高中物理模型--常见弹簧类问题分析(1)

合集下载

弹簧类型题

弹簧类型题

弹簧类型题弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.一、弹簧类问题命题突破要点1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.二、四种弹簧类问题题型一牛顿运动定律中的弹簧类问题1.弹簧弹力的特点:(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.2.此类问题经常伴随临界问题.当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.题型二功能关系中的弹簧类问题1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.题型三动量守恒定律中的弹簧类问题1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.题型四实验中的弹簧类问题实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.三、结语弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.。

高中物理“轻弹簧”类问题汇总解析

高中物理“轻弹簧”类问题汇总解析

高中物理“轻弹簧”类问题汇总解析一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的. 【答案】12F F a m-=1F 二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度Fa M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:x x F x T ma M F L M L=== 【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a = 【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g . 【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB图 3-7-2图 3-7-1 图 3-7-3突然向下撤离的瞬间,小球的加速度为 ( ) A.0B.大小为233g ,方向竖直向下 C.大小为233g ,方向垂直于木板向下D. 大小为233g , 方向水平向右【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=. 撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos 3N F g a g m θ=== 【答案】 C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =. 则:2121()()F F kx kx --=--,即F k x ∆=∆说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量. 【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++【答案】221221()m m m g k + 21121211()()m m m g k k ++五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质图 3-7-5图 3-7-6弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=解得:()sin A B AF m m g a m θ-+=因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin AB m m g d kθ+= 【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,往往能达到事半功倍的效果.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程. 【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?【解析】 由题意可知,弹簧开始的压缩量0mgx k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=.(1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得: 022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.图 3-7-8在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得: 032mgF =也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002x mg k F +=,解得: 032mgF =. 【答案】022gx32mg说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论.【例8】如图3-7-9所示,A B 、两木块叠放在竖直轻弹簧上,已知木块A B 、的质量分别为0.42kg 和0.40kg ,弹簧的劲度系数100/k N m =,若在A 上作用一个竖直向上的力F ,使A 由静止开始以20.5/m s 的加速度竖直向上做匀加速运动(210/g m s =)求:(1) 使木块A 竖直做匀加速运动的过程中,力F 的最大值;(2)若木块由静止开始做匀加速运动,直到A B 、分离的过程中,弹簧的弹性势能减少了0.248J ,求这一过程中F 对木块做的功.【解析】 此题难点在于能否确定两物体分离的临界点.当0F =(即不加竖直向上F 力)时,设木块A B 、叠放在弹簧上处于平衡时弹簧的压缩量为x ,有:()A B kx m m g =+,即()AB m m gx k+= ① 对木块A 施加力F ,A 、B 受力如图3-7-10所示,对木块A 有: A A F N m g m a +-=②对木块B 有: 'B B kx N m g m a --= ③可知,当0N ≠时,木块A B 、加速度相同,由②式知欲使木块A 匀加速运动,随N 减小F 增大,当0N =时, F 取得了最大值m F ,即: () 4.41m A F m a g N =+=又当0N =时,A B 、开始分离,由③式知,弹簧压缩量'()B kx m a g =+,则()'Bm a g x k+=④ 木块A 、B 的共同速度:22(')v a x x =- ⑤ 由题知,此过程弹性势能减少了0.248P P W E J ==设F 力所做的功为F W ,对这一过程应用功能原理,得:21()()(')2F A B A B P W m m v m m g x x E =+++-- 联立①④⑤⑥式,且0.248P E J =,得: 29.6410F W J -=⨯【答案】(1) 4.41m F N = 29.6410F W J -=⨯【例9】如图3-7-11所示,一质量为M 的塑料球形容器,在A 处与水平面接触.它的内部有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m 的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度.在振动过程中球形容器对桌面的最小压力为0,求小球振动的最图 3-7-10 图 3-7-9大加速度和容器对桌面的最大压力.【解析】 因为弹簧正好在原长时小球恰好速度最大,所以有:=qE mg ① 小球在最高点时容器对桌面的压力最小,有:=kx Mg ②此时小球受力如图3-7-12所示,所受合力为qE kx mg F -+= ③ 由以上三式得小球的加速度mMg a =.显然,在最低点容器对桌面的压力最大,由振动的对称性可知小球在最低点和最高点有相同的加速度, 解以上式子得:Mg kx =所以容器对桌面的压力为:Mg kx Mg F N 2=+=.【答案】Mgm2Mg八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储存一定的弹性势能,因此弹簧的弹性势能可以与机械能守恒规律综合应用,我们用公式212P E kx =计算弹簧势能,弹簧在相等形变量时所具有的弹性势能相等一般是考试热点.弹簧弹力做功等于弹性势能的减少量.弹簧的弹力做功是变力做功,一般可以用以下四种方法求解:(1)因该变力为线性变化,可以先求平均力,再用功的定义进行计算; (2)利用F x -图线所包围的面积大小求解;(3)用微元法计算每一小段位移做功,再累加求和; (4)根据动能定理、能量转化和守恒定律求解.由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解.