数学小题狂做(必修四)答案31-35

合集下载

高一数学必修4习题(答案)

高一数学必修4习题(答案)

高一必修四数学题(答案)第一题不知道2. 【解析】T= 2冗3=2冗12 = 4 n.【答案】D3. 【解析】sin(9 n —a + cos( —9 冗2 —a) = sin( n —a + cos(冗2 +a) —sina —sin a—).【答案】 D4. 【解析】由题意知截得线段长为一周期,二T —n4 ,.••3—n 4 —4,•'•f( n4) —tan (4 XM) —0.【答案】 A5. 【解析】'-sin 2 n3>0 , cos 2 n3<0 ,•••点(sin 2 n3 , cos 2 n3)在第四象限.又ttan a—cos 2 n3sin 2 n3 ——33 ,•a的最小正值为2 n—16 n—116 n. 【答案】D6. 【解析】由于y = sin(4x —n3) = sin[4(x —n12)],所以只需把y = sin 4x的图像向右平移n 12个单位长度,故选D.【答案】 D7. 【解析】f( n3) = sin(2 x^3+n3) = sin n=0,故A 错;f(冗4) = sin(2 XM+n3) = sin(冗2 +n3) = cos n3 = 12 却,故B 错;把f(x)的图像向左平移n 12个单位长度,得到y = cos 2x的图像,故C正确.【答案】 C8. 【解析】法一•••正弦函数图像的对称轴过图像的最高点或最低点,故令x —n4 = k n + d2,k € Z,—x = k n+3 冗4,k € Z.取k = —1,贝U x =—n4.法二x =n4 时,y = sin( n4 —n4) = 0,不合题意,排除A ; x =冗2 时,y= sin( n 2 —n4) = 22,不合题意,排除B; x =—n4 时,y = sin( —n4 —n4) = —1,符合题意,C项正确;而x =一冗2时,y = sin( —n2 —n4) = —22,不合题意,故D 项也不正确.【答案】 C9. 【解析】C、D中周期为n. A、B不满足T=n.又y = —tan x在(0,n2)为减函数,C错.y = —cos 2x在(0,n2)为增函数.•'•y = —cos 2x满足条件.【答案】 D10. 【解析】T= 6,则5T4 <t,如图:•'•t >152 ,:tmin = 8.故选C.【答案】 C11. 【解析】根据题意平移后函数的解析式为y = sin 3(x —冗4),将(3冗4, 0) 代入得sin 3冗2 = 0,则3 = 2k , k € Z,且3 >0 ,故3的最小值为2.【答案】 D12. 已知圆的半径是 6 cm,贝U 15。

高中数学 32知能优化训练 必修4 试题(共5页)

高中数学 32知能优化训练 必修4 试题(共5页)

1.(2021年高考卷改编(gǎibiān))1-2sin 222.5°的结果等于________.解析:原式=cos45°=22. 答案:222.计算sin105°cos75°的值是__________.解析:sin105°cos75°=sin (180°-75°)cos75°=sin75°cos75°=12sin150°=12sin30°=14. 答案:143.sin θ=-35,3π<θ<7π2,那么tan2θ=__________.解析:因为sin θ=-35,3π<θ<7π2,所以cos θ=-45,tan2θ=sin2θcos2θ=2sin θcos θ2cos 2θ-1=247. 答案:2474.假设tan ⎝ ⎛⎭⎪⎫α+π4=3+22,那么1-cos2αsin2α=__________. 解析:由tan(α+π4)=1+tan α1-tan α=3+22,得tan α=22,∴1-cos2αsin2α=2sin 2α2sin αcos α=tan α=22.答案:22一、填空题1.函数f (x )=(sin x -cos x )sin x ,x ∈R ,那么f (x )的最小正周期是__________. 解析:f (x )=sin 2x -sin x cos x =1-cos2x 2-12sin2x =-22cos(2x -π4)+12,故函数的最小正周期T =2π2=π.答案(dá àn):π2.tan θ2=3,那么1-cos θ+sin θ1+cos θ+sin θ=__________.解析:∵tanθ2=3,∴原式=2sin2θ2+sin θ2cos2θ2+sin θ=2sin2θ2+2sin θ2cosθ22cos2θ2+2sin θ2cosθ2=tan2θ2+tanθ21+tanθ2=tan θ2=3.答案:33.α是第二象限的角,tan(π+2α)=-43,那么tan α=__________.解析:由tan(π+2α)=-43得tan2α=-43,又tan2α=2tan α1-tan 2α=-43,解得tan α=-12或者tan α=2,又α是第二象限的角,∴tan α=-12.答案:-124.(2021年高考卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4-22·s in 2x 的最小正周期是__________.解析:f (x )=22sin2x -22cos2x -22·1-cos2x2=22sin2x +22cos2x -2=sin ⎝⎛⎭⎪⎫2x +π4- 2.故最小正周期为π. 答案:π5.假设cos2αsin ⎝ ⎛⎭⎪⎫α-π4=-22,那么cos α+sin α的值是__________.解析:原式可化为cos 2α-sin 2α22sin α-cos α=-22,化简,可得sin α+cos α=12. 答案:126.sin ⎝⎛⎭⎪⎫x -π4=-513,那么sin2x 的值等于__________.解析(jiě xī):sin2x =cos ⎝ ⎛⎭⎪⎫π2-2x =cos ⎝ ⎛⎭⎪⎫2x -π2 =1-2sin 2⎝ ⎛⎭⎪⎫x -π4=1-2×⎝ ⎛⎭⎪⎫-5132=119169.答案:1191697.假设sin ⎝ ⎛⎭⎪⎫π6-α=13,那么cos ⎝ ⎛⎭⎪⎫2π3+2α=__________.解析:cos ⎝ ⎛⎭⎪⎫π3+α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3+α=sin ⎝ ⎛⎭⎪⎫π6-α=13.∴cos ⎝ ⎛⎭⎪⎫2π3+2α=cos2⎝ ⎛⎭⎪⎫π3+α=2cos 2⎝ ⎛⎭⎪⎫π3+α-1=-79.答案:-798.12+1212+12cos2θ=-cos θ2,那么θ的取值范围是__________. 解析:由得12+12|cos θ|=-cos θ2, ①cos θ<0,θ∈φ, ②⎩⎪⎨⎪⎧cos θ≥0cos θ2≤0,∴⎩⎪⎨⎪⎧2cos 2θ2≥1cos θ2≤0,∴cos θ2≤-22,∴2k π+3π4≤θ2≤2k π+5π4(k ∈Z ),∴⎣⎢⎡⎦⎥⎤4k π+3π2,4k π+5π2(k ∈Z ). 答案:⎣⎢⎡⎦⎥⎤4k π+3π2,4k π+5π2(k ∈Z )二、解答题9.π<α<32π,化简1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α .解:∵π<α<32π,∴π2<α2<34π.∵1+cos α=2⎪⎪⎪⎪⎪⎪cos α2=-2cos α2,1-cos α=2⎪⎪⎪⎪⎪⎪sin α2=2sin α2, ∴1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α=1+sin α-2⎝⎛⎭⎪⎫cos α2+sin α2+1-sin α2⎝⎛⎭⎪⎫sin α2-cos α2=⎝ ⎛⎭⎪⎫cos α2+sin α22-2⎝⎛⎭⎪⎫cos α2+sin α2+⎝⎛⎭⎪⎫sin α2-cos α222⎝⎛⎭⎪⎫sin α2-cos α2=-2cos α2. 10.sin 22α+sin2αcos α-cos2α=1,α∈⎝⎛⎭⎪⎫0,π2,求sin α及tan α的值.解:由题意(tí yì)得sin 22α+sin2αcos α=1+cos2α=2cos 2α,∴2sin 2αcos 2α+sin αcos 2α-cos 2α=0.∵α∈⎝⎛⎭⎪⎫0,π2,∴cos α≠0,∴2sin 2α+sin α-1=0,即(2sin α-1)(sin α+1)=0.∵sin α+1≠0,∴2sin α-1=0,∴sin α=12.∵0<α<π2,∴α=π6,∴tan α=33.11.cos ⎝ ⎛⎭⎪⎫π4+x =35,7π12<x <7π4,求sin2x +2sin 2x 1-tan x 的值.解:法一:因为sin2x +2sin 2x 1-tan x =2sin x cos x +2sin 2x1-sin xcos x=2sin x cos x +sin x cos x -sin x cos x=2sin x cos x cos x +sin xcos x -sin x=sin2x ·1+tan x 1-tan x =sin2x tan ⎝ ⎛⎭⎪⎫π4+x . 又因为7π12<x <7π4,所以5π6<x +π4<2π.而cos ⎝⎛⎭⎪⎫π4+x =35>0,所以3π2<x +π4<2π,所以sin ⎝ ⎛⎭⎪⎫π4+x =-45,所以tan ⎝ ⎛⎭⎪⎫π4+x =-43. 又因为sin2x =-cos ⎝ ⎛⎭⎪⎫π2+2x =-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4+x =-2cos 2⎝ ⎛⎭⎪⎫π4+x +1=-1825+1=725. 所以(suǒyǐ)原式=sin2x tan ⎝ ⎛⎭⎪⎫π4+x =725×⎝ ⎛⎭⎪⎫-43=-2875. 法二:因为7π12<x <7π4,所以5π6<x +π4<2π.又因为cos ⎝⎛⎭⎪⎫π4+x =35>0,所以3π2<x +π4<2π,所以sin ⎝ ⎛⎭⎪⎫π4+x =-45, 所以⎩⎪⎨⎪⎧ cos ⎝ ⎛⎭⎪⎫π4+x =35,sin ⎝ ⎛⎭⎪⎫π4+x =-45,所以⎩⎪⎨⎪⎧cos x -sin x =352,cos x +sin x =-452,所以⎩⎪⎨⎪⎧sin x =-7102,cos x =-210,所以tan x =7,sin2x =2sin x cos x =2×⎝ ⎛⎭⎪⎫-7102×⎝ ⎛⎭⎪⎫-210=725.所以原式=725+2×⎝ ⎛⎭⎪⎫-710221-7=-2875.内容总结。

(word版)高一数学必修4试题附答案详解

(word版)高一数学必修4试题附答案详解

高一数学必修4试题附答案详解第I卷一、选择题:(每题5分,共计60分)1 .以下命题中正确的选项是〔〕A.第一象限角必是锐角B.终边相同的角相等C.相等的角终边必相同D.不相等的角其终边必不相同2.角的终边过点P4m,3m,m0,那么2sin cos的值是〔〕A.1或-1B.2或2C.1或2D.-1或255553 .以下命题正确的选项是〔〕A假设a·b=a·c,那么b=c B假设|ab||a b|,那么a·b=0C 假设a//b,b//c,那么a//cD假设a与b是单位向量,那么a·b=14 .计算以下几个式子,①tan25tan353tan25tan35,②2(sin35cos25+sin55cos65),1tan15tan63③,④,结果为的是〔〕1tan1521tan6A.①②B.①③C.①②③D.①②③④5 .函数y=cos(4-2x)的单调递增区间是〔〕A.[kπ+,kπ+5π]B.[kπ-3π,kπ+]8888C.[2kπ+,2kπ+5π]D.[2kπ-3π,2kπ+]〔以上k∈Z〕88886 .△ABC中三个内角为A、B、C,假设关于x的方程x2xcosAcosBcos2C0有一根为1,2那么△ABC一定是〔〕A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形7.将函数f(x)sin(2x )的图像左移,再将图像上各点横坐标压缩到原来的1,那么所332得到的图象的解析式为〔〕1Aysinx Bysin(4x)Cysin(4x 2Dysin(x) )3338.化简1sin10+1sin10,得到〔〕A-2sin5B-2cos5C2sin5D2cos59 .函数f(x)=sin2x·cos2x是()A周期为π的偶函数B周期为π的奇函数C周期为的偶函数D周期为的奇函数.2210.假设|a|2,|b|2且〔a b〕⊥a ,那么a与b的夹角是〔〕〔A〕6〔B〕〔C〕〔D〕5 431211.正方形ABCD的边长为1,记AB=a,BC=b,AC=c,那么以下结论错误的选项是..A.(a-b cB.(a+b-c a)·=0)·=0C.(|a-c|-|b|)a=0D.|a+b+c|=212.2002年8月,在北京召开的国际数学家大会会标如下列图,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,假设直角三角形中较小的锐角为,大正方形的面积是1,小正方形的面积是1,那么sin2cos2的值等于〔〕25A.124C.77 B.D.-252525二、填空题〔本大题共4小题,每题4分,共16分〕13.曲线 y=Asin( x+ )+k〔A>0, >0,||<π〕在同一周期内的最高点的坐标为(,4),最低点的坐标为(5。

