正弦定理、余弦定理知识点
正余弦定理知识点及题型归纳
正余弦定理是三角学中的重要知识点,用于解决与三角形相关的问题。
下面是对正余弦定理的知识点及题型归纳:一、正弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有sinA/a = sinB/b = sinC/c。
2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。
3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。
二、余弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有cosA = (b ²+ c²- a²) / (2bc)。
2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。
3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。
三、题型归纳1. 已知三个角的度数,求边长:-根据正弦定理或余弦定理,将已知的角度代入公式中,求解边长;-如果已知的是弧度制的角度,需要将其转换为角度制。
2. 已知两个边的长度,求第三个边的长度:-根据正弦定理或余弦定理,将已知的两个边的长度代入公式中,求解第三个边的长度;-如果已知的是弧度制的角度,需要将其转换为角度制。
3. 已知一个角和一条边的长度,求另外两个角的度数:-根据正弦定理或余弦定理,将已知的角度和边的长度代入公式中,求解另外两个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。
4. 已知一个角和两条边的长度,求第三个角的度数:-根据正弦定理或余弦定理,将已知的角度和两条边的长度代入公式中,求解第三个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。
1.1正弦定理和余弦定理知识点
1.1正弦定理和余弦定理基本要求:1. 能证明正弦定理、余弦定理.2. 能理解正弦定理、余弦定理在讨论三角形边角关系时的作用.3. 能用正弦定理、余弦定理解斜三角形.4. 理解用正弦定理、余弦定理讨论三角形解的情形. 重点:正弦定理和余弦定理及其推导.难点:用正弦定理解三角形时解的个数的讨论. 考点结构分析:1. 正弦定理1:在一个三角形中各边和它所对角的正弦的比相等,即:CcB b A a sin sin sin ==. 2. 余弦定理2:三角形中任何一边的平方等于其他两边的平方和减去这两边与它们夹角余弦积的两倍,即:A bc c b a cos 2222-+=.B ca a c b cos 2222-+=.C ab b a c cos 2222-+=.3. 余弦定理推论:bc a c b A 2cos 222-+=.ca c a c B 2cos 222-+=.abc b a C 2cos 222-+=.4. 重要结论:(1) 在ABC ∆中,a 、b 、c 分别为A 、B 、C 的对边,C B A c b a C B A sin sin sin >>⇔>>⇔>>. (2) 在ABC ∆中,给定A 、B 的正弦或余弦值,则C 有解(即存在)的充要条件是0cos cos >+B A . 5. 解斜三角形的类型:(1) 已知两角一边,用正弦定理,有解时,只有一解.(2) 已知两边及其一边的对角,用正弦定理,有解的情况可分为以下情况,在ABC ∆中,已知a 、b 和角A 时,解的情况如下:上表中为锐角时,时,无解;为钝角或直角时,,均无解. (3) 已知三边,用余弦定理有解时,只有一解. (4) 已知两边及夹角,用余弦定理,必有一解.6. 三角形面积:(1) ah S 21=(h 为BC 边上的高); (2) C ab S sin 21=;(3) C B A R S sin sin sin 22=(R 为ABC ∆外接圆半径);(4) RabcS 4=(R 为ABC ∆外接圆半径); (5) ))()((c p b p a p p S ---=,)(21c b a p ++=.疑难点清单:判断三角形形状基本思想是:利用正弦定理进行角边统一.即将条件化为只含角的关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.结论一般为特殊的三角形,如等边三角形,等腰三角形,直角三角形,等腰直角三角形等.另外,在变形过程中要注意A 、B 、C 内角的固定范围对三角函数数值的影响. 附:1. 正弦定理的证明: ① 定义法(教科书中给出)如图1,在ABC Rt ∆中,C ∠是最大的角,所对的斜边c 是最大的边,要考虑边长之间的数量关系,就涉及到了锐角三角函数.根据正弦函数的定义,Ac asin =, B cbsin =.所以c BbA a ==sin sin . 又1sin =C ,所以CcB b A a sin sin sin ==. 那么,对于一般的三角形,以上关系式是否仍然成立呢?如图2,当ABC ∆是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,B a CD sin =,A b CD sin =,所以A bB a sin sin =, 得到BbA a sin sin =. 同理,在ABC ∆中, CcB b sin sin =. 所以CcB b A a sin sin sin ==. ② 向量法如图3,ABC ∆为锐角三角形时,过A 作三位向量→j 垂直于→AB ,则→j 与→AB 的夹角为︒90,→j 与→BC 的夹角为B -2π,→j 与→CA 的夹角为A +2π,设c AB =,a BC =,b AC =.因为→→→→=++0CA BC AB ,所以00=⋅=⋅+⋅+⋅→→→→→→→→j CA j BC j AB j . 即0)2cos(||||)2cos(||||2cos||||=++-+→→→→→→A CA jB BC j AB j πππ.所以A b B a sin sin =,即BbA a sin sin =. 同理可得:C cB b sin sin =,即CcB b A a sin sin sin ==.当ABC ∆为钝角三角形或者直角三角形时,利用同样的方法可以证得结论.(可以请学生来给出证明) ③ 几何法如图4,设O 为ABC ∆的外接圆的圆心,连接BO 并延长交 ⊙O 与点A ',连接C A ',则A A ='或A A -='π,∴=A sinR a B A BC A 2sin ='=',即R A a 2sin =,同理可证R B b2sin =, R C c 2sin =,故有CcB b A a sin sin sin ==. 注:在运用时,有时需要对它进行变形,如C B A c b a sin :sin :sin ::=; A R a sin 2=,B R b sin 2=,C R c sin 2=.如图5,当ABC ∆为钝角三角形时,设B 为钝角.过C 作AB 的垂线与AB 的延长线交于D 点,由三角函数的定义得A b CD sin =,B a B a CD sin )180sin(=-︒=,B a A b sin sin =∴,即BbA a sin sin =. 同理可得C c A a sin sin =,CcB b A a sin sin sin ==∴.2. 余弦定理证明:如图6,设→→=a CB ,→→=b CA ,→→=c AB ,那么→→→-=b a c ,→→→→→→→→→→→→→⋅-⋅-⋅=+⋅-=⋅=b a b b a a b a b a c c c 2)()(||2C ab b a cos 222-+=所以C ab b a c cos 2222-+=.同理可以证明:A bc c b a cos 2222-+=.B ca a c b cos 2222-+=.。
正弦,余弦定理
正弦,余弦定理正弦和余弦定理是三角函数中的重要概念,它们在解决三角形相关问题时起到了关键作用。
本文将分别介绍正弦和余弦定理的含义、推导过程以及应用场景。
一、正弦定理正弦定理是指在任意三角形中,三边的长度与其对应的角的正弦值之间存在一定的关系。
设三角形的三边分别为a、b、c,对应的角为A、B、C,则正弦定理可以表示为:a/sinA = b/sinB = c/sinC正弦定理的推导过程如下:假设有一个三角形ABC,分别连接AB、AC的垂线,垂足分别为D、E。
根据几何性质,可以得到以下关系:AD = b * sinCAE = c * sinB再根据三角形的内角和等于180°的性质,可以得到:∠B + ∠C + ∠AED = 180°∠B + ∠C + ∠ADE = 180°将上述两个等式代入,得到:∠ADE + ∠AED = 180°∠ADE + ∠ABC = 180°由此可以得出∠ABC = ∠AED,进而得到以下等式:sinA/sinB = AD/AE = b/c通过类似的推导过程,可以得到其他两个等式:sinA/sinC = c/asinB/sinC = a/b由此可以看出,正弦定理实际上是三个比例关系的等式,可以用来求解未知边长或角度的问题。
例如,已知一个三角形的两边和夹角,可以利用正弦定理求解第三边的长度或另外两个角的大小。
二、余弦定理余弦定理是指在任意三角形中,三边的长度与其对应的角的余弦值之间存在一定的关系。
设三角形的三边分别为a、b、c,对应的角为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2abcosCb² = a² + c² - 2accosBa² = b² + c² - 2bccosA余弦定理的推导过程如下:假设有一个三角形ABC,分别连接AC、BC的垂线,垂足分别为D、E。
正弦定理和余弦定理