特别是涉及两个物理过程中的弹簧形变量相等时,往往弹性势能的改变可以抵消或替代求解.【例10】如图3-7-13所示,挡板P 固定在足够高的水平桌面上,物块A 和B 大小可忽略,它们分别带有A Q +和B Q +的电荷量,质量分别为A m 和B m .两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B 连接,另一端连接轻质小钩.整个装置处于场强为E 、方向水平向左的匀强电场中,A 、B 开始时静止,已知弹簧的劲度系数为k ,不计一切摩擦及A 、B 间的库仑力, A 、B 所带电荷量保持不变,B 不会碰到滑轮. (1)若在小钩上挂质量为M 的物块C 并由静止释放,可使物块A 对挡板P 的压力恰为零,但不会离开P ,求物块C 下降的最大距离h .(2)若C 的质量为2M ,则当A 刚离开挡板P 时, B 的速度多大?【解析】 通过物理过程的分析可知,当物块A 刚离开挡板P 时,弹力恰好与A 所受电场力平衡,弹簧伸长量一定,前后两次改变物块C 质量,在第(2)问对应的物理过程中,弹簧长度的变化及弹性势能的改变相同,可以替代求解.设开始时弹簧压缩量为1x ,由平衡条件1B kx Q E =,可得1B Q Ex k= ①设当A 刚离开挡板时弹簧的伸长量为2x ,由2A kx Q E =,可得: 2A Q Ex k= ②故C 下降的最大距离为: 12h x x =+ ③ 由①②③三式可得: ()A B Eh Q Q k=+ ④ (2)由能量守恒定律可知,物块C 下落过程中,C 重力势能的减少量等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和.图 3-7-13 图 3-7-12当C 的质量为M 时,有:B MgH Q Eh E =+∆弹 ⑤当C 的质量为2M 时,设A 刚离开挡板时B 的速度为v ,则有:212(2)2B B MgH Q Eh E M m v =+∆++弹 ⑥由④⑤⑥三式可得A 刚离开P 时B 的速度为:2()(2)A B B MgE Q Q v k M m +=+ ⑦【答案】(1)()A B Eh Q Q k=+(2)2()(2)A B B MgE Q Q v k M m +=+ 【例11】如图3-7-14所示,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,物体A B 、都处于静止状态.一不可伸长的轻绳一端绕过轻滑轮连接物体A ,另一端连接一轻挂钩.开始时各段绳都处于伸直状态,物体A 上方的一段绳沿竖直方向.现给挂钩挂一质量为2m 的物体C 并从静止释放,已知它恰好能使物体B 离开地面但不继续上升.若将物体C 换成另一质量为12()m m +的物体D ,仍从上述初始位置由静止释放,则这次物体B 刚离地时物体D 的速度大小是多少?已知重力加速度为g【解析】 开始时物体A B 、静止,设弹簧压缩量为1x ,则有:11kx m g = 悬挂物体C 并释放后,物体C 向下、物体A 向上运动,设物体B 刚要离地时弹簧伸长量为2x ,有22kx m g =B 不再上升表明此时物体A 、C 的速度均为零,物体C 己下降到其最低点,与初状态相比,由机械能守恒得弹簧弹性势能的增加量为:212112()()E m g x x m g x x ∆=+-+物体C 换成物体D 后,物体B 离地时弹簧势能的增量与前一次相同,由能量关系得:22211211211211()()()()22m m v m v m m g x x m g x x E ++=++-+-∆联立上式解得题中所求速度为:2112122()(2)m m m g v m m k+=+【答案】2112122()(2)m m m g v m m k+=+说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转化守恒的结合往往在一些题目中需要综合使用. 九、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.【例12】如图3-7-15所示,质量为m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b 、对质点的作用力均为F ,则弹簧c 对质点作用力的大小可能为 ( ) A 、0 B 、F mg + C 、F mg - D 、mg F -【解析】 由于两弹簧间的夹角均为0120,弹簧a b 、对质点作用力的合力仍为F ,弹簧a b 、对质点有可能是拉力,也有可能是推力,因F 与mg 的大小关系不确定,故上述四个选项均有可能.正确答案:ABCD 【答案】 ABCD 十、弹簧振子弹簧振子的位移、速度、加速度、动能和弹性势能之间存在着特殊关系,弹簧振子类问题通常就是考查这些关系,各物理量的周期性变化也是考查的重点.图 3-7-14图 3-7-15【例13】如图3-7-16所示,一轻弹簧与一物体组成弹簧振子,物体在同一竖直线上的A B 、间做简谐运动, O 点为平衡位置;C 为AO 的中点,已知OC h =,弹簧振子周期为T ,某时刻弹簧振子恰好经过C 点并向上运动,则从此时刻开始计时,下列说法中正确的是 ( )A 、4Tt =时刻,振子回到C 点 B 、2Tt ∆=时间内,振子运动的路程为4hC 、38Tt =时刻,振子的振动位移为0D 、38Tt =时刻,振子的振动速度方向向下【解析】 振子在点A C 、间的平均速度小于在点C O 、间的平均速度,时间大于8T,选项A C 、错误;经2T 振子运动O 点以下与点C 对称的位置,总路程为4h ,选项B 正确;经38Tt =振子在点O B 、间向下运动,选项D 正确.【答案】 B D十一、弹簧串、并联组合弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握:弹簧串联时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.【例14】 如图3-7-17所示,两个劲度系数分别为12k k 、的轻弹簧竖直悬挂,下端用光滑细绳连接,并有一光滑的轻滑轮放在细线上;滑轮下端挂一重为G 的物体后滑轮下降,求滑轮静止后重物下降的距离.【解析】 两弹簧从形式上看似乎是并联,但因每根弹簧的弹力相等,故两弹簧实为串联;两弹簧的弹力均2G,可得两弹簧的伸长量分别为112G x k =,222G x k =,两弹簧伸长量之和12x x x =+,故重物下降的高度为:1212()24G k k x h k k +==【答案】1212()4G k k k k +十二、通电的弹簧【例15】如图3-7-18所示装置中,将金属弹簧的上端固定,下端恰好浸入水银,水银与电源负极相连,弹簧上端通过开关S 与电源正极相连.当接通开关S 后,弹簧的运动情况如何?【解析】 通电弹簧相邻两匝线圈相互平行且电流同向,两匝线圈相互吸引,从而使弹簧收缩;弹簧收缩后下端离开水银,切断了电流吸引力消失,弹簧又向下恢复原长,与水银面接触而接通电路,然后又在吸引力作用下收缩.如此反复,弹簧就不断地上下振动.十三、物体沿弹簧螺旋运动【例16】如图3-7-19所示,长度为L 的光滑钢丝绕成高度为H 的弹簧,将弹簧竖直放置.一中间有孔的小球穿过钢丝并从弹簧的最高点A 由静止释放,求经多长时间小球沿弹簧滑到最低点B .图 3-7-17图 3-7-18图 3-7-16【解析】 小球沿光滑弹簧下滑时机械能守恒,可以假想在不改变弹簧上各处倾角的条件下将弹簧拉成一条倾斜直线,如图3-7-20所示,小球沿此直线下滑的时间与题中要求的时间相等.小球沿直线下滑的加速度为sin a g θ= 由几何知识可得:sin HL θ=;由位移公式可知:212L at =,联立上式解得:2t LgH= 【答案】2LgH十四、生产和生活中的弹簧弹簧在生产和生活中有着广泛的应用,近几年高考中也出现了不少有关弹簧应用方面的试题.【例17】如图3-7-21所示表示某同学在科技活动中自制的电子秤原理,利用电压表示数来指示物体质量,托盘与电阻可忽略的弹簧相连,托盘与弹簧的质量均不计,滑动变阻器的滑动头与弹簧上端连接;当托盘中没放物体且S 闭合时,电压表示数为零.设变阻器的总电阻为R 、总长度为L ,电源电动势为E 、内阻为r ,限流电阻阻值为0R ,弹簧劲度系数为k ,不计一切摩擦和其他阻力.(1)推导出电压表示数x U 与所称物体质量m 的关系式. (2)由(1)结果可知,电压表示数与待测物体质量不成正比、不便于进行刻度.为使电压表示数与待测物体质量成正比,请利用原有器材进行改进并完成电路原理图,推导出电压表示数x U 与待测物体质量m 的关系式. 【解析】(1)设变阻器上端至滑动头的长度为x ,据题意得:mg kx =,x xR R L =,0x x x R U E R R r=++解得:0()x mgREU mgR kL R r =++(2)改进后的电路如图3-7-22所示,则有:mg kx =,x xR R L=,解得: 0()x mgREU kL R R r =++ 【答案】(1)0()x mgREU mgR kL R r =++(2)0()x mgREU kL R R r =++图 3-7-20图 3-7-21图 3-7-22。

