果是公式。
2. 例2题目:一个长方形的长是公式米,宽是长的公式,这个长方形的宽是多少米?解析:已知宽是长的公式,长是公式米。
根据分数乘分数的意义,求宽是多少米,就是求公式的公式是多少,用乘法计算,即公式。
计算时,分子相乘公式,分母相乘公式,约分后得到公式米。
3. 例3题目:一袋大米重公式千克,第一天吃了这袋大米的公式,第二天吃了第一天的公式,第二天吃了多少千克?解析:首先求出第一天吃的重量,因为一袋大米重公式千克,第一天吃了这袋大米的公式,所以第一天吃的重量为公式千克。
第二天吃了第一天的公式,那么第二天吃的重量就是第一天吃的重量的公式,即公式。
按照分数乘整数的计算方法,公式千克。
三、巩固练习1. 练习1题目:有一根绳子长公式米,用去它的公式,用去了多少米?解析:根据分数乘分数的意义,求用去的长度就是求公式的公式是多少,用乘法计算,即公式。
分子相乘公式,分母相乘公式,约分后得到公式米。
2. 练习2题目:果园里有苹果树公式棵,梨树的棵数是苹果树的公式,桃树的棵数是梨树的公式,桃树有多少棵?解析:首先求出梨树的棵数,因为梨树的棵数是苹果树的公式,苹果树有公式棵,所以梨树的棵数为公式棵。
然后求桃树的棵数,因为桃树的棵数是梨树的公式,梨树有公式棵,所以桃树的棵数为公式棵。
分数乘除法应用题归类整理
分数乘除法应用题归类整理在学习数学的过程中,分数乘除法是一个非常重要的内容。
通过解决应用题,我们可以掌握分数乘除法的概念和运算方法,并应用到实际生活中。
下面将对一些常见的分数乘除法应用题进行归类整理,以帮助大家更好地理解和应用这一知识点。
一、分数的乘法应用题1.分数乘以整数:例题1:小明每天步行去学校需要40分钟,他迟到了10分钟,这样他一共花了多长时间?(步行的时间为1小时)解析:小明一共花了(40+10)÷ 60 = 50 ÷ 60 = 5/6 小时的时间。
2.分数乘以分数:例题2:橙子市场的某款手机原价500元,现在打8.5折出售,小明用60元买了一个,他比原价少付了多少钱?解析:小明只付了(500 × 8.5%)× 60 =(500 × 0.85)× 60 = 25500 × 60 = 15300 元,比原价少付了500 × 0.15 × 60 = 4500 元。
3.分数乘以小数:例题3:小刚买了一本原价30元的书,现在打8折出售,他用多少元可以买到这本书?解析:小刚只需要付出(30 × 80%)元 = 24 元。
二、分数的除法应用题1.分数除以整数:例题4:小明把15个巧克力均匀分给他的4个朋友,每人能分到几个巧克力?解析:每个朋友能分到的巧克力数量为15 ÷ 4 = 3 个。
2.分数除以分数:例题5:某酒店一天用去了2/5 瓶洗发水,如果该酒店有20瓶洗发水,那么这些洗发水可以使用多少天?解析:这些洗发水可以使用的天数为 20 ÷ (2/5) = 20 ÷ (2/5) × (5/5) = 20 × 5 ÷ 2 = 50 天。
3.分数除以小数:例题6:某种商品的原价为200元,现在正在打65折出售,小明有120元,他还差多少钱才能买到这个商品?解析:小明还需要支付的金额为 200 × (100% - 65%) = 200 × 35% =70 元。
分数乘除法应用题解题方法总结汇总(全面完整)
(4)如果白兔有 48 只,灰兔比白兔多 3 ,灰兔比白兔多多少只? 4
2
3、求比一个数多几分之几是多少。
几 单位“1”的量×(1+ 几 )(分率)=是多少(分率对应的量)。
4 (1)人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳 75 次,婴儿每分钟心跳的次数比青少年多5 。婴
几 5、求比一个数少几分之几是多少。单位“1”的量×(1- 几 )(分率)=是多少(分率对应的量)。
(1)学校有 20 个足球,篮球比足球少
1 5
,篮球有多少个?
