拉普拉斯变换的性质

合集下载

拉普拉斯变换的基本性质

拉普拉斯变换的基本性质

d
f d
(t t
)
e
st
d
t
0
d
f (t) dt
lsimest
d
t
0
所以
lim
t 0
f (t)
f
(0 )
lim sF(s) s
信号与系统
九.初值定理和终值定理
终值定理证明
根据初值定理证明时得到的公式
sF(s)
f (0 )
d f (t) estd t 0 d t
lim sF(s)
ω02
信号与系统
五.时域微分定理
若 L f (t) F(s)

L
d
f (t) d t
sF (s)
f
(0 )
证明: f (t) estd t f (t) est [sf (t) est ]d t
0
00
f (0) sF(s)
推广:
L
d
f 2 (t)
dt2
ssF (s)
例:求图示信号的拉普拉斯变换
f (t) 1
解:
0
2
4
t
f (t) 1 t u(t) u(t 2) ( 1 t 2)u(t 2) u(t 4)
2
2
求导得
df (t) 1 u(t) u(t 2) 1 u(t 2) u(t 4)
dt 2
2
df (t) dt
F1(s)
1 1 e2s 2s
证明: L f (t) eαt
f (t) eαtestd t F(s α)
0
例:求 eαt cos ω0t 的拉氏变换
解:已知
: L cos(ω0t )u(t )

拉普拉斯变换

拉普拉斯变换


在半平面 Re s > C 上一定存在.此时右端的积分绝对 收敛而且一致收敛.并且在此半平面内 F s 为解析 函数
1.3 一些常用函数的拉普拉斯变换
例1 求单位脉冲函数 t 的拉氏变换

ℒ (t ) 0 (t ) e st dt 1

t 1
所以
f t 1 et
s s s5 例14 已知 F s 求 f (t ) s 3 2 s s s5 5 2 解 F s s s 1 s s
3 2
所以
f t t t t 5
求 f (t ) s 2 9 2 s 2 2s 5 1 3 解 F s 2 2 2 2 2 3 s 2 9 s 2 3 s 2 3
0
我们称上式为函数
f (t ) 的拉普拉斯变换式 ,记做
F ( s ) ℒ f (t ) F ( s) 叫做 f (t ) 的拉氏变换,象函数.
f (t ) 叫做 F ( s ) 的拉氏逆变换,象原函数, f (t ) = ℒ
1
F ( s)
1.2 拉普拉斯变换存在定理
若函数 f (t ) 满足下列条件 Ⅰ 在 t 0 的任一有限区间上连续或分段连续,
3.1 利用拉普拉斯变换表和性质求拉普拉斯逆 变换 一些常用函数的拉氏变换
(t ) 1
1 e sk
kt
1 u (t ) s
tn n! s n 1
k sin kt 2 s k2
s cos kt 2 s k2
拉氏逆变换的性质 1 ℒ F 1 (s) F 2 (s) f1 (t ) f 2 (t )

拉普拉斯变换性质

拉普拉斯变换性质

F ( s a)
注: 这个性质表明了一个象原函数乘以指数函数 e 后取Laplace变换等于将其象函数作位移。
at
例5:求 L[eat t m ]
解:
已经知道:
m L t
(m 1) s m 1
根据上述位移性质可知:
(m 1) L e t ( s a)m1
•在半平面Re(s)>c上一定存在, •右端的积分在Re(s)c1>c上绝对收敛而且一致收敛, •并且在Re(s)>c的半平面内, F(s)为解析函数。
§2.2 拉普拉斯变换的性质
1、线性性质 2、微分性质 3、积分性质 4、位移性质 5、延迟性质 6、初值定理与终值定理
*
1 线性性质
若 , 是常数, 设 f1 t , f2 t , 满足拉普拉斯变换存在条件,
4 位移性质
设 L f t F s
,
at L e 则有: f t F s a
, (Re( s a ) 0)
证: 有如下
L[e f (t )] eat f (t ) e st d t
at 0


0
f (t ) e ( s a )t d t
F1 s F2 s
f1 t f2 t .
注: 这个性质表明函数线性组合的Laplace变换等于各函数Laplace变换 的线性组合。
设 f1 t , f2 t , 满足拉普拉斯变换存在条件,
L f1 t F1 s ,
L f1 t F1 s
则有:
,
L f2 t F2 s

拉普拉斯变换的基本性质

拉普拉斯变换的基本性质

t0
1 s t0 s2
F2
(s)
L
(t
t0
)u
(t
)
F1
(s)
1
s s2
t0
F4 (s)
L (t
t0 )u(t
t0)
1 s2
e s t0
F3(s) Ltu(t t0 ) L(t t0 )u(t t0 ) t0u(t t0 )
F4 (s)
t0 s
e s t0
s t0 1 est0 s2
dt2
ssF (s)
f
(0 )
f
(0 )
s2F (s) sf (0 ) f (0 )
L
d
f d
n (t) tn
sn
F
(s)
n1 r0
s n r 1
f
(r
)
(0
)
六.时域积分定理