高考物理弹簧类问题的几种模型及其处理方法归纳

高考物理弹簧类问题的几种模型及其处理方法归纳
弹力仍为mg,小于AB整体重力2mg,所以物体AB所受合力仍然为向下, 物体仍然向下加速,做加速度减小的加速运动。当弹簧的弹力增大到正 好为2mg时,物体AB合力为0,物体继续向下运动。
第四阶段:弹簧继续被压缩,压缩量继续增加,产生的弹力继续增 加,大于2mg,使得物体AB所受合力变为向上,物体开始向下减速,直
分析:(1)当剪断细线l2瞬间,不仅l2对小球拉力瞬间消失,l1的 拉力也同时消失,此时,小球只受重力作用,所以此时小球的加速度为 重力加速度g。
(2)当把细线l1改为长度相同、质量不计的轻弹簧时,在当剪断细
线l2瞬间,只有l2对小球拉力瞬间消失,弹簧对小球的弹力和剪断l2之 前没变化,因为弹簧恢复形变需要一个过程。如图5所示,剪断l2瞬 间,小球受重力G和弹簧弹力,所以有:
A.A开始运动时 C.B的速度等于零时
B.A的速度等于v时 D.A和B的速度相等时
分析:解决这样的问题,最好的方法就是能够将两个物体作用的过 程细化,明确两个物体在相互作用的过程中,其详细的运动特点。具体 分析如下:
(1)弹簧的压缩过程:A物体向B运动,使得弹簧处于压缩状态,压 缩的弹簧分别对A、B物体产生如右中图的作用力,使A向右减速运动, 使B向右加速运动。由于在开始的时候,A的速度比B的大,故两者之间 的距离在减小,弹簧不断压缩,弹簧产生的弹力越来越大,直到某个瞬 间两个物体的速度相等,弹簧压缩到最短。
2 过程中所加外力F的最大值和最小值。 ⑵此过程中力F所做的功。(设整个过程弹簧都在弹性限度内,取 g=10m/s2)
分析:此题考查学生对A物体上升过程中详细运动过程的理解。在力 F刚刚作用在A上时,A物体受到重力mg,弹簧向上的弹力T,竖直向上的 拉力F。随着弹簧压缩量逐渐减小,弹簧对A的向上的弹力逐渐减小,则 F必须变大,以满足F+T-mg=ma。当弹簧恢复原长时,弹簧弹力消失,只 有F-mg=ma;随着A物体继续向上运动,弹簧开始处于拉伸状态,则物体 A的受到重力mg,弹簧向下的弹力T,竖直向上的拉力F,满足F-Tmg=ma。随着弹簧弹力的增大,拉力F也逐渐增大,以保持加速度不变。 等到弹簧拉伸到足够长,使得B物体恰好离开地面时,弹簧弹力大小等 于B物体的重力。

高中物理中的弹簧问题归类讲解

高中物理中的弹簧问题归类讲解

常见弹簧类问题归类剖析高考分析:轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高.在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能等多个物理概念和规律,所以弹簧类问题也就成为高考中的重、难、热点.我们应引起足够重视. 弹簧类命题突破要点:1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值或弹力的功等于弹性势能的减少.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解. 一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故簧轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹一端受力为F ,另一端受力一定也为F 。