必修4数学考试题及答案

必修4数学考试题及答案

必修4数学考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = \sin x \)D. \( f(x) = \cos x \)答案:B2. 已知 \( a \) 和 \( b \) 是两个不相等的实数,且 \( a^2 - 4a + 4 = 0 \) 和 \( b^2 - 4b + 4 = 0 \),则 \( a + b \) 的值为:A. 2B. -2C. 4D. -4答案:A3. 函数 \( y = \frac{1}{x} \) 的图像与直线 \( y = 2x \) 的交点个数是:A. 0B. 1C. 2D. 3答案:B4. 已知 \( \tan α = 2 \),则 \( \sin α \) 的值为:A. \( \frac{2}{\sqrt{5}} \)B. \( \frac{1}{\sqrt{5}} \)C. \( \frac{2\sqrt{5}}{5} \)D. \( \frac{\sqrt{5}}{5} \)答案:C5. 计算 \( \int_{0}^{1} x^2 dx \) 的值为:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{6} \)答案:A6. 已知 \( \sin θ = \frac{1}{2} \),且 \( θ \) 为锐角,则\( \cos θ \) 的值为:A. \( \frac{\sqrt{3}}{2} \)B. \( \frac{\sqrt{2}}{2} \)C. \( \frac{\sqrt{5}}{2} \)D. \( \frac{\sqrt{7}}{2} \)答案:A7. 函数 \( y = x^3 - 3x \) 的单调递增区间是:A. \( (-∞, 1) \)B. \( (1, +∞) \)C. \( (-∞, -1) \)D. \( (-1, +∞) \)答案:B8. 已知 \( \cos α = \frac{1}{2} \),且 \( α \) 为锐角,则\( \tan α \) 的值为:A. \( \frac{\sqrt{3}}{3} \)B. \( \sqrt{3} \)C. \( 2\sqrt{3} \)D. \( \frac{1}{\sqrt{3}} \)答案:B9. 计算 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值为:A. 0B. 1C. \( \frac{1}{2} \)D. \( \frac{1}{3} \)答案:B10. 函数 \( y = \ln x \) 的定义域是:A. \( (-∞, 0) \)B. \( (0, +∞) \)C. \( (-∞, +∞) \)D. \( (-1, 1) \)答案:B二、填空题(每题4分,共20分)11. 已知 \( \cos α = \frac{3}{5} \),且 \( α \) 为钝角,则\( \sin α \) 的值为 ________。

高一数学必修四的习题答案

高一数学必修四的习题答案

高一数学必修四的习题答案高一数学必修四的习题答案高一数学必修四是学生们进入高中后所学习的一门重要课程,其中的习题是学生们进行巩固和提高数学能力的重要途径。

在这篇文章中,我将为大家提供高一数学必修四的一些典型习题的答案,希望能够帮助到大家。

第一章二次函数1. 已知函数f(x) = 2x^2 - 3x + 1,求f(2)的值。

答案:将x=2代入函数f(x)中,得到f(2) = 2(2)^2 - 3(2) + 1 = 9。

2. 已知函数f(x) = ax^2 + bx + c,其中a=2,b=-4,c=3,求f(1)的值。

答案:将a=2,b=-4,c=3和x=1代入函数f(x)中,得到f(1) = 2(1)^2 - 4(1) + 3 = 1。

3. 已知函数f(x) = x^2 - 2x + 1,求f(-1)的值。

答案:将x=-1代入函数f(x)中,得到f(-1) = (-1)^2 - 2(-1) + 1 = 4。

第二章指数与对数函数1. 求解方程2^x = 16。

答案:将方程转化为指数等式,得到2^x = 2^4,因此x=4。

2. 求解方程log2(x) = 3。

答案:将方程转化为指数等式,得到2^3 = x,因此x=8。

3. 求解方程log(3x) = log(9)。

答案:由于等式两边都取对数,可以去掉对数符号,得到3x = 9,因此x=3。

第三章三角函数1. 已知sinθ = 1/2,求θ的值。

答案:根据三角函数的定义,sinθ = 1/2对应的角度是30度或π/6弧度。

2. 已知cosθ = √3/2,求θ的值。

答案:根据三角函数的定义,cosθ = √3/2对应的角度是30度或π/6弧度。

3. 已知tanθ = 1,求θ的值。

答案:根据三角函数的定义,tanθ = 1对应的角度是45度或π/4弧度。

第四章平面向量1. 已知向量a = (2, 3),向量b = (4, -1),求向量a + b的坐标。

高中数学必修四同步练习及答案(新课标人教A版)(最新-编写)11487

高中数学必修四同步练习及答案(新课标人教A版)(最新-编写)11487

2
2
C. [
2k , 3
2k ](k
Z)
2
2
5.已知 tan( 14 ) a, 那么 sin1992 15
()
B. (
2k ,
3
2k )(k Z )
2
2
D. ( 2k , 2k )(k Z )
|a|
A.
1 a2
a
B.
1 a2
C. a 1 a2
D. 1 1 a2
6.设角 35 ,则 2sin( ) cos( ) cos( ) 的值等于
4
三、解答题(15、16 每题 7 分,17、18 每题 8 分)
15.已知角 a 的终边与 y 轴的正半轴所夹的角是 30 ,且终边落在第二象限,又 720 < a <
0 ,求角 a .
16.已知角 a 45 ,(1)在区间[720 ,0 ) 内找出所有与角 a 有相同终边的角 ;
(2)集合 M {x ︱ x k 180 45 , k Z} , N {x ︱ x k 180 45 k Z}
的值等于
()
4
A.
3
B.
C. 4
3
4
3
5.函数 y sin x cos x 的定义域是
D.与 的取值有关 D. 3
4
()
A. 2k , (2k 1) , k Z
B.
2k
2
, (2k
1)
,
k
Z
C.
k
2
,
(k
1)
,
k
Z
D. 2k , (2k 1) , k Z
6.若
是第三象限角,且 cos

高三理科数学小题狂做4

高三理科数学小题狂做4

高三理科数学小题狂做(4)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合{}22x x M =-≤≤,{}230x x x N =-=,则MN =( )A .{}3B .{}0C .{}0,2D .{}0,32、若复数()()12bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( ) A .2-B .12-C .2D .123、阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出的S 的值是( ) A .64B .73C .512D .5854、棱长为2的正方体挖去一个几何体后的三视图如图所示,则剩余部分的体积是( )A .283π-B .83π-C .82π-D .23π 5、已知4sin 45x π⎛⎫-= ⎪⎝⎭,则sin 2x 的值等于( )A .825B .725C .825-D .725-6、已知实数x ,y 满足1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,若2z x y a =++的最小值是2,则实数a 的值是( )A .0B .32C .2D .1-7、等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则数列{}n a 的公比是( )A .12B .13C .25D .498、已知a 、b 表示两条不同的直线,α,β表示两个不同的平面,则下列命题正确的是( )A .若//αβ,//a α,//b β,则//a bB .若a α⊂,b β⊂,//a b ,则//αβC .若a α⊥,b β⊥,αβ⊥,则//a bD .若a α⊥,b β⊥,a b ⊥,则αβ⊥ 9、曲线sin y x x =在点,22ππ⎛⎫- ⎪⎝⎭处的切线与x 轴、直线x π=所围成的三角形的面积是( )A .22πB .2πC .22πD .()2122π+10、已知正方形的四个顶点分别为()0,0O ,()1,0A ,()1,1B ,()C 0,1,点D ,E 分别在线段C O ,AB 上运动,且D O =BE ,设D A 与OE 交于点G ,则点G 的轨迹方程是( )A .2y x =(01x ≤≤) B .()1x y y =-(01y ≤≤) C .()1y x x =-(01x ≤≤) D .21y x =-(01x ≤≤)11、设()f x 是R 上以2为周期的奇函数,已知当(]0,1x ∈时,()21log 1f x x=-,则()f x 在区间()1,2上是( )A .增函数,且()0f x <B .增函数,且()0f x >C .减函数,且()0f x <D .减函数,且()0f x >12、已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且12F F 3π∠P =,记椭圆和双曲线的离心率分别为1e ,2e ,则121e e 的最大值是( ) A .3B .433C .2D .233二、填空题(本大题共4小题,每小题5分,共20分.) 13、若向量()1,1OA =,OA =OB ,0OA⋅OB =,则AB =.14、若12nx x ⎛⎫+ ⎪⎝⎭的二项展开式中前三项的系数成等差数列,则常数n 的值是.15、右面茎叶图是甲、乙两人在5次综合测评中成绩(所有成绩取整数)的茎叶图,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是. 16、以下命题,错误的有.①若()()32131f x x a x x =+-++没有极值点,则24a -<<;②()13mx f x x +=+在区间()3,-+∞上单调,则13m ≥; ③若函数()ln x f x m x =-有两个零点,则1m e<;④已知()log a f x x =(01a <<),k ,m ,R n +∈且不全等,则()()()222k m m n k n f f f f k f m f n +++⎛⎫⎛⎫⎛⎫++<++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.高三理科数学小题狂做(4)参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCBADCBDACAD13、2 14、8 15、4516、①②③高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