L f (t) F(s)

L
t
f
(τ) d
τ
F (s) s
1 s
0
f ( ) d τ
t
(t
)
f (t) 的拉普拉斯变换 2Fra bibliotekF(s)
解:F(s)
F1 (s)
F2 (s)
s
1 1
(s
1 1)(s
2)
(s
s 1 1)(s
2)
s
1
2
说明:前面求正余弦信号的拉普拉斯变换时已经用到了线性性。
二.延时(时域平移)
若 L f (t) F (s)

L f (t t0 )u(t t0 ) F (s) est0
(3)表达式

拉普拉斯变换及其应用

拉普拉斯变换及其应用

拉普拉斯变换及其应用拉普拉斯变换是一种数学工具,用于将一个函数从时间域转换到频率域。

它在许多领域中都有广泛的应用,包括电路分析、信号处理和控制系统等。

本文将介绍拉普拉斯变换的定义、性质以及在实际问题中的应用。

一、拉普拉斯变换的定义拉普拉斯变换是一种对函数进行积分变换的方法。

对于一个定义在非负实数轴上的函数f(t),它的拉普拉斯变换F(s)定义为:F(s) = L[f(t)] = ∫[0,+∞] f(t)e^(-st) dt其中,s是复数变量,称为变换域变量。

二、拉普拉斯变换的性质拉普拉斯变换具有许多有用的性质,下面列举其中几个常用的性质:1. 线性性质:对于任意的常数a和b,以及两个函数f1(t)和f2(t),有以下公式成立:L[af1(t) + bf2(t)] = aF1(s) + bF2(s)2. 移位性质:对于函数f(t)的拉普拉斯变换F(s),对t进行平移得到f(t-a)的拉普拉斯变换,可以表示为:L[f(t-a)] = e^(-as)F(s)3. 尺度变换:对函数f(t)进行尺度变换,即对t进行缩放,可以表示为:L[f(at)] = 1/a * F(s/a)三、拉普拉斯变换在电路分析中的应用拉普拉斯变换在电路分析中具有重要的应用价值。

通过将电路中的元件和信号用拉普拉斯变换表示,可以将微分方程转化为代数方程,简化分析过程。

例如,考虑一个简单的RC电路,其中电压源为V,电阻为R,电容为C。

假设电路中的电流为i(t),则根据基尔霍夫电压定律有以下微分方程:RC di(t)/dt + i(t) = V(t)将此微分方程应用拉普拉斯变换,可以得到以下代数方程:(I(s) - i(0)) / sC + I(s) / (sRC) = V(s)通过求解这个代数方程,可以得到电路中电流I(s)的表达式。

进一步,可以将其逆变换回时间域得到实际的电流函数。

四、拉普拉斯变换在信号处理中的应用在信号处理中,拉普拉斯变换可以将时域信号转换成对应的频域信号,从而方便进行频域分析和滤波等操作。

函数的拉普拉斯变换与逆变换

函数的拉普拉斯变换与逆变换

函数的拉普拉斯变换与逆变换定义函数f(t)的拉普拉斯变换定义为:F(s)=∫e−st∞f(t)dt其中s是一个复数变量。

性质拉普拉斯变换具有以下性质:1.线性性:对于任意常数a和b,以及函数f(t)和g(t),有:L[af(t)+bg(t)]=aL[f(t)]+bL[g(t)]2.时移性:对于任意常数a,有:L[f(t−a)u(t−a)]=e−as F(s)其中u(t)是单位阶跃函数。

3.微分性:对于任意可导函数f(t),有:L[f′(t)]=sF(s)−f(0)L[f″(t)]=s2F(s)−sf(0)−f′(0)4.积分性:对于任意可积函数f(t),有:L[∫ft0(τ)dτ]=F(s)s5.卷积定理:对于任意两个函数f(t)和g(t),有:L[f(t)∗g(t)]=F(s)G(s)其中∗表示卷积运算。

应用拉普拉斯变换在许多领域都有应用,包括:1.微分方程的求解:拉普拉斯变换可以将微分方程转化为代数方程,从而更容易求解。

2.信号处理:拉普拉斯变换可以用于分析和处理信号。

3. 控制理论:拉普拉斯变换可以用于分析和设计控制系统。

4. 电路分析:拉普拉斯变换可以用于分析和设计电路。

逆拉普拉斯变换拉普拉斯变换的逆变换定义为:f (t )=12πi ∫e st γ+i∞γ−i∞F (s )ds 其中 γ 是一个大于所有 F (s ) 的奇点实部的常数。