正弦定理和余弦定理一、基础知识1.正弦定理asin A=bsin B=csin C=2R(R为△ABC外接圆的半径).正弦定理的常见变形(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)a∶b∶c=sin A∶sin B∶sin C;(4)a+b+csin A+sin B+sin C=asin A.2.余弦定理a2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B;c2=a2+b2-2ab cos C. 3.三角形的面积公式(1)S△ABC=12ah a(h a为边a上的高);(2)S△ABC=12ab sin C=12bc sin A=12ac sin B;(3)S=12r(a+b+c)(r为三角形的内切圆半径).二、常用结论汇总——规律多一点1.三角形内角和定理在△ABC中,A+B+C=π;变形:A+B2=π2-C2.2.三角形中的三角函数关系(1)sin(A+B)=sin C;(2)cos(A+B)=-cos C;(3)sin A+B2=cosC2;(4)cosA+B2=sinC2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(优质试题·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B 为锐角,∴cos B =1-sin 2B =223.(2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6, 又∵C =π6,∴B =π6,A =π-B -C =2π3. 又a =3,由正弦定理得a sin A =bsin B , 即3sin 2π3=b sin π6,解得b =1. [答案] (1)223 (2)1 考法(二) 余弦定理解三角形[典例] (1)(优质试题·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(优质试题·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b 2c -a =sin Asin B +sin C,则角B =________. [解析] (1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a22bc +a ·a 2+c 2-b 22ac =c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a=sin Asin B +sin C =ab +c,∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac , ∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[专题训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( )A.24 B .-24 C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin A a =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值. 解:(1)由正弦定理可得b 2+c 2=a 2+bc , 由余弦定理得cos A =b 2+c 2-a 22bc =12, 因为A ∈(0,π),所以A =π3. (2)由(1)可知sin A =32,因为cos B=13,B为△ABC的内角,所以sin B=223,故sin C=sin(A+B)=sin A cos B+cos A sin B=32×13+12×223=3+226.由正弦定理asin A=csin C得c=a sin Csin A=3×(3+22)32×6=1+263.考点二判定三角形的形状[典例](1)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C +c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定(2)在△ABC中,角A,B,C的对边分别为a,b,c,若sin Asin B=ac,(b+c+a)(b+c-a)=3bc,则△ABC的形状为()A.直角三角形B.等腰非等边三角形C.等边三角形D.钝角三角形[解析](1)法一:因为b cos C+c cos B=a sin A,由正弦定理知sin B cos C+sin C cos B=sin A sin A,得sin(B+C)=sin A sin A.又sin(B+C)=sin A,得sin A=1,即A=π2,因此△ABC是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac ,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形. [答案] (1)B (2)C[变透练清]1.(变条件)若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角, 所以△ABC 是钝角三角形. 答案:钝角三角形2.(变条件)若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0,所以cos A=0或sin B=sin A,所以A=π2或B=A或B=π-A(舍去),所以△ABC为等腰或直角三角形.答案:等腰或直角三角形3.(变条件)若本例(2)条件改为“cos Acos B=ba=2”,那么△ABC的形状为________.解析:因为cos Acos B=ba,由正弦定理得cos Acos B=sin Bsin A,所以sin 2A=sin 2B.由ba=2,可知a≠b,所以A≠B.又因为A,B∈(0,π),所以2A=π-2B,即A+B=π2,所以C=π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A级1.在△ABC中,内角A,B,C的对边分别为a,b,c.若sin Aa=cos Bb,则B的大小为()A.30°B.45°C.60°D.90°解析:选B由正弦定理知,sin Asin A=cos Bsin B,∴sin B=cos B,∴B=45°.2.在△ABC中,内角A,B,C的对边分别为a,b,c.已知b=40,c=20,C=60°,则此三角形的解的情况是()A.有一解B.有两解C.无解D.有解但解的个数不确定解析:选C 由正弦定理得b sin B =csin C , ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(优质试题·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =a c ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D. 6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(优质试题·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sinB cosC +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6.6.(优质试题·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A. 5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =AC sin B , 即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝ ⎛⎭⎪⎫-14=16,∴c =4.答案:49.(优质试题·浙江高考)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=7,b=2,A=60°,则sin B=________,c=________.解析:由正弦定理asin A=bsin B,得sin B=ba·sin A=27×32=217.由余弦定理a2=b2+c2-2bc cos A,得7=4+c2-4c×cos 60°,即c2-2c-3=0,解得c=3或c=-1(舍去).答案:217 310.在△ABC中,a,b,c分别为角A,B,C所对的边,sin A,sin B,sin C 成等差数列,且a=2c,则cos A=________.解析:因为sin A,sin B,sin C成等差数列,所以2sin B=sin A+sin C.由正弦定理得a+c=2b,又因为a=2c,可得b=32c,所以cos A=b2+c2-a22bc=94c2+c2-4c22×32c2=-14.答案:-1 411.在△ABC中,内角A,B,C的对边分别为a,b,c,且A=2B.(1)求证:a=2b cos B;(2)若b=2,c=4,求B的值.解:(1)证明:因为A=2B,所以由正弦定理asin A=bsin B,得asin 2B=bsin B,所以a=2b cos B.(2)由余弦定理,a2=b2+c2-2bc cos A,因为b=2,c=4,A=2B,。
高中数学知识点总结正弦定理与余弦定理
高中数学知识点总结正弦定理与余弦定理正弦定理与余弦定理是高中数学中的重要知识点,用于求解不规则三角形的边长和角度。
本文将对这两个定理进行详细总结与讲解。
一、正弦定理1.1 定义正弦定理是指在任意三角形中,三条边与其对应的角的正弦值之间的关系。
设三角形的三边分别为a、b、c,对应的角度为A、B、C,则正弦定理的表达式为:a/sinA = b/sinB = c/sinC1.2 推导我们通过利用三角形的面积公式S=1/2 * a * b * sinC,并将其转换为对角线的形式,可以得到正弦定理的推导过程。
1.3 应用正弦定理可以用于求解不规则三角形的边长和角度。
当我们已知三条边或者两条边和夹角时,可以利用正弦定理求解未知的边长或者角度。
二、余弦定理2.1 定义余弦定理是指在任意三角形中,三条边和它们对应的角之间的关系。
设三角形的三边分别为a、b、c,对应的角度为A、B、C,则余弦定理的表达式为:c^2 = a^2 + b^2 - 2ab * cosC2.2 推导我们可以通过利用向量的几何关系,将余弦定理的表达式推导出来。
这个过程较为繁琐,这里就不做详细讲解。
2.3 应用余弦定理可以用于求解不规则三角形的边长和角度。
当我们已知三条边或者两条边和夹角时,可以利用余弦定理求解未知的边长或者角度。
三、正弦定理与余弦定理的比较3.1 适用范围正弦定理适用于任意三角形,而余弦定理只适用于任意三角形,不能用于直角三角形。
3.2 计算难度正弦定理的计算相对简单,只需要记住一个公式,而余弦定理的计算稍复杂,需要使用开方和乘法等运算。
3.3 精度误差由于余弦定理中涉及到平方运算,可能会带来一定的误差,而正弦定理中没有涉及到平方运算,计算结果更加准确。
3.4 应用场景正弦定理在计算不规则三角形的边长和角度时较为常用,尤其适用于已知两边和夹角的情况。
而余弦定理在计算不规则三角形的边长和角度时同样常用,特别适用于已知三边的情况。
正余弦定理知识点总结及高考考试题型
正余弦定理知识点总结及高考考试题型一、正余弦定理的概念正余弦定理,又称余正定理、角-边-角定理,是指用三角形中的一个角和与它相对的两边的长度,来表示三角形中的另外两个角与其对应的两边之间的关系的公式。
二、正余弦定理的形式对于一个三角形ABC,设三个边分别为a、b、c,对应的角分别为A、B、C,将角A所对应的边称为边a,角B所对应的边称为边b,角C所对应的边称为边c。
