弹簧类问题分析方法专题
有关弹簧问题的分析与计算
跟踪练习: 1.如图所示,在一粗糙水平面上有两个质量分别为 m1 和 m2 的木块 1 和 2,中间用一原长为 L、劲度系数为 K 的轻弹 簧连结起来,木块与地面间的动摩擦因数为 μ。现用一水平力向右拉木块 2,当两木块一起匀速运动时,两木块之间的距离 是:( )
A.
B.
C.
D.
2.如图所示,质量分别为 mA 和 mB 的 A 和 B 两球用轻弹簧连接,A 球用细绳悬挂起来,两球均处于静止状态,如果 将悬挂 A 球的细线剪断,此时 A 和 B 两球的瞬时加速度各是多少?
C.aA=g, aB=-g D.aA=-g,aB=
图 3-2-5
10.轻质弹簧的上端固定在电梯的天花板上,弹簧下端悬挂一个小球,电梯中有质量为 50kg 的乘客如图 3-2-3 所示,在电 梯运行时乘客发现轻质弹簧的伸长量是电梯静止时的一半,这一现象表明 ( ) A.电梯此时可能正以 1m/s2 的加速度大小加速上升,也可能是以 1m/s2 加速大小减速上升 B. 的加速度大小加速下降 C.电梯此时可能正以 5m/s2 的加速度大小加速上升,也可能是以 5m/s2 大小的加速度大小减速下降 D.不论电梯此时是上升还是下降,加速还是减速,乘客对电梯地板的压力大小一定是 250N
〖例 8〗如图所示,原长分别为 L1=0.1m 和 L2=0.2m、劲度系数分别为 k1=100N/m 和 k2=200N/m 的轻质弹簧竖直悬挂 在天花板上。两弹簧之间有一质量为 m1=0.2kg 的物体,最下端挂着质量为 m2=0.1kg 的另一物体,整个装置处于静止状态。 g=10N/kg。问:若用一个质量为 M 的平板把下面的物体竖直缓慢地向上托起,直到两个弹簧的总长度等于两弹簧的原长之 和,求这时平板施加给下面物体 m2 的支持力多大?
旋转弹簧类问题的分析技巧
旋转弹簧类问题的分析技巧一、问题分析解决旋转弹簧类问题首先需要对问题进行全面的分析。
具体包括考虑以下几个方面:1.系统模型:明确问题中涉及到的旋转弹簧和其他物体的模型。
对于旋转弹簧,需要确定其结构、形状、刚度等参数。
2.受力分析:确定外力和作用力。
分析问题中作用在旋转弹簧上的各种力,如拉力、压力、重力等。
3.约束条件:分析系统内各个物体之间的约束关系。
考虑旋转弹簧与其他物体之间的接触、分离等约束关系。
4.运动方式:分析问题中的运动方式,包括回转、摆动、振动等。
确定旋转弹簧的运动状态和变化规律。
二、弹簧的刚度及力学特性分析在解决旋转弹簧类问题时,需要了解弹簧的刚度及其力学特性。
具体分析如下:1.弹簧刚度:弹簧的刚度决定了它对力的变形程度。
刚度越大,弹簧变形越小,反之亦然。
通常用弹性系数(弹簧常数)来表示。
2.弹簧力学特性:弹簧具有负载变形的特性,即当外力作用在弹簧上时,弹簧会发生变形,并产生一个恢复力,该恢复力与变形程度成正比。
3.力-位移关系:分析弹簧的力-位移关系,即外力与弹簧变形之间的关系。
一般情况下,采用胡克定律来描述弹簧的力学特性,即F=K∆x,其中F为弹簧的恢复力,K为弹簧刚度,∆x为弹簧变形量。
三、平衡和受力分析在解决旋转弹簧类问题时,需要进行平衡和受力分析,以确定系统的平衡状态及受力情况。
具体分析如下:1.平衡状态:分析问题中的平衡状态,即物体所处的平衡位置和角度。
根据问题的具体条件,确定旋转弹簧的平衡位置和角度范围。
2.受力分析:分析旋转弹簧所受力的大小、方向和作用点。
考虑外力、弹簧的力和其他物体对旋转弹簧的作用力等。
3.平衡条件:根据平衡问题的具体条件,利用受力分析得出的力平衡方程或力矩平衡方程,解方程得到平衡条件。
四、运动分析在解决旋转弹簧类问题时,需要对旋转弹簧的运动进行分析。
具体分析如下:1.运动方程:根据问题的具体条件,建立旋转弹簧的运动方程。
根据问题所涉及的物体、约束条件和受力情况,建立力学模型,并利用牛顿定律等基本原理,得到旋转弹簧的运动方程。
高中物理经典问题---弹簧类问题全面总结解读
高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
高考物理弹簧类问题的几种模型及其处理方法归纳
第四阶段:弹簧继续被压缩,压缩量继续增加,产生的弹力继续增 加,大于2mg,使得物体AB所受合力变为向上,物体开始向下减速,直
分析:(1)当剪断细线l2瞬间,不仅l2对小球拉力瞬间消失,l1的 拉力也同时消失,此时,小球只受重力作用,所以此时小球的加速度为 重力加速度g。
(2)当把细线l1改为长度相同、质量不计的轻弹簧时,在当剪断细
线l2瞬间,只有l2对小球拉力瞬间消失,弹簧对小球的弹力和剪断l2之 前没变化,因为弹簧恢复形变需要一个过程。如图5所示,剪断l2瞬 间,小球受重力G和弹簧弹力,所以有:
A.A开始运动时 C.B的速度等于零时
B.A的速度等于v时 D.A和B的速度相等时
分析:解决这样的问题,最好的方法就是能够将两个物体作用的过 程细化,明确两个物体在相互作用的过程中,其详细的运动特点。具体 分析如下:
(1)弹簧的压缩过程:A物体向B运动,使得弹簧处于压缩状态,压 缩的弹簧分别对A、B物体产生如右中图的作用力,使A向右减速运动, 使B向右加速运动。由于在开始的时候,A的速度比B的大,故两者之间 的距离在减小,弹簧不断压缩,弹簧产生的弹力越来越大,直到某个瞬 间两个物体的速度相等,弹簧压缩到最短。
2 过程中所加外力F的最大值和最小值。 ⑵此过程中力F所做的功。(设整个过程弹簧都在弹性限度内,取 g=10m/s2)
分析:此题考查学生对A物体上升过程中详细运动过程的理解。在力 F刚刚作用在A上时,A物体受到重力mg,弹簧向上的弹力T,竖直向上的 拉力F。随着弹簧压缩量逐渐减小,弹簧对A的向上的弹力逐渐减小,则 F必须变大,以满足F+T-mg=ma。当弹簧恢复原长时,弹簧弹力消失,只 有F-mg=ma;随着A物体继续向上运动,弹簧开始处于拉伸状态,则物体 A的受到重力mg,弹簧向下的弹力T,竖直向上的拉力F,满足F-Tmg=ma。随着弹簧弹力的增大,拉力F也逐渐增大,以保持加速度不变。 等到弹簧拉伸到足够长,使得B物体恰好离开地面时,弹簧弹力大小等 于B物体的重力。