性质逆拉普拉斯变换具有以下性质:1. 线性性:对于任意常数 a 和 b ,以及函数 f (t ) 和 g (t ),有:L −1[aF (s )+bG (s )]=aL −1[F (s )]+bL −1[G (s )]2. 时移性:对于任意常数 a ,有:L −1[e as F (s )]=f (t −a )u (t −a )3. 微分性:对于任意可导函数 F (s ),有:L −1[sF (s )]=f′(t )L −1[s 2F (s )]=f″(t )4. 积分性:对于任意可积函数 F (s ),有:L −1[F (s )s ]=∫f t 0(τ)dτ 5. 卷积定理:对于任意两个函数 F (s ) 和 G (s ),有:L −1[F (s )G (s )]=f (t )∗g (t )应用逆拉普拉斯变换在许多领域都有应用,包括:1. 微分方程的求解:逆拉普拉斯变换可以将代数方程转化为微分方程,从而更容易求解。

拉普拉斯变换及其性质课件

拉普拉斯变换及其性质课件
信号重建
对于损坏的信号,可以利用拉普拉斯变换进行重 建,恢复出原始信号。
在图像处理中的应用
图像去噪
利用拉普拉斯变换,可以对图像进行去噪处理,去除图像中的噪 声和干扰。
图像增强
通过拉普拉斯变换,可以将图像从空间域转换到频域,对图像进 行增强处理。
图像压缩
利用拉普拉斯变换的稀疏性,可以对图像进行压缩处理,减少存法规则
拉普拉斯变换的加法规则可以表 示为f(t)+g(t)的拉普拉斯变换等 于f(t)的拉普拉斯变换和g(t)的拉
普拉斯变换之和。
乘法规则
拉普拉斯变换的乘法规则可以表 示为f(t)g(t)的拉普拉斯变换等于 f(t)的拉普拉斯变换和g(t)的拉普拉 斯变换之积。
微分规则
拉普拉斯变换的微分规则可以表示 为df(t)/dt的拉普拉斯变换等于f(t) 的拉普拉斯变换乘以s。
迭代法的优点是计算速度快, 适用于大规模数据的处理。
直接计算法
直接计算法是一种直接根据定义 进行计算的方法。
在拉普拉斯变换的数值计算中, 直接计算法通常采用定义式进行
计算。
直接计算法的优点是原理简单易 懂,但计算量较大,适用于小规
模数据的处理。
数值计算误差分析
误差分析是数值计算中非常重要的一个环节。
在物理学、工程学、经济学等领域中,许多偏微分方程的求解都可 以借助拉普拉斯变换得到解决。
优点
通过拉普拉斯变换,可以将偏微分方程的求解转化为简单的代数问 题,使得求解更加简便。
在信号处理中的应用
定义与公式
01
在信号处理中,拉普拉斯变换被用于分析信号的稳定性和系统
的稳定性。
应用场景
02
在通信、自动控制、图像处理等领域中,许多信号处理问题都

《拉普拉斯变换 》课件

《拉普拉斯变换 》课件
详细描述
对于线性时不变控制系统,通过拉普拉斯变换分析其极点和零点,可以判断系 统的稳定性。如果所有极点都位于复平面的左半部分,则系统稳定;否则系统 不稳定。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
05
总结与展望
拉普拉斯变换的重要性和应用前景
拉普拉斯变换在数学、物理和工程领域中具有广泛的应用,是解决线性常微分方程 、积分方程、偏微分方程等数学问题的有力工具。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
拉普拉斯变换的运算技 巧
积分性质的运用
积分性质
如果函数f(t)的拉普拉斯变换为F(s), 那么对于任意常数a,函数f(at)的拉普 拉斯变换为aF(as)。
应用场景
在求解某些物理问题时,可能需要将 时间变量乘以常数,此时可以利用积 分性质简化拉普拉斯变换的运算。
REPORT
《拉普拉斯变换》 PPT课件
CATALOG
DATE
ANALYSIS
SUMMARY
目录
CONTENTS
• 拉普拉斯变换的基本概念 • 拉普拉斯变换的应用 • 拉普拉斯变换的运算技巧 • 拉普拉斯变换的实例分析 • 总结与展望
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
随着科学技术的发展,拉普拉斯变换的应用 领域也在不断拓展,例如在人工智能、机器 学习、数据科学等领域中的应用前景值得关 注。
未来需要进一步加强拉普拉斯变换 的理论研究,提高其在实际问题中 的应用效果,同时探索新的应用领 域,推动科学技术的发展。

拉普拉斯变换

拉普拉斯变换

w 类似地 L[sin( wt )] 2 s w2
( p 0)
二、 拉普拉斯变换的性质 性质1(线性性质)
若 a1, a2 为常数,设
L[ f1 (t )] F1 (s),L[ f2 (t )] F2 (s)