高中物理-弹簧问题

高中物理-弹簧问题

弹簧问题轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。

无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。

合力恒等于零。

弹簧读数始终等于任意一端的弹力大小。

弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。

一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。

性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。

其伸长量等于弹簧任意位置受到的力和劲度系数的比值。

性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。

性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。

分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。

弹簧问题的题目类型1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)2、求与弹簧相连接的物体的瞬时加速度3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化)4、有弹簧相关的临界问题和极值问题除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题1、弹簧问题受力分析受力分析对象是弹簧连接的物体,而不是弹簧本身找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。

(灵活运用整体法隔离法);通过弹簧形变量的变化来确定物体位置。

(高度,水平位置)的变化弹簧长度的改变,取决于初末状态改变。

(压缩——拉伸变化)参考点,F=kx 指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。

抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。

合力恒等于零的特点求解。

注:如果a相同,先整体后隔离。

隔离法求内力,优先对受力少的物体进行隔离分析。

2、瞬时性问题题型:改变外部条件(突然剪断绳子,撤去支撑物)针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析3、动态过程分析三点分析法(接触点,平衡点,最大形变点)竖直型:水平型:明确有无推力,有无摩擦力。

高考物理弹簧模型例题解析

高考物理弹簧模型例题解析

高考物理弹簧模型例题解析 在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,如果你感到困难,本文就此类问题逐一归类分析。

最大、最小拉力问题 例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。

求此过程中所加外力的最大和最小值。

最大高度问题2019-12-07高中物理最大速度、最小速度问题 例3. 如图3所示,一个劲度系数为k的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m的平板B相连而处于静止状态。

今有另一质量为m的物块A从B的正上方h高处自由下落,与B发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v。

最大转速和最小转速问题 最大加速度问题 例6. 两木块A、B质量分别为m、M,用劲度系数为k的轻质弹簧连在一起,放在水平地面上,如图6所示,用外力将木块A压下一段距离静止,释放后A做简谐运动,在A振动过程中,木块B刚好始终未离开地面,求木块A的最大加速度。

最大振幅 例7. 如图7所示,小车质量为M,木块质量为m,它们之间静摩擦力最大值为Ff,轻质弹簧劲度系数为k,振动系统沿水平地面做简谐运动,设木块与小车间未发生相对滑动,小车振幅的最大值是多少?最大势能问题 例8. 如图8所示,质量为2m的木板,静止放在光滑的水平面上,木板左侧固定着一根劲度系数为k的轻质弹簧,弹簧的自由端到小车右端的距离为L0,一个质量为m的小木块从板的右端以初速度v0开始沿木块向左滑行,最终回到木板右端,刚好不从木板右端滑出,设木板与木块间的动摩擦因数为ц,求在木块压缩弹簧过程中(一直在弹性限度内)弹簧所具有的最大弹性势能。

高中物理弹簧弹力问题(含答案)

高中物理弹簧弹力问题(含答案)

弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为.【解析】以整个弹簧秤为研究对象,利用牛顿运动定律得:12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-=1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变.即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a =与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为() A.0B.大小为233g ,方向竖直向下 C.大小为233g ,方向垂直于木板向下D.大小为233g ,方向水平向右【解析】末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的图图图3-7-2图3-7-1图3-7-3N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos 3N F g a g m θ===【答案】C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有:11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆ 说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了,物块1的重力势能增加了.【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g,弹力的改变量也为12()mm g +.所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=解得:()sin A B AF m m g a m θ-+=因物体A与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物图图3-7-6 图3-7-8体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少? 【解析】由题意可知,弹簧开始的压缩量0mg x k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得:022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则:002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002xmg k F +=,解得:032mgF =.]【答案】022gx 32mg说明:区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。

弹簧类问题的分类解析

弹簧类问题的分类解析

弹簧类问题分类解析弹簧模型是高考中出现最多的模型之一,在填空、实验、计算题中都经常出现,考查范围很广,变化较多,是考查学生推理、分析综合能力的热点模型。

由于弹力与弹簧的形变成正比,在有关弹簧的题目中,物体的运动要影响弹簧的长度,长度的改变会影响力的变化.这样力与运动相联系,运动反过来又影响力的变化,几个矛盾联系在一起,学生往往感到感到较难分析.其实只要抓住弹簧几方面的特征,在解决问题的过程中如果就相关力学知识并结合弹簧本身特性进行分析,问题就可迎刃而解了。

一、对轻质弹簧而言,其内部弹力处处相等,等于弹簧一端所受外力F例1.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的力F 的作用,③中弹簧的左端拴一个小木块,木块在光滑的平面上滑动,④中弹簧的左端拴一个小木块,木块在有摩擦的桌面上滑动。

若认为弹簧的质量都为零,以1 、2 、3 、4 依次表示四个弹簧的伸长量,则有( )A .2 >1B .4 >3C .1 >3D .2 =4解析 弹簧的伸长量与弹簧内部弹力相关,由此分析四根弹簧的伸长量的关系,只要将四种情况下弹簧内部弹力的大小关系分析清楚即可。