弹簧类问题的几种模型及其处理方法
弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。
其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。
2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。
弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
分析:上提m1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k1、k2的压缩量。
专题:受力分析之弹簧问题
弹簧类问题的几种模子及其处理办法【1 】学生对弹簧类问题觉得头疼的重要原因有以下几个方面:起首,因为弹簧不竭产生形变,导致物体的受力随之不竭变更,加快度不竭变更,从而使物体的活动状况和活动进程较庞杂.其次,这些庞杂的活动进程中央所包含的隐含前提很难发掘.还有,学生们很难找到这些庞杂的物理进程所对应的物理模子以及处理办法.依据近几年高考的命题特色和常识的考核,就弹簧类问题分为以下几种类型进行剖析.一.弹簧类命题冲破要点1.弹簧的弹力是一种由形变而决议大小和偏向的力.当标题中消失弹簧时,起首要留意弹力的大小与偏向时刻要与当时的形变相对应,在标题中一般应从弹簧的形变剖析入手,先肯定弹簧原长地位.现长地位.均衡地位等,找出形变量x与物体空间地位变更的几何干系,剖析形变所对应的弹力大小.偏向,联合物体受其他力的情形来剖析物体活动状况.2.因软质弹簧的形变产生转变进程须要一段时光,在刹时内形变量可以以为不变,是以,在剖析瞬时变更时,可以以为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变更,可以先求平均力,再用功的界说进行盘算,也可据动能定理和功效关系:能量转化和守恒定律求解.同时要留意弹力做功的特色:弹力做功等于弹性势能增量的负值.弹性势能的公式,高考不作定量请求,可作定性评论辩论,是以在求弹力的功或弹性势能的转变时,一般以能量的转化与守恒的角度来求解.二.弹簧类问题的几种模子1.均衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两头分别与质量为m1.m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),全部体系处于均衡状况.现施力将m1迟缓竖直上提,直到下面谁人弹簧的下端刚离开桌面.在此进程中,m2的重力势能增长了______,m1的重力势能增长了________.例2.如上图2所示,A物体重2N,B物体重4N,中央用弹簧衔接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T.F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N均衡类问题总结:这类问题一般把受力剖析.胡克定律.弹簧形变的特色分解起来,考核学生对弹簧模子根本常识的控制情形.只要学生静力学基本常识扎实,进修习惯较好,这类问题一般都邑水到渠成,此类问题相对较简略.2.突变类问题例3.如图3所示,一质量为m的小球系于长度分别为l1.l2的两根细线上,l1的一端吊挂在天花板上,与竖直偏向夹角为θ,l2程度拉直,小球处于均衡状况.现将l2线剪断,求剪断瞬时小球的加快度.若将图3中的细线l1改为长度雷同.质量不计的轻弹簧,如图4所示,其他前提不变,求剪断细线l2瞬时小球的加快度.突变类问题总结:不成伸长的细线的弹力变更时光可以疏忽不计,是以可以称为“突变弹力”,轻质弹簧的弹力变更须要一准时光,弹力逐渐减小,称为“渐变弹力”.所以,对于细线.弹簧类问题,当外界情形产生变更时(如撤力.变力.剪断),要从新对物体的受力和活动情形进行剖析,细线上的弹力可以突变,轻弹簧弹力不克不及突变,这是处理此类问题的症结.3.碰撞型弹簧问题此类弹簧问题属于弹簧类问题中相比较较简略的一类,而其重要特色是与碰撞问题相似,但是,它与碰撞类问题的一个显著不同就是它的感化进程相对较长,而碰撞类问题的感化时光极短.例4.如图6所示,物体B静止在滑腻的程度面上,B的左边固定有轻质的弹簧,与B质量相等的物体A以速度v向B活动并与弹簧产生碰撞,A.B始终沿同一向线,则A,B构成的体系动能损掉最大的时刻是A.A开端活动时 B.A的速度等于v时C.B的速度等于零时 D.A和B的速度相等时4:机械能守恒型弹簧问题对于弹性势能,高中阶段其实不须要定量盘算,但是须要定性的懂得,即知道弹性势能的大小与弹簧的形变之间消失直接的关系,对于雷同的弹簧,形变量一样的时刻,弹性势能就是一样的,不管是紧缩状况照样拉伸状况.例5.一劲度系数k=800N/m的轻质弹簧两头分别衔接着质量均为m=12kg的物体A.B,它们竖直静止在程度面上,如图7所示.现将一竖直向上的变力F感化在A上,使A开端向上做匀加快活动,经0.40s物体B刚要分开地面.求:⑴此进程中所加外力F的最大值和最小值.⑵此进程中力F所做的功.(设全部进程弹簧都在弹性限度内,取g=10m/s2)例6.如图8所示,物体B和物体C用劲度系数为k的弹簧衔接并竖直地静置在程度面上.将一个物体A从物体B的正上方距离B的高度为H0处由静止释放,下落伍与物体B碰撞,碰撞后A和B粘合在一路并连忙向下活动,在今后的活动中A.B不再分别.已知物体A.B.C的质量均为M,重力加快度为g,疏忽物体自身的高度及空气阻力.求:(1)A与B碰撞后刹时的速度大小.(2)A和B一路活动达到最大速度时,物体C对程度地面压力为多大?(3)开端时,物体A从距B多大的高度自由落下时,在今后的活动中才干使物体C正好分开地面?5.简谐活动型弹簧问题弹簧振子是简谐活动的经典模子,有一些弹簧问题,假如从简谐活动的角度思虑,应用简谐活动的周期性和对称性来处理,问题的难度将大大降低.例7.