(1)正弦定理:$\frac{a}{\sin A}=\frac{b}{\sinB}=\frac{c}{\sin C}$(2)余弦定理:$a^2=b^2+c^2-2bc\cos A$$b^2=a^2+c^2-2ac\cos B$$c^2=a^2+b^2-2ab\cos C$三、正余弦定理的应用正余弦定理是基本的三角函数之一,它们在高中数学教育中被广泛应用。
通常在三角形的求面积过程中被使用。
考生还需能够将它们应用在其他相关的三角形求解问题中。
例如,可以用正余弦定理解决以下问题:(1)求三角形的面积。
(2)判断三角形是否为等腰三角形,是否为等边三角形。
(3)确定三角形的内角度数。
(4)求解三角形的未知边和角。
四、正余弦定理在高考考试中的出现形式正余弦定理在高考考试中经常作为解决三角形问题的关键公式。
它们常表现为单独的选择题或解答题,也可能是复合型题目的一部分。
(1)选择题样例:已知三角形ABC的边长分别为11、12、13,若$\angle C$ 的角度等于$\frac{\pi}{2}$,则$\sin A+\cos B$ 等于()A. $\frac{24}{13}$B. $\frac{22}{13}$C. $\frac{20}{13}$D. $\frac{18}{13}$(2)解答题样例:已知$\triangle ABC$,且$AB=8, AC=6,BC=10$,则$\triangle ABC$的面积是多少?解:由余弦定理,$\cos A=\frac{b^2+c^2-a^2}{2bc}=\frac{100-36-64}{2×10×8}=-\frac{1}{8}$由正弦定理,$2S=\frac{1}{2}bc\sin A=24\sin A=24\sqrt{1-\cos^2 A}=24\sqrt{1-\frac{1}{64}}=\frac{48}{\sqrt{3}}$因此,$\triangle ABC$ 的面积为$\frac{24}{\sqrt{3}}$。
正弦定理和余弦定理考点与提醒归纳
正弦定理和余弦定理考点与提醒归纳一、基础知识1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B 为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析] (1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac =c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b2c -a =sin A sin B +sin C =a b +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac , ∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc , 由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C得c =a sin C sin A =3×(3+22)32×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A ,由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清]1.(变条件)若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________. 解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形2.(变条件)若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形3.(变条件)若本例(2)条件改为“cos A cos B =ba =2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC 是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sinC sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6.6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A+B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b .(1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C ,∵sin C ≠0,∴cos A =-12, 又A ∈(0,π),∴A =2π3. (2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BD sin A, ∴sin ∠ADB =AB sin A BD =22. 又∠ADB ∈(0,π),A =2π3, ∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2, 由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.。
正弦定理和余弦定理笔记
正弦定理和余弦定理笔记一、正弦定理。
(一)定理内容。
在一个三角形中,各边和它所对角的正弦值的比相等,即(a)/(sin A)=(b)/(sinB)=(c)/(sin C) = 2R(R为三角形外接圆半径)。
(二)证明方法。
1. 外接圆法。
- 设ABC的外接圆半径为R。
- 连接圆心O与三角形的三个顶点A、B、C。
- 对于∠ A,根据同弧所对的圆周角是圆心角的一半,可知∠ A=(1)/(2)∠BOC。
- 由正弦定义,在BOC中,a = 2Rsin A,同理可得b = 2Rsin B,c = 2Rsin C,所以(a)/(sin A)=(b)/(sin B)=(c)/(sin C)=2R。
2. 向量法(略提)- 利用向量的数量积公式→AB·→AC=|→AB||→AC|cos A,通过一系列向量运算也可证明正弦定理,但相对外接圆法较复杂。
(三)应用。
1. 已知两角和一边,求其他边和角。
- 例如,已知A = 30^∘,B = 45^∘,a = 10。
- 根据三角形内角和C=180^∘-A - B = 105^∘。
- 由正弦定理(a)/(sin A)=(b)/(sin B),可得b=(asin B)/(sin A)。
- 先求出sin 45^∘=(√(2))/(2),sin 30^∘=(1)/(2),则b=(10×frac{√(2))/(2)}{(1)/(2)} = 10√(2)。
- 再根据(a)/(sin A)=(c)/(sin C)求出c的值,sin105^∘=sin(60^∘+45^∘)=sin60^∘cos45^∘+cos60^∘sin45^∘=(√(6)+√(2))/(4),c=(asin C)/(sin A)=(10×frac{√(6)+√(2))/(4)}{(1)/(2)} = 5(√(6)+√(2))。
2. 已知两边和其中一边的对角,求其他边和角(可能有一解、两解或无解情况)- 例如,已知a = 10,b = 20,A = 30^∘。
正弦定理和余弦定理(复习)
c b a H C B A 正余弦函数复习一、知识点1.正弦定理:2sin sin sin a b c R A B C===外(R 为外接圆的半径) (1)C R c B R b A R a sin 2,sin 2,sin 2=== C B A c b a s i n :s i n :s i n::= 注意:利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角;有三种情况:bsinA<a<b 时有两解;a=bsinA 或a=b 时有 解;a<bsinA 时无解 2.余弦定理:a 2=b 2+c 2-2bccosA , 222cos 2b c a A bc +-=; 3、面积公式:S=21a bsinC=21bcsinA=21c a sinB 利用余弦定理,可以解决以下两类问题:(1) 已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
二、习题1.在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,A=3π,a =3,b=1,则 c 等于( ) A. 1 B. 2 C. 13- D. 32. 已知△ABC 中,a =1,b=3,A=︒30,则角B 等于( )A. ︒60B. ︒60或︒120C. ︒30或︒150D. ︒1203、在△ABC 中,已知222c bc b a ++=,则角A 为( )A 、 3π B. 6π C. 32π D. 3π或32π 4、在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若ac B b c a 3tan )(222=-+,则角B 的值为( )A. 6πB. 3πC. 6π或65πD. 3π或32π5、在△ABC 中,若Cc B b A a cos cos cos ==,则△ABC 是( ) A. 直角三角形 B. 等边三角形 C. 钝角三角形 D. 等腰直角三角形6. 在△ABC 中,2cosBsinA=sinC,则△ABC 的形状一定是 ( )A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等边三角形7. 满足条件a=4,b=23,A=︒45的△ABC 的个数是 ( )A. 1个 B. 2个 C. 无数个 D. 不存在8、△ABC 的周长为20,面积为310,A=︒60,则BC 边长为( )A 、 5 B. 6 C. 7 D. 8二、填空题9、在△ABC 中,已知a =7,b=10,c=6,则△ABC 的形状是 三角形10、在△ABC 中,若B=︒30,AB=32,AC=2,则△ABC 的面积是 .11、在△ABC 中,已知BC=8,AC=5,△ABC 的面积为12,则cos2C= .三、解答题12、△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,B=3π,cosA=54,b=3. (1)求sinC 的值;(2)求△ABC 的面积.13、已知A 、B 、C 为△ABC 的三个内角,它们的对边分别为a 、b 、c ,若m =(cosB ,sinC ),n =(cosC ,-sinB ),且m ·n =21.(1)求A ;(2)若a=32,△ABC 的面积S=3,求b+c 的值.14、 三角形ABC 中的三个内角A 、B 、C 的对边分别为a 、b 、c ,已知ac b c a +=+222,且a :c=(3+1):2,求角C 的大小.15、(2010·陕西卷)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?16.(2010·福建卷,文)某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;(3)是否存在v ,使得小艇以v 海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v 的取值范围;若不存在,请说明理由.。