2 (2)一种服装原价 105 元,现在降价7 ,现在售价多少元?
(3)某校计划每月用水 120 吨,实际比计划节约 1 ,实际每月用水多少吨? 6
3、已知一个数比另一个数多几分之几是多少,求这个数。 几
是多少(分率对应的量)÷(1+几 )(分率)=单位“1”的量。 1
例 1:学校有 20 个足球,足球比篮球多 4 ,篮球有多少个?
4、已知一个数比另一个数少几分之几少多少,求这个数。 几
少多少(分率对应的量)÷几 (分率)=单位“1”的量。 例 1:某工程队修筑一条公路。第一天修了 38 米,第二天了 42 米。第一天比第二天少修的是这条公路全长的 1 28 。这条公路全长多少米?
。小新储蓄多少钱?
2、求比一个数多几分之几多多少。
几 单位“1”的量×几 (分率)=多多少(分率对应的量)。
(1)人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳 75 次,婴儿每分钟心跳的次数比青少年多45 。婴
儿每分钟心跳比青少年多多少次?
(2)学校有足球 20 个,篮球比足球多 1 ,篮球比足球多多少个? 2
分数应用题
分数应用题(一)一、知识点二、解题技巧:一抓,二找,三确定,四对应。
1、一抓:抓住关键句——分率句;(含几分之几的句子) 2、二找:找准单位“1”的量;(“的”前“比”后的量)3、三确定:确定单位“1”是已知还是未知(已知单位1用除法,未知单位1用乘法4、四对应:找出相对应的数量与分率,列出算式。
单位“1”的量×分率=分率对应量(分率对应量÷分率=单位“1”的量) 三、基础练习:(1)寻找单位“1”(先说出表示单位“1”的量,再说出另一个量所对应的分率)1、男生比女生多312、女生比男生少313、一条路修了524、今年比去年增产525、一条路,修了50米,还剩526、一件衣服降价527、四月份比三月份节约用电51 8、水结冰体积膨胀111(2)寻找分率对应量例:看了一本书的31。
全书的(31)和( )相对应。
全书的(1- 31)和( )相对应。
四、基本数量关系1、求一个数是另外一个数的几分之几。
例:20是30的几分之几?小明12岁,爸爸38岁,小明年龄是爸爸年龄的几分之?2、求一个数的几分之几是多少?例:30的四分之一是多少?爸爸今年36岁,小明的年龄是爸爸的四分之一,小明今年多少岁?3、已知一个数的几分之几是多少,求这个数。
例:一个数的四分之一是20,这个数是多少?小明今年9岁,恰好是爸爸年龄的四分之一,爸爸今年多少岁?4、求一个数比另一个数多几分之几;例:30比20多几分之几?爸爸今年36岁,小明今年12岁,小明今年比爸爸小几分之几?5、已知一个数比另一个数多(少)几分之几和一个数,求另一个数; 例:小明今年10岁,比爸爸的年龄小三分之二,爸爸今年多少岁? A 是110,A 比B 大六分之五,B 是多少?6、已知一个数比另一个数多(少)几分之几和另一个数,求一个数是多少? 例:A 比B 大三分之一,B 为20,A 等于多少?练习篇1、一根绳子对折后,经过3次对折,量得长是43米,这根绳子全长多少米?2、一根钢绳锯成4段需要5分钟,如果锯成9段,需要多少分钟?3、弟弟的身高比哥哥矮71,哥哥的身高比弟弟高多少?4、一种物品原价100元,先涨价101后,再降价101,现价多少元?5、某学校“六一”期间各课外活动小组举行才艺表演赛,获奖人数为96人,获一、二等奖的占获奖总人数的31,获二、三等奖的占获奖总数的87,问:获二等奖的有多少人?6、刘刚看一本书,第一天看了全书的81,第二天看了全书的51。
分数应用题练习讲义(乘法和除法)_0
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 分数应用题练习讲义(乘法和除法) 分数应用题讲义一、重要知识点 1、找准单位1、总量、分量、分率,找出等量关系。
2、对应的分量要找对应的分率,3、总量=分量分率;分量=总量分率;分率=分量总量4、解题方法:①一道分数应用题中,先根据分率所在的哪个条件,找出并判断1。