高1数学必修4复习题答案

高1数学必修4复习题答案

高1数学必修4复习题答案高一数学必修4复习题答案在高一学习数学必修4的过程中,复习题是非常重要的一环。

通过做复习题,可以巩固和巩固所学的知识,提高数学解题的能力。

然而,有时候我们可能会遇到一些难题,对答案不太确定。

本文将为大家提供一些高一数学必修4复习题的答案,希望能够帮助大家更好地复习和理解数学知识。

1. 选择题1) 设函数f(x)=2x+3,g(x)=x^2+1,则f(g(2))的值为多少?解答:首先计算g(2),代入x=2,得到g(2)=2^2+1=5。

然后将g(2)的值代入f(x),得到f(g(2))=f(5)=2×5+3=13。

答案:132) 已知函数f(x)=2x-1,g(x)是f(x)的反函数,求g(3)的值。

解答:由于g(x)是f(x)的反函数,所以f(g(x))=x。

将x=3代入,得到f(g(3))=3。

由此可知,g(3)的值为3。

答案:32. 解答题1) 求解方程组:2x+y=7x-3y=-5解答:可以使用消元法来解这个方程组。

首先将第一个方程乘以3,得到6x+3y=21。

然后将第二个方程乘以2,得到2x-6y=-10。

将这两个方程相加,得到8x=-11,解得x=-11/8。

将x的值代入第一个方程,得到2(-11/8)+y=7,解得y=15/8。

答案:x=-11/8,y=15/82) 求函数f(x)=x^2-4x+3的零点。

解答:零点即为函数的解,即f(x)=0。

将函数f(x)设为0,得到x^2-4x+3=0。

可以使用因式分解法来解这个方程,将方程转化为(x-1)(x-3)=0。

因此,方程的解为x=1和x=3。

答案:x=1,x=3通过以上的例题,我们可以看到复习题的答案并不难找到,只需要运用所学的知识和解题技巧,仔细分析题目,就能得出正确的答案。

在复习数学必修4的过程中,我们还需要注意理解题目的意思,正确运用所学的知识点,灵活运用解题方法。

希望大家通过复习题的练习,能够更好地掌握数学知识,取得优异的成绩。

高中数学必修四同步练习及答案(新课标人教A版)之欧阳文创编

高中数学必修四同步练习及答案(新课标人教A版)之欧阳文创编

高中数学必人修教四A版练习册高中数学人教A 版必修4练习册目录导航人教A 版必修4练习1.1任意角和弧度制 01.2任意角的三角函数 (2)1.3三角函数的诱导公式 (4)1.4三角函数的图像与性质 (6)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 (9)第一章 三角函数基础过关测试卷 (11)第一章三角函数单元能力测试卷 (13)2.1平面向量的实际背景及基本概念与2.2.1向量加法运算 (16)2.2向量减法运算与数乘运算 (18)2.3平面向量的基本定理及坐标表示 (20)2.4平面向量的数量积与2.5平面向量应用举例 (23)第二章平面向量基础过关测试卷 (25)第二章平面向量单元能力测试卷 (27)3.1两角和与差的正弦、余弦和正切公式 (30)3.2简单的三角恒等变换 (32)第三章三角恒等变换单元能力测试卷 ...................................... 34 人教A 版必修4练习答案1.1任意角和弧度制 (37)1.2任意角的三角函数 (37)1.3三角函数的诱导公式 (38)1.4三角函数的图像与性质 (38)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 (39)第一章三角函数基础过关测试卷 (40)第一章三角函数单元能力测试卷 (40)2.1平面向量的实际背景及基本概念与2.2.1向量加法运算 (41)2.2向量减法运算与数乘运算 (41)2.3平面向量的基本定理及坐标表示 (41)2.4平面向量的数量积与2.5平面向量应用举例 (42)第二章平面向量基础过关测试卷 (44)第二章平面向量单元能力测试卷 (44)3.1两角和与差的正弦、余弦和正切公式 (45)3.2简单的三角恒等变换 (45)第三章三角恒等变换单元能力测试卷 (46)1.1任意角和弧度制一、选择题(每题5分,共50分)1.四个角中,终边相同的角是 ( )A.,398 - 38B.,398 - 142C.,398 - 1042D.,14210422.集合α{=A ︱ 90⋅=k α,36 -}Z k ∈,β{=B ︱ 180- 180<<β},则B A 等于 ( )A.,36{ - 54}B.,126{ - 144}C.,126{ -,36 -,54 144}D.,126{ - 54}3.设θ{=A ︱θ为锐角},θ{=B ︱θ为小于 90的角},θ{=C ︱θ为第一象限角},θ{=D ︱θ为小于 90的正角},则 ( )A.B A =B.C B =C.C A =D.D A =4.若角α与β终边相同,则一定有 ( )A. 180=+βαB. 0=+βαC. 360⋅=-k βα,Z k ∈D. 360⋅=+k βα,Z k ∈5.已知α为第二象限的角,则2α所在的象限是 ( )A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限6.将分针拨慢5分钟,则分针转过的弧度数是 ( ) A.3π B.3π- C.2π D.32π 7.在半径为cm 2的圆中,有一条弧长为cm 3π,它所对的圆心角为 ( ) A.6π B.3π C.2π D.32π 8.已知角α的终边经过点)1,1(--P ,则角α为( ) A.)(45Z k k ∈+=ππα B.)(432Z k k ∈+=ππα C.)(4Z k k ∈+=ππα D.)(432Z k k ∈-=ππα 9.角316π化为)20,(2παπα<<∈+Z k k 的形式 ( ) A.35ππ+ B.344ππ+ C.326ππ- D.373ππ+ 10.集合α{=A ︱},2Z k k ∈+=ππα,α{=B ︱},)14(Z k k ∈±=πα,则集合A 与B 的关系是 ( )A.B A =B.B A ⊇C.B A ⊆D.B A ≠二、填空题(每题5分,共20分)11.角a 小于 180而大于- 180,它的7倍角的终边又与自身终边重合,则满足条件的角a 的集合为__________.12.写满足下列条件的角的集合.1)终边在x 轴的非负半轴上的角的集合__________;2)终边在坐标轴上的角的集合__________;3)终边在第一、二象限及y 轴上的角的集合__________;4)终边在第一、三象限的角平分线上的角的集合__________.13.设扇形的周长为cm 8,面积为24cm ,则扇形的圆心角的弧度数是__________.14.已知a {∈θ︱a =+πk },4)1(Z k k ∈⋅-π,则角θ的终边落在第__________象限.三、解答题(15、16每题7分,17、18每题8分)15.已知角a 的终边与y 轴的正半轴所夹的角是30,且终边落在第二象限,又 720-<a < 0,求角a .16.已知角 45=a ,(1)在区间 720[-0,)内找出所有与角a 有相同终边的角β; (2)集合x M {=︱ 1802⨯=k x 45+,}Z k ∈,x N {=︱ 1804⨯=k x 45+}Z k ∈ 那么两集合的关系是什么? 17.若θ角的终边与3π的终边相同,在]2,0[π内哪些角的终边与3θ角的终边相同? 18.已知扇形的周长为30,当它的半径R 和圆心角各取何值时,扇形的面积最大?并求出扇形面积的最大值.1.2任意角的三角函数一、选择题(每题5分,共40分)1.已知角α的终边过点()αcos ,2,1-P 的值为 ( ) A.55- B.55 C.552 D.25 2.α是第四象限角,则下列数值中一定是正值的是 ( )A.αsinB.αcosC.αtanD.αtan 1 3.已知角α的终边过点()()03,4<-a a a P ,则ααcos sin 2+的值是 ( ) A.52 B.52- C.0 D.与α的取值有关 4.(),,0,54cos παα∈=则αtan 1的值等于 ( ) A.34 B.43 C.34± D.43± 5.函数x x y cos sin -+=的定义域是 ( )A.()Z k k k ∈+,)12(,2ππB.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)12(,22πππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)1(,2πππ D.[]Z k k k ∈+,)12(,2ππ 6.若θ是第三象限角,且,02cos <θ则2θ是 ( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角7.已知,54sin =α且α是第二象限角,那么αtan 的值为 ( ) A.34- B.43- C.43 D.34 8.已知点()ααcos ,tan P 在第三象限,则角α在( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角二、填空题(每题5分,共20分)9.已知,0tan sin ≥αα则α的取值集合为__________.10.角α的终边上有一点(),5,m P 且(),013cos ≠=m m α则=+ααcos sin __________. 11.已知角θ的终边在直线x y 33=上,则=θsin __________,=θtan __________. 12.设(),2,0πα∈点()αα2cos ,sin P 在第三象限,则角α的范围是__________.三、解答题(第15题20分,其余每题10分,共40分)13.求43π的角的正弦,余弦和正切值. 14.已知,51sin =α求ααtan ,cos 的值. 15.已知,22cos sin =+αα求αα22cos 1sin 1+的值.1.3三角函数的诱导公式一、选择题(每题5分,共40分) 1.21)cos(-=+απ,παπ223<<,)2sin(απ-值为 ( ) A.23B.21C.23± D.23- 2.若,)sin()sin(m -=-++ααπ则)2sin(2)3sin(απαπ-++等于 ( ) A.m 32- B.m 23- C.m 32 D.m 23 3.已知,23)4sin(=+απ则)43sin(απ-值为 ( ) A.21B.21- C.23 D.23- 4.如果),cos(|cos |π+-=x x 则x 的取值范围是( ) A.)](22,22[Z k k k ∈++-ππππ B.))(223,22(Z k k k ∈++ππππ C.)](223,22[Z k k k ∈++ππππ D.))(2,2(Z k k k ∈++-ππππ 5.已知,)1514tan(a =-π那么=︒1992sin ( ) A.21||a a + B.21a a + C.21a a +- D.211a +-6.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( ) A.33 B.33- C.3D.-3 7.若,3cos )(cos x x f =那么)30(sin ︒f 的值为( )A.0B.1C.1- D.23 8.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形二、填空题(每题5分,共20分)9.求值:︒2010tan 的值为.10.若1312)125sin(=-α,则=+)55sin( α. 11.=+++++76cos 75cos 74cos 73cos 72cos 7cos ππππππ. 12.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为.三、解答题(每题10分,共40分)13.已知3)tan(=+απ,求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值. 14.若32cos =α,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值. 15.已知αtan 、αtan 1是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<< 求)sin()3cos(απαπ+-+的值.16.记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.1.4三角函数的图像与性质一、选择题(每题5分,共50分)1.)(x f 的定义域为[]1,0则)(sin x f 的定义域为 ( )A.[]1,0B.)(2,2222,2Z k k k k k ∈⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+πππππππ C.[])()12(,2Z k k k ∈+ππ D.)(22,2Z k k k ∈⎪⎭⎫⎢⎣⎡+πππ 2.函数)652cos(3π-=x y 的最小正周期是( ) A 52π B 25π C π2 D π5 3.x x y sin sin -=的值域是( )A ]0,1-B ]1,0C ]1,1[-D ]0,2[- 4.函数)44(tan 1ππ≤≤-=x x y 的值域是 ( ) A.[]1,1- B.(][) +∞-∞-,11, C.[)+∞-,1 D.(]1,∞-5.下列命题正确的是 ( )A.函数)3sin(π-=x y 是奇函数 B.函数)cos(sin x y =既是奇函数,也是偶函数C.函数x x y cos =是奇函数D.函数x y sin =既不是奇函数,也不是偶函数6.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于 ( )A 1 C.0 D.2- 7.函数)3cos(πϖ+=x y 的周期为4π则ϖ值为 ( )A.8B.6C.8±D.48.函数)32sin(π+=x y 的图象 ( ) A.关于点⎪⎭⎫ ⎝⎛0,12π对称 B.关于点⎪⎭⎫ ⎝⎛-0,6π对称 C.关于直线3π=x 对称 D.关于直线6π-=x 对称9.)2sin(θ+=x y 图像关于y 轴对称则 ( )A.)(,22Z k k ∈+=ππθ B.)(,2Z k k ∈+=ππθC.)(,2Z k k ∈+=ππθD.)(,Z k k ∈+=ππθ10.满足21)4sin(≥-πx 的x 的集合是 ( )A.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,121321252ππππ B.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ C.⎭⎬⎫⎩⎨⎧∈+≤≤-Z k k x k x ,1272122ππππ D.⎭⎬⎫⎩⎨⎧∈+≤≤Z k k x k x ,6522πππ 二、填空题(每题5分,共20分)11.函数)23sin(2x y -=π的单调递增区间是__________. 12.函数)21(cos log 2-=x y 的定义域是__________.13.函数)2sin(x y =的最小正周期为__________.14.若)(x f 为奇函数,且当0>x 时,x x x x f 2cos sin )(+=,则当0<x 时, =)(x f __________.三、解答题(每题10分,共30分) 15.利用“五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图.16.已知函数⎪⎭⎫⎝⎛-=32tan )(πx x f ,(1)求函数)(x f 的定义域周期和单调区间; (2)求不等式3)(1≤≤-x f 的解集.17.求下列函数的最大值和最小值及相应的x 值. (1)1)42sin(2++=πx y (2)),32cos(43π+-=x y ⎥⎦⎤⎢⎣⎡-∈6,3ππx (3)5cos 4cos 2+-=x x y (4)2sin sin 1-+=x xy1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用一、选择题(每题5分,共35分) 1.函数1)62sin(3)(--=πx x f 的最小值和最小正周期分别是( )A.13--,πB.13+-,πC.3-,πD.13--,π2 2.若函数)3sin(2πω+=x y 的图像与直线2=y 的相邻的两个交点之间的距离为π,则ω 的一个可能值为( )A.3B.2C.31D.21 3.要得到)32sin(π-=x y 的图像,只要将x y 2sin =的图像( ) A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位4.函数1)62sin(2++=πx y 的最大值是( )A.1B.2C.3D.45.已知函数)(x f 的部分图像如图所示,则)(x f 的解析式可能为( )A.)62sin(2)(π-=x x f B.)44cos(2)(π+=x x fC.)32cos(2)(π-=x x fD.)64sin(2)(π+=x x f6.)23sin(2x y -=π的单调增区间为( ) A.⎥⎦⎤⎢⎣⎡+-125,12ππππK K B.⎥⎦⎤⎢⎣⎡++127,125ππππK K C.⎥⎦⎤⎢⎣⎡+-6,3ππππK K D.⎥⎦⎤⎢⎣⎡++1211,125ππππK K7.函数[]),0(),62sin(3ππ∈--=x x y 为增函数的区间是( ) A.⎥⎦⎤⎢⎣⎡125,0π B.⎥⎦⎤⎢⎣⎡32,6ππ C.⎥⎦⎤⎢⎣⎡1211,6ππ D.⎥⎦⎤⎢⎣⎡1211,32ππ 二、填空题(每题5分,共15分)8.关于))(32sin(4)(R x x x f ∈+=有下列命题: 1)有0)()(31==x f x f 可得21x x -是π的整数倍; 2)表达式可改写为)62cos(4)(π-=x x f ;3)函数的图像关于点)0,6(π-对称;4)函数的图像关于直线6π-=x 对称;其中正确的命题序号是__________.9.甲乙两楼相距60米,从乙楼底望甲楼顶的仰角为45,从甲楼顶望乙楼顶的俯角为30,则甲乙两楼的高度分别为__________.10.已知1tan sin )(++=x b x a x f 满足7)5(=πf ,则)599(πf 的值为__________. 三、解答题(每题25分,共50分) 11.