初中数学知识归纳三角形的正弦定理与余弦定理
初中数学知识归纳三角形的正弦定理与余弦定理三角形的正弦定理与余弦定理是初中数学中重要且常用的知识点。
它们是解决三角形相关问题的基本工具,能够帮助我们计算三角形的各个边长和角度。
本文将对三角形的正弦定理与余弦定理进行归纳和解释,以帮助同学们更好地理解和应用这两个定理。
1. 三角形的正弦定理三角形的正弦定理是指在任意三角形ABC中,三边的长度a、b、c 与它们对应的角A、B、C之间有一个重要的关系:a/sinA = b/sinB = c/sinC。
其中,a、b、c分别表示三边的长度,A、B、C表示对应的角的度数或弧度。
简单来说,正弦定理表明三角形的每条边的长度与其对应的角的正弦值成比例。
这个关系可以通过以下示例来理解:【示例1】已知一个三角形的两边长度分别为5cm和8cm,夹角为60°,求第三边的长度。
解:根据正弦定理,设第三边长度为c,则有5/sin60° = c/sin(180°-60°-60°),化简得c = 5*sin120° / sin60° ≈ 8.66cm。
【示例2】已知一个三角形的两边长度分别为7cm和9cm,夹角为45°,求第三边的长度。
解:根据正弦定理,设第三边长度为c,则有9/sin45° = c/sin(180°-45°-45°),化简得c = 9*sin135° / sin45° ≈ 14.14cm。
从这两个示例可以看出,正弦定理可以帮助我们在已知两边和夹角的情况下求解三角形中的第三边长度。
2. 三角形的余弦定理三角形的余弦定理是指在任意三角形ABC中,三边的长度a、b、c 与它们对应的角A、B、C之间有一个重要的关系:c^2 = a^2 + b^2 -2ab*cosC。
其中,a、b、c分别表示三边的长度,A、B、C表示对应的角的度数或弧度。
高中数学必修五-正弦定理与余弦定理
正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。
正弦定理余弦定理知识点总结及最全证明
正弦定理余弦定理知识点总结及最全证明正弦定理概述:正弦定理是三角形的一个重要定理,它描述了三角形中各边与其相对的正弦值之间的关系。
正弦定理可以用于求解任意三角形的边长或角度。
正弦定理表达式:在一个三角形ABC中,有以下正弦定理的表达式:a/sin(A) = b/sin(B) = c/sin(C)其中,a、b、c分别表示三角形的边长,A、B、C表示三角形的角度。
正弦定理表明,三角形的任意一边的长度与这条边相对的角的正弦值成正比。
正弦定理的证明:可以使用数学推导来证明正弦定理。
这里给出一种较为详细的证明方法。
证明:1. 通过三角形的边长关系:a = b * sin(A) / sin(B)和c = b *sin(C) / sin(B),可得到以下关系式:a * sin(B) = b * sin(A)和c * sin(B) = b * sin(C)2.利用向量叉积原理知识,假设D为线段BC上的一点,则由向量的垂直性知:向量BD与向量AD是垂直的,向量CD与向量AD是垂直的。
3. 记向量AD为向量a,向量BD为向量b,向量CD为向量c,由向量b与向量a的垂直性可得:向量b·向量a = ,b, * ,a, *sin(∠BA) = b * AD * sin(∠BA)。
4. 同理,由向量c与向量a的垂直性可得:向量c·向量a = ,c,* ,a,* sin(∠CA) = c * AD * sin(∠CA)。
5. 因为∠C + ∠A = ∠BA,即∠CA + ∠BA = 180°,所以sin(∠BA) = sin(∠CA)。
所以有b * AD * sin(∠BA) = c * AD *sin(∠CA)。
6. 即有b * AD * sin(∠BA) = c * AD * sin(∠BA),那么b = c,所以定理得证。
余弦定理概述:余弦定理是三角形的另一个重要定理,它描述了三角形中各边与其相对的角之间的关系。
正弦定理余弦定理知识点
正弦定理余弦定理知识点正弦定理和余弦定理是三角形中常用的公式。
1.三角形中常用的公式包括:角度和公式A+B+C=π;海伦公式S=√(p(p-a)(p-b)(p-c)),其中 p=(a+b+c)/2;正弦定理a/sinA=b/sinB=c/sinC=2R,其中 R 为外接圆半径;余弦定理a²=b²+c²-2bccosA,b²=a²+c²-2accosB,c²=a²+b²-2abcosC。
2.三角形中的边角不等关系:A>B⟺a>b,a+b>c,a-b<c。
3.正弦定理可用于以下情况:①已知两角和任一边,求其他两边及一角;②已知两边和其中一边对角,求另一边的对角;③几何作图时,存在多种情况。
4.已知两边和其中一边的对角解三角形的情况:(1)A为锐角,有一解;(2)A为锐角或钝角,当a>b时有一解。
5.余弦定理可用于以下情况:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边。
6.三角形面积公式为 S=1/2absinC=1/2bcsinA=1/2casinB。
在解题时,可以利用正弦定理或余弦定理判断三角形的形状,从中找到三角形中的边角关系,判断出三角形的形状。
例如,在△ABC 中已知 acosB=bcosA,利用扩充的正弦定理可以得到 sin(A-B)=0,因此 A=B,即△ABC 为等腰三角形。
练题:1.在△ABC 中,若 XXX2bcosBcosC,可判断三角形的形状。
2.在△ABC 中,已知 atanB=btanA,可判断三角形的形状。
3.已知△ABC 中,有 cosA+2cosCsinB=2,可判断三角形的形状。
解:由题意可得tanA=1,tanB=2,tanC=3则tan(A+B)=tan(180°-C)=tanC=-3tan(A+B)+tanC=-3+3=0又因为A、B、C为锐角,所以A+B+C=180°而tan(A+B+C)=\frac{tan(A+B)+tanC}{1-tan(A+B)tanC}=0所以A+B+C=180°综上所述,A+B+C=180°.3.在三角形ABC中,a、b、c分别为角A、B、C的对边。
正弦余弦定理 ---讲义
正弦余弦定理 讲义一、基本知识点 正弦定理:R C cB bA a2sin sin sin ===正弦定理的基本作用:1.两角和任意一边,求其它两边和一角;(一解)2.两边和其中一边对角,求其它的两角和一边(一解或者两解)(详见图示)已知a, b 和A, 用正弦定理求B 时的各种情况:⑴若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,( b a bsinA)( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a b a b a b a baa 已知边a,b 和∠A仅有一个解有两个解仅有一个解无解a ≥b CH=bsinA<a<b a=CH=bsinA a<CH=bsinA A C B A C B1A BAC B2C H H H⑵若A 为直角或钝角时:⎩⎨⎧>≤)( b a 锐角一解无解b a余弦定理:,cos 2222A bc c b a -+=⇔bc a c b A 2cos 222-+=余弦定理的基本作用:1.已知三边,求三角;(一解)2.已知两边和夹角,求一边和两角(一解)公式一:a b c 111S ah bh ch 222===公式二:111S absinC acsinB bcsin A 222===公式三:S p(p a)(p b)(p c)=--- 其中1p (a b c)2=++称为三角形的半周长。
推导:将公式二中的角的关系变为边的关系,根据22sin C cos C 1+=,2sin C 1cos C =-,及余弦定理ab c b a C 2cos 222-+=的变形2222abcosC a b c =+-,则 2111S absinC ab 1cos C ab (1cosC)(1cosC)222==-=-+ 22114a b (1cosC)(1cosC)(2ab 2abcosC)(2ab 2abcosC)44=-+=-+ 222222222211(2ab a b c )(2ab a b c )[c (a b)][(a b)c ]44=--+++-=--+- 11111(c a b)(c a b)(a b c)(a b c)(c a b)(c a b)(a b c)(a b c)42222=+--++++-=+--++++-设1p (a b c)2=++,则S p(p a)(p b)(p c)=---。
正弦定理、余弦定理
正弦定理、余弦定理【知识点梳理】1.正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 2.正弦定理的推论:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b cC C++===A +B +A B .3.余弦定理:在C ∆AB 中,有:2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.4.余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=.5.三角形面积公式:①111sin sin sin 222C S bc ab C ac ∆AB =A ==B ; ②pr c p b p a p p S ABC =---=∆))()((,其中2cb a p ++=,r 为内切圆半径; ③RabcS ABC 4=∆,R 为外接圆半径. 6.解△ABC 中,注意解可能有多种情况,B A B A b a sin sin <⇔<⇔<. 7.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则【典型例题】例题1:在△ABC 中,a =23,b =6,A =30°,解三角形.变式1:在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =60°,a =3,b =1,则c 等于( )A .1B .2 C.3-1 D. 3变式2:在△ABC 中,已知a =22,A =30°,B =45°,解三角形.题型二、运用余弦定理解三角形例题2:在∆ABC 中,已知=a c 45oB =,求b 及A .变式3:在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,求边c .