分率是谁的几分之几,谁就是单位1(分率是一个不带单位的、不具体的分数,反映的是两个数之间的一种倍数关系。
)单位1 的量的判断:根据分率来判断把哪个数量平均分成多少份,哪个数量就是单位1。
②表示单位1 的量是已知的,则该题用。
表示单位1 的量是未知的,则该题用或方程。
③解题的关键是:寻找与数量对应的分率,与分率对应的数量。
二、基本练习及讲解(一)、乘法应用题练习一.填空。
1.指出下面每组中的两个量,应把谁看做单位1,并想一想理由。
(1)甲数是乙数的15 。
()(2)男生人数占女生人数的45 。
1 / 14()(3)甲的35 相当于乙。
()(4)乙的78 与甲相等。
()(5)甲比乙多78 ()(小提示:甲比乙多78 的意思是甲比乙多的量是乙的78 ) 2.一个数是 56,它的47 是(); 3.学校买来新书 240 本,其中的23 分给五年级。
这里是把()看作单位1 ,如果求五年级分到多少本?列式是()。
4.五年级一班参加课外小组的有 40 人,五年级二班参加的人数是五年级一班的45 。
这里是把()看作单位1 ,如果求五年二班参加多少人列式是()。
5.买 30 千克大米,吃了45 千克还剩()千克;买 30 千克大米,吃了45 ,吃了()千克二.判断。
1. 3 吨钢铁的14 和 1 吨棉花的34 同样重。
六年级分数应用题易错、重点题型总结
分数应用题(一)分数应用题,是六年级数学最重要也是最难的知识点,同时也是变化最多的知识点,我们要特别注意从思维和方法上去把握,以思维与方法上的“不变”应对题目上的“万变”。
在学习之前,先要弄清两个概念:带单位的分数和不带单位的分数。
带单位的分数,如3/4吨,叫数量,与我们以前学过的“3吨”、“0.3吨”表示的意义一样,都是表示一个物体的具体的数量。
只不过在这里用分数的形式表示出来而已。
不带单位的分数,如3/4,叫分率,它表示一个数的几分之几。
由于这两种分数表示意义不同,出现在应用题中,它们的分析思路、解题过程也不同。
请仔细看下面的对比例子:例1.(1)一根铁丝长5米,用去了2/5米,还剩下多少米?(2)一根铁丝长5米,用去了2/5,还剩下多少米?例2.(1)一根铁丝,用去了2/5米,还剩下3米,这根铁丝多长?(2)一根铁丝,用去了2/5,还剩下3米,这根铁丝多长?如果题目中没有不带单位的分数,则这类分数应用题与三、四、五年级学习的应用题,在解题思路和解题方法上是一样的,只不过题中的数量不是整数、也不是小数,而是分数。
当在做这类分数应用题出现障碍时,可把题中的分数换成整数来理解。
例3:一辆汽车1/3小时行驶20千米,照这样的速度,3/4小时能行驶多少千米?如果题目中含有不带单位的分数(即题中有分率),可以根据分数应用题的数量关系式来解答。
关键要找准数量与分率的对应关系。
分数应用题的关系式主要是: ①对应数量÷单位“1”的量=对应分率②对应数量=单位“1”的量×对应分率③单位“1”的量=对应数量 ÷对应分率什么是单位“1”呢?一个物体、许多物体或一个计量单位都可以看成一个整体,就叫做单位“1”。
怎样找单位“1”?一般情况下,把“谁”看成一个整体或“谁”被平均分“谁”就是单位“1”。
在应用题中,我们可以找关键句中的关键词,如是、占、比、等于、相当于谁的几分之几或几倍谁就是单位“1”。
分数应用题
分数应用题复习一、知识点1、解分数应用题的步骤: 根据分率,找单位“1”的量。
判断单位“1”的量是否已知。
若已知,用乘法:单位“1”的量×所求量所对应的分率=所求量。
若未知,用除法:具体的量÷它所对应的分率=单位“1”的量。
2、分数应用题有以下三种基本类型: A.求一个数是另一个数的几分之几; B.求一个数的几分之几是多少;求比一个数多(少)几分之几是多少(分数乘法) C.已知一个数的几分之几是多少,求这个数;已知比一个数多(少)几分之几是多少,求这个数(分数除法)二、例题讲解例1、用“~~~”画出各题中的单位“1”,再完成数量关系。
①我国耕地在面积占全国领土面积的19 。
( )×19 =( )②今年去去年增产111 。
( )×111=( ) ( )×(1+111)=( ) ③铁丝比钢丝短23 。