将整根弹簧从右到左分成很多小段,每小段标上序号1、2、3、4……,设每小段弹簧质量均为∆m ,则对1号小段弹簧,设2号小段弹簧对其向左的拉力为f 1,由牛顿第二定律有F – f 1 = ∆ma ;对2号小段弹簧,设3号小段弹簧对其向左拉力为f 2,因1号小段弹簧对其向右拉力为f 1',则有f 1' - f 2 = ∆ma .图中①、②两种情况下弹簧处于平衡状态,加速度a = 0,虽③、④弹簧加速度a ≠ 0,但弹簧为轻质弹簧,∆m = 0,则由上面两式有f 1 = f 2 = F ,以此类推可知弹簧中各小段间张力处处相等,均为F ,则四种情况下弹簧伸长量必均相等,应选择选项D .二.弹簧弹力的大小遵循胡克定律F = kx ,其中x 为弹簧的形变量,当形变量x 发生变化时,弹力F 也随之变化,是变力例2.一个弹簧台秤的秤盘质量和弹簧质量都可不计,盘内放一个物体PF F ② ③ ④处于静止。

高中物理弹簧问题分类全解析

高中物理弹簧问题分类全解析

高中物理弹簧问题分类全解析一、有关弹簧题目类型 1、平衡类问题 2、突变类问题3、简谐运动型弹簧问题4、功能关系型弹簧问题5、碰撞型弹簧问题6、综合类弹簧问题 二、分类解析 1、平衡类问题例1.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k 1B.m2g/k 2C.m1g/k 2D.m2g/k 2解析:我们把看成一个系统,当整个系统处于平衡状态时,整个系统受重力和弹力,即当上面木块离开弹簧时,受重力和弹力,则【例2】、14、如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0kg 的物体。

细绳的一端摩擦不计的定滑轮与固定的弹簧秤相连。

物体静止在斜面上,弹簧秤的示数为4.9N 。

关于物体受力的判断(取g=9.8m/s2),下列说法正确的是C A.斜面对物体的摩擦力大小为零B. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向上C. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向下D. 斜面对物体的摩擦力大小为4.9N ,方向垂直斜面向上练习1、(2010山东卷)17.如图所示,质量分别为1m 、2m 的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(1m 在地面,2m 在空中),力F 与水平方向成 角。

则1m 所受支持力N 和摩擦力f 正确的是ACA .12sin N m g m g F θ=+-B .12cos N m g m g F θ=+-C .cos f F θ=D .sin f F θ=2、在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg 的木板相连。

若在木板上再作用一个竖直向下的力F 使木板缓慢向下移动0.1米,力F 作功2.5J,此时木板再次处于平衡,力F 的大小为50N ,如图所示,则木板下移0.1米的过程中,弹性势能增加了多少?解:由于木板压缩弹簧,木板克服弹力做了多少功,弹簧的弹性势能就增加了多少,即:(木板克服弹力做功,就是弹力对木块做负功),W 弹=-mgx -W F =-4.5J所以弹性势能增加4.5焦耳点评:弹力是变力,缓慢下移,F 也是变力,所以弹力功2、突变类问题例1、一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为21θθ、、,求(1)烧断细绳瞬间,小球的加速度(2)在C处弹簧与小球脱开瞬间,小球的加速度解:(1)若烧断细绳的瞬间,小球的所受合力与原来AC 绳拉力TAC 方向等大、反向,即加速度a 1方向为AC 绳的反向,原来断绳前,把三个力画到一个三角形内部,由正弦定理知: mg/sin(180°-θ1-θ2)=T AC /sinθ2,解得T AC =mgsinθ2/sin(180°-θ1-θ2)=mgsinθ2/sin(θ1+θ2), 故由牛顿第二定律知:a 1=T AC /m=gsinθ2/sin(θ1+θ2) 或者: F AC ×cosθ1+F BC ×cosθ2=mg F AC ×sinθ1=F BC ×sinθ2 解之得F AC =mgsinθ2/sin(θ1+θ2)则瞬间加速度大小a 1=gsinθ2/sin(θ1+θ2),方向AC 延长线方向。

高中物理中的弹簧问题归类剖析

高中物理中的弹簧问题归类剖析

2高考分析:常见弹簧类问题归类剖析轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见 . 由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与 之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高 . 在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性, 加之弹簧在伸缩过程中涉及力和加速度、功和能等多个物理概念和规律,所以弹簧类问题也就成为高考中的重、难、热 点. 我们应引起足够重视 . 弹簧类命题突破要点:1. 弹簧的弹力是一种由形变而决定大小和方向的力 . 当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应 . 在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2. 因弹簧(尤其是软质弹簧) 其形变发生改变过程需要一段时间, 因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变 在瞬间内形变量可以认为不变..3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解 . 同时要注意弹力做功的特点: ( 1 2 1 2 2 21 ),弹力 的功等于弹性势能增量的负值或弹力的功等于弹性势能的减少 . 弹性势能的公式1 2,高考不作定量要2求,可作定性讨论 . 因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会 无限大 .故簧轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力 .弹一端受力为 F ,另一端受 力一定也为 F 。

弹簧问题分析

弹簧问题分析

三、弹簧问题分析弹簧问题是高中物理中常见的题型之一,并且综合性强,是个难点。

分析这类题型对训练学生的分析综合能力很有好处。

例题分析:例1:劲度系数为K的弹簧悬挂在天花板的O点,下端挂一质量为m 的物体,用托盘托着,使弹簧位于原长位置,然后使其以加度a由静止开始匀加速下降,求物体匀加速下降的时间。

分析:物体下降的位移就是弹簧的形变长度,且匀加速运动末托力为0,由匀变速直线运动公式及牛顿定律得:G–KX=ma X=1/2at2答案:t= M 的塑料球形容器,在A处与水平面接触。

它的内部有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度。

在振动过程中球形容器对桌面的最小压力为0,求容器对桌面的最大压力。

分析:因为弹簧正好在原长时小球恰好速度最大,所以:qE=mg (1)小球在最高点时有容器对桌面的压力最小由题意可知,容器在最高点:kx=Mg (2) 此时小球受力如图,所受合力为 F=mg+kx-qE (3)由以上三式得:小球的加速度为:a=mMg由振动的对称性可知:小球在最底点时, KX-mg+qE=ma解以上式子得:kX=Mg对容器:F N=Mg+Kx=2Mg例3:已知弹簧劲度系数为K,物块重G,弹簧立在水平桌面上,下端固定,上端固定一轻盘,物块放于盘中。