变式4:已知三角形ABC 的三边长为a =3,b =4,c =37,求△ABC 的最大内角.题型三、三角形形状判断例题3:在ABC ∆中,若60=B ,c a b +=2,试判断ABC ∆形状.变式5:在ABC ∆中,已知2cos cos sin 2AC B =,则ABC ∆为 三角形.变式6:在△ABC 中,sin A :sin B :sin C =2:3:4,试判断三角形的形状.变式7:在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,且sin A =2sin Bcos C ,试确定△ABC 的形状.题型四、面积问题例题4:在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且CB cos cos =c a b+-2.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.变式8:在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的面积为 .变式9:在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c .已知c =2,C =3π. (1)若△ABC 的面积等于3,求a 、b 的值; (2)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.题型五、与向量综合例题5:已知A B C 、、为ABC ∆的三内角,且其对边分别为a b c 、、.若向量2(cos 2A =m ,cos 1)2A-,向量(1=n ,cos1)2A+,且21⋅=-m n . (1)求A 的值;(2)若a =S =b c +的值.【方法与技巧总结】1、已知两角A 、B ,一边a ,由A+B+C=π及sin sin sin a b cA B C==,可求角C ,再求b 、c ; 2、已知两边b 、c 与其夹角A ,由a 2=b 2+c 2-A bc cos 2,求出a ,再由余弦定理,求出角B 、C ;3、已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C ;4、已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a bA B=,求出另一边b 的对角B ,由C=π-(A+B),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a bA B =求B 时,可能出一解,两解或无解.【训练题组A 】1.已知ABC ∆中,c b a 、、分别是角C B A 、、的对边, 60,3,2===B b a ,则A =( )A.135 B.45 C.135或45 D.902.已知锐角△ABC 的面积为33,BC =4,CA =3, 则角C 的大小为( )A. 75°B. 60°C. 45°D. 30°3.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 4.在△ABC 中,若2cosBsinA=sinC ,则△ABC 一定是 三角形. 5.在△ABC 中,A=120°,AB=5,BC=7,则CBsin sin 的值为 . 6.在△ABC 中,BC=2,B=3π,若△ABC 的面积为23,则tanC 为 . 7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,7=b ,3=c ,则B= .8.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 9.下列判断中不正确的结论的序号是 .①△ABC 中,a =7,b =14,A =30°,有两解 ②△ABC 中,a =30,b =25,A =150°,有一解 ③△ABC 中,a =6,b =9,A =45°,有两解 ④△ABC 中,b =9,c =10,B =60°,无解10.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若7,8,9a b c ===,则AC 边上的中线长为 . 11.在△ABC 中,已知a =2,b =22,C =15°,求A .12.在△ABC 中,cos B =-135,cos C =54. (1)求sin A 的值; (2)若△ABC 的面积S △ABC =233,求BC 的长.13.在△ABC 中,内角A,B,C 的对边分别为a ,b ,c ,且b cosB .(1)求角B 的大小;(2)若b =3,sinC=2sinA ,求a ,c 的值.14.已知向量(sin ,1)a x =- ,1,)2b x =- ,函数()()2f x a b a =+⋅- .(1)求函数()f x 的最小正周期T ;(2)已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,其中A 为锐角,a =4c =,且()1f A =,求A ,b 和ABC ∆的面积S .15.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c=7,且4sin 22B A +-cos2C =27.(1)求角C 的大小; (2)求△ABC 的面积.【训练题组B 】1.在△ABC 中,若a cos A =b cos B =ccos C;则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形2.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,若B=30°,b=2,32=c ,则△ABC 的面积为( )A .3B .32C .2或3D .32 或3 3.在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A = ;a = .4.在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: .5.已知函数()21cos cos 2f x x x x =-+. (1)求函数()f x 的对称中心和单调区间;(2)已知ABC ∆内角A 、B 、C 的对边分别为a ,b ,3,且()1f C =,若向量()()1,sin 2,sin m A n B ==与共线,求a 、b 的值.6.ABC ∆的面积是30,内角,,A B C 所对边长分别为,,a b c ,12cos 13A =. (1)求⋅;(2)若1c b -=,求a 的值.7.在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状.8.在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.10.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2 A =2a .(1)求ba;(2)若c 2=b 2+3a 2,求B .【训练题组C 】1.在ABC ∆中,若π125=∠A ,π41=∠B ,26=AB ,则=AC ( ) A .3 B .32 C .33 D .342.在ABC ∆中角A 、B 、C 的对边分别是a 、b 、c ,若(2)cos cos b c A a C -=, 则cos A =______.3.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足sin cos c A C =.(1)求角C 的大小;(2sin()2A B π-+的最大值,并求取得最大值时角,A B 的大小.4.(汕头市2013届高三3月教学质量测评)△ABC 中内角A,B,C 的对边分别为a ,b ,c ,向量(2sin2Am =,2(cos ,2cos 1)4An A =- ,且//.(1)求角A 的大小;(2)若a =ABC b +c 的值.5.如图,在△ABC 中,45C ∠=,D 为BC 中点,2BC =.记锐角ADB α∠=,且满足7cos 225α=-. (1)求cos α; (2)求BC 边上高的值.【参考答案】【训练题组A 答案】1.【答案】B ,【解析】依题意,由正弦定理sin sin a b A B =得,sin sin 60A = ,解得sin 2A =,又b a >,∴45A =,故选B. 2.【答案】B3.【答案】C ,解析:由sin :sin :sin 5:11:13A B C =及正弦定理得a :b :c =5:11:13,由余弦定理得0115213115cos 222<⨯⨯-+=c ,所以角C 为钝角.335πBD A10.【答案】711.解:由余弦定理得c 2=a 2+b 2-2ab cos C =8-43,所以c =6-2,由正弦定理得sin A =asin C c =12,因为b >a ,所以B >A ,又∵0°<A <180°,∴A =30°. 12.解:(1)由cosB=135-,得sinB=1312,由cosC=54,得sinC=53. 所以sinA=sin(B+C)=sinBcosC+cosBsinC=6533.(2)由S △ABC =233,得21×AB×AC×sinA=233.由(1)知sinA=6533,故AB×AC=65.又AC=CB AB sin sin ⨯=1320AB ,故1320AB 2=65,AB=213.所以BC=CA AB sin sin ⨯=211.13.解:(1) 由正弦定理可得sin sin cos B A A B =,即得tan B =3B π∴=.(2) sinC=2sinA ,由正弦定理得2c a =,由余弦定理2222cos b a c ac B =+-,229422cos3a a a a π=+-⋅,解得a =2c a ∴==14.解:(1)2()()22f x a b a a a b =+⋅-=+⋅- 21sin 1cos 22x x x =+++-1cos 21222x x -=-12cos 22x x =-sin(2)6x π=-因为2ω=,所以22T ππ== (2)()sin(2)16f A A π=-=.因为(0,)2A π∈,52(,)666A πππ-∈-,所以262A ππ-=,3A π=.由2222cos a b c bc A =+-,得211216242b b =+-⨯⨯,即2440b b -+=.解得2b =.故11sin 24sin 6022S bc A ==⨯⨯⨯= 15.解:(1)∵A+B+C=180°,由4sin 22B A +-cos2C=27,得4cos 22C -cos2C=27,∴4·2cos 1C +-(2cos 2C -1)=27,整理得4cos 2C -4cosC +1=0,解得cosC=21,∵0°<C <180°,∴C=60°.