( )×23 =( )( )×(1-23)=( )④601班有21人订阅了《小学生数学报》,占全班人数的21。
( )× 21=( )( )×(1-21)=( )已经加工了一批零件的116。
( )×611 =( )( )×(1-611)=( )变式1.一批苹果已卖出83( )×38 =( )( )×(1-38) =( )2.女同学人数比男同学多81 。
( )×18 =( )( )×(1+18) =( )3.杨树的棵树是柳树的73。
( )×37 =( )例2、先找出对应分率,再列式,不用计算。
1、红花有60朵,白花是红花的103,(1)白花有多少朵?(2)白花比红花少多少朵? (3)两种花一共有多少朵? 红花的分率:( );白花的分率:( ); 白花比红花少的分率:( );两种花一共的分率:( )2、红花有60朵,白花比红花多61,(1)白花多少朵?(2)白花比红花多多少朵? (3)两种花一共有多少朵? 红花的分率:( );白花的分率:( ); 白花比红花多的分率;( );两种花一共的分率:( )3、白花有60朵,白花比红花少51,(1)红花有多少朵?(2)白花比红花少多少朵? (3)两种花一共有多少朵? 红花的分率:( );白花的分率:( ); 白花比红花少的分率:( );两种花一共的分率:( )4、一本书90页,第一天看了全书的91,第二天看了全书的101,(1)第一天看了多少页? (2)第二天看了多少页? (3)两天一共看了多少页? (4)还剩下多少页?(5)第一天比第二天多看多少页? 全书的分率:( ); 第一天的分率:( ); 第二天的分率:( ); 两天一共的分率:( ) 剩下的分率:( ) 第一天比第二天多看全书的分率:( )例3、粮店里有大米240袋,________________________,面粉有多少袋?面粉的袋数是大米袋数的15。
小升初分数应用题归纳总结
小升初分数应用题归纳总结小升初是每个孩子都会面临的一个重要考试,其中涉及到的分数应用题也是考试内容的一部分。
分数应用题主要考察学生对分数的理解和运用能力,是一个综合性较强的题型。
在这篇文章中,我将对小升初分数应用题进行归纳总结,并分享一些解题技巧。
一、分数的基本概念在小升初的分数应用题中,首先需要理解和掌握一些基本的分数概念。
分数由分子和分母组成,分子表示分数的分子部分,分母表示分数的分母部分。
分数可以表示一个数的一部分或几部分,比如两个苹果中的一个可以表示为1/2。
二、分数的四则运算在分数应用题中,经常会涉及到分数的四则运算,包括加法、减法、乘法和除法。
对于加法和减法,首先需要将两个分数的分母统一,然后进行分子的加减运算;对于乘法,直接将两个分数的分子相乘,分母相乘;对于除法,需要将除数取倒数,然后再进行乘法运算。
三、分数的比较大小在解决分数大小比较的应用题时,可以通过找到两个分数的公共分母,然后比较它们的分子的大小。
如果找不到公共分母,可以将两个分数转化为小数进行比较。
四、分数与整数的转化在解决分数应用题时,有时需要将分数转化为整数,或将整数转化为分数。
对于将分数转化为整数,可以通过将分子除以分母来得到;对于将整数转化为分数,分子为整数,分母为1。
五、分数的化简与约分在计算分数应用题时,经常需要对分数进行化简与约分。
化简是将分数的分子和分母同时除以一个相同的数,使得分子和分母都变小;约分是将分数的分子和分母同时除以它们的最大公约数,将分数化为最简形式。
六、应用问题解题思路解决分数应用题的关键在于确定问题的解题思路。
一般来说,可以按照以下步骤进行解题:读懂题目,理清思路,逐步解题,最后检查答案。
在解题过程中,可以通过画图、列式、假设等方式来辅助思考和解决问题。
综上所述,小升初分数应用题是一个较为综合性的题型,需要学生对分数的基本概念和四则运算有一定的掌握,并能够将这些知识应用到实际问题中。
通过理解分数的基本概念、掌握分数的四则运算、比较分数的大小、转化分数与整数、化简与约分以及合理的解题思路,相信大家能够在小升初的分数应用题中取得好的成绩。
分数应用题