已知函数)421sin(3π-=x y ,1)用“五点法”画函数的图像;2)说出此图像是由x y sin =的图像经过怎样的变换得到的; 3)求此函数的周期、振幅、初相;4)求此函数的对称轴、对称中心、单调递增区间. 12.已知函数)32cos(log )(π-=x ax f (其中)1,0≠>a a 且,1)求它的定义域; 2)求它的单调区间; 3)判断它的奇偶性;4)判断它的周期性,如果是周期函数,求出它的周期.第一章三角函数基础过关测试卷一、选择题(每题5分,共40分)1.与240-角终边位置相同的角是 ( )A.240 B.60 C.150 D.480 2.已知()21cos -=+απ,则()απ+3cos 的值为 ( ) A.21 B.23± C.21- D.233.函数x y sin 1-=的最大值为 ( )A.1B.0C.2D.1- 4.函数⎪⎭⎫⎝⎛+=321sin x y 的最小正周期是 ( ) A.2πB.πC.π2D.π4 5.在下列各区间上,函数⎪⎭⎫⎝⎛+=4sin 2πx y 单调递增的是 ( ) A.],4[ππB.]4,0[πC.]0,[π-D.]2,4[ππ 6.函数x y cos 1+=的图象 ( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线2π=x 轴对称7.使x x cos sin <成立的x 的一个区间是 ( ) A.⎪⎭⎫ ⎝⎛-4,43ππ B.⎪⎭⎫ ⎝⎛-2,2ππ C.⎪⎭⎫⎝⎛-43,4ππ D.()π,08.函数⎪⎭⎫⎝⎛+=43sin πx y 的图象,可由x y 3sin =的图象( )A.向左平移4π个单位 B.向右平移4π个单位 C .向左平移12π个单位 D .向右平移12π个单位二、填空题(每题5分,共20分)9.已知角β的终边过点()12,5--P ,求=βcos __________. 10.函数x y tan lg =的定义域是__________. 11.()R x x y ∈=sin 的对称点坐标为__________. 12.1cos cos -=x xy 的值域是__________.三、解答题(每题10分,共40分) 13.已知2tan =β,求1sin cos sin 2+βββ的值. 14.化简:()()()()()()()()πααπαπαπααπααπ6sin sin cos sin 6cos cos cos sin 2222---++---+-++. 15.求证:ααααααααcos sin cos sin 1cos sin 2cos sin 1+=+++++.16.求函数⎪⎭⎫⎝⎛≤≤+=323cos 2sin 2ππx x x y 的最大值和最小值.第一章三角函数单元能力测试卷一、选择题(每小题5分,共60分) 1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于 ( )A.第一象限B.第二象限C.第三象限D.第四象限2.下列值①)1000sin( -;②)2200cos(-;③)10tan(-;④4sin 是负值的为( )A.①B.②C.③D.④3.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 ( ) A.0 B4π C 2πD π 4.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于 ( ) A.43-B.34-C.43D.34 5.若α是第四象限的角,则πα-是 ( )A 第一象限的角B 第二象限的角C 第三象限的角D 第四象限的角6.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( ) A.1sin2y x = B 1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=- 7.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是 ( ) A.35(,)(,)244ππππ B 5(,)(,)424ππππC.353(,)(,)2442ππππ D 33(,)(,)244ππππ 8.与函数)42tan(π+=x y 的图像不相交的一条直线是( ) A.2π=x B 2π-=x C 4π=x D 8π=x9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数是( ) A.1个 B 2个 C 个 D 4个10.方程1sin 4x x π=的解的个数是 ( )A B C 7 D 811.在)2,0(π内,使x x cos sin >成立的x 取值范围为 ( ) A.)45,()2,4(ππππ B.),4(ππ C.)45,4(ππ D.)23,45(),4(ππππ12.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是( ) A.2π B 4π- C 4π D 34π二、填空题(每小题5分,共20分)13.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是__________14.若,24παπ<<则αααtan cos sin 、、的大小关系为__________15若角α与角β的终边关于y 轴对称,则α与β的关系是__________16.关于x 的函数()cos()f x x α=+有以下命题:①对任意α,()f x 都是非奇非偶函数;②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都是奇函数其中假命题的序号是__________三、解答题(第17题10分,其余每题12分,共70分) 17.求下列三角函数值:(1))316sin(π-(2))945cos( - 18.比较大小:(1) 150sin ,110sin ; (2)200tan ,220tan19.化简:(1))sin()360cos()810tan()450tan(1)900tan()540sin(x x x x x x --⋅--⋅--(2)xx x sin 1tan 1sin 12-⋅++20.求下列函数的值域: (1))6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx ; (2) 2sin cos 2+-=x x y 21.求函数)32tan(π-=x y 的定义域、周期和单调区间.22.用五点作图法画出函数)631sin(2π-=x y 的图象(1)求函数的振幅、周期、频率、相位; (2)写出函数的单调递增区间;(3)此函数图象可由函数x y sin =怎样变换得到2.1平面向量的实际背景及基本概念与2.2.1向量加法运算一、选择题(每题5分,共40分)1.把平面上所有的单位向量平移到相同的起点上,那么它们的终点所构成的图形是( )A.一条线段B.一段圆弧C.两个孤立点D.一个圆2.下列说法中,正确的是 ( )A.>,则b a >B.=,则=C.若b a =,则a ∥bD.若a ≠b ,则a 与b 不是共线向量3.设O 为△ABC 的外心,则AB 、BO 、CO 是 ( )A.相等向量B.平行向量C.模相等的向量D.起点相等的向量4.已知正方形ABCD 的边长为1,设a AB =,b BC =,c AC =, b +=( ) A.0 B.3 C.22+ D.225.58==的取值范围是 ( )A.[]8,3B.()8,3C.[]13,3D.()13,36.如图,四边形ABCD 为菱形,则下列等式中 A B 成立的是( )A.=+B.=+C.=+D.=+ D C7.在边长为1的正三角形ABC 中,若向量=,=+= ( )A.7B.5C.3D.28.向量、皆为非零向量,下列说法不正确的是 ( )A.向量a 与b >,则向量b a +与a 的方向相同B.向量与<,则向量+与的方向相同C.向量a 与b 同向,则向量b a +与a 的方向相同D.向量与同向,则向量+与的方向相同 二、填空题(每题5分,共20分)9.ABC ∆是等腰三角形,则两腰上的向量AB 与AC 的关系是__________. 10.已知C B A ,,是不共线的三点,向量与向量是平行向量,与是共线向量,则=__________.11.在菱形ABCD 中,∠DAB ︒=601==+__________.12.化简=++BO OP PB __________.三、解答题(13题16分,其余每题12分,共40分)13.化简:(1)FA BC CD DF AB ++++. (2)+++.14.已知四边形ABCD 的对角线AC 与BD 相交于点O ,且OC AO =,OB DO =. 求证:四边形ABCD 是平行四边形.15.一艘船以h km /5的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成︒30 角,求水流速度和船的实际速度.2.2向量减法运算与数乘运算一、选择题(每题5分,共40分)1.在菱形ABCD 中,下列各式中不成立的是 ( )A.-=AC AB BCB.-=AD BD ABC.-=BD AC BCD.-=BD CD BC2.下列各式中结果为O 的有 ( )①++AB BC CA ②+++OA OC BO CO③-+-AB AC BD CD ④+-+MN NQ MP QPA.①②B.①③C.①③④D.①②③3.下列四式中可以化简为AB 的是 ( )①+AC CB ②-AC CB ③+OA OB ④-OB OAA.①④B.①②C.②③D.③④ 4. ()()=⎥⎦⎤⎢⎣⎡+-+b a b a 24822131 ( )A.2a b -B.2b a -C.b a -D.()b a --5.设两非零向量12,e e ,不共线,且1212()//()k e e e ke ++,则实数k 的值为 ( )A.1B.1-C.1±D.06.在△ABC 中,向量BC 可表示为 ( )①-AB AC ②-AC AB ③+BA AC ④-BA CAA.①②③B.①③④C.②③④D.①②④7.已知ABCDEF 是一个正六边形,O 是它的中心,其中===,,OA a OB b OC c 则EF =( )A.a b +B.b a -C.-c bD.-b c8.当C 是线段AB 的中点,则AC BC += ( )A.ABB.BAC.ACD.O二、填空题(每题5分,共20分)9.化简:AB DA BD BC CA ++--=__________.10.一架飞机向北飞行km 300后改变航向向西飞行km 400,则飞行的总路程为__________, 两次位移和的和方向为__________,大小为__________.11.点C 在线段AB 上,且35AC AB =,则________AC CB =. 12.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是__________三、解答题(每题10分,共40分) 13.已知点C 在线段AB 的延长线上,且2,,BC AB BC CA λλ==则为何值?14.如图,ABCD 中,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,=b ,试以a ,b 表示、BF 、CG 15.若菱形ABCD 的边长为2,求AB CB CD -+=?16.在平面四边形ABCD 中,若AB AD AB AD +=-,则四边形ABCD 的形状是什么?A G E FB D2.3平面向量的基本定理及坐标表示一、选择题(每题5分,共50分)1.已知平面向量),2,1(),1,2(-==b a 则向量b a 2321-等于 ( ) A.)25,21(-- B.)27,21( C.)25,21(- D.)27,21(- 2.若),3,1(),4,2(==则BC 等于 ( )A.)1,1(B.)1,1(--C.)7,3(D.)7,3(-- 3.21,e e 是表示平面内所有向量的一组基底,下列四组向量中,不能作为一组基底的是 ( ) A.21e e +和21e e - B.2123e e -和1264e e - C.212e e +和122e e + D.2e 和21e e +4.已知平面向量),,2(),3,12(m m =+=且b a //,则实数m 的值等于 ( )A.2或23-B.23C.2-或23D.72- 5.已知C B A ,,三点共线,且),2,5(),6,3(--B A 若C 点的横坐标为6,则C 点的纵坐标为A.13-B.9C.9-D.13 ( )6.已知平面向量),,2(),2,1(m -==且b a //,则b a 32+等于 ( )A.)10,5(--B.)8,4(--C.)6,3(--D.)4,2(--7.如果21,e e 是平面内所有向量的一组基底,那么 ( )A.若实数21,λλ使2211=+e e λλ,则021==λλB.21,e e 可以为零向量C.对实数21,λλ,2211e e λλ+不一定在平面内D.对平面中的任一向量,使=a 2211e e λλ+的实数21,λλ有无数对8.已知向量)4,3(),3,2(),2,1(===,且21λλ+=,则21,λλ的值分别为( )A.1,2-B.2,1-C.1,2-D.2,1-9.已知),3,2(),2,1(-==若n m -与2+共线(其中R n m ∈,且)0≠n ,则nm 等于 ( ) A.21- B.2 C.21 D.2- 10.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,,== 则 等于 ( ) A.b a 2141+ B.b a 3132+ C.b a 4121+ D.b a 3231+ 二、填空题(每题5分,共20分)11.已知),1,(),3,1(-=-=x b a 且//,则=x __________12.设向量)3,2(),2,1(==,若向量b a +λ与向量)7,4(--=共线,则=λ__________13.已知x 轴的正方向与a 的方向的夹角为3π4=,则a 的坐标为__________ 14.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AD AB ,分别落在x 轴,y 轴的正向上,则向量++32的坐标为__________三、解答题(第15题6分,其余每题8分,共30分)15.已知向量与不共线,实数y x ,满足等式b x a x b y a x 2)74()10(3++=-+,求y x ,的值.16.已知向量21,e e 不共线,(1)若,82,2121e e e e +=+=),(321e e -=则B A ,,D 三点是否共线?(2)是否存在实数k ,使21e e k +与21e k e -共线?17.已知三点),10,7(),4,5(),3,2(C B A 点P 满足)(R ∈+=λλ,(1)λ为何值时,点P 在直线x y =上?(2)设点P 在第一象限内,求λ的取值范围.18.平面内给定三个向量)1,4(),2,1(),2,3(=-==,(1)求c b a 23-+;(2)求满足c n b m a +=的实数n m ,;(3)若)2//()(k -+,求实数k .2.4平面向量的数量积与2.5平面向量应用举例一、选择题(每题5分,共50分)1.若,是两个单位向量,那么下列四个结论中正确的是 ( )A.=B.1=⋅C.≠D.= 2.下面给出的关系始终正确的个数是 ( )①00=⋅②⋅=⋅③2=④()()⋅⋅=⋅⋅⋅≤A.0B.1C.2D.3 3.对于非零向量,,下列命题中正确的是 ( )A.000==⇒=⋅或B. //⇒在C.()2b a b a b a ⋅=⋅⇒⊥D.=⇒⋅=⋅4.下列四个命题,真命题的是 ( )A.在ABC ∆中,若,0>⋅则ABC ∆是锐角三角形;B.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是钝角三角形;C.ABC ∆为直角三角形的充要条件是0=⋅BC AB ;D.ABC ∆为斜三角形的充要条件是.0≠⋅.5.e ,8=为单位向量,a 与e 的夹角为,60o 则a 在e 方向上的投影为( ) A.34 B.4 C.24 D.238+6.若向量,,1==与的夹角为 120,则=⋅+⋅( ) A.21 B.21- C.23 D.23-7.,631==与的夹角为,3π则⋅的值为 ( )A.2B.2±C.1D.1±8.已知()(),5,5,0,3-==则与的夹角为 ( ) A.4π B.3π C.43π D.32π 9.若O 为ABC ∆所在平面内的一点,且满足()(),02=-+⋅-则ABC ∆ 的形状为 ( )A.正三角形B.直角三角形C.等腰三角形D.A ,B ,C 均不是10.设向量()(),1,,2,1x ==当向量2+与-2平行时,⋅等于 ( ) A.25 B.2 C.1 D.27 二、填空题(每题5分,共20分)11.(),2,1,3==且,b a ⊥则的坐标是_____________.12.若(),8,6-=a 则与平行的单位向量是_____________.13.设21,e e 为两个不共线的向量,若21e e λ+=与()2132e e --=共线,则=λ________.14.有一个边长为1的正方形ABCD ,设,,,====+-b __________.三、解答题(每题10分,共30分)15.()()61232,34=+⋅-==b a b a ,求a 与b的夹角θ.16.,43==且与不共线,当k 为何值的时,向量k +与k -互相垂直?17.平面上三个力321,,F F F 作用于一点且处于平衡状态,121,226,1F N F N F +==与 2F 的夹角为,45o 求:①3F 的大小;②3F 与1F 的夹角的大小.第二章平面向量基础过关测试卷一、选择题(每题5分,共55分)1.如图在平行四边形ABCD 中,,b OB a OA == ,,d OD c OC ==则下列运算正确的是( )A.0 =+++d c b aB.0 =-+-d c b aC.0 =--+d c b aD.0 =+--d c b a2.已知)1,3(),3,(-==b x a ,且a ∥b ,则x 等于 ( )A.1-B.9C.9-D.1 3.已知a =)1,2(-,b =)3,1(,则-2a +3b 等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(4.若点P 分有向线段21P P 所成定比为1:3,则点1P 分有向线段P P 2所成的比为 ( )A.34-B.32-C.21-D.23- 5.