L[a1 f1 (t ) a2 f 2 (t )] a1F 1 (s) a2 F 2 ( s)
性质8(终值定理)
lim
t
设 L[ f (t )] F (s) 则
f (t ) f () s lim sF ( s) 0
练习 单位阶跃函数
0 t 的拉氏变换. 求函数 u (t ) 1 t 1 解 因为 L[u (t )] ,由性质5有 s
拉普拉斯变换
一、常用函数的拉普拉斯变换 二、拉普拉斯变换的性质
三、如何求解常系数线性微分方程
一、常用函数的拉普拉斯变换
一次函数 求一次函数f (t) =at (a为常数)的拉氏变换. 解 当p>0时,有
L[at ]
0
a (at )e dt td(e st ) s 0
L[u (t )] e
s
1 s
( s 0)
自动控制中的典型问题
在自动控制系统的分析和综合中,线性定
常系统由下面的n阶微分方程描述
dn d n 1 a0 n y (t ) a1 n 1 y (t ) dt dt d an 1 y (t ) an y (t ) x(t ) dt
st
0
at st e s
a st e dt s 0
0
a st 2 e s
a 2 s

拉普拉斯变换

拉普拉斯变换

f (t ) = te
at 0
at
L[te ] = ∫ te e dt =
1 = 2 (s − a)
Modern Control Laplace
+∞
at − st
8.周期函数
1 L[ f (t )] = − sT 1− e
f1 ( t )

T
0
f (t )e dt
− st
b
0
1b
2b
t
Modern
j ωt
f (t ) = F
Modern Control
−1
[F (ω )]
Laplace
一、拉普拉斯变换的定义
Laplace变换 Laplace变换
F ( s) = ∫
+∞
F ( s ) = L[ f (t )]
0
f (t )e dt
− st
Laplace反变换 Laplace反变换
1 σ + j∞ st f (t ) = F ( s ) e ds ∫ 2πj σ − j∞
ω
σ
控制衰减速度
Laplace
二、常用的拉普拉斯变换 1.阶跃函数 1.阶跃函数
f (t ) = u (t ) = 1(t )
L[u( t )] = ∫
∞ 0
(σ > −α )
1 ⋅ e d t = 1 e − st −s
− st
∞ 0
1 = s
Modern
Control
Laplace
二、常用的拉普拉斯变换 2.单位冲激信号 2.单位冲激信号
Control
Laplace
三、拉氏变换的性质 1.线性性质 1.线性性质

拉普拉斯变换的性质

拉普拉斯变换的性质
f (t ) 拉 s F ( s) d s [ t ]. 普 拉 斯 一般地,有 变 ds ds s F ( s) d s 换 s s
[
f (t ) ]. n t
n次
20
§9.2 Laplace 变换的性质 第 九 章 拉 普 拉 斯 变 换
9
§9.2 Laplace 变换的性质 第 二、延迟性质与位移性质 九 章 2. 位移性质
[e f ( t )] F ( s a ) . ( a 为复常数 ) 拉 普 拉 s 1 t 斯 [ e cos t ] . 例如 2 变 ( s 1) 1 换 1 [ e t sin t ] . 2 ( s 1) 1
2( s 6 24s 2 32) . 3 2 3 s ( s 4)
16
§9.2 Laplace 变换的性质 第 九 章 解 已知 拉 普 拉 斯 变 换2 [ sin 2 t ] 2 , 2 s 2 3t
根据位移性质有
[e
2 sin 2t ] , 2 ( s 3) 4

令 x t
0

f ( x ) e s x e s d x
e s F ( s ) .
6
§9.2 Laplace 变换的性质 第 二、延迟性质与位移性质 九 章 1. 延迟性质
( 为非负实数 )
[ f (t )] e s F ( s ) . f (t ) 0 , 则: 拉 性质 设 当 t < 0 时 普 拉 f ( t ) 0 这一约定。 斯 注意 性质中强调了当 t < 0 时 变 因此,本性质也可直接表述为: 换 [ f (t ) u(t ) ] e s F ( s ) .

第15章 拉普拉斯变换

第15章  拉普拉斯变换

本章重
. 点 常用函数的拉普拉斯变换 . 拉普拉斯变换的基本性质 . 复频域中的电路定律 . 运算阻抗和运算导纳 . 拉普拉斯变换法分析电路的动态响应 . 网络函数
返回目录
15.1 拉普拉斯变换
一、拉氏变换(Laplace transformation)的定义
正变换
F (s) f (t )estdt 0
n
f (t ) kiesit i 1
ki也可用分解定理求
等式两边同乘(s-si)
(s si )
F(s)
F1
(
s()s
si
)
k1(
s
si )
k
i
(
s
si )
k
(
n
s
si
)
F2 (s) s s1
s si
s sn
ki
lim
s si
F1(s)( s F2 (s)
si )
0 0
应用洛比达法则求极限
2
2 s1
1 s2
f (t ) 2 (t ) 2et e2t (t 0)
2. F2 (s)有共轭复根
假设只有两个根 s1,2 j
F (s) k1 k2
s j s j
可据前面介绍的两种方法求出 k1 , k2。 k1 , k2也是一对共轭复数。
设 k1 k ej k2 k e j
j
不同的 f (t),0的值不同,称 0为复平面s内的收敛横坐标。
收敛轴 收敛区
0 0
收敛坐标
电工中常见信号为指数阶函数,即
f (t ) MeCt
t [0, )
式 中M是 正 实 数 ,C为 有 限 实 数 。