(2)由余弦定理得c 2=a 2+b 2-2ab cosC ,即7=a 2+b 2-ab ,∴7=(a +b )2-3ab , 由条件a +b =5,得7=25-3ab ,ab =6, ∴S △ABC =21ab sinC=21×6×23=233.【训练题组B 答案】1.【答案】B ,【解析】由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径).∴sin A cos A =sin B cos B =sin Ccos C. 即tan A =tan B =tan C ,∴A =B =C . 2.【答案】D3.【答案】255,210【解析】因为△ABC 中,tan A =2,所以A 是锐角,且sin Acos A =2,sin 2A +cos 2A =1,联立解得sin A =255,再由正弦定理得a sin A =bsin B,代入数据解得a =210.4.【答案】 2,【解析】因为∠A:∠B:∠C=1:2:3,则可知A,B,C 分别为00030,60,90,,根据直角三角形中边的比例关系可知,::2a b c = 5.6.解:由12cos 13A =,得5sin 13A ==. 又1sin 302bc A =,∴156bc =.(1)12cos 15614413AB AC bc A ⋅==⨯= . (2)2222cos a b c bc A =+-212()2(1cos )12156(1)2513c b bc A =-+-=+⋅⋅-=,∴5a =. 7.解:由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )],即b 2sin A cos B =a 2cos A sin B ,即sin 2B sin A cos B =sin 2A cos B sin B ,所以sin 2B =sin 2A , 由于A ,B 是三角形的内角.故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B ,即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.8.解:(1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A ,即sin B cos A =2sin A cos A . 当cos A =0,即A =π2时,B =π6,a =433,b =233;当cos A ≠0时,得sin B =2sin A ,由正弦定理,得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.9.解:∵在△ABC 中,cos(B +C )=-cos A ,∴1+2cos(B +C )=1-2cos A =0,∴A =π3.在△ABC 中,根据正弦定理a sin A =b sin B ,∴sin B =b sin A a =22. ∵a >b ,∴B =π4,∴C =π-(A +B )=512π.∴sin C =sin(B +A )=sin B cos A +cos B sin A =22×12+22×32=6+24. ∴BC 边上的高为b sin C =2×6+24=3+12. 10.解:(1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A .故sin B =2sin A ,所以ba= 2.(2)由余弦定理和c 2=b 2+3a 2,得cos B = 1+3 a2c.由(1)知b 2=2a 2,故c 2=(2+3)a 2. 可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.【训练题组C 答案】 1. 答案:D2.解析:由(2)cos cos b c A a C -=,得2cos cos cos b A c A a C =+,2sin cos sin cos sin cos B A C A A C =+,故2sin cos sin()B A A C =+,又在ABC ∆中sin()sin 0A C B +=>,故1cos 2A =,3.解:(1)由sin cos c A C =结合正弦定理得,sin sin a cA C==从而sin C C =,tan C = ∵0C π<<,∴3C π=;(2)由(1)知23B A π=-sin()cos 2A B A B π-+=-2cos()3A A π=--22coscos sin sin 33A A A ππ=--1cos 2A A =+sin()6A π=+ ∵203A π<<,∴5666A πππ<+<当62A ππ+=sin()2A B π-+取得最大值, 此时,33A B ππ==.4.(1) →→n m // )14cos 2(2sin2cos 32-=∴AA A A AA A A A sin 2cos 2sin 2)14cos 2(2sin 2cos 32==-=∴3tan =∴A 又),0(π∈A 3π=∴A(2)3233sin 21sin 21===∆πbc A bc S ABC 6=∴bc由余弦定理得:3cos2222πbc c b a -+= 2537)(2=+=+⇒bc c b5=+∴c b5.解析:(1)∵27cos 22cos 125αα=-=-,∴29cos 25α=, ∵(0,)2πα∈,∴3cos 5α=.(2)方法一:由(1)得4sin 5α==, ∵45CAD ADB C α∠=∠-∠=-,∴sin sin()sin coscos sin44410CAD πππααα∠=-=-=, 在ACD ∆中,由正弦定理得:sin sin CD ADCAD C=∠∠,∴1sin 5sin CD CAD CAD⨯⋅∠===∠, 则高4sin 545h AD ADB =⋅∠=⨯=. 方法二:如图,作BC 边上的高为AH 在直角△ADH 中,由(1)可得3cos 5DB AD α==,则不妨设5,AD m = 则3,4DH m AH m ==注意到=45C ∠,则AHC ∆为等腰直角三角形,所以CD DH AH +=,则134m m +=,所以1m =,即4AH =.CBD AH。
正弦定理和余弦定理直角三角形
正弦定理和余弦定理直角三角形正弦定理和余弦定理是解决直角三角形中边长和角度关系的两个基本公式。
一、正弦定理:在任何三角形中,对于一个角度和它对应的边,正弦定理表示边长与正弦值成正比例关系。
对于一个直角三角形中的角 A,其对边长设为 a,邻边长设为 b,斜边长为 c,则正弦定理可表示为:sin A = a / c其中,sin A 表示角 A 的正弦值,a 表示角 A 对应的直角三角形的对边长,c 表示直角三角形的斜边长。
可以通过正弦定理推导出其他两个角的正弦值,从而求解三角形中的边和角度:sin B = b / csin C = c / c = 1二、余弦定理:余弦定理是另一种在直角三角形中解决边长和角度关系的基本公式。
对于一个直角三角形中的角 A,其对边长设为 a,邻边长设为 b,斜边长为 c,则余弦定理可表示为:cos A = b / c其中,cos A 表示角 A 的余弦值,b 表示角 A 对应的直角三角形的邻边长,c 表示直角三角形的斜边长。
通过余弦定理,可以求出其他两个角的余弦值:cos B = a / ccos C = 0三、比较正弦定理和余弦定理:正弦定理和余弦定理是解决直角三角形中边长和角度关系的两个基本公式。
它们都可以用于求解三角形的边和角度,但是有一些不同点:1. 适用条件不同。
正弦定理适用于任何三角形,而余弦定理无法适用于等边三角形。
2. 求解的变量不同。
正弦定理可以求解角的正弦值,而余弦定理可以求解角的余弦值。
3. 计算方式不同。
正弦定理使用正弦函数,余弦定理使用余弦函数,两者在计算推导过程中存在差异。
总之,正弦定理和余弦定理是直角三角形中解决边长和角度关系的基本公式,掌握并灵活应用这两个公式可以帮助我们更好地理解和求解三角形中的各种问题。
余弦定理与正弦定理
余弦定理与正弦定理余弦定理和正弦定理是解决三角形中边长和角度之间关系的重要定理。
它们在三角学中有着广泛的应用,能够帮助我们计算未知边长或角度。
本文将介绍余弦定理和正弦定理的定义、公式以及应用,并探讨它们的区别和联系。
一、余弦定理的定义和公式余弦定理是在三角形中,通过已知边长和夹角计算其他边长的定理。
它的定义如下:在三角形ABC中,设三条边分别为a、b、c,对应的夹角分别为A、B、C,则余弦定理的公式为:c² = a² + b² - 2abcosC其中,c为三角形对应于角C的边长,a和b为与角C相邻的两条边长,cosC为角C的余弦值。
二、正弦定理的定义和公式正弦定理是在三角形中,通过已知两个角度和一个边长计算其他边长的定理。
它的定义如下:在三角形ABC中,设三条边分别为a、b、c,对应的夹角分别为A、B、C,则正弦定理的公式为:a/sinA = b/sinB = c/sinC其中,a、b、c为三角形的边长,A、B、C为对应的角度。
三、余弦定理和正弦定理的应用1. 通过余弦定理计算未知边长或角度:- 已知两边长和夹角:可以使用余弦定理计算第三条边长,或者计算其他两个角度。
- 已知三边长:可以使用余弦定理计算其中一个角度。
2. 通过正弦定理计算未知边长或角度:- 已知两角度和一个边长:可以使用正弦定理计算其他两条边长。
- 已知一个角度和两边长:可以使用正弦定理计算另外两个角度。
四、余弦定理与正弦定理的区别和联系余弦定理和正弦定理在解决三角形问题时具有不同的应用场景。
余弦定理适用于已知边长和夹角的情况,可以求解缺失的边长或角度。
而正弦定理适用于已知两个角度和一个边长的情况,同样可以求解其他边长或角度。
此外,两个定理之间也存在一定的联系。
通过余弦定理可以推导出正弦定理,而正弦定理也可以推导出余弦定理。
在解决问题时,可以根据具体情况选择使用其中一个定理进行计算。
总结:余弦定理和正弦定理是解决三角形中边长和角度之间关系的重要定理。
正余弦定理公式总结
正余弦定理公式总结1.正弦定理正弦定理是根据三角形的三个边和对应的角之间的关系建立的公式。
对于任意一个三角形ABC,其三个边长分别为a、b、c,对应的内角分别为A、B、C,则正弦定理的公式如下:a/sinA = b/sinB = c/sinC = 2R其中R为三角形外接圆的半径。
正弦定理可以用于求解以下问题:-已知三个边长,求三个内角;-已知两个边长和一个内角,求第三个边长;-已知两个内角和一个边长,求第三个内角;-已知两个边长和一个夹角,求另外两个夹角。
2.余弦定理余弦定理是根据三角形的一个边和与之相关的两个角之间的关系建立的公式。
对于任意一个三角形ABC,其三个边长分别为a、b、c,对应的内角分别为A、B、C,则余弦定理的公式如下:c^2 = a^2 + b^2 - 2abcosCa^2 = b^2 + c^2 - 2bccosAb^2 = a^2 + c^2 - 2accosB余弦定理可以用于求解以下问题:-已知三个边长,求三个内角;-已知两个边长和一个夹角,求第三个边长;-已知一个边长和两个夹角,求第二个边长;-已知一个边长和一个夹角以及另一个边长,求第二个夹角。
