常见弹簧类问题分析

合集下载

16弹簧类问题

16弹簧类问题

弹簧类问题考点规律分析1.弹簧类问题特点(1)对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒。

(2)整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题。

由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒。

2.弹簧类问题的注意事项光滑水平面上的两物块通过弹簧作用时,弹簧伸长到最长或压缩到最短时,两物体的速度一定相等,弹簧具有最大的弹性势能;当弹簧恢复原长时,两物体的速度相差最大,弹簧对两物体的作用力为零。

典型例题两物块A 、B 用轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m/s 的速度在光滑的水平地面上运动,质量为4 kg 的物块C 静止在前方,如图所示。

B 与C 碰撞后二者会粘在一起运动。

则在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大?(2)系统中弹性势能的最大值是多少?[规范解答] (1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大。

由A 、B 、C 三者组成的系统动量守恒得(m A +m B )v =(m A +m B +m C )v 1解得v 1=(2+2)×62+2+4m/s =3 m/s 。

(2)B 、C 碰撞时B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者速度为v 2,则m B v =(m B +m C )v 2,解得v 2=2×62+4m/s =2 m/s , 物块A 、B 、C 速度相同时弹簧的弹性势能最大,设为E p ,根据机械能守恒定律有E p =12(m B +m C )v 22+12m A v 2-12(m A +m B +m C )v 21 解得E p =12 J 。

[完美答案] (1)3 m/s (2)12 J弹簧类问题的解题思路(1)对系统应用动量守恒定律。

有关弹簧问题的分析与计算

有关弹簧问题的分析与计算

跟踪练习: 1.如图所示,在一粗糙水平面上有两个质量分别为 m1 和 m2 的木块 1 和 2,中间用一原长为 L、劲度系数为 K 的轻弹 簧连结起来,木块与地面间的动摩擦因数为 μ。现用一水平力向右拉木块 2,当两木块一起匀速运动时,两木块之间的距离 是:( )
A.
B.
C.
D.
2.如图所示,质量分别为 mA 和 mB 的 A 和 B 两球用轻弹簧连接,A 球用细绳悬挂起来,两球均处于静止状态,如果 将悬挂 A 球的细线剪断,此时 A 和 B 两球的瞬时加速度各是多少?
C.aA=g, aB=-g D.aA=-g,aB=
图 3-2-5
10.轻质弹簧的上端固定在电梯的天花板上,弹簧下端悬挂一个小球,电梯中有质量为 50kg 的乘客如图 3-2-3 所示,在电 梯运行时乘客发现轻质弹簧的伸长量是电梯静止时的一半,这一现象表明 ( ) A.电梯此时可能正以 1m/s2 的加速度大小加速上升,也可能是以 1m/s2 加速大小减速上升 B. 的加速度大小加速下降 C.电梯此时可能正以 5m/s2 的加速度大小加速上升,也可能是以 5m/s2 大小的加速度大小减速下降 D.不论电梯此时是上升还是下降,加速还是减速,乘客对电梯地板的压力大小一定是 250N
〖例 8〗如图所示,原长分别为 L1=0.1m 和 L2=0.2m、劲度系数分别为 k1=100N/m 和 k2=200N/m 的轻质弹簧竖直悬挂 在天花板上。两弹簧之间有一质量为 m1=0.2kg 的物体,最下端挂着质量为 m2=0.1kg 的另一物体,整个装置处于静止状态。 g=10N/kg。问:若用一个质量为 M 的平板把下面的物体竖直缓慢地向上托起,直到两个弹簧的总长度等于两弹簧的原长之 和,求这时平板施加给下面物体 m2 的支持力多大?