11.2拉普拉斯变换的定义和性质

11.2拉普拉斯变换的定义和性质

jt
t
e jt
2
j
e jt 2j
t
1 2j
e
jt
e
jt
t
1 2j
s
1
j
s
1
j
s2
2
7 中北大学国家级电工电子实验教学示范中心
(2)拉氏变换的时域导数性质
如果原函数f(t)存在一阶导数,且f(t) ↔F(s) ,则
f t sF s f 0
即原函数一阶导数的象函数等于原函数的象下:
1 中北大学国家级电工电子实验教学示范中心
对拉氏变换的进一步认识
★①拉氏变换的存在条件:因其变换核 est et e jt
其中只有σ>0,因子exp(−σt )才是收敛的,所以拉氏 变换的定义条件是
Fs f tetdt< 0
这就是说,上式的积分运算应是有限值。如果原 函数是增长的,则增长的速度应该满足
0
0
s
s 0
[例2] 试求单位冲击函数δ (t )的象函数。
解:按照拉氏变换的法则有
Fs L t testdt 0 tdt 1
0
0
4 中北大学国家级电工电子实验教学示范中心
对拉氏变换的进一步认识
[例3] 试求原函数f (t ) = exp(−αt ) 的象函数。 解:原函数图象如图所示,按拉 氏变换的法则有
0
f t estdt
8 中北大学国家级电工电子实验教学示范中心
拉氏变换的时域导数性质
上式s=σ+jω中只要σ足够大时等式右边第一项为0,
所以
f t sF s f 0
也不难得到当原函数的高阶导数存在时,则象函
数为
f t s2F s sf 0 f 0

拉普拉斯变换的基本性质

拉普拉斯变换的基本性质

§ 4.3 拉普拉斯变换的基本性质主要内容线性;原函数微分;原函数积分;延时(时域平移);s 域平移;尺度变换;初值;终值 卷积;对s 域微分;对s 域积分一.线性例题: 已知则同理二.原函数微分证明:推广:电感元件的s 域模型 [][][])()()()( ,),()( ),()( 22112211212211s F K s F K t f K t f K L K K s F t f L s F t f L +=+==则为常数,若()tj t j e e t t f ωωω-+==21)cos()([]αα+=-s e L t 1()[]⎪⎪⎭⎫ ⎝⎛++-=ωωωj s j s t L 1121cos 22ω+=s s ()[]22sin ωωω+=s t L [])0()(d )(d ),()(--=⎥⎦⎤⎢⎣⎡=f s sF t t f L s F t f L 则若()()()())(0 d d 000s sF f t e t sf e t f t e t f st st st +-=⎥⎦⎤⎢⎣⎡--='-∞∞--∞⎰⎰()()[])0()0()( )0(0d )(d 22----'--='--=⎥⎦⎤⎢⎣⎡f sf s F s f f s F s t t f L ∑-=----=⎥⎦⎤⎢⎣⎡10)(1)0()(d )(d n r r r n n n f ss F s t t f L设应用原函数微分性质三.原函数的积分证明:① ② ()s s F =电容元件的s 域模型)(t i+-)(t v L L t t i L t v LL d )(d )(=[][])()(),()(s V t v L s I t i L L L L L ==[])0()()0()()(---=-=L L L L L Li s I sL i s sI L s V()s V L +-[],则若)()(s F t f L =()s f s s F f L t )0()(d )(1--∞-+=⎥⎦⎤⎢⎣⎡⎰ττ()()()ττττττd d d 00⎰⎰⎰+=∞-∞-t t f f f ① ② ()()01-f ()()s f 01-→()⎰⎰∞-⎥⎦⎤⎢⎣⎡00d d t e f st t ττ()()⎰⎰-∞-+⎥⎦⎤⎢⎣⎡-=t st t st t e t f s f s e 000d 1d ττ()⎰-=t st te tf s 0d 1+-)t v C C ⎰∞-=t c C i C t v ττd )(1)([][])()( ),()(s V t v L s I t i L C C C C ==设四.延时(时域平移)证明:0)(st e s F -=五.s 域平移证明:六.尺度变换证明:⎥⎦⎤⎢⎣⎡+=--s i s s I C s V C C C )0()(1)()1()0(1)(1-+=C C v s s I sCsC 1()-01C v s +-()s V C[][]0)()()( )()(00st e s F t t u t t f L s F t f L -=--=,则若[]⎰∞----=--00000d )()()()(t e t t u t t f t t u t t f L st ⎰∞--=0d )(0t st t e t t f ,令0t t -=τ代入上式则有,d d ,0ττ=+=t t t []⎰∞---=--000d )()()(0τττs st e e f t t u t t f L [][])()( )()(αα+==-s F e t f L s F t f L t ,则若[])(d )()(0ααα+==⎰∞----s F t e e t f e t f L st t t [][]()0 1)( ),()(>⎪⎭⎫ ⎝⎛==a a s F a at f L s F t f L 则若[]⎰∞--=0d )()(t e at f at f L st时移和标度变换都有时:七.初值八.终值终值存在的条件:证明:根据初值定理证明时得到的公式九.卷积,则令at =τ[]⎰∞⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=0d )()(a e f at f L a s τττ⎰∞⎪⎭⎫ ⎝⎛--=0d )(1τττa s e f a ⎪⎭⎫ ⎝⎛=a s F a 1[]()0,0 1)()(>>⎪⎭⎫ ⎝⎛=---b a e a s F a b at u b at f L a b s 若)(lim )0()(lim ),()(d )(d )(0s sF f t f s F t f t t f t f s t ∞→+→==−→←+则可以进行拉氏变换,且及若()应化为真分式:不是真分式若,s F k s F s F -=)()(1[][])(lim )(lim )(lim )0(0t f ks s sF k s F s f t s s +→∞→∞→+=-=-=()()()项。