如图9所示,一根轻弹簧竖直竖立在程度面上,下端固定.在弹簧正上方有一个物块从高处自由下落到弹簧上端O,将弹簧紧缩.当弹簧被紧缩了x0时,物块的速度减小到零.从物块和弹簧接触开端到物块速度减小到零进程中,物块的加快度大小a随降低位移大小x变更的图像,可能是下图中的例8.如图10所示,一质量为m的小球从弹簧的正上方H高处自由下落,接触弹簧后将弹簧紧缩,在紧缩的全进程中(疏忽空气阻力且在弹性限度内),以下说法准确的是A.小球所受弹力的最大值必定大于2mgB.小球的加快度的最大值必定大于2gC.小球刚接触弹簧上端时动能最大D.小球的加快度为零时重力势能与弹性势能之和最大6.分解类弹簧问题例9.如图12所示,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A.B都处于静止状况.一条不成伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩.开端时各段绳都处于伸直状况,A上方的一段绳沿竖直偏向.如今挂钩上升一质量为m3的物体C并从静止状况释放,已知它正好能使B分开地面但不持续上升.若将C换成另一个质量为的物体D,仍从上述初始地位由静止状况释放,则此次B刚离地时D的速度的大小是若干?已知重力加快度为g.分解类弹簧问题总结:分解类弹簧问题一般物理情景庞杂,涉及的物理量较多,思维进程较长,标题难度较大.处理这类问题最好的办法是前面所述的“肢解法”,即把一个庞杂的问题“肢解”成若干个熟习的简略的物理情景,一一攻破.这就要肄业生具有扎实的基本常识,日常平凡擅长积聚罕有的物理模子及其处理办法,并具有把一个物理问题还原成物理模子的才能.。
专题受力分析之弹簧问题
弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂.其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,就弹簧类问题分为以下几种类型进行分析。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态.2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值.弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况.只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单。
初中常见问题分析:弹簧问题分析
三、弹簧问题分析弹簧问题是高中物理中常见的题型之一,并且综合性强,是个难点。
分析这类题型对训练学生的分析综合能力很有好处。
例题分析:例1:劲度系数为K 的弹簧悬挂在天花板的O 点,下端挂一质量为m 的物体,用托盘托着,使弹簧位于原长位置,然后使其以加度a 由静止开始匀加速下降,求物体匀加速下降的时间。
分析:物体下降的位移就是弹簧的形变长度,且匀加速运动末托力为0,由匀变速直线运动公式及牛顿定律得:G –KX=ma X=1/2at 2解以上两式得:t=kaa g m )(2例2:一质量为 M 的塑料球形容器,在A 处与水平面接触。
它的内部有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m 的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度。
在振动过程中球形容器对桌面的最小压力为0,求容器对桌面的最大压力。
分析:由题意知弹簧正好在原长时小球恰好速度最大,所以: 对小球 qE=mg (1) 小球在最高点时有容器对桌面的压力最小,由题意可知,小球在最高点时:对容器有:kx=Mg (2)此时小球受力如图,所受合力为 F=mg+kx-qE (3)由以上三式得: 小球的加速度为:a=mMg 由振动的对称性可知: 小球在最底点时, KX-mg+qE=ma解以上式子得: kX=Mg对容器: F N =Mg+Kx=2Mg例3:已知弹簧劲度系数为K ,物块重G ,弹簧立在水平桌面上,下端固定,上端固定一轻盘,物块放于盘中。
现给物块一向下的压力F ,当物块静止时,撤去外力。
在运动过程中,物块正好不离开盘, 求:(1)给物块的向下的压力F 。
(2)在运动过程中盘对物块的最大作用力分析:(1):由物块正好不离开盘,可知在最高点时,弹簧正好在原长,所以有:a=g (1) 由对称性,在最低点时:kx-mg=ma (2)物块被压到最低点时有:F+mg=Kx (3)由以上三式得:F=mgA(2)在最低点时盘对物块的支持力最大,此时有: F N -mg=ma 所以:F N =2mg规律总结:以上3题是胡克定律和运动的结合,此类问题特别要注意弹簧的形变 x 和位移的关系;另外当两个物体共同运动时,要注意两物体正好分离时的受力特点,即:两物体间作用力为0,如竖直放置一般弹簧正好在原长。
初二物理弹簧类问题解题技巧
初二物理弹簧类问题解题技巧
解决弹簧类问题的关键是理解弹簧的特性和应用弹簧的力学原理。
下面是解决弹簧类问题的一些技巧:
1. 弹簧的胡克定律:了解胡克定律,即弹簧伸长或压缩的力与其伸长或压缩的长度成正比。
公式为 F = kx,其中 F 是作用在弹簧上的力,k 是弹簧的劲度系数,x 是弹簧伸长或压缩的长度。
2. 弹簧的劲度系数:弹簧的劲度系数是衡量其硬度和弹性的指标。
在解题时,需要根据题目给出的信息或通过实验得到的数据来确定弹簧的劲度系数。
3. 弹簧并联和串联:当多个弹簧连接在一起时,可以采用并联和串联的方法进行分析。
对于并联弹簧,它们的劲度系数相加;对于串联弹簧,它们的伸长或压缩长度相等。
4. 力的平衡:解决弹簧类问题时,通常要考虑力的平衡条件。
例如,如果一个物体挂在弹簧上,弹簧的伸长或压缩长度要平衡物体所受的重力。
5. 重力和弹簧力的平衡:在解决一些常见问题时,需要考虑重力和弹簧力的平衡条件。
例如,当一个物体挂在弹簧上并达到静止时,弹簧力和重力大小相等。