旋转弹簧类问题的分析技巧

旋转弹簧类问题的分析技巧

旋转弹簧类问题的分析技巧一、问题分析解决旋转弹簧类问题首先需要对问题进行全面的分析。

具体包括考虑以下几个方面:1.系统模型:明确问题中涉及到的旋转弹簧和其他物体的模型。

对于旋转弹簧,需要确定其结构、形状、刚度等参数。

2.受力分析:确定外力和作用力。

分析问题中作用在旋转弹簧上的各种力,如拉力、压力、重力等。

3.约束条件:分析系统内各个物体之间的约束关系。

考虑旋转弹簧与其他物体之间的接触、分离等约束关系。

4.运动方式:分析问题中的运动方式,包括回转、摆动、振动等。

确定旋转弹簧的运动状态和变化规律。

二、弹簧的刚度及力学特性分析在解决旋转弹簧类问题时,需要了解弹簧的刚度及其力学特性。

具体分析如下:1.弹簧刚度:弹簧的刚度决定了它对力的变形程度。

刚度越大,弹簧变形越小,反之亦然。

通常用弹性系数(弹簧常数)来表示。

2.弹簧力学特性:弹簧具有负载变形的特性,即当外力作用在弹簧上时,弹簧会发生变形,并产生一个恢复力,该恢复力与变形程度成正比。

3.力-位移关系:分析弹簧的力-位移关系,即外力与弹簧变形之间的关系。

一般情况下,采用胡克定律来描述弹簧的力学特性,即F=K∆x,其中F为弹簧的恢复力,K为弹簧刚度,∆x为弹簧变形量。

三、平衡和受力分析在解决旋转弹簧类问题时,需要进行平衡和受力分析,以确定系统的平衡状态及受力情况。

具体分析如下:1.平衡状态:分析问题中的平衡状态,即物体所处的平衡位置和角度。

根据问题的具体条件,确定旋转弹簧的平衡位置和角度范围。

2.受力分析:分析旋转弹簧所受力的大小、方向和作用点。

考虑外力、弹簧的力和其他物体对旋转弹簧的作用力等。

3.平衡条件:根据平衡问题的具体条件,利用受力分析得出的力平衡方程或力矩平衡方程,解方程得到平衡条件。

四、运动分析在解决旋转弹簧类问题时,需要对旋转弹簧的运动进行分析。

具体分析如下:1.运动方程:根据问题的具体条件,建立旋转弹簧的运动方程。

根据问题所涉及的物体、约束条件和受力情况,建立力学模型,并利用牛顿定律等基本原理,得到旋转弹簧的运动方程。

高考物理培优讲堂 弹簧类问题

高考物理培优讲堂   弹簧类问题

常见弹簧类问题归类剖析一、“轻弹簧”类问题簧轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.【例1】如图1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力1F 、2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【12F F a m-= 1F 】二、质量不可忽略的弹簧【例2】如图2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【x xT F L=】三、弹簧长度的变化问题(胡克定律的理解与应用)F k x ∆=∆ 弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例3】如图3所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【221221()m m m g k + 21121211()()m m m g k k ++】四、与物体平衡相关的弹簧问题【例4】(山东卷)如图所示,用完全相同的轻弹簧A 、B 、C 将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A 与竖直方向的夹角为30o,弹簧C 水平,则弹簧A 、C 的伸长量之比为 A .4:3 B.3:4 C. 1:2 D. 2:1五、与动力学相关的弹簧问题【例5】如图所示,一轻质弹簧竖直放在水平地面上,小球A 由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是( )A.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下六、弹簧弹力瞬时问题(弹簧的弹力不能突变)【例6】如图6所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是Aa =与B a=【,1.5g 】图2图1图 3【例7】一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m ,它们的一端固定,另一端自由,弹力与形变量的关系如图所示,求这两根弹簧的劲度系数k 1(大弹簧)和k 2(小弹簧)分别为多少?【 k 1=100N/m k 2=200N/m) 】八、弹簧形变量可以代表物体的位移【例8】如图8所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【()sin A B A F m m g a m θ-+= ()sin AB m m g d kθ+=】九、最大转速和最小转速问题【例9】 有一水平放置的圆盘,上面放一个劲度系数为k 的轻弹簧,其一端固定于轴O 上,另一端系着质量为m 的物体A ,物体A 与盘面间最大静摩擦力为Ffm ,弹簧原长为L ,现将弹簧伸长∆L 后置于旋转的桌面上,如图所示,问:要使物体相对于桌面静止,圆盘转速n 的最大值和最小值各是多少?【12πk L F m L L fm ∆∆++()和12πk L F m L L fm ∆∆-+()】拓展:若盘面光滑,弹簧的原长为L0,当盘以W 匀角速度转动时,弹簧的伸长量为多少?【)(02x L mw x k ∆+=∆】十、弹力变化的运动过程分析(弹簧振子振动模型)【例10】如图10所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大? (2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?(此问自主招生选做)【答案】022gx32mg说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关.图 8图 10两物体分离之前加速度与速度均相同,刚分离时二者之间弹力为零。

弹簧问题类型含答案

弹簧问题类型含答案

弹簧问题类型轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。

无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。

合力恒等于零。

弹簧读数始终等于任意一端的弹力大小。

弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。

一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。

性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。

其伸长量等于弹簧任意位置受到的力和劲度系数的比值。

性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。

性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。

分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。

弹簧问题的题目类型1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)2、求与弹簧相连接的物体的瞬时加速度3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断vSaF变化)4、有弹簧相关的临界问题和极值问题除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题1、弹簧问题受力分析受力分析对象是弹簧连接的物体,而不是弹簧本身找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。

(灵活运用整体法隔离法);通过弹簧形变量的变化来确定物体位置。

(高度,水平位置)的变化弹簧长度的改变,取决于初末状态改变。

(压缩——拉伸变化)参考点,F=kx指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。

抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。

合力恒等于零的特点求解。

注:如果a相同,先整体后隔离。

隔离法求内力,优先对受力少的物体进行隔离分析。

2、瞬时性问题题型:改变外部条件(突然剪断绳子,撤去支撑物)针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析3、动态过程分析三点分析法(接触点,平衡点,最大形变点)竖直型:水平型:明确有无推力,有无摩擦力。

动量之弹簧类问题

动量之弹簧类问题

动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。

1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。

求此过程中所加外力的最大和最小值。

图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。

一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。

图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。

今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。

图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。

现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。

动量与能量综合问题归类分析

动量与能量综合问题归类分析

量守恒,故小物块恰能到达圆弧最高点A时,
两者旳共同速度 v共 =0

设弹簧解除锁定前旳弹性势能为EP,上述过程中系 统能量守恒,则有 EP=mgR+μmgL ②
代入数据解得 EP =7.5 J

⑵设小物块第二次经过O′时旳速度大小为vm,此时 平板车旳速度大小为vM ,研究小物块在圆弧面上下 滑过程,由系统动量守恒和机械能守恒有
1 2
Mv 2 2
题目 2页 3页 末页
代入数据可得:v1+3v2=4
v21 +3v22 =10
解得
v1
2
3 2
2 3.12m/s
2 2 v2 2 0.29m/s
以上为A、B碰前瞬间旳速度。

v1
23 2
2 1.12m/s
v2
2 2
2
1.71m/s
此为A、B刚碰后瞬间旳速度。
题目 2页 3页 末页
m
M
若小球只能在下半个圆周内作摆动 1/2m1V22 =m1gh ≤m1gL V2 2gL v0 m M 2gL
类型三:子弹射木块类问题
如图所示,质量为m旳小木块与水平面间旳动摩擦因数
μ=0.1.一颗质量为0.1m、水平速度为v0=33 Rg 旳子弹
打入原来处于静止状态旳小木块(打入小木块旳时间极短, 且子弹留在小木块中),小木块由A向B滑行5R,再 滑上半径为R旳四分之一光滑圆弧BC,在C点正上方有一 离C高度也为R旳旋转平台,平台同一直径上开有两个离轴 心等距旳小孔P和Q,平台旋转时两孔均能经过C点旳正上 方,若要使小木块经过C后穿过P孔,又能从Q孔落下,则平台 旳角速度应满足什么条件?
住一轻弹簧后连接在一起,两车从光滑弧形轨道上旳 某一高度由静止滑下,当两车刚滑入圆环最低点时连 接两车旳挂钩忽然断开,弹簧将两车弹开,其中后车 刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最 高点,求:

弹簧类问题的分类解析

弹簧类问题的分类解析

弹簧类问题分类解析弹簧模型是高考中出现最多的模型之一,在填空、实验、计算题中都经常出现,考查范围很广,变化较多,是考查学生推理、分析综合能力的热点模型。

由于弹力与弹簧的形变成正比,在有关弹簧的题目中,物体的运动要影响弹簧的长度,长度的改变会影响力的变化.这样力与运动相联系,运动反过来又影响力的变化,几个矛盾联系在一起,学生往往感到感到较难分析.其实只要抓住弹簧几方面的特征,在解决问题的过程中如果就相关力学知识并结合弹簧本身特性进行分析,问题就可迎刃而解了。