下列命题中真命题是 ( )A.000 ==⇒=⋅b a b a 或B.a b a b a 上的投影为在⇒//C.()2b a b a b a ⋅=⋅⇒⊥ D.b a c b c a =⇒⋅=⋅ 6.已知ABCD 的三个顶点C B A ,,的坐标分别为),3,1(),4,3(),1,2(--则第四个顶点D 的坐标为( )A.)2,2(B.)0,6(-C.)6,4(D.)2,4(-7.设21,e e 为两不共线的向量,则21e e λ+=与()1232e e b --=共线的等价条件是A.23=λB.32=λC.32-=λD.23-=λ ( )8.下面给出的关系式中正确的个数是A C O D( ) ①00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤||||b a b a ⋅≤⋅A.0B.1C.2D.39.下列说法中正确的序号是 ( )①一个平面内只有一对不共线的向量可作为基底;②两个非零向量平行,则他们所在直线平行;③零向量不能作为基底中的向量;④两个单位向量的数量积等于零.A.①③B.②④C.③D.②③10.已知()()5,0,1,221P P -且点P 在21P P 22PP =,则点P 坐标是( )A.)11,2(-B.)3,34(C.)3,32( D.)7,2(-11.若k b a 432,1|||-+⊥==与且也互相垂直,则k 的值为 ( )A.6-B.6C.3D.3-二、填空题(每题5分,共15分) 12.已知向量)2,1(,3==b a ,且b a ⊥,则a 的坐标是__________.13.若()0,2,122=⋅-==a b a b a ,则b a 与的夹角为__________. 14.ΔABC 中,)1,3(),2,1(B A 重心)2,3(G ,则C 点坐标为__________.三、解答题(每题题10分,共30分)15.已知),4,(),1,1(),2,0(--x C B A 若C B A ,,三点共线,求实数x 的值.16.已知向量)1,0(),0,1(,4,23212121==+=-=e e e e b e e a ,求(1)ba b a +⋅,的值;(2)a 与b的夹角的余弦值.17.已知四边形ABCD 的顶点分别为)4,1(),7,2(),4,5(),1,2(-D C B A ,求证:四边形ABCD 为正方形.第二章平面向量单元能力测试卷一、选择题(每题5分,共60分)1.设F E D C B A ,,,,,是平面上任意五点,则下列等式①AB CE AE CB +=+②AC BE BC EA +=-③ED AB EA AD +=+ ④0AB BC CD DE EA ++++=⑤0AB BC AC +-=其中错误等式的个数是( )A.1B.2C.3D.42.已知正方形ABCD 的边长为1,设c AC b BC a AB ===,,=++( )A.0B.3C.22+D.223.设1e 、2e 是两个不共线向量,若向量 =2153e e +与向量213e e m b -=共线,则m 的值等于 ( ) A.35- B.-59 C.53- D.95- 4.已知)3,1(),1,2(=-=b a 则32+-等于( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(5.设P )6,3(-,Q )2,5(-,R 的纵坐标为9-,且R Q P ,,三点共线,则R 点的横坐标为A.9-B.6-C.9D.6 ( )6.在ΔABC 中,若0)()(=-⋅+CB CA CB CA ,则ΔABC 为( )A.正三角形B.直角三角形C.等腰三角形D.无法确定7.已知向量,,40-=⋅=8,则向量与的夹角为 ( )A. 60B. 60-C. 120D.120-8.已知)0,3(=,)5,5(-=,则与的夹角为( )NABM CA.4πB.43πC.3πD.32π 9.若b a b a ⊥==,1||||且b a 32+与b a k4-也互相垂直,则k 的值为( )A.6-B.6C.3D.3-10.已知a =(2,3),b =(4-,7),则a 在b上的投影值为( )A.13B.513 C.565 D.65 11.若035=+CD AB ,且BC AD =,则四边形ABCD 是 ( )A.平行四边形B.菱形C.等腰梯形D.非等腰梯形12.己知)1,2(1-P ,)5,0(2P 且点P 在线段21P P 的延长线上,||2||21PP P P =, 则P 点坐标为 ( )A.)11,2(-B.)3,34(C.(3,32) D.)7,2(- 二、填空题(每题5分,共 20分)13.已知|a|=1,|b|=2,且(a-b)和a 垂直,则a与b的夹角为__________. 14.若向量),2(x a -=,)2,(x b -=,且a 与b 同向,则-a b 2=__________.15.已知向量a )2,3(-=,b )1,2(-,c )4,7(-=,且b a cμλ+=,则λ=__________,μ=__________.16.已知|a |=3,|b |=2,a 与b 的夹角为60,则|a -b |=__________. 三、解答题(第17题10分,其余每题12分,共70分) 17.如图,ABCD 中,点M 是AB 的中点,点N 在BD 上,且BD BN 31=,求证:C N M ,,三点共线. 18.已知C B A ,,三点坐标分别为),2,1(),1,3(),0,1(--=31,=31,1)求点E 、F 及向量EF 的坐标; 2)求证:EF ∥AB .19.24==夹角为120,求:(1)b a ⋅;(2))()2(+⋅-;(3)a 3+.20.已知)2,3(),2,1(-==b a ,当k 为何值时:(1)b a k +与b a3-垂直;(2)b a k +与b a 3-平行,平行时它们是同向还是反向?21.())sin 3cos ),3(sin(,sin ,cos 2x x x x x -+==π,x f ⋅=)(,求:(1)函数()x f 的最小正周期; (2))(x f 的值域; (3))(x f 的单调递增区间.22.已知点)sin ,(cos ),3,0(),0,3(ααC B A , (1)若1-=⋅BC AC ,求α2sin 的值;(213=+,且),0(πα∈,求与的夹角.3.1两角和与差的正弦、余弦和正切公式一、选择题(每题5分,共45分)1.345cos 的值等于 ( ) A.462- B.426- C.462+ D.462+- 2.195sin 75sin 15cos 75cos -的值为 ( )A.0B.21C.23D.21- 3.已知1312sin -=θ,)0,2(πθ-∈,则)4cos(πθ-的值为 ( ) A.2627-B.2627C.26217-D.262174.已知53)4sin(=-x π,则x 2sin 的值为 ( )A.2519B.2516C.2514D.257 5.若31sin cos ),,0(-=+∈ααπα且, 则α2cos 等于( ) A.917 B.917± C.917- D.317 6.已知函数是则)(,,sin )2cos 1()(2x f R x x x x f ∈+= ( )A.最小正周期为π的奇函数B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数7.已知71tan =α,βtan =31,20πβα<<<,则βα2+等于( )A.45π B.4π C.45π或4π D.47π8.ΔABC 中,已知αtan 、βtan 是方程01832=-+x x 的两个根,则c tan 等于 ( )A.2B.2-C.4D.4- 9.函数56sin2sin 5cos 2cos )(ππx x x f -=的单调递增区间是 ( ) A.)(53,10Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ B.)(207,203Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C.)(532,102Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D.)(10,52Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ 二、填空题(每题5分,共20分)10.已知函数的最小正周期是则)(,,sin )cos (sin )(x f R x x x x x f ∈-=__________. 11.135)6cos(-=+πx ,则)26sin(x -π的值是__________. 12.231tan 1tan +=+-αα,则α2sin =__________. 13.已知函数[]则,,0,sin )(π∈=x x x f )2(3)(x f x f y -+=π的值域为__________.三、解答题(14题11分,15、16题12分,共35分)14.求值:(1))32cos(3)3sin(2)3sin(x x x ---++πππ. (2)已知,71tan ,21)tan(-==-ββα且)0,(,πβα-∈,求βα-2的值.15.设x x x f 2sin 3cos 6)(2-=,(1)求)(x f 的最大值及最小正周期;(2)若锐角α满足323)(-=αf ,求α54tan 的值.16.已知),,0(,,55cos ,31tan πβαβα∈=-= (1)求)tan(βα+的值; (2)求函数)cos()sin(2)(βα++-=x x x f 的最大值.3.2简单的三角恒等变换一、选择题(每题5分,共40分)1.=-︒︒︒︒16sin 194cos 74sin 14sin ( ) A .23 B .23- C .21 D .21- 2.下列各式中,最小的是 ( )A .40cos 22B .6cos 6sin 2 C .37sin 50cos 37cos 50sin -D .41cos 2141sin 23- 3.函数()R x x y ∈+=2cos 21的最小正周期为 ( ) A .2πB .πC .π2D .π4 4.︒︒︒︒-+70tan 50tan 350tan 70tan 的值为 ( )A .21B .23C .21-D .3-5.若316sin =⎪⎭⎫ ⎝⎛-απ,则=⎪⎭⎫ ⎝⎛+απ232cos ( ) A .97-B .31- C .31 D .976.若函数x x y tan 2sin =,则该函数有 ( ) A .最小值0,无最大值B .最大值2,无最小值C .最小值0,最大值2D .最小值2-,最大值2 7.若παπ223<<,则=++α2cos 21212121 ( ) A .2cosαB .2sinαC .2cosα-D .2sinα-8.若()x x f 2sin tan =,则()=-1f ( ) A .1B .1- C .21D .21-二、填空题(每题5分,共20分)9.计算=-+75tan 175tan 1__________. 10.要使mm --=-464cos 3sin θθ有意义,则m 取值范围是__________.11.sin 510αβ==且,αβ为锐角,则αβ+=__________. 12.若函数4cos sin 2++=x a x y 的最小值为1,则a =__________.三、解答题(每题10分,共40分) 13.化简:)10tan 31(40cos ︒+︒.14.求值:︒︒︒︒++46cos 16sin 46cos 16sin 22. 15.求函数1cos sin 2cos sin +++=x x x x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的最值. 16.已知函数R x x x x x y ∈++=,cos 2cos sin 3sin 22,(1)求函数的最小正周期;(2)求函数的对称轴; (3)求函数最大值及取得最大值时x 的集合.第三章三角恒等变换单元能力测试卷一、选择题(每题5分 ,共60分)1.︒︒︒︒++15cos 75cos 15cos 75cos 22的值等于 ( ) A.26 B.23 C.45 D.431+2.已知222tan -=θ,πθπ22<<,则θtan 的值为 ( )A.2B.22-C.2D.2或22- 3.设︒︒︒︒++=30tan 15tan 30tan 15tan a ,︒︒-=70sin 10cos 22b ,则a ,b 的大小关系A.b a =B.b a >C.b a <D.b a ≠ ( )4.函数x x x x f cos sin 3sin )(2+=在区间⎥⎦⎤⎢⎣⎡2,4ππ上的最大值 ( ) A.1 B.231+ C.23 D.31+5.函数)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为( )A.π,1B.π,2C.π2,1D.π2,2 6.xx xx sin cos sin cos -+=( ) A.)4tan(π-x B.)4tan(π+x C.)4cot(π-x D.)4cot(π+x 7.函数)3cos()33cos()6cos()33sin(ππππ+++-+=x x x x y 的图像的一条对称轴是A.6π=x B.4π=x C.6π-=x D.2π-=x( )8.)24tan 1)(25tan 1)(20tan 1)(21tan 1(++++的值为( )A.2B.4C.8D.169.若51)cos(=+βα,53)cos(=-βα,则βαtan tan = ( ) A.2 B.21C.1D.010.函数[]0,(cos 3sin )(π-∈-=x x x x f )的单调递增区间是 ( ) A.⎥⎦⎤⎢⎣⎡--65,ππ B.⎥⎦⎤⎢⎣⎡--6,65ππ C.⎥⎦⎤⎢⎣⎡-0,3π D.⎥⎦⎤⎢⎣⎡-0,6π 11.已知A 、B 为小于︒90的正角,且31sin =A ,21sin =B ,则)(2sin B A +的值是 A.97 B.23C.1832+D.183724+( ) 12.若22)4sin(2cos -=-παα,则ααsin cos +的值为 ( ) A.27-B.21-C.21D.27二、填空题(每题5分,共20分) 13.已知32tan=θ,则θθθθsin cos 1sin cos 1+++-=__________.14.函数)2sin()3sin(ππ+⋅+=x x y 的最小正周期T =__________. 15.已知xxx f +-=11)(,若),2(ππα∈则)cos ()(cos αα-+f f 可化简为__________.16.若2cos sin -=+αα,则ααtan 1tan +=__________. 三、解答题(第17题10分,其余每题12分,共70分) 17.(1)已知54cos =α,且παπ223<<,求2tan α. (2)已知1cos )cos()22sin(sin 3=⋅+--θθπθπθ,),0(πθ∈,求θ的值.18.已知135)43sin(=+πα,53)4cos(=-βπ,且434,44πβππαπ<<<<-, 求)cos(βα-的值.19.已知函数R x x x x x x f ∈++=,cos 3cos sin 2sin )(22, 求:(1)函数)(x f 的最大值及取得最大值的自变量x 的集合; (2)函数)(x f 的单调增区间.20.已知α、β),0(π∈,且αtan 、βtan 是方程0652=+-x x 的两根, 求:(1)βα+的值;(2))cos(βα-的值. 21.已知函数a x x x x f ++-++=2cos )62sin()62sin()(ππ(a 为实常数),(1)求函数)(x f 的最小正周期;(2)如果当⎥⎦⎤⎢⎣⎡∈2,0πx 时,)(x f 的最小值为2-,求a 的值. 16.已知函数R x xx x x f ∈--++=,2cos 2)6sin()6sin()(2ωπωπω(其中0>ω), (1)求函数)(x f 的值域;(2)若函数)(x f y =的图像与直线1-=y 的两个相邻交点间的距离为2π,求函数 )(x f y =的单调增区间.参考答案1.1任意角和弧度制一、选择题1-5CCDCC 6-10CADBA 二、填空题11.120{-60,-0,60,120,}12.(1)α{︱360⋅=k α},Z k ∈ (2)α{︱90⋅=k α},Z k ∈(3)α{︱ 360⋅k <<α 180360⋅+k },Z k ∈ α{︱360⋅=k α 270+},Z k ∈(4)α{︱ 180⋅=k α45+},Z k ∈ 13.2 14.一或第二 三、解答题15.解:∵ 120=α 360⋅+k Z k ∈,720,-0<<α ∴240-=α600,16.解:(1) 45=β360⋅+k Z k ∈,720-≤ 45 360⋅+k 0<,则2-=k 或1-=k675-=β或 315-=β(2)},45)1({},,45)12({Z k k x x N Z k k x x M ∈+==∈+==所以N M ⊂17.因为,,23Z k k ∈+=ππθ所以Z k k ∈+=,3293ππθ所以在]2,0[π内与3θ终边相同的角有:913,97,9πππ18.因为302=+R l ,所以4225)215(15)230(212122+--=+-=-==R R R R R lR S当215=R 时,扇形有最大面积4225,此时2,15230===-=RlR l α 1.2任意角的三角函数 一、选择题1-4ABAB 5-8BBAB 二、填空题⒐⎭⎬⎫⎩⎨⎧∈+=+<<+<≤Z k k k k k k ,222223222ππαππαπππαπα或或 10.1317或137- 11.33,21 12.⎪⎭⎫⎝⎛47,45ππ三、解答题 13.22,1,22-- 14.126,562 15.161.3三角函数的诱导公式 一、选择题1-4ABCC 5-8CCCC 二、填空题 9.1 10.1312 11.0 12.211aa ++-提示:12.由已知a -=26tan ,于是21126cos a+=;2126sin aa +-=.∴()()21126cos 26sin 206cos 206sin aa ++-=-=-+-.三、解答题 13.33 14.2515.0 16.3 提示:16.()()()42000cos 2000sin 2000++++=απαπb a f()[]()[]41999cos 1999sin ++++++=αππαππb a ()()841999cos 1999sin +-+-+-=απαπb a ()381999=+-=f1.4三角函数的图像与性质 一、选择题。