6. 弹性势能和机械能守恒:在弹簧类问题中,可以利用弹性势能和机械能守恒原理来解题。
例如,当一个物体从某一高度落下并撞击到一个弹簧时,可以利用机械能守恒来计算弹簧的伸长长度。
7. 注意单位和符号:在解决弹簧类问题时,要注意使用正确的
单位和符号。
确保力的单位与弹簧劲度系数的单位相匹配,并使用统一的正负符号规定。
以上是解决弹簧类问题的一些基本技巧,希望对你有所帮助!。
弹簧类问题的求解
弹簧类问题的求解由于涉及到的弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的分析,不能建立与之相关的物理模型,导致解题思路不清、效率低下,错误率较高。
下面我们归纳六类问题探求解法。
一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",是一种常见的理想化物理模型。
由于“轻弹簧”质量不计,选取任意小段弹簧分析,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。
故:轻质弹簧中各部分间的张力处处相等,均等于弹簧两端的受力。
弹簧一端受力为F ,另一端受力一定也为F 。
若是弹簧秤,则弹簧秤示数为F 。
例1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力F 1、F 2,且F 1>F 2则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .分析与解 以整个弹簧秤为研究对象:利用牛顿运动定律12F F ma -= ∴12F F a m-= 仅以轻质弹簧为研究对象:则弹簧两端的受力都是F 1,所以弹簧秤的读数为F 1 说明 F 2作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的。
二、弹簧弹力瞬时问题因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小和方向不变,即弹簧的弹力瞬间不突变。
例2、如图所示,木块A 与B 用一轻弹簧相连,竖直放在木块C上,三者静置于地面,A 、B 、C 的质量之比是1∶2∶3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是a A =____ ,a B =____分析与解 由题意可设A 、B 、C 的质量分别为m 、2m 、3m以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均没变,故木块A 的瞬时加速度为0以木块AB 为研究对象,由平衡条件可知,木块C 对木块B 的作用力F cB =3mg 以木块B 为研究对象,木块B 受到重力、弹力和F cB 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均没变,F cB 瞬时变为0,故木块C 的瞬时合外力为竖直向下的3mg 。
高考热点专题——有关弹簧问题的分析与计算
弹簧类问题在高中物理中占有相当重要的地位,且涉及到的物理问题多是一些综合性较强、物理过程又比较复杂的问题,从受力的角度看,弹簧上的弹力是变力;从能量的角度看,弹簧是个储能元件;因此,关于弹簧的问题,能很好的考察学生的分析综合能力,备受高考命题专家的青睐。
解决这些问题除了一般要用动量守恒定律和能量守恒定律这些基本规律之外,搞清物体的运动情景,特别是弹簧所具有的一些特点,也是正确解决这类问题的重要方法。
在有关弹簧类问题中,要特别注意使用如下特点和规律:1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
2. 弹簧的弹力不能突变,它的变化要经历一个过程,这是由弹簧形变的改变要逐渐进行决定的。
在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3、弹簧上的弹力是变力,弹力的大小随弹簧的形变量发生变化,求弹力的冲量和弹力做功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。
弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值。
如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。
4、对于只有一端有关联物体,另一端固定的弹簧,其运动过程可结合弹簧振子的运动规律去认识,突出过程的周期性、对称性及特殊点的应用。
如当弹簧伸长到最长或压缩到最短时,物体的速度最小(为零),弹簧的弹性势能最大,此时,也是关联物的速度方向发生改变的时刻。
若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零。
若关联物与接触面间粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零。
弹簧类问题的几种模型及其处理方法
弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂;其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘;还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法;根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考;一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力;当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态;2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变;3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