一、对轻质弹簧而言,其内部弹力处处相等,等于弹簧一端所受外力F例1.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的力F 的作用,③中弹簧的左端拴一个小木块,木块在光滑的平面上滑动,④中弹簧的左端拴一个小木块,木块在有摩擦的桌面上滑动。

若认为弹簧的质量都为零,以1 、2 、3 、4 依次表示四个弹簧的伸长量,则有( )A .2 >1B .4 >3C .1 >3D .2 =4解析 弹簧的伸长量与弹簧内部弹力相关,由此分析四根弹簧的伸长量的关系,只要将四种情况下弹簧内部弹力的大小关系分析清楚即可。

将整根弹簧从右到左分成很多小段,每小段标上序号1、2、3、4……,设每小段弹簧质量均为∆m ,则对1号小段弹簧,设2号小段弹簧对其向左的拉力为f 1,由牛顿第二定律有F – f 1 = ∆ma ;对2号小段弹簧,设3号小段弹簧对其向左拉力为f 2,因1号小段弹簧对其向右拉力为f 1',则有f 1' - f 2 = ∆ma .图中①、②两种情况下弹簧处于平衡状态,加速度a = 0,虽③、④弹簧加速度a ≠ 0,但弹簧为轻质弹簧,∆m = 0,则由上面两式有f 1 = f 2 = F ,以此类推可知弹簧中各小段间张力处处相等,均为F ,则四种情况下弹簧伸长量必均相等,应选择选项D .二.弹簧弹力的大小遵循胡克定律F = kx ,其中x 为弹簧的形变量,当形变量x 发生变化时,弹力F 也随之变化,是变力例2.一个弹簧台秤的秤盘质量和弹簧质量都可不计,盘内放一个物体PF F ② ③ ④处于静止。

高中物理中的弹簧问题归类剖析

高中物理中的弹簧问题归类剖析

2高考分析:常见弹簧类问题归类剖析轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见 . 由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与 之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高 . 在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性, 加之弹簧在伸缩过程中涉及力和加速度、功和能等多个物理概念和规律,所以弹簧类问题也就成为高考中的重、难、热 点. 我们应引起足够重视 . 弹簧类命题突破要点:1. 弹簧的弹力是一种由形变而决定大小和方向的力 . 当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应 . 在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2. 因弹簧(尤其是软质弹簧) 其形变发生改变过程需要一段时间, 因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变 在瞬间内形变量可以认为不变..3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解 . 同时要注意弹力做功的特点: ( 1 2 1 2 2 21 ),弹力 的功等于弹性势能增量的负值或弹力的功等于弹性势能的减少 . 弹性势能的公式1 2,高考不作定量要2求,可作定性讨论 . 因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会 无限大 .故簧轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力 .弹一端受力为 F ,另一端受 力一定也为 F 。