拉普拉斯变换

拉普拉斯变换

拉普拉斯变换拉普拉斯变换是一种在信号与系统领域中广泛应用的数学工具。

它将一个时间域函数转换为一个复频域函数,从而可以方便地进行信号的分析和处理。

拉普拉斯变换不仅在电子工程、通信工程领域得到广泛应用,还在物理学、控制论、图像处理等领域有重要应用。

一、拉普拉斯变换的定义拉普拉斯变换的定义如下:对于给定函数f(t),它的拉普拉斯变换F(s)定义为:F(s) = L{f(t)} = ∫{0,∞} f(t)e^(-st)dt其中,s是复变量,表示变换域的频率。

f(t)是定义在非负实数轴上的函数。

拉普拉斯变换有一个重要的性质是可逆的,即给定F(s),可以通过逆变换求得原函数f(t)。

二、拉普拉斯变换的性质拉普拉斯变换有一系列的性质,这些性质可以帮助我们简化计算或者分析信号的特性。

下面介绍几个常用的性质:1. 线性性质:对于任意常数a和b,以及两个函数f(t)和g(t),有线性性质成立:L{af(t) + bg(t)} = aF(s) + bG(s)其中,F(s)和G(s)分别是函数f(t)和g(t)的拉普拉斯变换。

2. 积分性质:对于函数f(t)的积分,有以下性质成立:L{∫{0,t} f(τ)dτ} = 1/(s)F(s)其中,F(s)是函数f(t)的拉普拉斯变换。

3. 正比例性质:如果一个函数f(t)等于另一个函数g(t)乘以常数a,那么它们的拉普拉斯变换也有类似的关系:L{ag(t)} = aG(s)其中,G(s)是函数g(t)的拉普拉斯变换。

三、拉普拉斯变换的应用1. 信号系统分析:拉普拉斯变换广泛应用于信号与系统的分析。

通过将差分方程或微分方程转换成拉普拉斯域,可以简化对系统的分析和建模。

根据拉普拉斯变换的性质,可以求解系统的频域响应、稳定性、传输函数等重要特性。

2. 控制系统设计:在控制论中,拉普拉斯变换是设计和分析控制系统的重要工具。

通过将系统的传递函数转换成拉普拉斯域,可以方便地调整系统的稳定性、响应速度、抗干扰能力等参数,并进行频域设计和系统优化。

拉普拉斯变换性质

拉普拉斯变换性质



求e−α t cosω t的拉氏变换 0
16 页
s 已知: L[cos(ω0t )u(t)] = 2 2 s + ω0
所以 e
−α t
s +α cos(ω0t )u(t) ↔ 2 2 (s + α) + ω0
ω0 sin (ω0t )u(t) ↔ 2 2 (s + α) + ω0
同理: e
−α t
4 页
式中f(0-)及f(n)(0-)分别表示f(t)及f(t)的n阶微分f(n)(t)在 t=0-时的值。 若f(t)为单边信号,则f(0-)=0,可简化为
d [ f (t )u (t )] L{ } = sF ( s ) dt


∞ df (t ) ∞ df (t ) − st L =∫ e dt = ∫ e − st df (t ) 0_ 0_ dt dt
∞ − st ∞ 0 0
− st
dt
= ∫ k1 f1 (t )e dt + ∫ k2 f 2 (t )e − st dt = k1F1 ( s ) + k2 F2 ( s )


3 页

原函数微分性质

L[ f (t )] = F ( s ), 则 df (t ) L[ ] = sF ( s ) − f (0 _) dt d 2 f (t ) L[ ] = s 2 F ( s ) − sf (0 _) − f ' (0 _) dt 2 n −1 d n f (t ) n L[ ] = s F ( s ) − ∑ s n − r −1 f ( r ) (0 _) dt n r =0