解;同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值;弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解;二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上不拴接,整个系统处于平衡状态;现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面;在此过程中,m2的重力势能增加了______,m1的重力势能增加了________;分析:上提m1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k1、k2的压缩量;当用力缓慢上提m1,使k2下端刚脱离桌面时,,弹簧k2最终恢复原长,其中,为此时弹簧k1的伸长量;答案:m2上升的高度为,增加的重力势能为,m1上升的高度为,增加的重力势能为;点评:此题是共点力的平衡条件与胡克定律的综合题,题中空间距离的变化,要通过弹簧形变量的计算求出;注意缓慢上提,说明整个系统处于动态平衡过程;例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N分析:对于轻质弹簧来说,既可处于拉伸状态,也可处于压缩状态;所以,此问题要分两种情况进行分析;1若弹簧处于压缩状态,则通过对A、B受力分析可得:,2若弹簧处于拉伸状态,则通过对A、B受力分析可得:,答案:B、D;点评:此题主要针对弹簧既可以压缩又可以拉伸的这一特点,考查学生对问题进行全面分析的能力;有时,表面上两种情况都有可能,但必须经过判断,若某一种情况物体受力情况和物体所处状态不符,必须排除;所以,对这类问题必须经过受力分析结合物体运动状态之后作出判断;平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况;只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单;2.突变类问题例3.2001年上海如图3所示,一质量为m的小球系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,小球处于平衡状态;现将l2线剪断,求剪断瞬时小球的加速度;若将图3中的细线l1改为长度相同、质量不计的轻弹簧,如图4所示,其他条件不变,求剪断细线l2瞬时小球的加速度;分析:1当剪断细线l2瞬间,不仅l2对小球拉力瞬间消失,l1的拉力也同时消失,此时,小球只受重力作用,所以此时小球的加速度为重力加速度g;2当把细线l1改为长度相同、质量不计的轻弹簧时,在当剪断细线l2瞬间,只有l2对小球拉力瞬间消失,弹簧对小球的弹力和剪断l2之前没变化,因为弹簧恢复形变需要一个过程;如图5所示,剪断l2瞬间,小球受重力G和弹簧弹力,所以有:,方向水平向右;点评:此题属于细线和弹簧弹力变化特点的静力学问题,学生不仅要对细线和弹簧弹力变化特点熟悉,还要对受力分析、力的平衡等相关知识熟练应用,此类问题才能得以解决;突变类问题总结:不可伸长的细线的弹力变化时间可以忽略不计,因此可以称为“突变弹力”,轻质弹簧的弹力变化需要一定时间,弹力逐渐减小,称为“渐变弹力”;所以,对于细线、弹簧类问题,当外界情况发生变化时如撤力、变力、剪断,要重新对物体的受力和运动情况进行分析,细线上的弹力可以突变,轻弹簧弹力不能突变,这是处理此类问题的关键;3.碰撞型弹簧问题此类弹簧问题属于弹簧类问题中相对比较简单的一类,而其主要特点是与碰撞问题类似,但是,它与碰撞类问题的一个明显差别就是它的作用过程相对较长,而碰撞类问题的作用时间极短;例4.如图6所示,物体B静止在光滑的水平面上,B的左边固定有轻质的弹簧,与B质量相等的物体A 以速度v向B运动并与弹簧发生碰撞,A、B始终沿统一直线,则A,B组成的系统动能损失最大的时刻是A.A开始运动时 B.A的速度等于v时C.B的速度等于零时 D.A和B的速度相等时分析:解决这样的问题,最好的方法就是能够将两个物体作用的过程细化,明确两个物体在相互作用的过程中,其详细的运动特点;具体分析如下:1弹簧的压缩过程:A物体向B运动,使得弹簧处于压缩状态,压缩的弹簧分别对A、B物体产生如右中图的作用力,使A向右减速运动,使B向右加速运动;由于在开始的时候,A的速度比B的大,故两者之间的距离在减小,弹簧不断压缩,弹簧产生的弹力越来越大,直到某个瞬间两个物体的速度相等,弹簧压缩到最短;2弹簧压缩形变恢复过程:过了两物体速度相等这个瞬间,由于弹簧仍然处于压缩状态,A继续减速,B 继续加速,这就会使得B的速度变的比A的速度大,于是A、B物体之间的距离开始变大,弹簧逐渐恢复形变直至原长;3弹簧的拉伸过程:由于B的速度比A的速度大,弹簧由原长变为拉伸状态;此时,弹簧对两物体的弹力方向向内,使A向右加速运动,B向右减速运动,直到A、B速度相等时弹簧拉伸到最长状态;4弹簧拉伸形变恢复过程:过了两物体速度相等这个瞬间,由于弹簧仍然处于拉伸状态,A继续加速,B 继续减速,这就会使得A的速度变的比B的速度大,于是A、B物体之间的距离开始变小,弹簧逐渐恢复形变直至原长;就这样,弹簧不断地压缩、拉伸、恢复形变;当外界用力压弹簧时,弹簧会被压缩,从而获得弹性势能,当弹簧开始恢复形变之后,它又会将所蓄积的弹性势能释放出去,这个蓄积和释放的过程,弹簧自身并不会耗费能量;能量在两个物体和弹簧之间进行传递;点评:在由两个物体和弹簧组成的系统的运动中,具有下面的特点:1两个物体速度相等时,弹簧处于形变量压缩或拉伸最大的状态,弹簧的弹性势能达到最大;2两个物体不停地进行着加速和减速运动,但加速度时刻在变化,所以有关两个物体运动的问题不能采用运动学公式来解决;但此模型属于弹性碰撞模型,所以满足包括弹簧在内的系统动量守恒和系统机械能守恒;4:机械能守恒型弹簧问题对于弹性势能,高中阶段并不需要定量计算,但是需要定性的了解,即知道弹性势能的大小与弹簧的形变之间存在直接的关系,对于相同的弹簧,形变量一样的时候,弹性势能就是一样的,不管是压缩状态还是拉伸状态;例5.