弹簧类问题的几种模型及其处理方法

弹簧类问题的几种模型及其处理方法

弹簧类问题的几种模子及其处理办法学生对弹簧类问题觉得头疼的重要原因有以下几个方面:起首,因为弹簧不竭产生形变,导致物体的受力随之不竭变更,加快度不竭变更,从而使物体的活动状况和活动进程较庞杂.其次,这些庞杂的活动进程中央所包含的隐含前提很难发掘.还有,学生们很难找到这些庞杂的物理进程所对应的物理模子以及处理办法.依据近几年高考的命题特色和常识的考核,笔者就弹簧类问题分为以下几种类型进行剖析,供读者参考.一.弹簧类命题冲破要点1.弹簧的弹力是一种由形变而决议大小和偏向的力.当标题中消失弹簧时,起首要留意弹力的大小与偏向时刻要与当时的形变相对应,在标题中一般应从弹簧的形变剖析入手,先肯定弹簧原长地位.现长地位.均衡地位等,找出形变量x与物体空间地位变更的几何干系,剖析形变所对应的弹力大小.偏向,联合物体受其他力的情形来剖析物体活动状况.2.因软质弹簧的形变产生转变进程须要一段时光,在刹时内形变量可以以为不变,是以,在剖析瞬时变更时,可以以为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变更,可以先求平均力,再用功的界说进行盘算,也可据动能定理和功效关系:能量转化和守恒定律求解.同时要留意弹力做功的特色:弹力做功等于弹性势能增量的负值.弹性势能的公式,高考不作定量请求,可作定性评论辩论,是以在求弹力的功或弹性势能的转变时,一般以能量的转化与守恒的角度来求解.二.弹簧类问题的几种模子1.均衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两头分别与质量为m1.m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),全部体系处于均衡状况.现施力将m1迟缓竖直上提,直到下面谁人弹簧的下端刚离开桌面.在此进程中,m2的重力势能增长了______,m1的重力势能增长了________.剖析:上提m1之前,两物块处于静止的均衡状况,所以有:,,个中,.分别是弹簧k1.k2的紧缩量.当用力迟缓上提m1,使k2下端刚离开桌面时,,弹簧k2最终恢回复复兴长,个中,为此时弹簧k1的伸长量.答案:m2上升的高度为,增长的重力势能为,m1上升的高度为,增长的重力势能为.点评:此题是共点力的均衡前提与胡克定律的分解题,题中空间距离的变更,要经由过程弹簧形变量的盘算求出.留意迟缓上提,解释全部体系处于动态均衡进程.例2.如上图2所示,A物体重2N,B物体重4N,中央用弹簧衔接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T.F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N剖析:对于轻质弹簧来说,既可处于拉伸状况,也可处于紧缩状况.所以,此问题要分两种情形进行剖析.(1)若弹簧处于紧缩状况,则经由过程对A.B受力剖析可得:,(2)若弹簧处于拉伸状况,则经由过程对A.B受力剖析可得:,答案:B.D.点评:此题重要针对弹簧既可以紧缩又可以拉伸的这一特色,考核学生对问题进行周全剖析的才能.有时,概况上两种情形都有可能,但必须经由断定,若某一种情形物体受力情形和物体所处状况不符,必须消除.所以,对这类问题必须经由受力剖析联合物体活动状况之后作出断定.均衡类问题总结:这类问题一般把受力剖析.胡克定律.弹簧形变的特色分解起来,考核学生对弹簧模子根本常识的控制情形.只要学生静力学基本常识扎实,进修习惯较好,这类问题一般都邑水到渠成,此类问题相对较简略.2.突变类问题例3.(2001年上海)如图3所示,一质量为m的小球系于长度分别为l1.l2的两根细线上,l1的一端吊挂在天花板上,与竖直偏向夹角为θ,l2程度拉直,小球处于均衡状况.现将l2线剪断,求剪断瞬时小球的加快度.若将图3中的细线l1改为长度雷同.质量不计的轻弹簧,如图4所示,其他前提不变,求剪断细线l2瞬时小球的加快度.剖析:(1)当剪断细线l2刹时,不但l2对小球拉力刹时消掉,l1的拉力也同时消掉,此时,小球只受重力感化,所以此时小球的加快度为重力加快度g.(2)当把细线l1改为长度雷同.质量不计的轻弹簧时,在当剪断细线l2刹时,只有l2对小球拉力刹时消掉,弹簧对小球的弹力和剪断l2之前没变更,因为弹簧恢复形变须要一个进程.如图5所示,剪断l2刹时,小球受重力G和弹簧弹力,所以有:,偏向程度向右.点评:此题属于细线和弹簧弹力变更特色的静力学问题,学生不但要对细线和弹簧弹力变更特色熟习,还要对受力剖析.力的均衡等相干常识闇练运用,此类问题才干得以解决.突变类问题总结:不成伸长的细线的弹力变更时光可以疏忽不计,是以可以称为“突变弹力”,轻质弹簧的弹力变更须要一准时光,弹力逐渐减小,称为“渐变弹力”.所以,对于细线.弹簧类问题,当外界情形产生变更时(如撤力.变力.剪断),要从新对物体的受力和活动情形进行剖析,细线上的弹力可以突变,轻弹簧弹力不克不及突变,这是处理此类问题的症结.3.碰撞型弹簧问题此类弹簧问题属于弹簧类问题中相比较较简略的一类,而其重要特色是与碰撞问题相似,但是,它与碰撞类问题的一个显著不同就是它的感化进程相对较长,而碰撞类问题的感化时光极短.例4.如图6所示,物体B静止在滑腻的程度面上,B的左边固定有轻质的弹簧,与B质量相等的物体A以速度v向B活动并与弹簧产生碰撞,A.B始终沿同一向线,则A,B构成的体系动能损掉最大的时刻是A.A开端活动时 B.A的速度等于v时C.B的速度等于零时 D.A和B的速度相等时剖析:解决如许的问题,最好的办法就是可以或许将两个物体感化的进程细化,明白两个物体在互相感化的进程中,其具体的活动特色.具体剖析如下:(1)弹簧的紧缩进程:A物体向B活动,使得弹簧处于紧缩状况,紧缩的弹簧分别对A.B物体产生如右中图的感化力,使A向右减速活动,使B向右加快活动.因为在开端的时刻,A的速度比B的大,故两者之间的距离在减小,弹簧不竭紧缩,弹簧产生的弹力越来越大,直到某个刹时两个物体的速度相等,弹簧紧缩到最短.(2)弹簧紧缩形变恢复进程:过了两物体速度相等这个刹时,因为弹簧仍然处于紧缩状况,A持续减速,B持续加快,这就会使得B的速度变的比A的速度大,于是A.B物体之间的距分开端变大,弹簧逐渐恢复形变直至原长.(3)弹簧的拉伸进程:因为B的速度比A的速度大,弹簧由原长变成拉伸状况.此时,弹簧对两物体的弹力偏向向内,使A向右加快活动,B向右减速活动,直到A.B速度相等时弹簧拉伸到最长状况.(4)弹簧拉伸形变恢复进程:过了两物体速度相等这个刹时,因为弹簧仍然处于拉伸状况,A持续加快,B持续减速,这就会使得A的速度变的比B的速度大,于是A.B物体之间的距分开端变小,弹簧逐渐恢复形变直至原长.就如许,弹簧不竭地紧缩.拉伸.恢复形变.当外界用力压弹簧时,弹簧会被紧缩,从而获得弹性势能,当弹簧开端恢复形变之后,它又会将所蓄积的弹性势能释放出去,这个蓄积和释放的进程,弹簧自身其实不会消耗能量.能量在两个物体和弹簧之间进行传递.点评:在由两个物体和弹簧构成的体系的活动中,具有下面的特色:(1)两个物体速度相等时,弹簧处于形变量(紧缩或拉伸)最大的状况,弹簧的弹性势能达到最大.(2)两个物体不断地进行着加快和减速活动,但加快度时刻在变更,所以有关两个物体活动的问题不克不及采取活动学公式来解决.但此模子属于弹性碰撞模子,所以知足包含弹簧在内的体系动量守恒和体系机械能守恒.4:机械能守恒型弹簧问题对于弹性势能,高中阶段其实不须要定量盘算,但是须要定性的懂得,即知道弹性势能的大小与弹簧的形变之间消失直接的关系,对于雷同的弹簧,形变量一样的时刻,弹性势能就是一样的,不管是紧缩状况照样拉伸状况.例5.一劲度系数k=800N/m的轻质弹簧两头分别衔接着质量均为m=12kg的物体A.B,它们竖直静止在程度面上,如图7所示.现将一竖直向上的变力F感化在A上,使A开端向上做匀加快活动,经0.40s物体B刚要分开地面.求:⑴此进程中所加外力F的最大值和最小值.⑵此进程中力F所做的功.(设全部进程弹簧都在弹性限度内,取g=10m/s2)剖析:此题考核学生对A物体上升进程中具体活动进程的懂得.