电路原理第九章拉普拉斯变换

电路原理第九章拉普拉斯变换
稳定性分析方法
利用拉普拉斯变换,通过计算系统的极点和零点,判 断系统的稳定性。
电路系统的频率响应分析
频率响应定义
电路系统在不同频率下的输入与输出关系称为频率响应。
频率响应分析方法
通过拉普拉斯变换将时域函数转换为复频域函数,进而分析频率 响应。
频率响应特性
频率响应具有幅度和相位特性,这些特性决定了电路系统在不同 频率下的性能表现。
到该函数的拉普拉斯变换。
拉普拉斯变换具有线性性和时移性等性质,使得复杂电路的分
03
析变得简单。
拉普拉斯变换的性质
1 2 3
线性性
如果函数$f(t)$和$g(t)$的拉普拉斯变换分别为 $F(s)$和$G(s)$,那么对于任意实数$k$和$l$, 有$(kf(t)+lg(t))的拉普拉斯变换=kF(s)+lG(s)$。
04
拉普拉斯变换的逆变换
逆变换的定义和性质
逆变换的定义
如果一个函数f(t)的拉普拉斯变换存在,那么就存在另一个函数g(s)的拉普拉斯 变换等于f(t),并且g(s)可以通过一定的积分运算从f(t)得到,这个过程就是逆 变换。
逆变换的性质
逆变换具有线性、时移、频移、微分、积分等性质,这些性质在求解逆变换时 非常有用。
时移性
如果函数$f(t)$的拉普拉斯变换为$F(s)$,那么 对于任意实数$a$,有$(f(t-a))的拉普拉斯变换 =e^{-as}F(s)$。
频移性
如果函数$f(t)$的拉普拉斯变换为$F(s)$,那么 对于任意实数$b$,有$(f(t)e^{bt})的拉普拉斯 变换=F(s-b)$。
拉普拉斯变换的应用
拉普拉斯变换的微分性质
微分性质
如果函数f(t)的拉普拉斯变换存在,那么对于实数a,函数f''(t)的拉普拉斯变换等于函数f(t)的拉普拉斯变换乘以 s^2。

拉普拉斯变换性质

拉普拉斯变换性质

拉普拉斯变换性质
理解
拉普拉斯变换(Laplace transformation)是在积分变换中把连续时变信号转换成正负无穷大范围的指数型时定信号的单边变换,它是一种统计与信号分析的重要算法,建立在Fourier变换的基础上,被广泛应用于数学、电子、通讯及其他领域。

拉普拉斯变换的核心思想是用一个类似函数的谱线替换一个时变函数,解决复杂的求解问题,能够将难以求解的时变函数拆分成一组解析函数,利用标准函数轻松地求解出结果,从而提高求解算法的效率。

拉普拉斯变换具有以下性质:
(1)线性性质:在拉普拉斯变换中,加性和乘性定律成立,也即可以用拉普拉斯变换把复合函数分解成基本函数的叠加,且变换后的结果是它们变换的乘积的和。

(2)卷积性质:拉普拉斯变换能够有效地把连续时变信号的卷积操作转换成简单的乘法操作,拉普拉斯变换可以将连续时变函数的卷积操作转换为拉普拉斯变换之后函数的乘积操作。

(3)滞后性质:拉普拉斯变换的结果,只与函数的滞后的部分有关,因此可以使用拉普拉斯变换来实现信号的滞后处理。

(4)收敛性质:拉普拉斯变换的结果受被变换函数的收敛性的影响,而不受其具体形式的影响。

因此,对收敛的函数,可以通过拉普拉斯变换将其变换为正负无穷大范围的指数函数,使其受到解析处理,然后得到函数解析形式的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[sin t ]
s2 2
,
根据象函数的导数性质有
[ t sin t ]


d ds
[
s2
2
]

2 s (s2 2 )2
.
P219 例9.8
16
解 t 2 cos2 t 1 t 2 (1 cos 2t ) , 2
已知 [1] 1 , s
s [ cos 2t ] s2 22 ,
,
再由象函数的导数性质有
[ t e3t sin 2t ]


d ds

(s

2 3)2
4

4(s 3) [(s 3)2 4]2
.
18
四、积分性质 P219
1. 积分的象函数 P219
性质 [ t f (t )d t ] 1 F (s) .
0
s
证明
令 g(t)
21
四、积分性质
2. 象函数的积分

性质 s F (s)d s
一般地,有
[ f (t) ].
t



ds ds F (s)d s
s s s
[
f (t) tn
].
n次
证明 (略)
22
P220 例9.10
解 已知
[sin t ]
1 s2
1
,
根据象函数的积分性质有
§9.2 Laplace 变换的性质
一、线性性质与相似性质 二、延迟性质与位移性质 三、微分性质 四、积分性质 五、周期函数的像函数 六、卷积与卷积定理
1
§9.2 Laplace 变换的性质
在下面给出的基本性质中,所涉及到的函数的 Laplace 变换均假定存在,它们的增长指数均假定为 c。且
F(s) [ f (t)], G(s) [ g(t)]. 对于涉及到的一些运算(如求导、积分、极限及求和等) 的次序交换问题,均不另作说明。
2
一、线性性质与相似性质 P216
1. 线性性质 P216 性质
证明 (略)
3
解 f (t) sin 2t sin 3t 1 (cos t cos 5t), 2
[ f (t) ] 1 ( [ cos t ] [ cos 5t ]) 2