分数应用题一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a是b的几分之几,就把数b看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1 199÷=.二、怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
需要将题目文字完善成我们熟悉的类似带“比”的文字,然后在分析。
六年级分数乘除法应用题类型总结
分数应用题类型总结分数应用题解题口诀:找出关键句,判断单位“1”。
已知单位“1”,直接用乘法。
不知单位“1”,用除法第一类、求一个数的几分之几。
已知单位“1”,用乘法。
“是”“比”“占”后面是单位1,已知单位“1”,用乘法。
例1: 已知甲数是乙数的53,乙数是25,求甲数是多少?甲数 乙数 ×53 即25×53=15 1.(1)某校有男生240人,女生是男生的 65,女生有多少人?第二类、已知一个数的几分之几,求这个数?未知单位“1”,用除法。
“是”“比”“占”后面是单位1,未知单位“1”,用除法。
例: 甲数是乙数的53,甲数是15,求乙是多少?甲 = 乙 × 53 即:15÷53=25 1、果园里有桃树120棵,桃树的棵数是梨树的41,果园里有梨树多少棵?第三类、两步乘除此类型的题是第一第二类题目综合运用,一般要经过两步才能得到答案。
1、A 、小明有图书48本,小芳的图书是小明的65,小利的图书是小芳的43,小利有图书多少本?分析:这种类型的题目要倒着分析,从问题开始分析。
思路:a 看问题求小利有图书多少本;b 小利的图书是小芳的3/4;C 小芳的图书是小明的5/6;如果知道小明的图书本数即可求出小芳的图书本数,小明的图书是单位‘1’,小芳图书=小明图书×5/6,随之可求出小利的图书本数;“小明有图书48本”有了这个条件,根据c 可求出小芳的图书本数,根据b 可求出小利图书本数。
1、小利有图书45本,小芳的图书是小明的65,小利的图书是小芳的43,小明有图书多少本?2、A 、果园里有桃树80棵,梨树的棵树是桃树的169,又是苹果树的3215,果园里有多少棵苹果树?B 、果园里有桃树45棵,桃树的棵数是梨树的169,苹果树的棵数是梨树的2017,果园里有多少棵苹果树?第四类、比单位“1”多或者少,已知单位“1”.甲比乙多几分之几,已知乙,求甲。
分数的应用题六年级
分数的应用题六年级一、基础知识点回顾1. 分数的意义- 把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。
例如,把一个蛋糕看作单位“1”,如果将它平均分成4份,其中的1份就是(1)/(4)。
2. 分数乘法的意义- 求一个数的几分之几是多少,用乘法计算。
例如,求12的(1)/(3)是多少,列式为12×(1)/(3)=4。
3. 分数除法的意义- 已知一个数的几分之几是多少,求这个数,用除法计算。
例如,已知一个数的(1)/(4)是5,求这个数,列式为5÷(1)/(4)=5×4 = 20。
二、典型例题及解析1. 简单的求一个数是另一个数的几分之几- 例:学校有男生20人,女生25人,男生人数是女生人数的几分之几?- 解析:求男生人数是女生人数的几分之几,就是用男生人数除以女生人数,即20÷25=(20)/(25)=(4)/(5)。
2. 求一个数的几分之几是多少- 例:一本故事书有120页,小明第一天看了全书的(1)/(3),小明第一天看了多少页?- 解析:全书的页数是单位“1”,求第一天看的页数就是求120的(1)/(3)是多少,用乘法计算,120×(1)/(3)=40(页)。
3. 已知一个数的几分之几是多少,求这个数- 例:小红看一本故事书,她看了45页,正好是全书的(3)/(5),这本故事书一共有多少页?- 解析:已知看的45页是全书的(3)/(5),求全书的页数,用除法计算,45÷(3)/(5)=45×(5)/(3)=75(页)。