在力F方才感化在A上时,A物体受到重力mg,弹簧向上的弹力T,竖直向上的拉力F.跟着弹簧紧缩量逐渐减小,弹簧对A的向上的弹力逐渐减小,则F必须变大,以知足F+T-mg=ma.当弹簧恢回复复兴长时,弹簧弹力消掉,只有F-mg=ma;跟着A物体持续向上活动,弹簧开端处于拉伸状况,则物体A的受到重力mg,弹簧向下的弹力T,竖直向上的拉力F,知足F-T-mg=ma.跟着弹簧弹力的增大,拉力F也逐渐增大,以保持加快度不变.等到弹簧拉伸到足够长,使得B物体正好分开地面时,弹簧弹力大小等于B物体的重力.答案:(1)开端时,对于A物体:,得弹簧紧缩量是ΔB刚要分开地面时,对于B物体仍有:,得弹簧伸长量Δ是以A向上活动的位移是0.3m,由公式:2.所以:开端时刻F=ma=45N为拉力最小值;B刚要分开地面时F'-mg-kΔx=ma,得F'=285N为拉力最大值.(2)拉力做的功等于体系增长的机械能,始末状况弹性势能雷同.所以由和,可得此进程中拉力做的功等于49.5J.点评:此类题的症结是要剖析出最大值和最小值时刻的特色,必须经由过程受力剖析得出物体活动的具体进程特点,只要把物体做每一种活动情势的力学原因搞清晰了,这类问题就会水到渠成.所以,学生在日常平凡的练习中,必须养成优越的思维习惯,对于较庞杂的物理进程,必须先分段研讨,化一个庞杂问题为若干个简略模子,针对若干个简略的物理情景,一一剖析消失这一物理情景的力学原因,当把每一个物理情景都剖析清晰了,全部问题的答案就会水到渠成.例6.如图8所示,物体B和物体C用劲度系数为k的弹簧衔接并竖直地静置在程度面上.将一个物体A从物体B的正上方距离B的高度为H0处由静止释放,下落伍与物体B碰撞,碰撞后A和B 粘合在一路并连忙向下活动,在今后的活动中A.B不再分别.已知物体A.B.C的质量均为M,重力加快度为g,疏忽物体自身的高度及空气阻力.求:(1)A与B碰撞后刹时的速度大小.(2)A和B一路活动达到最大速度时,物体C对程度地面压力为多大?(3)开端时,物体A从距B多大的高度自由落下时,在今后的活动中才干使物体C正好分开地面?剖析:进程剖析法:第一阶段:A自由落体;第二阶段:A.B产生碰撞,感化时光极短,时光疏忽;第三阶段:AB成为一体的刹时,弹簧形变来不及产生转变,弹簧的弹力仍为mg,小于AB整体重力2mg,所以物体AB所受合力仍然为向下,物体仍然向下加快,做加快度减小的加快活动.当弹簧的弹力增大到正好为2mg时,物体AB合力为0,物体持续向下活动.第四阶段:弹簧持续被紧缩,紧缩量持续增长,产生的弹力持续增长,大于2mg,使得物体AB所受合力变成向上,物体开端向下减速,直至弹簧紧缩到最短,AB物体停滞活动.所以,当物体AB所受合力为0时就是该物体速度最大的时刻.答案:(1)A自由下落由机械能守恒得:,求得A与B碰撞,因为碰撞时光极短,由A.B构成的体系动量守恒得:.所以求得A与B碰撞后刹时的速度大小(2)由前面剖析知,A和B一路活动达到最大速度的时刻,即为物体AB受合力为0的时刻:对C受力剖析知地面临C的支撑力.所以物体C对程度地面压力也为3mg.(3)设物体A从距离B为H的高度自由落下时,在今后的活动中才干使物体C正好分开地面.要使C正好分开地面,意味着当A 上升到最高点时弹簧的弹力为mg,弹簧的伸长量为,A.B相碰停滞时刻弹簧的紧缩量也为.所以,由A.B物体以及弹簧构成的体系,从A.B相碰停滞开端到A.B上升到最高点的进程中,体系机械能守恒,初状况A.B的动能全体转化为末状况A.B的重力势能,弹性势能没有变更.所以有:,求得:点评:高中阶段的机械能守恒等式分为:“守恒式”.“转移式”和“转化式”三种,对于任何研讨对象,无论是单个物体照样体系,都可以采取“守恒式”列等式,选好零势能面,肯定初.末状况的机械能,此办法思绪简略,但等式庞杂,运算量较大.“转移式”只能针对一个体系,如两个物体A.B构成的体系,,若A物体机械能减小,B物体的机械能必定增长,且变更量相等,A减小的机械能转移到B上导致B物体机械能增长.“转化式”表现了机械能守恒中机械能从一种情势转化成别的一种情势,在转化进程中总的机械能不变.即:,若物体或体系动能增长了,势能必定减小,且增长的动能等于减小的势能.此类模子是涉及弹簧在内的体系机械能守恒,在这类模子中,一般涉及动能.重力势能和弹性势能,列等式一般采取“转移式”或“转化式”.5.简谐活动型弹簧问题弹簧振子是简谐活动的经典模子,有一些弹簧问题,假如从简谐活动的角度思虑,运用简谐活动的周期性和对称性来处理,问题的难度将大大降低.例7.如图9所示,一根轻弹簧竖直竖立在程度面上,下端固定.在弹簧正上方有一个物块从高处自由下落到弹簧上端O,将弹簧紧缩.当弹簧被紧缩了x0时,物块的速度减小到零.从物块和弹簧接触开端到物块速度减小到零进程中,物块的加快度大小a随降低位移大小x变更的图像,可能是下图中的剖析:我们知道物体所受的力为弹力和重力的合力,而弹力与形变量成正比,所以加快度与位移之间也应当是线性关系,加快度与位移关系的图像为直线.物体在最低点的加快度与重力加快度之间的大小关系应当是本题的难点,借助简谐活动的加快度对称性来处理最便利.若物块正好是原长处下落的,依据简谐活动对称性,可知最低点时所受的合力也是mg,偏向向上,所以弹力为2mg,加快度为g.如今,初始地位比原长处要高,如许最低点的地位比上述情形要低,弹簧紧缩量也要大,产生的弹力肯定大于2mg,加快度肯定大于g.例8.如图10所示,一质量为m的小球从弹簧的正上方H高处自由下落,接触弹簧后将弹簧紧缩,在紧缩的全进程中(疏忽空气阻力且在弹性限度内),以下说法准确的是A.小球所受弹力的最大值必定大于2mgB.小球的加快度的最大值必定大于2gC.小球刚接触弹簧上端时动能最大D.小球的加快度为零时重力势能与弹性势能之和最大解析:本题是一个典范的简谐活动模子问题.可参考例8剖析即可.6.分解类弹簧问题例9.质量均为m的两个矩形木块A和B用轻弹簧相衔接,弹簧的劲度系数为k,将它们竖直叠放在程度地面上,如图13所示,另一质量也是m的物体C,从距离A为H的高度自由下落,C与A相碰,相碰时光极短,碰后A.C不粘连,当A.C一路回到最高点时,地面临B的支撑力正好等于B的重力.若C从距离A为2H高处自由落下,在A.C一路上升到某一地位,C与A分别,C持续上升,求:(1)C没有与A相碰之前,弹簧的弹性势能是若干?(2)C上升到最高点与A.C分别时的地位之间距离是若干?解:进程剖析法(1)C由静止下落H高度.即与A相撞前的速度为,则:,得出:(2)C与A相撞,由动量守恒定律可得:得出:(3)A.C一路紧缩弹簧至A.C上升到最高点,由机械能守恒定律得:得出(4)C由静止下落2H高度时的速度为,则:得出(5)C与A相撞:得出:(6)A.C一路紧缩弹簧至A.C分别,由机械能守恒定律得:得出:(7)C单独上升X高度,由机械能守恒定律得:得出:例10.如图12所示,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A.B都处于静止状况.一条不成伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩.开端时各段绳都处于伸直状况,A上方的一段绳沿竖直偏向.如今挂钩上升一质量为m3的物体C并从静止状况释放,已知它正好能使B分开地面但不持续上升.若将C换成另一个质量为的物体D,仍从上述初始地位由静止状况释放,则此次B刚离地时D的速度的大小是若干?已知重力加快度为g.解:进程剖析法(1)开端时,A.B都静止,设弹簧紧缩量为,则:得出:(2)挂上C由静止释放,由B刚好分开地面得:得出:(3)挂上C直至B刚好分开地面,由体系机械能守恒得:个中为弹簧弹性势能的增长量(4)若将C换成D后,当B刚好分开地面时弹簧弹性势能的增长量与前一次雷同,得出:以上两式联立得出:分解类弹簧问题总结:分解类弹簧问题一般物理情景庞杂,涉及的物理量较多,思维进程较长,标题难度较大.处理这类问题最好的办法是前面所述的“肢解法”,即把一个庞杂的问题“肢解”成若干个熟习的简略的物理情景,一一攻破.这就要肄业生具有扎实的基本常识,日常平凡擅长积聚罕有的物理模子及其处理办法,并具有把一个物理问题还原成物理模子的才能.。