人教版高中数学必修4课后习题答案详解

人教版高中数学必修4课后习题答案详解

第二章平面向量2.1平面向量的实际背景及基本概念练习(P77)1、略. 2、AB ,BA . 这两个向量的长度相等,但它们不等.3、2AB, 2.5CD,3EF ,22GH .4、(1)它们的终点相同;(2)它们的终点不同.习题2.1 A 组(P77)1、30°45°CAOB(2)D CBA. 3、与DE 相等的向量有:,AF FC ;与EF 相等的向量有:,BD DA ;与FD 相等的向量有:,CE EB .4、与a 相等的向量有:,,CO QP SR ;与b 相等的向量有:,PM DO ;与c 相等的向量有:,,DC RQ ST5、332AD. 6、(1)×;(2)√;(3)√;(4)×.习题2.1 B 组(P78)1、海拔和高度都不是向量. 2、相等的向量共有24对.模为1的向量有18对. 其中与AM 同向的共有6对,与AM 反向的也有6对;与AD 同向的共有3对,与AD 反向的也有6对;模为2的向量共有4对;模为2的向量有2对水流方向CDAB2.2平面向量的线性运算练习(P84)1、图略. 2、图略. 3、(1)DA ;(2)CB .4、(1)c ;(2)f ;(3)f ;(4)g .练习(P87)1、图略. 2、DB ,CA ,AC ,AD ,BA .3、图略.练习(P90)1、图略. 2、57ACAB ,27BC AB . 说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BC与AB 反向. 3、(1)2ba ;(2)74b a ;(3)12ba ;(4)89ba . 4、(1)共线;(2)共线.5、(1)32a b ;(2)111123a b ;(3)2ya .6、图略.习题2.2 A 组(P91)1、(1)向东走20 km ;(2)向东走 5 km ;(3)向东北走102km ;(4)向西南走52km ;(5)向西北走102km ;(6)向东南走102km. 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km.3、解:如右图所示:AB 表示船速,AD 表示河水的流速,以AB 、AD 为邻边作□ABCD ,则AC 表示船实际航行的速度.在Rt △ABC 中,8AB ,2AD,所以222282217ACABAD 因为tan 4CAD ,由计算器得76CAD 所以,实际航行的速度是217km/h ,船航行的方向与河岸的夹角约为76°.4、(1)0;(2)AB ;(3)BA ;(4)0;(5)0;(6)CB ;(7)0.5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略.8、(1)略;(2)当ab 时,a ba b9、(1)22a b ;(2)102210a b c ;(3)132a b ;(4)2()xy b .10、14a be ,124a b e e ,1232310a b e e .11、如图所示,OCa ,ODb ,DCb a ,BCa b .12、14AEb ,BC b a ,1()4DE b a ,34DB a ,34ECb ,1()8DN b a ,11()48AN AM a b . 13、证明:在ABC 中,,E F 分别是,AB BC 的中点,所以EF AC //且12EFAC ,即12EF AC ;同理,12HG AC ,所以EFHG .习题2.2 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b 不共线时它们不相等.3、证明:因为MN AN AM ,而13AN AC ,13AM AB ,所以1111()3333MN AC AB AC AB BC .4、(1)四边形ABCD 为平行四边形,证略(2)四边形ABCD 为梯形.证明:∵13AD BC ,∴AD BC //且AD BC ∴四边形ABCD 为梯形.(3)四边形ABCD 为菱形.(第11题)(第12题)(第13题)EHGFDCAB丙甲乙(第1题)(第4题(2))BACD证明:∵AB DC ,∴AB DC //且AB DC∴四边形ABCD 为平行四边形又ABAD∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形.证明:因为OA OBBA ,OD OC CD 而OA OC OB OD 所以OA OBOD OC所以BA CD ,即AB ∥CD .因此,四边形ABCD 为平行四边形. 2.3平面向量的基本定理及坐标表示练习(P100)1、(1)(3,6)a b ,(7,2)a b ;(2)(1,11)a b ,(7,5)a b ;(3)(0,0)a b ,(4,6)a b ;(4)(3,4)a b,(3,4)a b .2、24(6,8)a b ,43(12,5)a b .3、(1)(3,4)AB ,(3,4)BA ;(2)(9,1)AB ,(9,1)BA ;(3)(0,2)AB,(0,2)BA ;(4)(5,0)AB,(5,0)BA 4、AB ∥CD .证明:(1,1)AB,(1,1)CD,所以AB CD .所以AB ∥CD .5、(1)(3,2);(2)(1,4);(3)(4,5).6、10(,1)3或14(,1)37、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32APPB ,得32A P P B(,)(2,3)(2,A P x y x y,(4,3)(,)(4,3)PB x y x y ∴3(2,3)(4,3)2x y x y ∴32(4)233(3)2x x y y (第4题(3))AD CBADMOBC(第5题)∴815x y,所以点P 的坐标为(8,15).习题2.3 A 组(P101)1、(1)(2,1);(2)(0,8);(3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题.2、123(8,0)F F F 3、解法一:(1,2)OA ,(53,6(1))(2,7)BC而ADBC ,(1,5)OD OA AD OA BC . 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)ADx y x y ,(53,6(1))(2,7)BC 由ADBC 可得,1227x y ,解得点D 的坐标为(1,5).4、解:(1,1)OA,(2,4)AB .1(1,2)2A C A B ,2(4,8)ADAB ,1(1,2)2AEAB . (0,3)O C O A A C ,所以,点C 的坐标为(0,3);(3,9)O D O A A D ,所以,点D 的坐标为(3,9);(2,1)O EO AA E ,所以,点E 的坐标为(2,1). 5、由向量,a b 共线得(2,3)(,6)x ,所以236x ,解得4x .6、(4,4)AB ,(8,8)CD,2CD AB ,所以AB 与CD 共线.7、2(2,4)OAOA ,所以点A 的坐标为(2,4);3(3,9)O B O B ,所以点B 的坐标为(3,9;故(3,9)(2,4)(5,5)A B习题2.3 B 组(P101)1、(1,2)OA ,(3,3)AB .当1t 时,(4,5)OP OA AB OB ,所以(4,5)P ;当12t 时,13357(1,2)(,)(,)22222OP OA AB ,所以57(,)22P ;当2t 时,2(1,2)(6,6)(5,4)OP OA AB ,所以(5,4)P ;当2t时,2(1,2)(6,6)(7,8)OP OA AB ,所以(7,8)P .2、(1)因为(4,6)AB ,(1,1.5)AC ,所以4AB AC ,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ ,(6,8)PR ,所以4PR PQ ,所以P 、Q 、R 三点共线;(3)因为(8,4)EF ,(1,0.5)EG ,所以8EFEG ,所以E 、F 、G三点共线. 3、证明:假设10,则由11220e e ,得2121e e .所以12,e e 是共线向量,与已知12,e e 是平面内的一组基底矛盾,因此假设错误,10.同理20.综上120.4、(1)19OP .(2)对于任意向量12OPxe ye ,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积练习(P106)1、1cos ,86242p q p q p q.2、当0a b时,ABC 为钝角三角形;当0a b 时,ABC 为直角三角形.3、投影分别为32,0,32. 图略练习(P107)1、22(3)45a ,225229b ,35427a b .2、8a b,()()7a b a b ,()0a b c ,2()49a b .3、1a b,13a,74b ,88.习题2.4 A 组(P108)1、63a b,222()225123a b aa b b,25123a b .2、BC 与CA 的夹角为120°,20BC CA .3、22223a baa b b,22235a baa b b.4、证法一:设a 与b 的夹角为.(1)当0时,等式显然成立;(2)当0时,a 与b ,a 与b 的夹角都为,所以()cos cosa b a b a b ()c o sa b a b ()cos cosa b a b a b 所以()()()a b a b a b ;(3)当0时,a 与b ,a 与b 的夹角都为180,则()cos(180)cosa ba b a b ()cos cos a b a b a b ()cos(180)cosa b ab a b 所以()()()a ba b a b ;综上所述,等式成立.证法二:设11(,)ax y ,22(,)b x y ,那么11221212()(,)(,)a bx y x y x x y y 112212121212()(,)(,)()a b x y x y x x y y x x y y 11221212()(,)(,)a b x y x y x x y y 所以()()()a ba b a b ;5、(1)直角三角形,B 为直角.证明:∵(1,4)(5,2)(6,6)BA,(3,4)(5,2)(2,2)BC ∴6(2)(6)20BA BC ∴BABC ,B 为直角,ABC 为直角三角形(2)直角三角形,A 为直角证明:∵(19,4)(2,3)(21,7)AB,(1,6)(2,3)(1,3)AC ∴2117(3)0AB AC ∴ABAC ,A 为直角,ABC 为直角三角形(3)直角三角形,B 为直角证明:∵(2,5)(5,2)(3,3)BA,(10,7)(5,2)(5,5)BC ∴35350BA BC ∴BABC ,B 为直角,ABC 为直角三角形6、135. 7、120. 22(23)(2)44361a b a b aa b b,于是可得6a b,1cos2a b a b ,所以120.8、23cos40,55. 9、证明:∵(5,2)(1,0)(4,2)AB,(8,4)(5,2)(3,6)BC ,(8,4)(4,6)(4,2)DC∴ABDC ,43(2)60AB BC ∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)ax y ,则2292xy y x,解得355655x y,或355655xy.于是3565(,)55a或3565(,)55a .11、解:设与a 垂直的单位向量(,)e x y ,则221420xyx y ,解得55255xy或55255xy. 于是525(,)55e或525(,)55e . 习题2.4 B 组(P108)1、证法一:0()0()a b a c a b a c a b c a b c 证法二:设11(,)ax y ,22(,)b x y ,33(,)c x y .先证()a ba c ab c 1212a bx x y y ,1313a cx x y y 由a b a c 得12121313x x y y x x y y ,即1231()()x x x y y y 而2323(,)b c x x y y ,所以()a b c 再证()ab c a b a c由()0a b c 得123123()()0x x x y y y ,即12121313x x y y x x y y ,因此a b a c 2、cos cos cossin sin OA OB AOBOA OB.3、证明:构造向量(,)ua b ,(,)v c d .c o s,u v u v u v,所以2222cos ,ac bd a bcd u v∴2222222222()()()cos,()()ac bd a b cd u vab c d 4、AB AC 的值只与弦AB 的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CMAB ,12AMAB 又cos AB AC AB AC BAC ,而AM BACAC所以212AB ACAB AMAB 5、(1)勾股定理:Rt ABC 中,90C,则222CACBAB证明:∵ABCB CA ∴2222()2AB CB CA CBCA CB CA .由90C,有CA CB ,于是0CA CB ∴222CA CBAB(2)菱形ABCD 中,求证:AC BD 证明:∵ACAB AD ,,DBAB AD ∴22()()AC DB AB AD AB AD ABAD .∵四边形ABCD 为菱形,∴AB AD ,所以22ABAD∴0AC DB,所以AC BD (3)长方形ABCD 中,求证:ACBD证明:∵四边形ABCD 为长方形,所以ABAD ,所以0AB AD ∴222222ABAB AD ADABAB AD AD .∴22()()AB AD AB AD ,所以22ACBD ,所以ACBD(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可.2.5平面向量应用举例习题2.5 A 组(P113)1、解:设(,)P x y ,11(,)R x y 则1111(1,0)(,)(1,)RA x y x y ,(,)(1,0)(1,0)AP x y x 由2RA AP 得11(1,)2(1,)x y x y ,即11232x x y y代入直线l 的方程得2yx .所以,点P 的轨迹方程为2yx .2、解:(1)易知,OFD ∽OBC ,12DFBC , 所以23BO BF .2211()()3323AO BO BA BF a b a a a b (2)因为1()2AE a b 所以23AO AE ,因此,,A O E 三点共线,而且2AOOE 同理可知:2,2BO CO OF OD ,所以2AO BO COOE OF OD3、解:(1)(2,7)B Avv v ;(2)v 在A v 方向上的投影为135A Av v v . 4、解:设1F ,2F 的合力为F ,F 与1F 的夹角为,则31F,30;331F ,3F 与1F 的夹角为150°.习题2.5 B 组(P113)1、解:设0v 在水平方向的速度大小为x v ,竖直方向的速度的大小为y v ,则0cos xv v ,0sin yv v .设在时刻t 时的上升高度为h ,抛掷距离为s ,则1s i n,()2c o sh v t g t gsv t 为重力加速度所以,最大高度为220sin 2v g,最大投掷距离为20sin2v g.2、解:设1v 与2v 的夹角为,合速度为v ,2v 与v 的夹角为,行驶距离为d . 则1sin 10sin sin v vv,0.5sin20sinv d.∴120sind v.所以当90,即船垂直于对岸行驶时所用时间最短.3、(1)(0,1)ODFEABC(第2题)(第4题)解:设(,)P x y ,则(1,2)AP x y . (2,22)AB .将AB 绕点A 沿顺时针方向旋转4到AP ,相当于沿逆时针方向旋转74到AP ,于是7777(2cos22sin ,2sin22cos )(1,3)4444AP 所以1123x y,解得0,1xy(2)32yx解:设曲线C 上任一点P 的坐标为(,)x y ,OP 绕O 逆时针旋转4后,点P 的坐标为(,)x y 则cos sin 44sincos44x x y yx y ,即2()22()2x x y yx y 又因为223xy,所以2211()()322x y x y ,化简得32yx第二章复习参考题A 组(P118)1、(1)√;(2)√;(3)×;(4)×. 2、(1)D ;(2)B ;(3)D ;(4)C ;(5)D ;(6)B.3、1()2AB a b ,1()2AD a b 4、略解:2133DE BA MA MBa b 2233AD a b ,1133BC a b 1133EF a b ,1233FA DC a b 1233CDa b ,2133AB a b CEa b5、(1)(8,8)AB ,82AB ;(2)(2,16)OC ,(8,8)OD;(3)33OA OB .(第4题)6、AB 与CD 共线.证明:因为(1,1)AB ,(1,1)CD ,所以AB CD . 所以AB 与CD 共线.7、(2,0)D .8、2n. 9、1,0.10、34cos ,cos 0,cos 55A B C11、证明:2(2)22cos6010n m m n m m ,所以(2)n m m .12、1.13、13a b,1a b.14、519cos,cos 820第二章复习参考题B 组(P119)1、(1)A ;(2)D ;(3)B ;(4)C ;(5)C ;(6)C ;(7)D.2、证明:先证aba b a b .222()2a ba b aba b,222()2a ba b a b a b .因为ab ,所以0a b ,于是22a b a ba b .再证a b a ba b. 由于222a b aa bb ,222a b aa b b由a b a b 可得0a b ,于是ab所以a ba b a b. 【几何意义是矩形的两条对角线相等】3、证明:先证abcd22()()c d a b a b ab又a b ,所以0c d ,所以cd再证cd ab .由cd 得0c d,即22()()a b a b a b 所以a b【几何意义为菱形的对角线互相垂直,如图所(第3题)NMOABS(第6题)示】4、12AD AB BC CD a b ,1142AE a b 而34EFa ,14EM a ,所以1111()4242AM AE EMa b a a b 5、证明:如图所示,12ODOP OP ,由于1230OP OP OP ,所以3OP OD ,1OD 所以11OD OP PD 所以1230OPP ,同理可得1330OPP 所以31260PPP ,同理可得12360PP P ,23160P PP ,所以123PP P 为正三角形. 6、连接AB.