一劲度系数k=800N/m的轻质弹簧两端分别连接着质量均为m=12kg的物体A、B,它们竖直静止在水平面上,如图7所示;现将一竖直向上的变力F作用在A上,使A开始向上做匀加速运动,经物体B刚要离开地面;求:⑴此过程中所加外力F的最大值和最小值;⑵此过程中力F所做的功;设整个过程弹簧都在弹性限度内,取g=10m/s2分析:此题考查学生对A物体上升过程中详细运动过程的理解;在力F刚刚作用在A上时,A物体受到重力mg,弹簧向上的弹力T,竖直向上的拉力F;随着弹簧压缩量逐渐减小,弹簧对A的向上的弹力逐渐减小,则F必须变大,以满足F+T-mg=ma;当弹簧恢复原长时,弹簧弹力消失,只有F-mg=ma;随着A物体继续向上运动,弹簧开始处于拉伸状态,则物体A的受到重力mg,弹簧向下的弹力T,竖直向上的拉力F,满足F-T-mg=ma;随着弹簧弹力的增大,拉力F也逐渐增大,以保持加速度不变;等到弹簧拉伸到足够长,使得B物体恰好离开地面时,弹簧弹力大小等于B物体的重力;答案:1开始时,对于A物体:,得弹簧压缩量是Δx=B刚要离开地面时,对于B物体仍有:,得弹簧伸长量Δx=因此A向上运动的位移是,由公式:求得:加速度是s2;所以:开始时刻F=ma=45N为拉力最小值;B刚要离开地面时F'-mg-kΔx=ma,得F'=285N为拉力最大值;2拉力做的功等于系统增加的机械能,始末状态弹性势能相同;所以由和,可得此过程中拉力做的功等于;点评:此类题的关键是要分析出最大值和最小值时刻的特点,必须通过受力分析得出物体运动的详细过程特征,只要把物体做每一种运动形式的力学原因搞清楚了,这类问题就会迎刃而解;所以,学生在平时的训练中,必须养成良好的思维习惯,对于较复杂的物理过程,必须先分段研究,化一个复杂问题为若干个简单模型,针对若干个简单的物理情景,逐一分析出现这一物理情景的力学原因,当把每一个物理情景都分析清楚了,整个问题的答案就会水到渠成;例6.如图8所示,物体B和物体C用劲度系数为k的弹簧连接并竖直地静置在水平面上;将一个物体A从物体B的正上方距离B的高度为H0处由静止释放,下落后与物体B碰撞,碰撞后A和B粘合在一起并立刻向下运动,在以后的运动中A、B不再分离;已知物体A、B、C的质量均为M,重力加速度为g,忽略物体自身的高度及空气阻力;求:1A与B碰撞后瞬间的速度大小;2A和B一起运动达到最大速度时,物体C对水平地面压力为多大3开始时,物体A从距B多大的高度自由落下时,在以后的运动中才能使物体C恰好离开地面分析:过程分析法:第一阶段:A自由落体;第二阶段:A、B发生碰撞,作用时间极短,时间忽略;第三阶段:AB成为一体的瞬间,弹簧形变来不及发生改变,弹簧的弹力仍为mg,小于AB整体重力2mg,所以物体AB所受合力仍然为向下,物体仍然向下加速,做加速度减小的加速运动;当弹簧的弹力增大到正好为2mg时,物体AB合力为0,物体继续向下运动;第四阶段:弹簧继续被压缩,压缩量继续增加,产生的弹力继续增加,大于2mg,使得物体AB所受合力变为向上,物体开始向下减速,直至弹簧压缩到最短,AB物体停止运动;所以,当物体AB所受合力为0时就是该物体速度最大的时候;答案:1A自由下落由机械能守恒得:,求得A与B碰撞,由于碰撞时间极短,由A、B组成的系统动量守恒得:;所以求得A与B碰撞后瞬间的速度大小2由前面分析知,A和B一起运动达到最大速度的时刻,即为物体AB受合力为0的时刻:对C受力分析知地面对C的支持力;所以物体C对水平地面压力也为3mg;3设物体A从距离B为H的高度自由落下时,在以后的运动中才能使物体C恰好离开地面;要使C恰好离开地面,意味着当A上升到最高点时弹簧的弹力为mg,弹簧的伸长量为,A、B相碰结束时刻弹簧的压缩量也为;所以,由A、B物体以及弹簧组成的系统,从A、B相碰结束开始到A、B上升到最高点的过程中,系统机械能守恒,初状态A、B的动能全部转化为末状态A、B的重力势能,弹性势能没有变化;所以有:,求得:点评:高中阶段的机械能守恒等式分为:“守恒式”、“转移式”和“转化式”三种,对于任何研究对象,无论是单个物体还是系统,都可以采用“守恒式”列等式,选好零势能面,确定初、末状态的机械能,此方法思路简单,但等式复杂,运算量较大;“转移式”只能针对一个系统,如两个物体A、B组成的系统,,若A物体机械能减小,B物体的机械能一定增加,且变化量相等,A减小的机械能转移到B上导致B物体机械能增加;“转化式”体现了机械能守恒中机械能从一种形式转化成另外一种形式,在转化过程中总的机械能不变;即:,若物体或系统动能增加了,势能必然减小,且增加的动能等于减小的势能;此类模型是涉及弹簧在内的系统机械能守恒,在这类模型中,一般涉及动能、重力势能和弹性势能,列等式一般采用“转移式”或“转化式”;5.简谐运动型弹簧问题弹簧振子是简谐运动的经典模型,有一些弹簧问题,如果从简谐运动的角度思考,利用简谐运动的周期性和对称性来处理,问题的难度将大大下降;例7.如图9所示,一根轻弹簧竖直直立在水平面上,下端固定;在弹簧正上方有一个物块从高处自由下落到弹簧上端O,将弹簧压缩;当弹簧被压缩了x0时,物块的速度减小到零;从物块和弹簧接触开始到物块速度减小到零过程中,物块的加速度大小a随下降位移大小x变化的图像,可能是下图中的分析:我们知道物体所受的力为弹力和重力的合力,而弹力与形变量成正比,所以加速度与位移之间也应该是线性关系,加速度与位移关系的图像为直线;物体在最低点的加速度与重力加速度之间的大小关系应该是本题的难点,借助简谐运动的加速度对称性来处理最方便;若物块正好是原长处下落的,根据简谐运动对称性,可知最低点时所受的合力也是mg,方向向上,所以弹力为2mg,加速度为g;现在,初始位置比原长处要高,这样最低点的位置比上述情况要低,弹簧压缩量也要大,产生的弹力必定大于2mg,加速度必定大于g;例8.如图10所示,一质量为m的小球从弹簧的正上方H高处自由下落,接触弹簧后将弹簧压缩,在压缩的全过程中忽略空气阻力且在弹性限度内,以下说法正确的是A.小球所受弹力的最大值一定大于2mgB.