1 2

s2
s
1

s2
s
25
一般地,有 [ f (n) (t )] snF (s) sn1 f (0) sn2 f (0) f (n1)(0).
其中, f (k) (0) 应理解为 lim f (k)(t ). t0 Laplace 变换的这一性质非常重要,可用来求解微分 方程(组)的初值问题。 (§9.4 将专门介绍 )
F (s) d f (t)estd t [ f (t)est ]d t
ds 0
0 s
t f (t )estd t [ t f (t ) ]; 0
同理可得 F (n) (s) (1)n [ t n f (t ) ].
15
解 已知

0
f1 (
)[

f2(t

)est
d t]d
D
t
t
30
六、卷积与卷积定理
2. 卷积定理
定理 [ f1(t) f2(t)] F1(s) F2(s).
证明
[et sin t ]

1 (s 1)2 1
.
11
三、微分性质 P217
▲1. 导数的象函数 P217
性质 [ f (t)] sF (s) f (0) .
证明
[ f (t ) ] f (t )estd t estd f (t )
0
0
f (t )est s f (t )estd t ,
13
P218 例9.7
解 利用导数的象函数性质来求解本题 由 f (0) f (0) f (m1)(0) 0 以及 f (m)(t ) m! 有 [ f (m)(t)] [ m!] smF (s) sm1 f (0) sm2 f (0) f (m1)(0) sm [ f (t)] sm [ tm ],
[
f
(t)]

1
1
esT
T est sin t d t
0

1

1
e sT

est (s sin t cos t )
s2 2
T 0

s2 2

1 esT 1 esT

s2 2
cth s π .
2
27
六、卷积与卷积定理 P224
1. 卷积 按照上一章中卷积的定义,两个函数的卷积是指
1. 积分的象函数
性质 [ t f (t )d t ] 1 F (s);
0
s
一般地,有
20
解 已知
[sin2t ]
2 s2 22
,
根据微分性质有
[ t sin 2t ]

d ds

s2
2 22

再由积分性质得
[
Байду номын сангаас
t 0
t sin 2t dt ]
1 s

4s (s2 4)2
积分性质
[ t f (t)d t ] 1 F(s).
0
s

s F (s)d s
[ f (t) ].
t
25
五、周期函数的像函数 P223
性质
证明
[ f (t)]
T f (t)estd t
0
f (t)estd t
T
记为
I1 I2,
其中,I2 令 x t T
[ sin t ] t
s
1 1 s2
ds
即 sin t est d s arccot s . 0t
在上式中,如果令 s = 0,则有
sin t d s π .
0t
2
启示 在 Laplace 变换及其性质中,如果取 s 为某些特定的值,
就可以用来求一些函数的广义积分。
可见,在利用本性质求逆变换时应为:
1[ es F (s) ] f (t ) u(t ) .
8
P222 例9.12
解 方法一 已知
[sin t]
s
1 2
1
,
方法一 先充零再平移
根据延迟性质有
[ sin(t
π 2
)]

s
2
1
1
e

πs
2.
sin(t π ) u(t π )
2. 卷积定理
定理 [ f1(t) f2(t)] F1(s) F2(s).
证明 左边
[ f1(t) f2(t)]

[
0
f1 (t )
f2(t)]estd t
(跳过?)

[
0
t 0
f1( )
f2(t

)d ]estd t

t
D f1( ) f2(t )estd d t
2
2
方法二 先平移再充零
方法二
[ sin(t π ) ] [ cos t ] 2

1 s2
1
(s).
sin(t π ) u(t) 2
两种方法为什么会得到不同的结果?
9
例 设 F (s) 1 e2s , 求 1[ F (s) ]. P223 例9.13 修改
s1
解 由于
0
0
由 | f (t )| Mect , 有 | f (t )est | Me( Re sc)t ,
因此当 Re s c 时,有 lim f (t)est 0 , t
即得 [ f (t)] sF (s) f (0) .
12
三、微分性质
▲1. 导数的象函数 性质 [ f (t)] sF (s) f (0);
1[ 1 ] et u(t ) ,
s1
根据延迟性质有
1[ F (s) ] et2 u(t 2)

et 2

,
t 2,
0, t 2 .
10
二、延迟性质与位移性质
2. 位移性质 P223 性质 证明 (略)
例如
[et cos t ]

(s
s1 1)2
1
.
令 x at
1

f
s
(x)e a
x
dx
a0

1 a
F

s a

.
6
二、延迟性质与位移性质 P222
1. 延迟性质 P222
性质 设当 t < 0 时 f (t) 0 , 则对任一非负实数 有 [ f (t )] es F (s) .
证明
[ f (t ) ] f (t )estd t 0 f (t )estd t 令 x t f ( x)esx es d x 0 es F(s).
f ( x T )es( xT )d x
0
esT f ( x)es xd x esT [ f (t ) ], 0
即得
[
f
相关文档
最新文档