4. 较复杂的分数应用题(分数乘除法混合)- 例:果园里有苹果树30棵,梨树的棵数是苹果树的(2)/(3),桃树的棵数是梨树的(3)/(4),桃树有多少棵?- 解析:首先求梨树的棵数,梨树棵数是苹果树的(2)/(3),所以梨树有30×(2)/(3)=20棵;然后求桃树的棵数,桃树棵数是梨树的(3)/(4),所以桃树有20×(3)/(4)=15棵。
六年级分数百分数应用题分类总结
六年级分数百分数应用题分类总结六年级分数、百分数应用题分类总结第一类:求一个数的几分之几(百分之几)是多少?(用乘法,包括连乘)1、某食油批发店,上午卖出花生油96箱,下午卖出的是上午的5/12,下午卖出多少箱?2、一根钢管长8米,用去一部分,还剩下全长的20%,还剩下多少米?3、水果店运来苹果20筐,运来的橘子的筐数是XXX的12%,运来橘子多少筐?4、修一段公路,第一天修300米,第二天比第一天的7/15少60米,第二天修多少米?5、水果店进苹果36箱,进的梨的箱数是XXX的12%(5/8)。
(1)进的梨的箱数是多少?(2)进的梨的箱数比苹果少多少箱?(3)进的梨和苹果共有多少箱?6、小红体重42千克,小方体重38千克,XXX的体重相当于小红和小方体重总和的50%,XXX体重多少千克?7、从XXX汇款需要交1%的汇费,寄2000元需要交多少汇费?8、王格尔塘镇中小学和XXX的男生人数分别占全校学生总数的52%,王格尔塘镇中小学有学生800人,XXX有学生750人,哪一个学校的男生多?多几何人?9、XXX在银行里储蓄了1200元钱,取出一部分捐献给灾区,还剩40%,他捐献了几何元?10、养鸡场用2400个鸡蛋孵小鸡,有5%没有孵出来,孵出来几何只小鸡?11、王格尔塘镇中小学有学生480人,只有10%的学生没有参加意外事故保险,参加保险的学生有多少?12、一个长方形花坛,长是12米,宽是长的60%,这个花坛的面积是几何?13.XXX有480人,只有5%的学生没有参加意外事故保险。
参加保险的学生有多少人?14XXX开展回收废纸活动,共回收废纸87.5吨,用废纸生产再生纸的再生率为80%,这些回收的废纸能生产多少吨再生纸?15.海象的寿命大约是40年,海狮的寿命是海象的3/4,海豹的寿命是海狮的2/3。
海豹的寿命大约是多少年?第二类:(1)求甲数是/占/相当于)已数的几分之几(百分之几)?(用除法:甲数÷已数)1、六(1)班有男生30人,女生20人,男、女生各占全班的几分之几?2、某村计划种树250棵,实践种树200棵,计划种树的棵树是实践的百分之几?第三类:已知甲数的几分之几(或百分之几)是几何,求甲数(用除法大概用方程解)1、工地运来的水泥有24吨,运来的水泥是黄沙的5/6,运来的黄沙有几何吨?2、水果店运来苹果28箱,正好是运来梨的箱数的45%,运来的梨有几何箱?3、一辆客车从甲地开往乙地,已行240千米,占全长的30%,甲乙两地相距几何千米?4、鲜牛肉煮熟后的重量只有原来的5/12,要获得熟牛肉26千克,需求鲜牛肉几何千克?5、王格尔塘下摊村种玉米120公顷,种玉米的面积是种小麦面积的36%,这个村种小麦几何公顷?6、我校有女生160人,正好占男生人数的42%,全校有多少人?7、某电视机厂去年上半年生产电视机48万台,是下半年产量的80%,这个电视机厂去年全年的产量是多少万台?8、一辆汽车从甲地到乙地,行了全程的3/4,行了240千米,还剩多少千米没有行?9、一辆汽车以每小时45千米的速度从甲地到乙地,3小时行了全程的15%,这辆汽车还要行多少千米才能到达乙地?10、XXX有1800元,是XXX的12%,XXX的钱是XXX的8%,XXX有多少元?11、XXX看一本书,第一天看了18页,第二天看了全书的97%,还余45页没有看,这本书共有多少页?12、修一条公路,已经修了全长的4/5,未修的比已修的少28千米,这条公路全长多少千米?13、草地上的灰兔的只数是白兔的60%,白兔比灰兔多10只,白兔有几何只?14、我已经打了2000个字,正好打了全文的40%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解法:甲数除以乙数
例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分之几?(或几分之几?)