由对称性可知,AB 是SM N 的中位线,222MN ABb a .7、(1)实际前进速度大小为224(43)8(千米/时),沿与水流方向成60°的方向前进;(2)实际前进速度大小为42千米/时,沿与水流方向成690arccos 3的方向前进.8、解:因为OA OB OB OC ,所以()0OB OA OC ,所以0OB CA 同理,0OA BC ,0OC AB,所以点O 是ABC 的垂心. 9、(1)2110200a x a y a y a x ;(2)垂直;(3)当12210AB A B 时,1l ∥2l ;当12120A A B B 时,12l l ,夹角的余弦121222221122cosA AB B A BA B ;(4)022Ax By CdABDOP 3P 1P 2(第5题)第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式练习(P127)1、cos()cos cos sin sin0cos1sin sin222.c o s(2)c o s2c o s s i n2s i n1c o s0.2、解:由3cos,(,)52,得2234sin1cos1()55;所以23242 cos()cos cos sin sin()444252510.3、解:由15sin17,是第二象限角,得22158cos1sin1()1717;所以811538153 cos()cos cos sin sin33317217234.4、解:由23sin,(,)32,得2225cos1sin1()33;又由33cos,(,2)42,得2237sin1cos1()44.所以3c o4.练习(P131)1、(1)624;(2)624;(3)624;(4)23.2、解:由3cos,(,)52,得2234sin1cos1()55;所以4133433 sin()sin cos cos sin()333525210.3、解:由12sin13,是第三象限角,得22125cos1sin1()1313;所以3c o66.4、解:tan tan314tan()2 41311tan tan4.5、(1)1;(2)12;(3)1;(4)32;(5)原式=1(cos34cos26sin34sin26)cos(3426)cos602;(6)原式=sin20cos70cos20sin70(sin20cos70cos20sin70)sin901.6、(1)原式=cos cos sin sin cos()333x xx ;(2)原式=312(sin cos )2(sin cos cos sin )2sin()22666x x x x x ;(3)原式=222(sin cos )2(sin cos cos sin )2sin()22444x x x x x ;(4)原式=1322(cos sin )22(cos cos sin sin )22cos()22333xx x x x .7、解:由已知得3sin()cos cos()sin5,即3sin[()]5,3sin()5所以3sin5. 又是第三象限角,于是2234cos 1sin1()55. 因此55si 44.练习(P135)1、解:因为812,所以382又由4cos85,得243sin 1()855,3sin 385tan 484cos85所以3424sinsin(2)2sin cos2()()488855252222437c o sc o s(2)c o s s i n ()()488855252232tan23162484tantan(2)3482771tan1()842、解:由3sin()5,得3sin 5,所以222316cos 1sin1()525所以2221637cos2cossin()255253、解:由sin2sin 且sin 0可得1cos2,又由(,)2,得2213sin 1cos1()22,所以s i n 3t an (2)3co s2. 4、解:由1t an 23,得22t an11t an3. 所以2t an6t an 10,所以t a n3105、(1)11sin15cos15sin3024;(2)222cossincos8842;(3)原式=212tan22.511tan4521tan 22.522;(4)原式=2cos452. 习题3.1 A 组(P137)1、(1)333cos()cos cossin sin0cos (1)sin sin 222;(2)333sin()sin coscos sin1cos0sincos 222;(3)cos()cos cos sin sin1cos0sin cos ;(4)sin()sin coscos sin 0cos(1)sin sin . 2、解:由3cos,05,得2234sin1cos1()55,所以4331433cos()cos cossin sin666525210. 3、解:由2sin,(,)32,得2225cos 1sin1()33,又由33cos ,(,)42,得2237sin1cos1()44,所以5co3. 4、解:由1cos7,是锐角,得22143sin1cos1()77因为,是锐角,所以(0,),又因为11cos()14,所以221153sin()1cos ()1()1414所以cos cos[()]cos()cos sin()sin11153431()14714725、解:由60150,得9030180又由3sin(30)5,得2234cos(30)1sin (30)1()55所以coscos[(30)30]cos(30)cos30sin(30)sin3043314335252106、(1)624;(2)264;(3)23. 7、解:由2sin,(,)32,得2225cos 1sin1()33. 又由3cos4,是第三象限角,得2237sin 1cos1()44. 所以cos()cos cossin sin5327()()3434352712sin()sin cos cos sin2357()()()3434635128、解:∵53sin ,cos 135A B 且,A B 为ABC 的内角∴0,02A B ,124cos ,sin 135A B当12cos 13A 时,sin()sin cos cos sin AB A B A B5312433()013513565A B,不合题意,舍去∴124cos ,sin 135A B ∴cos cos()(cos cos sin sin )CA B A B A B 1235416()135135659、解:由3sin,(,)52,得2234cos 1sin1()55. ∴sin 353tan()cos544. ∴31tan tan 242tan()311tan tan111()42. 31tan tan 42tan()2311tan tan1()42.10、解:∵tan ,tan是22370x x 的两个实数根.∴3tantan2,7tan tan2. ∴3tan tan 12tan()71tan tan31()2. 11、解:∵tan()3,tan()5∴tan()tan()tan2tan[()()]1tan()tan()3541357tan()tan()tan2tan[()()]1tan()tan()351135812、解:∵::2:3:6BD DC AD ∴11tan,tan 32BD DC AD AD ∴tan tan tan tan()1tan tanBAC1132111132又∵0180BAC ,∴45BAC βαDACB(第12题)13、(1)65sin()6x ;(2)3sin()3x ;(3)2sin()26x;(4)27sin()212x ;(5)22;(6)12;(7)sin();(8)cos();(9)3;(10)tan().14、解:由sin0.8,(0,)2,得22cos1sin 10.80.6∴sin22sin cos 20.80.60.962222cos2cossin0.60.80.2815、解:由3cos,1802703,得2236sin1cos 1()33∴6322sin22sin cos 2()()3332222361cos2cossin ()()333sin222tan2(3)22cos2316、解:设5sin sin 13B C,且90B ,所以12cos 13B . ∴512120sin sin(1802)sin22sin cos 21313169A B B B B 2222125119cos cos(1802)cos2(cos sin )(()())1313169A B B B B sin 120169120tan ()cos 169119119A A A 17、解:22122tan33tan211tan41()3,13tan tan274tan(2)1131tan tan2174.18、解:1cos()cos sin()sin31cos[()]3,即1cos 3又3(,2)2,所以22122sin 1cos1()33∴22142sin22sin cos 2()33922221227cos2cossin()()339∴72422728cos(2)cos2cossin2sin()44492921819、(1)1sin2;(2)cos2;(3)1sin44x ;(4)tan2.习题3.1 B 组(P138)1、略.2、解:∵tan ,tan A B 是x 的方程2(1)10x p x ,即210xpxp 的两个实根∴tan tan A B p ,tan tan 1A B p ∴tan tan[()]tan()CA B A B tan tan 11tan tan 1(1)A B p A Bp 由于0C,所以34C. 3、反应一般的规律的等式是(表述形式不唯一)223sincos (30)sin cos(30)4(证明略)本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin (30)cossin(30)cos4223sin (15)cos (15)sin(15)cos(15)4223sincossin cos4,其中30,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高. 4、因为12PAPP ,则2222(c o s ()1)s i n ()(c o sc o s )(s i n s i n )即22cos()22cos cos 2sin sin所以cos()cos cossin sin3.2简单的三角恒等变换练习(P142)1、略. 2、略.3、略.4、(1)1sin42y x . 最小正周期为2,递增区间为[,],8282kk k Z ,最大值为12;(2)cos 2y x . 最小正周期为2,递增区间为[2,22],k k kZ ,最大值为3;(3)2sin(4)3yx. 最小正周期为2,递增区间为5[,],242242k k kZ ,最大值为2.习题3.2 A 组(P143)1、(1)略;(2)提示:左式通分后分子分母同乘以2;(3)略;(4)提示:用22sin cos代替1,用2sin cos 代替sin 2;(5)略;(6)提示:用22cos 代替1cos2;(7)提示:用22sin 代替1cos2,用22cos 代替1cos2;(8)略.2、由已知可有1sin coscos sin2……①,1sin cos cos sin3……②(1)②×3-①×2可得sin cos 5cos sin(2)把(1)所得的两边同除以cos cos 得tan 5tan注意:这里cos cos0隐含与①、②之中3、由已知可解得1tan2. 于是2212()2tan 42tan211tan31()21tantan1142tan()1431tantan1()142∴tan24tan()44、由已知可解得sin x ,cos y ,于是2222sincos1x y.5、()2sin(4)3f x x,最小正周期是2,递减区间为7[,],242242k kkZ .习题3.2 B 组(P143)1、略.2、由于762790,所以sin76sin(9014)cos14m即22cos 71m ,得1cos72m 3、设存在锐角,使223,所以23,tan()32,又tan tan232,又因为tan tan 2tan()21tantan2,所以tantantan()(1tan tan )33222由此可解得tan 1,4,所以6.经检验6,4是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22. 过M 作1MM 垂直于x 轴,交x 轴于1M ,111()()22MOM .在Rt OMA 中,coscos22OM OA .在1Rt OM M 中,11cos coscos 22OM OM MOM ,11sin sincos22M M OM MOM .于是有1(cos cos )cos cos 222,1(sin sin )sin cos 2225、当2x时,22()sin cos 1f ;当4x时,4422222()sincos(sincos)2sincosf 211sin 22,此时有1()12f ≤≤;当6x 时,66()sinf 231sin 24,此时有1()14f ≤≤;由此猜想,当2,x k k N 时,11()12k f ≤≤6、(1)345(sin cos )5sin()55y x x x ,其中34cos ,sin55所以,y 的最大值为5,最小值为﹣5;(2)22sin()yab x,其中2222cos,sina b abab所以,y 的最大值为22ab ,最小值为22ab ;第三章复习参考题A 组(P146)xy M 1MC AOB(第4题)1、1665. 提示:()2、5665. 提示:5sin()sin[()]sin[()()]443、1.4、(1)提示:把公式tan tantan()1tan tan变形;(2)3;(3)2;(4)3. 提示:利用(1)的恒等式.5、(1)原式=cos103sin104sin(3010)4 sin10cos10sin20;(2)原式=sin10sin103cos10 sin40(3)sin40cos10cos10=2sin40cos40sin801 cos10cos10;(3)原式=3sin203sin20cos20 tan70cos10(1)tan70cos10cos20cos20=sin702sin10sin20cos101 cos70cos20cos70;(4)原式=3sin10cos103sin10 sin50(1)sin50cos10cos102cos50sin100sin501cos10cos106、(1)95;(2)2425;(3)223. 提示:4422222sin cos(sin cos)2sin cos;(4)17 25.7、由已知可求得2cos cos5,1sin sin5,于是sin sin1tan tancos cos2.8、(1)左边=222cos214cos232(cos22cos21)22242(cos21)2(2cos)8cos=右边(2)左边=222 2sin cos2sin cos(sin cos) 2cos2sin cos2cos(cos sin)sin cos11tan2cos22=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin2cos(cos sin)sin()cos cos()sin sinsin sin=右边(第12(2)题)(4)左边=222234cos22cos 212(cos 22cos21)34cos22cos 212(cos 22cos21)A A A A A A A A 2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A =右边9、(1)1sin21cos2sin2cos222sin(2)24y x x x x x递减区间为5[,],88k k k Z(2)最大值为22,最小值为22.10、2222()(cos sin )(cos sin )2sin cos cos2sin22cos(2)4f x x x x x x xx x x(1)最小正周期是;(2)由[0,]2x 得52[,]444x ,所以当24x,即38x时,()f x 的最小值为 2. ()f x 取最小值时x 的集合为3{}8.11、2()2sin 2sin cos 1cos2sin22sin(2)14f x x x x x xx(1)最小正周期是,最大值为21;(2)()f x 在[,]22上的图象如右图:12、()3sin cos 2sin()6f x x x a xa .(1)由21a 得1a;(2)2{22,}3x k x k k Z ≤≤.13、如图,设ABD ,则CAE ,2s i n h AB ,1cos h AC所以1212sin2ABC hh S AB AC ,(0)2当22,即4时,ABCS的最小值为12hh . 第三章复习参考题B 组(P147)1、解法一:由221sin cos 5sincos1,及0≤≤,可解得4sin5,h 1h 2l 2l 1BDE AC(第13题)13 cos sin55,所以24sin225,7cos225,312sin(2)sin2cos cos2sin44450.解法二:由1s i n c o s5得21(sin cos)25,24sin225,所以249 cos2625.又由1sin cos5,得2sin()410.因为[0,],所以3[,]444.而当[,0]44时,sin()04≤;当3[,]444时,22 sin()4210≥.所以(0,)44,即(,)42所以2(,)2,7cos225.312sin(2)4502、把1cos cos2两边分别平方得221cos cos2cos cos4把1sin sin3两边分别平方得221sin sin2sin sin9把所得两式相加,得13 22(cos cos sin sin)36,即1322cos()36,所以59cos()723、由43sin()sin35可得3343sin cos225,4sin()65.又02,所以366,于是3cos()65.所以334 cos cos[()]66104、22sin22sin2sin cos2sin2sin cos(cos sin)sin1tan cos sin1cosx x x x x x x x xxx x xx1tansin2sin2tan()1tan4xx x xx由177124x得5234x,又3cos()45x,所以4sin()45x,4tan()43x所以2cos cos[()]cos()cossin()sin44444410x x x x ,72sin 10x,7sin22sin cos 25x x x, 所以2sin22sin 281tan 75x x x,5、把已知代入222sincos(sin cos )2sin cos 1,得22(2sin )2sin1.变形得2(1cos2)(1cos2)1,2cos2cos2,224cos 24cos 2本题从对比已知条件和所证等式开始,可发现应消去已知条件中含的三角函数.考虑sincos ,sin cos 这两者又有什么关系?及得上解法.5、6两题上述解法称为消去法6、()3sin21cos22sin(2)16f x x x m x m . 由[0,]2x 得72[,]666x,于是有216m . 解得3m . ()2si n (2)4()6f x x x R 的最小值为242,此时x 的取值集合由322()62x k kZ ,求得为2()3xk k Z 7、设AP x ,AQy ,BCP,DCQ,则tan1x ,tan1y于是2()tan()()x y x y xy又APQ 的周长为2,即222x yxy,变形可得2()2xyx y 于是2()tan()1()[2()2]x y xy x y .又02,所以4,()24PCQ.8、(1)由221sin cos 5sincos1,可得225sin 5sin120解得4sin 5或3sin 5(由(0,),舍去)所以13cossin 55,于是4tan 3(2)根据所给条件,可求得仅由sin ,cos ,tan表示的三角函数式的值,例如,sin()3,cos22,sin cos 2tan ,sin cos3sin2cos,等等.。