初中常见问题分析:弹簧问题分析

初中常见问题分析:弹簧问题分析

三、弹簧问题分析弹簧问题是高中物理中常见的题型之一,并且综合性强,是个难点。

分析这类题型对训练学生的分析综合能力很有好处。

例题分析:例1:劲度系数为K 的弹簧悬挂在天花板的O 点,下端挂一质量为m 的物体,用托盘托着,使弹簧位于原长位置,然后使其以加度a 由静止开始匀加速下降,求物体匀加速下降的时间。

分析:物体下降的位移就是弹簧的形变长度,且匀加速运动末托力为0,由匀变速直线运动公式及牛顿定律得:G –KX=ma X=1/2at 2解以上两式得:t=kaa g m )(2例2:一质量为 M 的塑料球形容器,在A 处与水平面接触。

它的内部有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m 的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度。

在振动过程中球形容器对桌面的最小压力为0,求容器对桌面的最大压力。

分析:由题意知弹簧正好在原长时小球恰好速度最大,所以: 对小球 qE=mg (1) 小球在最高点时有容器对桌面的压力最小,由题意可知,小球在最高点时:对容器有:kx=Mg (2)此时小球受力如图,所受合力为 F=mg+kx-qE (3)由以上三式得: 小球的加速度为:a=mMg 由振动的对称性可知: 小球在最底点时, KX-mg+qE=ma解以上式子得: kX=Mg对容器: F N =Mg+Kx=2Mg例3:已知弹簧劲度系数为K ,物块重G ,弹簧立在水平桌面上,下端固定,上端固定一轻盘,物块放于盘中。

现给物块一向下的压力F ,当物块静止时,撤去外力。

在运动过程中,物块正好不离开盘, 求:(1)给物块的向下的压力F 。

(2)在运动过程中盘对物块的最大作用力分析:(1):由物块正好不离开盘,可知在最高点时,弹簧正好在原长,所以有:a=g (1) 由对称性,在最低点时:kx-mg=ma (2)物块被压到最低点时有:F+mg=Kx (3)由以上三式得:F=mgA(2)在最低点时盘对物块的支持力最大,此时有: F N -mg=ma 所以:F N =2mg规律总结:以上3题是胡克定律和运动的结合,此类问题特别要注意弹簧的形变 x 和位移的关系;另外当两个物体共同运动时,要注意两物体正好分离时的受力特点,即:两物体间作用力为0,如竖直放置一般弹簧正好在原长。

弹簧问题的归纳总结

弹簧问题的归纳总结

弹簧问题的归类总结1、弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。

2、弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx 或△f=k •△x 来求解。

3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。

4、 弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。

它有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起,以考察学生的综合应用能力。

分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。

例1 在原子物理中,研究核子与核子关联的最有效途经是“双电荷交换反应”。

这类反应的前半部分过程和下面力学模型类似。

两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态。

在它们左边有一垂直轨道的固定档板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图7所示,C 与B 发生碰撞并立即结成一个整体D 。

在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变。

然后,A 球与档板P 发生碰撞,碰后A 、D 静止不动,A 与P 接触而不粘连。

过一段时间,突然解除销定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m 。

(1)求弹簧长度刚被锁定后A 球的速度。

(2)求在A 球离开档板P 之后的运动过程中,弹簧的最大弹性势能。

解:整个过程可分为四个阶段来处理.(1)设C球与B球粘结成D时,D 的速度为v1,由动量守恒定律,得mv0=2mv1, ①当弹簧压至最短时,D与A的速度相等,设此速度为v2,由动量守恒定律,得图—92mv1=3mv2, ②联立①、②式得v1=(1/3)v0. ③此问也可直接用动量守恒一次求出(从接触到相对静止)mv0=3mv2,v2=(1/3)v0.(2)设弹簧长度被锁定后,贮存在弹簧中的势能为Ep,由能量守恒定律,得 21(2m)v12=21(3m)v22+Ep, ④ 撞击P后,A与D的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,弹性势能全部转变成D的动能,设D的速度为v3,有Ep=21(2m)v32, ⑤ 以后弹簧伸长,A球离开挡板P,并获得速度.设此时的速度为v4,由动量守恒定律,得2mv3=3mv4, ⑥当弹簧伸到最长时,其弹性势能最大,设此势能为Ep′,由能量守恒定律,得 21(2m)v32=21(3m)v42+Ep′, ⑦ 联立③~⑦式得 Ep′=361mv02. ⑧ 评析 命题人暗设机关,巧布干扰,只有当考生全面读懂、领会题意,并在头脑中建立起非常清晰的物理图景和过程,充分运用两个守恒定律,化难为易,变繁为简,才能明察秋毫,予以识破.例2 如图,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。