(二)求甲数的几倍(或几分之几或百分之几)是多少的应用题。
解答分数应用题,首先要确定单位“1”,在单位“1”确定以后,一个具体数量总与一个具体分数(分率)相对应,这种关系叫“量率对应”,这是解答分数应用题的关键。
求一个数的几倍(几分之几或百分之几)是多少用乘法,单位“1”×分率=对应数量
例:六年级有学生180人,五年级的学生人数是六年级人数的6(5)。五年级有学生多少人?
180×6(5)=150
(三)已知甲数的几倍(或几分之几或百分之几)是多少,求甲数(即求标准量或单位“1”)的应用题。
2、比与分数、除法的关系:a:b=a÷b=a/b(b≠0)
相互关系区别
比前项比号(:)后项比值关系
分数分子分数线(-)分母分数值数
除法被除数除号(÷)除数商运算
3、比值:比的前项除以比的后项,所得的商就叫比值。
注:比值是一个数,可以是整数、分数、小数,不带单位名称。
解法:对应数量÷对应分率=单位“1”
例:育红小学六年级男生有120人,占参加兴趣活动小组人数的5(3). 六年级参加兴趣活动小组人数共有学生多少人?
120÷5(3)=200(人)
解分数应用题注意事项:
(1)找单位“1”的方法:从含有分率的句子中找,“的”前或“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。 当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、 “甲比乙少几分之几”的形式。
分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。下面,小编为大家分享分数应用题知识点总结,希望对大家有所帮助!
整数、分数、百分数应用题结构类型
(一)求甲是乙的几倍(或几分之几或百分之几)的应用题。
①设单位“1”的量为x,列方程解答。
②对应数量÷对应分率=单位“1”的总数量。
(6)工程问题:把工作总量看作单位“1”,
工作效率=1/工作时间
注:在单位换算中,要弄清需要换算的单位之间的进率是多少。
认识比
1、比的意义:比表示两个数相除的关系。
注:【任何整数都可以看作为分母是1的分数】
(2)分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。
(3)分数连乘:通过几个分数的分子与分母直接约分再进行计算。
4、比的基本性质:比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。
5、最简整数比:比的前项和后项是互质数。也就是比的前项和后项除了1意外没有其它公因数。
6、化简:运用比的基本性质对比进行化简,方法:先把比的前、后项变成整数,再除以它们的最大公因数。
注:化简比和求比值是不同的两个概念【意义不同,方法不同,结果不同】
7、按比例分配问题:将一个数量按照一定比例,分成几个部分,求每个部分是多少,这类问题称为按比例分配问题。
解决方法:先求出总份数,再求各部分数占总数的几分之几,转化成分数乘法来计算。
分数乘法的计算方法:
(1)分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。或者先将整数与分数的分母进行约分,再应用前面计算法则。
பைடு நூலகம்
对应量÷对应分率=单位“1”的量。
(3)单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。
(4)单位“1”的特点:
①单位“1”为分母;
②单位“1”为不变量。
(5)“已知一个数的几分之几是多少,求这个数”的解题方法:可以用列方程的方法来解,也可以直接用除法。
“甲比乙多几分之几”表示甲比乙多的数占乙的几分之几;“甲比乙少几分之几”表示甲比乙少数占乙的几分之几。
(2)找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。
数量关系: 单位“1”×对应分率=对应数量;