3.面积法面积法是根据三角形的一个边和与之相关的两个角之间的关系建立的公式。
对于任意一个三角形ABC,其三个边长分别为a、b、c,对应的内角分别为A、B、C,则面积公式如下:S = (1/2)ab*sinCS = (1/2)bc*sinAS = (1/2)ca*sinB面积法可以用于求解以下问题:-已知三个边长,求三角形的面积;-已知两个边长和一个夹角,求三角形的面积;-已知一个边长和两个夹角,求三角形的面积。
总结:正余弦定理是解决三角形相关问题的重要工具,可以通过已知的边长和角度求解未知的边长和角度,或者通过已知的边长和角度求解三角形的面积。
正弦定理适用于已知三边或两边一角的情况,而余弦定理适用于已知两边一角或已知三边的情况。
(完整版)正弦定理、余弦定理知识点
正弦定理、余弦定理讲师:王光明【基础知识点】1. 三角形常用公式:A +B +C =π;S =ab sin C =bc sin A ==ca sin B ;2121212.三角形中的边角不等关系: A>B a>b,a+b>c,a-b<c ;;⇔3.【正弦定理】:===2R (外接圆直径);A a sin B b sin Ccsin 正弦定理的变式:; a ∶b ∶c =sin A ∶sin B ∶sin C .⎪⎩⎪⎨⎧===C R c B R b AR a sin 2sin 2sin 24.正弦定理应用范围: ①已知两角和任一边,求其他两边及一角. ②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况:(1)A 为锐角AABa=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角当时有一解.a>b 5.【余弦定理】 a 2=b 2+c 2-2bccosA .c 2=a 2+b 2-2abcosC .b 2=a 2+c 2-2accosB .若用三边表示角,余弦定理可以写为、6.余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.【习题知识点】知识点1 运用判断三角形形状例题1在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.【分析】利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状.【解析】解法1:由扩充的正弦定理:代入已知式2RsinAcosB=2RsinBcosAsinAcosB-cosAsinB=0 , sin(A-B)=0A-B=0 ∴A=B 即△ABC 为等腰三角形解法2:由余弦定理: 22222222bc a c b b ac b c a a -+⋅=-+⋅ 22b a = ∴ b a =即△ABC 为等腰三角形.知识点2 运用正、余弦定理解三角形解三角形问题中正、余弦定理的选择:(1)在下述情况下应首先使用余弦定理: ①已知三条边(边边边),求三个角;②已知两边和它们的夹角(边角边),求其它一边和两角;(2)在下述情况下应首先使用正弦定理:①已知两边和一边的对角(边边角),求其它一边和两角;②已知两角和任一边(角角边、角边角),求其它两边和一角.例题2 在△ABC 中,已知,,B=45︒ 求A 、C 及c .3=a 2=b 【分析】在解斜三角形应用过程中,注意要灵活地选择正弦定和余弦定理,解得其它的边和角【解析】解法1:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===BCb c当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===B C b c 解法2:设c =x 由余弦定理将已知条件代入,整理:解之:B ac c a b cos 2222-+=0162=+-x x 226±=x 当时 从而A=60︒ ,C=75︒226+=c 2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 当时同理可求得:A=120︒ C=15︒.226-=c 知识点3 解决与三角形在关的证明、计算问题例题3 已知A 、B 、C 为锐角,tanA=1,tanB=2,tanC=3,求A+B+C 的值. 【分析】本题是要求角,要求角先要求出这个角的某一个三角函数值,再根据角的范围确定角.本题应先求出A+B 和C 的正切值,再一次运用两角和的正切公式求出A+B+C .【解析】 A B C 、、为锐角∴<++<0270°°A B C 又,,由公式可得tan tan A B ==12tan()tan tan tan tan A B A B A B +=+-⋅=+-=-112123[]tan()tan ()A B C A B C ++=++=++-+⋅tan()tan tan()tan A B C A B C 1 =-+--⨯33133() =0所以A+B+C=π知识点4 求三角形的面积例题4 △ABC 中,D 在边BC 上,且BD =2,DC =1,∠B =60o ,∠ADC =150o ,求AC 的长及△ABC 的面积.【解析】在△ABC 中,∠BAD =150o -60o =90o ,∴AD =2sin60o =3.A在△ACD 中,AD 2=(3)2+12-2×3×1×cos150o =7,∴AC =7. ∴AB =2cos60o =1.S △ABC =21×1×3×sin60o =343.知识点4 解决实际为题例题4 如图,海中有一小岛,周围3.8海里内有暗礁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦定理、余弦定理1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==21ca sin B ;2.三角形中的边角不等关系:A>B ⇔a>b,a+b>c,a-b<c ;; 3.正弦定理:A asin =Bb sin =Ccsin =2R (外接圆直径);正弦定理的变式:⎪⎩⎪⎨⎧===C R c B R b AR a sin 2sin 2sin 2;a ∶b ∶c =sin A ∶sin B ∶sinC .4.正弦定理应用范围:①已知两角和任一边,求其他两边及一角. ②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况: (1)A 为锐角a=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角 当a>b 时有一解.5.余弦定理 a 2=b 2+c 2-2bccosA .c 2=a 2+b 2-2abcosC .b 2=a 2+c 2-2accosB . 若用三边表示角,余弦定理可以写为、6.余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角; (2)已知三角形的两边及夹角,可求出第三边.知识点1 运用判断三角形形状例题1在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.【分析】利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状. 【答案】解法1:由扩充的正弦定理:代入已知式 2RsinAcosB=2RsinBcosAsinAcosB-cosAsinB=0 , sin(A-B)=0A-B=0 ∴A=B 即△ABC 为等腰三角形解法2:由余弦定理: 22222222bca cb b ac b c a a -+⋅=-+⋅ 22b a = ∴ b a = 即△ABC 为等腰三角形.巩固练习1.在中,若2222sin sin 2cos cos b C c B b B C +=,试判断三角形的形状.2.在ABC ∆中,已知a 2tanB=b 2tanA,试判断这个三角形的形状.3.已知ABC ∆中,有cos 2cos sin cos 2cos sin A C BA B C+=+,判断三角形形状.知识点2 运用正、余弦定理解三角形解三角形问题中正、余弦定理的选择:(1)在下述情况下应首先使用余弦定理:①已知三条边(边边边),求三个角;②已知两边和它们的夹角(边角边),求其它一边和两角;(2)在下述情况下应首先使用正弦定理:①已知两边和一边的对角(边边角),求其它一边和两角;②已知两角和任一边(角角边、角边角),求其它两边和一角. 例题2 在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c .【分析】在解斜三角形应用过程中,注意要灵活地选择正弦定和余弦定理,解得其它的边和角【答案】解法1:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===BC b c 当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===B C b c 解法2:设c =x 由余弦定理 B ac c a b cos 2222-+=将已知条件代入,整理:0162=+-x x 解之:226±=x当226+=c 时2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 从而A=60︒ ,C=75︒ 当226-=c 时同理可求得:A=120︒ 巩固练习1.已知在ABC ∆中,2,6,45==︒=∠BC AB A在ABC ∆中,213,2tan tan +=-=c b bb c B A ,求三内角2.在ABC ∆中,已知B C A 2=+,32tan tan +=⋅C A ,求A 、B 、C 的大小,又知顶点C 的对边C 上的高等于34,求三角形各边a 、b 、c 的长.知识点3 解决与三角形在关的证明、计算问题例题3 已知A 、B 、C 为锐角,tanA=1,tanB=2,tanC=3,求A+B+C 的值.【分析】本题是要求角,要求角先要求出这个角的某一个三角函数值,再根据角的范围确定角.本题应先求出A+B 和C 的正切值,再一次运用两角和的正切公式求出A+B+C .【答案】 A B C 、、为锐角 ∴<++<0270°°A B C 又,,由公式可得tan tan A B ==12tan()tan tan tan tan A B A B A B +=+-⋅=+-=-112123[]tan()tan ()A B C A B C ++=++=++-+⋅tan()tan tan()tan A B C A B C 1 =-+--⨯33133() =0所以A+B+C=πsin sin sin sin cos cos cos cos 2222221336ααββααββ-++-+=221336-+=(cos cos sin sin )αβαβ --=-25936cos()αβ∴-=cos()αβ5972巩固练习1.