现给物块一向下的压力F,当物块静止时,撤去外力。

在运动过程中,物块正好不离开盘,求:(1)给物块的向下的压力F 。

A(2)在运动过程中盘对物块的最大作用力分析:(1):由物块正好不离开盘,可知在最高点时,弹簧正好在原长,所以有:a=g (1)由对称性,在最低点时:kx-mg=ma (2)物块被压到最低点时有:F+mg=Kx (3)由以上三式得: F=mg(2)在最低点时盘对物块的支持力最大,此时有: F N -mg=ma 所以:F N =2mg规律总结:以上3题是胡克定律和运动的结合,此类问题特别要注意弹簧的形变 x 和位移的关系;另外当两个物体共同运动时,要注意两物体正好分离时的受力特点,即:两物体间作用力为0,如竖直放置一般弹簧正好在原长。

高中物理轻质弹簧问题全解析

高中物理轻质弹簧问题全解析

高中物理轻质弹簧问题全解析一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。

数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。

说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。

2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。

(1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。

(2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。

弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。

如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。

由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。

性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。

其伸长量等于弹簧任意位置受到的力和劲度系数的比值。

如图1和2中相同的轻弹簧,其端点受到相同大小的力时,无论弹簧是处于静止、匀速还是加速运动状态,各个弹簧的伸长量都是相同的。

性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间变化——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。

如在图1、2、3、4、中撤出任何一个力的瞬间,弹簧的长度不会变化,弹力的大小也不会变化;但是在图5中撤出力F的瞬时,弹簧恢复原长,弹力变为零。

2017年高考物理 专题集锦(一)弹簧类问题归类剖析

2017年高考物理 专题集锦(一)弹簧类问题归类剖析

弹簧类问题归类剖析弹簧是高中物理中常见的一种理想化模型,中学物理只研究轻弹簧。

轻弹簧作为媒介物,经常与小球或木块组成一个系统,存在着力、运动状态、能量的联系。

所以弹賛 类问题物理情景复杂,过程较多,综合性很强。

由于分析综合、判断能力欠缺,学生对此类问题普遍感到困难,本文将就此类问题作一归类剖析,为考生的复习备考提供帮助。

一、与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题。

比如物体速度达到最大;弹簧形变量达到最大;相互接触的物体恰好要分离等。

此类问题的解题关键是挖 掘隐含条件,针对不同状态,依据牛顿第二定律列出状态方程,再结合数学知识处理问题。

【例1】A 、B 两个木块叠放在竖直轻弹簧上,如图1所示,已知m A =m B =lkg,轻弹簧的劲度系数为100 N/m 。

若在木块A 上作用一个竖直向上的力F ,使木块A 由静止开始以2 m/s 2的加速度竖直向上做匀加速运动,取g=10m/s 2,求:(1)使木块A 竖直向上做勻加速运动的过程中,力F 的最大值是多少?(2)A 、B 分离时二者的速度是多少?【解析】(1)对A 受力分析如图2所示,根据牛顿第二定律,得BA A A F F m g m a +-=,所以当FBA=0 时,F 最大,即12m A A F m g m a N =+=(2) A 、B 分离时,F AB =0,A 、B 具有相同的加速度a以B 为研究对象受力分析如图3所示,根据牛顿第二定律可得B B k x m g m a ∆-=A ,B 分离时弹簧压缩量0.12B B m g m a x m k+∆== 初始位置弹簧的压缩量00.20B A m g m g x m k +∆== A 、B 上升的高度00.08h x x m =∆-∆=—Ax=0. 08 mA,B 的速度/v s =。

【总结】(1)两物体分离条件:弹簧连接体在运动过程中的分离条件是接触不挤压,即分离物体之间的弹力为零,也就是F N =0。

高考物理含弹簧的物理模型专题分析(答案)

高考物理含弹簧的物理模型专题分析(答案)

含弹簧的物理模型纵观历年的高考试题,和弹簧有关的物理试题占有相当的比重,高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等。

几乎贯穿整个力学的知识体系。

对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件。

因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题者的亲睐。

题目类型有:静力学中的弹簧问题,动力学中的弹簧问题,与动量和能量相关的弹簧问题。

1.静力学中的弹簧问题(1)胡克定律:F =kx ,ΔF =k ·Δx(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力。

例题1:一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2。

弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为CA .2121F F l l B .2121F F l l C .2121F F l l D .2121F F l l 例题2:如图所示,两木块A 、B 的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,两弹簧分别连接A 、B ,整个系统处于平衡状态。

现缓慢向上提木块A ,直到下面的弹簧对地面的压力恰好为零,在此过程中A 和B 的重力势能共增加了A .212221)(k k g m m B .)(2)(212221k k gm m C .)()(21212221k k k k g m m D .22221)(k g m m +12211)(k gm m m 解析:取A 、B 以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A 的力F 恰好为:F =(m 1+m 2)g设这一过程中上面和下面的弹簧分别伸长x 1、x 2,由胡克定律得:x 1=121)(k g m m ,x 2=221)(k g m m 故A 、B 增加的重力势能共为:ΔE P =m 1g(x 1+x 2)+m 2gx 2=22221)(k g m m +12211)(k gm m m 答案:D【点评】计算上面弹簧的伸长量时,较多的同学会先计算原来的压缩量,然后计算后来的伸长量,再将两者相加,但不如上面解析中直接运用Δx =kF进行计算更快捷方便。