小球的加速度的最大值一定大于2gC.小球刚接触弹簧上端时动能最大D.小球的加速度为零时重力势能与弹性势能之和最大解析:本题是一个典型的简谐运动模型问题;可参考例8分析即可;6.综合类弹簧问题例9.质量均为m的两个矩形木块A和B用轻弹簧相连接,弹簧的劲度系数为k,将它们竖直叠放在水平地面上,如图13所示,另一质量也是m的物体C,从距离A为H的高度自由下落,C与A相碰,相碰时间极短,碰后A、C不粘连,当A、C一起回到最高点时,地面对B的支持力恰好等于B的重力;若C从距离A为2H高处自由落下,在A、C一起上升到某一位置,C与A分离,C继续上升,求:1C没有与A相碰之前,弹簧的弹性势能是多少2C上升到最高点与A、C分离时的位置之间距离是多少解:过程分析法1C由静止下落H高度;即与A相撞前的速度为,则:,得出:2C与A相撞,由动量守恒定律可得:得出:3A、C一起压缩弹簧至A、C上升到最高点,由机械能守恒定律得:得出4C由静止下落2H高度时的速度为,则:得出5C与A相撞:得出:6A、C一起压缩弹簧至A、C分离,由机械能守恒定律得:得出:7C单独上升X高度,由机械能守恒定律得:得出:例10.如图12所示,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态;一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩;开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向;现在挂钩上升一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升;若将C换成另一个质量为的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度的大小是多少已知重力加速度为g;解:过程分析法1开始时,A、B都静止,设弹簧压缩量为,则:得出:2挂上C由静止释放,由B刚好离开地面得:得出:3挂上C直至B刚好离开地面,由系统机械能守恒得:其中为弹簧弹性势能的增加量4若将C换成D后,当B刚好离开地面时弹簧弹性势能的增加量与前一次相同,得出:以上两式联立得出:综合类弹簧问题总结:综合类弹簧问题一般物理情景复杂,涉及的物理量较多,思维过程较长,题目难度较大;处理这类问题最好的办法是前面所述的“肢解法”,即把一个复杂的问题“肢解”成若干个熟悉的简单的物理情景,逐一攻破;这就要求学生具有扎实的基础知识,平时善于积累常见的物理模型及其处理办法,并具有把一个物理问题还原成物理模型的能力;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹簧类问题分析方法专题弹簧类问题分析方法专题江西省广丰中学周小勇高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.弹簧类问题多为综合性问题,涉及的知识面广,要求的能力较高,是高考的难点之一.在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本专题此类问题作一归类分析。
案例探究一、最大、最小拉力问题例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。
求此过程中所加外力的最大和最小值。
解析:开始时弹簧弹力恰等于A的重力,弹簧压缩量,0.5s末B物体刚要离开地面,此时弹簧弹力恰等于B的重力,,故对A物体有,代入数据得。
刚开始时F为最小且,B物体刚要离开地面时,F为最大且有,解得。
二、最大速度、最小速度问题例2. 如图3所示,一个劲度系数为k的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m的平板B相连而处于静止状态。
今有另一质量为m的物块A从B的正上方h高处自由下落,与B发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v。
为:解析:A下落到与B碰前的速度v1①A、B碰后的共同速度v为:②2, B静止在弹簧上时,弹簧的压缩量为x0且:③A、B一起向下运动到最大速度v时的位移为x,此时A、B的加速度为0,即有:④由机械能守恒得:⑤⑥解①~⑥得:例3. 在光滑水平面内,有A、B两个质量相等的木块,,中间用轻质弹簧相连。
现对B施一水平恒力F,如图所示,经过一段时间,A、B的速度等于5m/s时恰好一起做匀加速直线运动,此过程恒力做功为100J,当A、B恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。
解析:当撤除恒力F后,A做加速度越来越小的加速运动,弹簧等于原长时,加速度等于零,A的速度最大,此后弹簧压缩到最大,当弹簧再次回复原长时速度最小,根据动量守恒得:①根据机械能守恒得:②=0。
由以上两式解得木块A的最小速度vA三、最大转速和最小转速问题例4. 有一水平放置的圆盘,上面放一个劲度系数为k的轻弹簧,其一端固定于轴O上,另一端系着质量为m的物体A,物,弹簧原长为L,体A与盘面间最大静摩擦力为Ffm现将弹簧伸长后置于旋转的桌面上,如图所示,问:要使物体相对于桌面静止,圆盘转速n 的最大值和最小值各是多少?解析:当转速n较大时,静摩擦力与弹簧弹力同向,即:①当转速n较小时,静摩擦力与弹簧弹力反向,即:②所以圆盘转速n的最大值和最小值分别为:四、弹簧模型与绳模型瞬态变化问题例5.(01年上海)如图9-12(A)所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态.现将l2线剪断,求剪断瞬时物体的加速度.图2—(1)下面是某同学对该题的一种解法:解:设l1线上拉力为T1,l2线上拉力为T2,重力为mg,物体在三力作用下保持平衡:T1cosθ=mg,T1sinθ=T2,T2=mg tanθ剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mg tanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?