有关弹簧的动量问题

有关弹簧的动量问题

单击此处添加大标题 内容
如图所示,在足够长的光滑水平轨道上静止三个小木块A,B,C,质量分别为mA=1kg,mB=1kg, mC=2kg,其中B与C用一个轻弹簧固定连接,开始时整个装置处于静止状态;A和B之间有少许塑胶 炸药,A的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失)。现在引爆塑胶炸药, 若炸药爆炸产生的能量有E=9J转化为A和B沿轨道方向的动能,A和B分开后,A恰好在BC之间的弹 簧第一次恢复到原长时追上B,并且在碰撞后和B粘到一起。求:
单击添加大标题
E 车 Ep=mgR
2m2gR M2 Mm
四. 质量为M 的小车置于光滑水平面上, 小车的上表面由 光滑的1/4 圆弧和光滑平面组成, 圆弧半径为R , 车的 右端固定有一不计质量的弹簧.现有一质量为m 的滑块 从圆弧最高处无初速下滑(如图) ,与弹簧相接触并压缩 弹簧, 求: 1. 弹簧具有的最大的弹性势能; 2. 当滑块与弹簧分离时小车速度.
恢复到原长时A,B的速度各是多少?
由能量守恒得
1 2m V 0 201 2m V A 21 2m V B 2
2.已知A、B、C质量均为m,C的初速度为v0,碰撞后 B、C粘在一起,地面光滑。求弹簧的最大弹性势能EP
解:C与B碰撞动量守恒 mV0=2mV1
碰后到压缩弹簧到最短达共同速度V2,弹性势能达最大EP.
A
v0
B2 m
⑵设B球与挡板碰撞前瞬间的速度为vB,此时A的速度为vA。
系统动量守恒: m0vmAv2mBv
mAv2mBv3m共 v
B与挡板碰后,以vB向左运动,压缩弹簧,当A、B速度相同 (设为v共)时,弹簧势能最大,为Em,则:
1 2m02v1 23m共 2vEm

弹簧的故障分析与解决方法

弹簧的故障分析与解决方法

弹簧的故障分析与解决方法
弹簧断裂:过度使用或负载过重会导致弹簧断裂。

弹簧腐蚀:长期暴露在潮湿环境中,弹簧可能会被氧化并腐蚀。

弹簧不能回弹:可能是弹簧断裂导致的,需要更换弹簧。

弹簧表面出现腐蚀或变形:可能是弹簧腐蚀导致的,可以尝试
清洗或更换弹簧。

清洗弹簧表面:当弹簧表面出现腐蚀时,可以使用适当的清洁
剂和工具清洗弹簧表面,恢复其正常功能。

调整弹簧张力:有时,弹簧的张力过大或过小也会导致故障,可以适当调整弹簧的张力来解决问题。

避免潮湿环境:尽量避免让弹簧暴露在潮湿的环境中。

定期检查和维护:定期检查弹簧的表面状况和张力,及时发现并解决问题。

以上是弹簧的故障分析与解决方法,希望对您有所帮助。

经典物理模型:常见弹簧类问题分析

经典物理模型:常见弹簧类问题分析

常见弹簧类问题分析高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。

一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m 1g/k 1B.m 2g/k 2C.m 1g/k 2D.m 2g/k 2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g/k2=m l g/k2.此题若求m l移动的距离又当如何求解?参考答案:C2.S1和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为m A和m B的两个小物块,m A>m B,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ).A.S1在上,A在上B.S1在上,B在上C.S2在上,A在上D.S2在上,B在上参考答案:D3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别为多少?(参考答案k1=100N/m k2=200N/m)4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解设L1线上拉力为T l,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡T l cosθ=mg,T l sinθ=T2,T2=mgtanθ,剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ, a=gsinθ(2)若将图中的细线L l改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( )A.M>mB.M=mC.M<mD.不能确定参考答案:B6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是 ( ) 参考答案:CA.一直加速运动 B.匀加速运动C.先加速运动后减速运动 D.先减速运动后加速运动[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者分离.7.如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()参考答案:CA.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下(试分析小球在最低点的加速度与重力加速度的大小关系)8.如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m 把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是 ()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动D.物体在B点受到的合外力为零参考答案:C9.如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。

高考弹簧类问题大汇总

高考弹簧类问题大汇总

第一部分弹簧类典型问题一 弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。

1、最大、最小拉力例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2)。

求此过程中所加外力的最大和最小值。

图1解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量∆l mg km ==025.,0.5s 末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,∆∆l l m '.==025,故对A 物体有2122∆l at =,代入数据得a m s =42/。

刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有F mg mg ma max --=,解得F mg ma N max =+=2360。

2、最大高度例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。

一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。

图2解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则:v gx 006= ①物块与钢板碰撞后一起以v 1速度向下运动,因碰撞时间极短,碰撞时遵循动量守恒,即:mv mv 012= ②刚碰完时弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为0,根据机械能守恒有:E m v mgx p +=1222120() ③ 设v 2表示质量为2m 的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:2302mv mv = ④碰撞后,当它们回到O 点时具有一定速度v ,由机械能守恒定律得: E m v mgx m v p +=+12331232202()() ⑤ 当质量为2m 的物块与钢板一起回到O 点时两者分离,分离后,物块以v 竖直上升,其上升的最大高度: h v g=22 ⑥ 解①~⑥式可得h x =02。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见弹簧类问题分析高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。