弹簧模型(解析版)-高中物理动量守恒的十种模型

弹簧模型(解析版)-高中物理动量守恒的十种模型

动量守恒的十种模型模型一弹簧模型模型解读【典例分析】1(2024高考辽吉黑卷)如图,高度h=0.8m的水平桌面上放置两个相同物块A、B,质量m A=m B=0.1kg。

A、B间夹一压缩量Δx=0.1m的轻弹簧,弹簧与A、B不栓接。

同时由静止释放A、B,弹簧恢复原长时A恰好从桌面左端沿水平方向飞出,水平射程x A=0.4m;B脱离弹簧后沿桌面滑行一段距离x B=0.25m后停止。

A、B均视为质点,取重力加速度g=10m/s2。

求:(1)脱离弹簧时A、B的速度大小v A和v B;(2)物块与桌面间动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能ΔE p。

【答案】(1)1m/s,1m/s;(2)0.2;(3)0.12J(1)对物块A,由平抛运动规律,h=12gt2,x A=v A t,联立解得:v A=1m/s弹簧将两物块弹开,由动量守恒定律,m A v A=m B v B,解得v B=v A=1m/s(2)对物块B,由动能定理,-μm B g x B=0-12m B v B2解得:μ=0.2(3)由能量守恒定律,整个过程中,弹簧释放的弹性势能△E p=μm B g×12△x+μm A g×12△x+12m A v A2+12m B v B2=0.12J【针对性训练】1(2024年3月江西赣州质检)如图甲所示,光滑水平地面上有A、B两物块,质量分别为2kg、6kg,B的左端拴接着一劲度系数为2003N/m的水平轻质弹簧,它们的中心在同一水平线上。

A以速度v0向静止的B方向运动,从A接触弹簧开始计时至A与弹簧脱离的过程中,弹簧长度l与时间t的关系如图乙所示,弹簧始终处在弹性限度范围内,已知弹簧的弹性势能E p=12kx2(x为弹簧的形变量),则()A.在0~2t0内B物块先加速后减速B.整个过程中,A、B物块构成的系统机械能守恒C.v0=2m/sD.物块A在t0时刻时速度最小【答案】C【解析】在0~2t0内,弹簧始终处于压缩状态,即B受到的弹力始终向右,所以B物块始终做加速运动,故A错误;整个过程中,A、B物块和弹簧三者构成的系统机械能守恒,故B错误;由图可知,在t0时刻,弹簧被压缩到最短,则此时A、B共速,此时弹簧的形变量为x=0.4m-0.1m=0.3m则根据A、B物块系统动量守恒有m1v0=(m1+m2)v根据A、B物块和弹簧三者构成的系统机械能守恒有1 2m1v20=12(m1+m2)v2+E pv0=2m/s故C正确;在0~2t0内,弹簧始终处于压缩状态,即A受到弹力始终向左,所以A物块始终做减速运动,则物块A在2t0时刻时速度最小,故D错误。

弹簧类问题综述

弹簧类问题综述

弹簧类问题综述弹簧问题是高中物理中常见的题型之一,并且综合性强,是个难点。

分析这类题型对训练学生的分析综合能力很有好处。

1、在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧"。

轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒。

2、弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.3、因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.4、在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解,同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值。

弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论。

因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。

类型一静力学问题中的弹簧如图所示,四处完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中的弹簧的左端固定在墙上②中的弹簧的左端也受到大小也为F 的拉力的作用③中的弹簧的左端拴一小物块,物块在光滑的桌面上滑动④中的弹簧的左端拴一个小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量为零,以L 1、L 2、L 3、L 4依次表示四个弹簧的伸长量,则有:( ) DA .L 2>L 1B .L 4>L 3C .L 1>L 3D .L 2=L 4类型二在弹簧弹力作用下瞬时加速度的求解如图所示,竖直放置在水平面上的轻弹簧上叠放着两物块P 、Q,它们的质量均为2kg ,均处于静止状态.若突然将一个大小为10N 、方向竖直向下的力施加在物块P 上,则此瞬间,P 对Q 压力的大小为(g 取10m/s 2):( ) CA.5NB.15NC.25ND.35N.类型三物体在弹簧弹力作用下的动态分析○3 ○4 ○2 ○1F F F F F 图一如图所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见弹簧类问题分析高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。

一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m 1g/k 1B.m 2g/k 2C.m 1g/k 2D.m 2g/k 2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m 1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m 1 + m 2)g /k 2,而m l 刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m 2g /k 2,因而m 2移动△x =(m 1 + m 2)·g /k 2 - m 2g /k 2=m l g/k 2.此题若求m l 移动的距离又当如何求解?参考答案:C2.S 1和S 2表示劲度系数分别为k 1,和k 2两根轻质弹簧,k 1>k 2;A 和B 表示质量分别为m A 和m B 的两个小物块,m A >m B ,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ). A.S 1在上,A 在上 B.S 1在上,B 在上 C.S 2在上,A 在上 D.S 2在上,B 在上参考答案:D3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m ,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k 1(大弹簧)和k 2(小弹簧)分别为多少?(参考答案k 1=100N/m k 2=200N/m)4.(2001年上海高考)如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态.现将L 2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解 设L 1线上拉力为T l ,L 2线上拉力为T 2,重力为mg ,物体在三力作用下保持平衡T l cos θ=mg ,T l sin θ=T 2,T 2=mgtan θ,剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度.清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ, a=gsinθ(2)若将图中的细线Ll改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( )A.M>mB.M=mC.M<mD.不能确定参考答案:B6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是( )参考答案:CA.一直加速运动 B.匀加速运动C.先加速运动后减速运动 D.先减速运动后加速运动[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者分离.7.如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()参考答案:CA.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下(试分析小球在最低点的加速度与重力加速度的大小关系)8.如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是 ()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动D.物体在B点受到的合外力为零参考答案:C9.如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。