请对该解法作出评价并说明理由.(2)若将图A中的细线l1改为长度相同、质量不计的轻弹簧,如图2-12(B)所示,其他条件不变,求解的步骤与(1)完全相同,即a=g tan θ,你认为这个结果正确吗?请说明理由.5.(1)结果不正确.因为l 2被剪断的瞬间,l 1上张力的大小发生了突变,此瞬间T 2=mg cos θ,a =g sin θ(2)结果正确,因为l 2被剪断的瞬间、弹簧l 1的长度不能发生突变、T 1的大小和方向都不变.五、与物体平衡相关的弹簧问题例6.(1999年,全国)如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m 1g/k 1B.m 2g/k 2C.m 1g/k 2D.m 2g/k 2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m 1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m 1 + m 2)g /k 2,而m l 刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m 2g /k 2,因而m 2移动△x =(m 1 + m 2)·g /k 2 - m 2g /k 2=m l g /k 2.此题若求m移动的距离又当如何求解?l参考答案:C六、与能量相关的弹簧问题例7. 如图所示,质量为2m的木板,静止放在光滑的水平面上,木板左侧固定着一根劲度系数为k的轻质弹簧,弹簧的自由端到小车右端的距离为L,一个开始质量为m的小木块从板的右端以初速度v沿木块向左滑行,最终回到木板右端,刚好不从木板右端滑出,设木板与木块间的动摩擦因数为,求在木块压缩弹簧过程中(一直在弹性限度内)弹簧所具有的最大弹性势能。
解:弹簧被压缩至最短时,具有最大弹性势能,设m在M上运动时,摩擦力做的总功产生内能为2E,从初状态到弹簧具有最大弹性势能及从初状态到末状态,系统均满足动量守恒定律,即:①由初状态到弹簧具有最大弹性势能,系统满足能量守恒:②由初状态到末状态,系统也满足能量守恒且有:③由①②③求得:例8.(2004广东)图中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平直导轨上,弹簧处在原长状态.另一质量与B 相同的滑块A ,从导轨上的P 点以某一初速度向B 滑行.当A 滑过距离L 1时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连.已知最后A 恰好返回到出发点P 并停止.滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为L 2,重力加速度为g 。
求A 从P 点出发时的初速度v 0.解析:解析:令A 、B 质量皆为m ,A 刚接触B 时速度为1v (碰前),由功能关系,有121202121mgl mv mv μ=-A 、B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为2v 有212mv mv = 碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为,在这过程中,弹簧势能始、末两状态都为零,利用功能关系,有)2()2()2(21)2(2122322l g m v m v m μ=- 此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有12321mgl mv μ= 由以上各式,解得 )1610(210l l g v+=μ 注意:A与B发生碰撞有机械能损失。
七、与动力学相关的弹簧问题例9.(2005全国理综23)(19分)如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量分别为m A 、m B ,弹簧的劲度系数为k,C 为一固定挡板。
系统处一静止状态,现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 的位移d ,重力加速度为g 。
解析:令x 1表示未加F 时弹簧的压缩量,由胡克定律和牛顿定律可知 A B C θ1sin kx g m A =θ ①令x 2表示B 刚要离开C 时弹簧的伸长量,a 表示此时A 的加速度,由胡克定律和牛顿定律可知:k x 2=m B gsin θ ②F -m A gsin θ-k x 2=m A a ③由②③式可得A B A m g m m F a θsin )(+-= ④由题意 d=x 1+x 2 ⑤由①②⑤式可得k g m md B A θsin )(+= ⑥八、应用型问题例10.惯性制导系统已广泛应用于弹道式导弹工程中,这个系统的重要元件之一是加速度计,加速度计的构造原理示意图如下图所示。
沿导弹长度方向安装的固定光滑杆上套一质量为m 的滑块,滑块两侧分别与劲度系数为K 的弹簧相连,弹簧处于自然长度,滑块位于中间,指针指示0刻度,试说明该装置是怎样测出物体的加速度的?[分析] 当加速度计固定在待测物体上,具有一定的加速度时,例如向右的加速度a ,滑块将会相对于滑杆向左滑动一定的距离x而相对静止,也具有相同的加速度a,由牛顿第二定律可知:a∝F而F∝x,所以a∝x。
因此在标尺相应地标出加速度的大小,而0点两侧就表示了加速度的方向,这样它就可以测出物体的加速度了。
从以上各例可以看出,尽管弹簧类问题综合性很强,物理情景复杂,物理过程较多,但只要我们仔细分析物理过程,找出每一现象所对应的物理规律,正确判断各物理量之间的关系,此类问题一定会迎刃而解。
从以上各例可以看出,尽管弹簧类问题综合性很强,物理情景复杂,物理过程较多,但只要我们仔细分析物理过程,找出每一现象所对应的物理规律,正确判断各物理量之间的关系,此类问题一定会迎刃而解。