在∆ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,设a+c=2b,A-C=3π,求sinB 的值.2.在中,a ,b ,c 分别是的对边长,已知a ,b ,c 成等比数列,且,求的大小及的值.3.在ABC ∆中,若4,5==b a且3231)cos(=-B A ,求这个三角形的面积.例题4 在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c,证明:C B A cb a sin )sin(222-=-.【分析】在用三角式的恒等变形证明三角形中的三角等式时,其解题的一般规律是:二项化积、倍角公式,提取公因式,再化积.遇有三角式的平方项,则利用半角公式降次.【答案】证法一:由正弦定理得C A B C B A c b a 2222222sin 22cos 2cos sin sin sin -=-=-=C A B A B 2sin 2)sin()sin(2-+-=CB AC 2sin )sin(sin -=C B A sin )sin(-.证法二:由余弦定理得a 2=b 2+c 2-2bccosA,则222c b a -=22cos 2cA bc c -=1-c b 2∙cosA,又由正弦定理得c b =C Bsin sin ,∴222cb a -=1-C B sin sin 2∙cosA=C A B C sin cos sin 2sin -=C A B B A sin cos sin 2)sin(-+=C A B B A sin cos sin cos sin -=C B A sin )sin(-. 证法三:C B A sin )sin(-=CAB B A sin cos sin cos sin -. 由正弦定理得cbC B c a C A ==sin sin ,sin sin ,∴CB A sin )sin(-=cAb B a cos cos -,又由余弦定理得C B A sin )sin(-=cbc a c b b ac b c a a 22222222-+⋅--+⋅=22222222)()(c a c b b c a -+--+=222c b a -.巩固练习1.已知锐角三角形ABC 中,3sin()5A B +=,1sin()5A B -=. (1)求证tan 2tan A B =;(2)设3AB =,求AB 边上的高.参考答案课堂互动例题1 巩固练习1.【答案】[解法1]:由正弦定理2sin sin sin a b cR A B C===,R 为外接圆的半径,将原式化为22228sin sin 8sin sin cos cos R B C R B C B C =,sin sin 0B C ≠,sin sin cos cos B C B C ∴=. 即cos()0B C +=,90B C ∴+=,90A =.故为直角三角形[解法2]:将已知等式变为2222(1cos )(1cos )2cos cos b C c B b B C -+-=,由余弦定理可得22222222222222a b c a c b b c b c ab ac ⎛⎫⎛⎫+-+-+-⋅-⋅ ⎪ ⎪⎝⎭⎝⎭222222222a c b a b c bc ac ab+-+-=⋅⋅,即22b c +22222222()()4a b c a c b a ⎡⎤+-++-⎣⎦=也即222b c a +=,故为直角三角形.2.【答案】解法1:由已知得A A b B B a cos sin cos sin 22=,由正弦定理得AAB B B A cos sin sin cos sin sin 22=,∵sinAsinB ≠0,∴sinAcosA=sinBcosB,即sin2A=sin2B,∴2A=2B 或2A=1800-2B,即A=B 或A+B=900.∴ABC ∆是等腰三角形或直角三角形.解法2: 由已知得A A bB B a cos sin cos sin 22=,由正弦定理得A a b b a cos cosB 22=,即Ab a cos cosB =,又由余弦定理得bcac b b a 22ac b -c a 222222-+=+,整理得(a 2-b 2)(a 2+b 2-c 2)=0,∴a=b,或a 2+b 2=c 2, ∴ABC ∆是等腰三角形或直角三角形. 3.解:由已知得例题2 巩固练习1.【答案】解法1:由正弦定理,得2345sin 26sin =︒=C 因3226sin =⨯=⋅A AB 6,2==AB BC 由623<<,则有二解,即︒=∠60C 或︒=∠120C︒=︒-︒-︒=∠754560180B 或︒=︒-︒-︒=∠1545120180B故13sin sin +=⇒⋅=AC B ABC AC 或13-=AC ,︒=∠︒=∠15,120B C ︒=∠︒=∠75,60B C 解法2:令AC=b ,则由余弦定理222245cos 62)6(=︒-+b b 1302322±=⇒=+-b b b又C b b cos 222)6(222⋅-+=︒=∠±=⇒60,21cos C C 或︒=∠120C ︒=︒+︒-︒=∠⇒75)6045(180B 或︒=︒+︒-︒=∠15)12045(180B . 2【答案】由已知有bc B A 21tan tan =+,化简并利用正弦定理:B C B A B A B A sin sin 2sin cos sin cos cos sin =+ BCB A B A sin sin 2sin cos )sin(=+0cos sin 2sin =-A C C由0sin ≠,故︒=⇒=6021cos A A 由213+=cb,可设k c k b 2,)13(=+=,由余弦定理,得 k a k k k a 6)13(24)13(22222=⇒+-++=由正弦定理Cc A a sin sin =得 226232sin sin =⋅==kk a A c C 由b c <则C 是锐角,故︒=--︒=︒=75180,45C A B C3.【答案】由已知,得2C A B +=,又由︒=++180C B A ︒=⇒60B 故4160cos sin sin 2=︒=C A ①又由B c a S ABC sin 2134⋅⋅==∆164334=⇒=⇒ac ac ② 故64)sin ()sin (sin sin 22===C c A a C A ac 8sin sin ==⇒Cc A a由3460sin 8sin 8sin sin =︒⋅=⋅==B AB a b 则21260cos cos 222=-+=︒=ac b c a B即964848)(3)(222=+=+⇒=-+c a ac b c a 64=+⇒c a ③ 把③与②联立,得)26(2),26(2-=+=c a 或)26(2),26(2+=-=c a4.【答案】由已知B C A 2=+,及︒=+︒=⇒︒=++120,60180C A B C B A由CA C A C A tan tan 1tan tan )tan(-+=+及32tan tan ,3)tan(+=⋅-=+C A C A得33tan tan +=+C A ,以C A tan ,tan 为一元二次方程032)33(2=+++-x x 的两个根,解方程,得⎩⎨⎧+==32tan 1tan C A 或⎩⎨⎧=+=1tan 32tan C A ⎩⎨⎧︒=︒=⇒7545C A 或⎩⎨⎧︒=︒=4575C A 若︒=︒=75,45C A ,则860sin 34=︒=a ,6445sin 34=︒=b ,)13(445sin 75sin 8sin sin +=︒︒==A C a c 若︒=︒=45,75C A ,则︒=60sin 34a ︒==75sin 34,8b )13(64-=)623(4-=)13(8sin sin -==B C b c 例题3 巩固练习1.【答案】由正弦定理和已知条件a+c=2b,得sinA+sinC=2sinB.由和差化积公式,得2sin 2C A +cos 2C A -=2sinB. 由A+B+C=π得sin2C A +=cos 2B .又A-C=3π,得2cos 23B =sinB.∴2cos 23B=2sin 2B cos 2B ,∵0<2B <2π,∴cos 2B ≠0,∴sin 2B =43.∴cos 2B =2sin 12B -=413,∴sinB=2sin 2B cos 2B =2∙43∙413=839. 2.【答案】(I )成等比数列 又 在中,由余弦定理得(II )在中,由正弦定理得 .3.【答案】解法1:由余弦定理得c c bc a c b A 892cos 2222-=-+= cc ac b c a B 1092cos 2222+=-+= 由正弦定理得:B A B A sin 45sin sin 4sin 5=⇒= 3231)cos 1(4510989222=-++⋅-⇒B c c c c 3231])109(1[4580812224=+-+-c c c c 63632318016282222=⇒=⇒=-⇒c c cc 故1694893689cos 2=-=-=c c A 7165sin =A 4715sin 21=⋅⋅=∆A c b S ABC解法2:如图,作B A CAD -=∠,AD 交BC 于D ,令x CD =则由5=a 知,x AD x BD -=-=5,5,在CAD ∆中 由余弦定理3231)5(84)5()cos(222=--+-=-x x x B A 化简得199=⇒=x x ,在CAD ∆中由正弦定理)sin(4)sin(sin )sin(sin B A B A CD AD C B A CD C AD -=-⋅=⇒-=783)(cos 142=--=B A 74158735421sin 21=⨯⨯⨯=⋅⋅=∆C BC AC S ABC例题4 巩固练习1.【答案】(1)证明:因为3sin()5A B +=,1sin()5A B -=, 所以3sin cos cos sin 51sin cos cos sin 5A B A B A B A B ⎧+=⎪⎪⎨⎪-=⎪⎩,2sin cos 51cos sin 5A B A B ⎧=⎪⎪⇒⎨⎪=⎪⎩,tan 2tan A B ⇒=.所以tan 2tan A B =(2)因为2A B ππ<+<,3sin()5A B +=, 所以3tan()4A B +=-,即tan tan 31tan tan 4A B A B +=--, 将tan 2tan A B =代入上式并整理得 22tan 4tan 10B B --=.解得2tan 2B =,舍去负值得2tan 2B +=,从而tan 2tan 2A B ==. 设AB 边上的高为CD.则tan tan CD CD AB AD DB A B =+=+=AB=3,得CD= 2AB 边上的高等于2。