物体向右运动至C点而静止,AC距离为L。

第二次将物体与弹簧相连,仍将它压缩至A点,则第二次物体在停止运动前经过的总A.s=LB.s>LC.s<LD.条件不足,无法判断参考答案:AC(建议从能量的角度、物块运动的情况考虑)10. A 、B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10 m/s 2).(1)使木块A 竖直做匀加速运动的过程中,力F 的最大值; (2)若木块由静止开始做匀加速运动,直到A 、B 分离的过程中,弹簧的弹性势能减少了0.248 J ,求这一过程F 对 木块做的功.分析:此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力 N =0时 ,恰好分离.解:当F =0(即不加竖直向上F 力时),设A 、B 叠放在弹簧上处于平衡时弹簧的压缩量为x ,有kx =(m A +m B )gx =(m A +m B )g /k ①对A 施加F 力,分析A 、B 受力如图对A F +N -m A g =m A a ② 对B kx ′-N -m B g =m B a ′ ③可知,当N ≠0时,AB 有共同加速度a =a ′,由②式知欲使A 匀加速运动,随N 减小F 增大.当N =0时,F 取得了最大值F m ,即F m =m A (g +a )=4.41 N又当N =0时,A 、B 开始分离,由③式知, 此时,弹簧压缩量kx ′=m B (a +g )x m a g kAB 共同速度 v 2=2a (x -x ′) ⑤由题知,此过程弹性势能减少了W P =E P =0.248 J 设F 力功W F ,对这一过程应用动能定理或功能原理W F +E P -(m A +m B )g (x -x ′)=21(m A +m B )v 2⑥联立①④⑤⑥,且注意到E P =0.248 J 可知,W F =9.64×10-2J三、与能量相关的弹簧问题11.(全国.1997)质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时弹簧的压缩量为x 0,如图所示.一物块从钢板正上方距离为3x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量为m 时,它们恰能回到O 点.若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度.求物块向上运动到达的最高点与O 点的距离.分析:本题的解题关键是要求对物理过程做出仔细分析,且在每一过程中运用动量守恒定律,机械能守恒定律解决实际问题,本题的难点是对弹性势能的理解,并不要求写出弹性势能的具体表达式,可用Ep 表示,但要求理解弹性势能的大小与伸长有关,弹簧伸长为零时,弹性势能为零,弹簧的伸长不变时,弹性势能不变.答案:021x12.如图所示,A 、B 、C 三物块质量均为m ,置于光滑水平台面上.B 、C 间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A 以初速度v 0沿B 、C 连线方向向B 运动,相碰后,A 与B 、C 粘合在一起,然后连接B 、C 的细绳因受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离,脱离弹簧后C 的速度为v 0.(1)求弹簧所释放的势能ΔE .(2)若更换B 、C 间的弹簧,当物块A 以初速v 向B 运动,物块C 在脱离弹簧后的速度为2v 0,则弹簧所释放的势能ΔE ′是多少?(3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C 在脱离弹簧后的速度仍为 2v 0,A 的初速度v 应为多大?(1)31mv 02 (2)121m (v -6v 0)2 (3)4v 013..某宇航员在太空站内做丁如下实验:选取两个质量分别为m A =0.1kg 、m B =0.20kg 的小球A 、B 和一根轻质短弹簧,弹簧的一端与小球A 粘连,另一端与小球B 接触而不粘连.现使小球A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度v 0=0.10m/s 做匀速直线运动,如图所示.过一段时间,突然解除锁定(解除锁定没有机械能损失),两球仍沿原直线运动.从弹簧与小球B 刚刚分离开始计时,经时间t=3.0s 两球之间的距离增加了s=2.7m ,求弹簧被锁定时的弹性势能E 0?取A 、B 为系统,由动量守恒得:( m A +m B )v 0=m A v A +m B v ;VA t+VB t=s又A 、B 和弹簧构成系统,又动量守恒解得:JEp0275.0=14.如下图所示,一质量不计的轻质弹簧竖立在地面上,弹簧的上端与盒子A 连接在一起,下端固定在地面上.盒子内装一个光滑小球,盒子内腔为正方体,一直径略小于此正方体边长的金属圆球B 恰好能放在盒内,已知弹簧的劲度系数为k=400N /m ,A 和B 的质量均为2kg 将A 向上提高,使弹簧从自由长度伸长10cm 后,从静止释放,不计阻力,A 和B一起做竖直方向的简谐振动,g 取10m/s 2已知弹簧处在弹性限度内,对于同一弹簧,其弹性势能只决定于其形变的大小.试求:(1)盒子A 的振幅;(2)盒子A 运动到最高点时,A 对B 的作用力方向; (3)小球B 的最大速度2220212121BB B A B A P v m v m V m m E +=++)(15.如图所示,一弹簧振子.物块质量为m ,它与水平桌面动摩擦因数为μ,开始用手按住物块,弹簧处于伸状态,然后放手,当弹簧回到原长时物块速度为v 1,当弹簧再次回到原长时物块速度为v 2,求这两次为原长运动过程中弹簧的最大弹性势能.16.如图,水平弹簧一端固定,另一端系一质量为m 的小球,弹簧的劲度系数为k ,小球与水平面之间的摩擦系数为μ,当弹簧为原长时小球位于O 点,开始时小球位于O 点右方的A 点,O 与A 之间的距离为l 0,从静止释放小球。

相关文档
最新文档