一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m 1g/k 1B.m 2g/k 2C.m 1g/k 2D.m 2g/k 2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m 1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m 1 + m 2)g /k 2,而m l 刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m 2g /k 2,因而m 2移动△x =(m 1 + m 2)·g /k 2 - m 2g /k 2=m l g /k 2.此题若求m l 移动的距离又当如何求解?参考答案:C2.S 1和S 2表示劲度系数分别为k 1,和k 2两根轻质弹簧,k 1>k 2;A 和B 表示质量分别为m A 和m B 的两个小物块,m A >m B ,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ). A.S 1在上,A 在上 B.S 1在上,B 在上 C.S 2在上,A 在上 D.S 2在上,B 在上参考答案:D3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m ,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别为多少?(参考答案k1=100N/m k2=200N/m)4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解设L1线上拉力为T l,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡T l cosθ=mg,T l sinθ=T2,T2=mgtanθ,剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ, a=gsinθ(2)若将图中的细线L l改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( )A.M>mB.M=mC.M<mD.不能确定参考答案:B6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是( ) 参考答案:CA.一直加速运动 B.匀加速运动C.先加速运动后减速运动 D.先减速运动后加速运动[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者分离.7.如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()参考答案:CA.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下(试分析小球在最低点的加速度与重力加速度的大小关系)8.如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是 ()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动D.物体在B点受到的合外力为零参考答案:C9.如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。

物体向右运动至C点而静止,AC距离为L。

第二次将物体与弹簧相连,仍将它压缩至A点,则第二次物体在停止运动前经过的总路程s可能为:A.s=LB.s>LC.s<LD.条件不足,无法判断参考答案:AC(建议从能量的角度、物块运动的情况考虑)10. A、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B质量分别为0.42 kg和0.40 kg,弹簧的劲度系数k=100 N/m ,若在木块A上作用一个竖直向上的力F,使A由静止开始以0.5 m/s2的加速度竖直向上做匀加速运动(g=10 m/s2).(1)使木块A竖直做匀加速运动的过程中,力F的最大值;(2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248 J ,求这一过程F 对 木块做的功.分析:此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力 N =0时 ,恰好分离.解:当F =0(即不加竖直向上F 力时),设A 、B 叠放在弹簧上处于平衡时弹簧的压缩量为x ,有kx =(m A +m B )gx =(m A +m B )g /k ①对A 施加F 力,分析A 、B 受力如图对A F +N -m A g =m A a ② 对B kx ′-N -m B g =m B a ′ ③可知,当N ≠0时,AB 有共同加速度a =a ′,由②式知欲使A 匀加速运动,随N 减小F 增大.当N =0时,F 取得了最大值F m , 即F m =m A (g +a )=4.41 N又当N =0时,A 、B 开始分离,由③式知, 此时,弹簧压缩量kx ′=m B (a +g )x ′=m B (a +g )/k ④ AB 共同速度 v 2=2a (x -x ′) ⑤由题知,此过程弹性势能减少了W P =E P =0.248 J 设F 力功W F ,对这一过程应用动能定理或功能原理W F +E P -(m A +m B )g (x -x ′)=21(m A +m B )v 2⑥联立①④⑤⑥,且注意到E P =0.248 J 可知,W F =9.64×10-2J三、与能量相关的弹簧问题11.(全国.1997)质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时弹簧的压缩量为x 0,如图所示.一物块从钢板正上方距离为3x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量为m 时,它们恰能回到O 点.若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度.求物块向上运动到达的最高点与O 点的距离.分析:本题的解题关键是要求对物理过程做出仔细分析,且在每一过程中运用动量守恒定律,机械能守恒定律解决实际问题,本题的难点是对弹性势能的理解,并不要求写出弹性势能的具体表达式,可用Ep 表示,但要求理解弹性势能的大小与伸长有关,弹簧伸长为零时,弹性势能为零,弹簧的伸长不变时,弹性势能不变.答案:021x12.如图所示,A 、B 、C 三物块质量均为m ,置于光滑水平台面上.B 、C 间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A 以初速度v 0沿B 、C 连线方向向B 运动,相碰后,A 与B 、C 粘合在一起,然后连接B 、C 的细绳因受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离,脱离弹簧后C 的速度为v 0.(1)求弹簧所释放的势能ΔE .(2)若更换B 、C 间的弹簧,当物块A 以初速v 向B 运动,物块C 在脱离弹簧后的速度为2v 0,则弹簧所释放的势能ΔE ′是多少?(3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C 在脱离弹簧后的速度仍为 2v 0,A 的初速度v 应为多大? (1)31mv 02 (2)121m (v -6v 0)2 (3)4v 013..某宇航员在太空站内做丁如下实验:选取两个质量分别为m A =0.1kg 、m B =0.20kg 的小球A 、B 和一根轻质短弹簧,弹簧的一端与小球A 粘连,另一端与小球B 接触而不粘连.现使小球A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度v 0=0.10m/s 做匀速直线运动,如图所示.过一段时间,突然解除锁定(解除锁定没有机械能损失),两球仍沿原直线运动.从弹簧与小球B 刚刚分离开始计时,经时间t=3.0s 两球之间的距离增加了s=2.7m ,求弹簧被锁定时的弹性势能E 0?取A 、B 为系统,由动量守恒得:( m A +m B )v 0=m A v A +m B v ;VA t+VB t=s又A 、B 和弹簧构成系统,又动量守恒解得:J E p0275.0=14.如下图所示,一质量不计的轻质弹簧竖立在地面上,弹簧的上端与盒子A 连接在一起,下端固定在地面上.盒子内装一个光滑小球,盒子内腔为正方体,一直径略小于此正方体边长的金属圆球B 恰好能放在盒内,已知弹簧的劲度系数为k=400N /m ,A 和B 的质量均为2kg 将A 向上提高,使弹簧从自由长度伸长10cm 后,从静止释放,不计阻力,A 和B 一起做竖直方向的简谐振动,g 取10m/s 2已知弹簧处在弹性限度内,对于同一弹簧,其弹性势能只决定于其形变的大小.试求:(1)盒子A 的振幅;(2)盒子A 运动到最高点时,A 对B 的作用力方向; (3)小球B 的最大速度15.如图所示,一弹簧振子.物块质量为m ,它与水平桌面动摩擦因数为μ,开始用手按住物块,弹簧处于伸状态,然后放手,当弹簧回到原长时物块速度为v 1,当弹簧再次回到原长时物块速度为v 2,求这两次为原长运动过程中弹簧的最大弹性势能.2220212121BB B A B A P v m v m V m m E +=++)(16.如图,水平弹簧一端固定,另一端系一质量为m 的小球,弹簧的劲度系数为k ,小球与水平面之间的摩擦系数为μ,当弹簧为原长时小球位于O 点,开始时小球位于O 点右方的A 点,O 与A 之间的距离为l 0,从静止释放小球。

相关文档
最新文档