高中数学必修四答案

高中数学必修四答案

高中数学必修四答案第一章三角函数1.1 弧度制1.角度制和弧度制的转换关系:–弧度制 = 角度制× π / 180–角度制 = 弧度制× 180 / π2.弧度制下的等角弧长公式:–弧长 = 弧度制 × 半径1.2 三角函数的定义1.正弦函数:sin θ = 对边 / 斜边2.余弦函数:cos θ = 邻边 / 斜边3.正切函数:tan θ = 对边 / 邻边1.3 三角函数的性质1.基本性质:–正弦函数的值域为 [-1, 1]–余弦函数的值域为 [-1, 1]–正切函数的定义域为 R,其余的三角函数的定义域为 (-∞, ∞)2.周期性质:–正弦函数、余弦函数的周期为2π–正切函数的周期为π1.4 三角函数的图像1.正弦函数的图像:从 y = -sin x 推导其他形式的正弦函数图像2.余弦函数的图像:从 y = cos x 推导其他形式的余弦函数图像3.正切函数的图像:从 y = tan x 推导其他形式的正切函数图像第二章几何向量2.1 向量的概念和表示1.向量的定义:有大小和方向的量,通常用箭头表示2.向量的表示:–平行四边形法则:以原点为起点,以向量的终点为终点的有向线段表示向量–分量表示法:将向量投影到坐标轴上,用投影长度表示向量2.2 向量的线性运算1.向量的加法:–满足交换律:A + B = B + A–满足结合律:(A + B) + C = A + (B + C)2.向量的数乘:–定义:数乘一个向量等于扩大或缩小该向量的长度3.向量的减法:–定义:向量 A - 向量 B = 向量 A + (-1) × 向量 B 2.3 坐标系中的向量1.二维向量的表示:(x, y)2.三维向量的表示:(x, y, z)2.4 向量的数量积1.向量的数量积的定义:A · B = |A| × |B| × cos θ2.向量的数量积的性质:–结合律:(kA) · B = k(A · B) = A · (kB)–分配律:(A + B) · C = A · C + B · C– A · B = 0 的条件:向量 A 和向量 B 正交–向量 A 和向量 B 平行的条件:cos θ = 1 或 cos θ = -12.5 向量的向量积1.向量的向量积的定义:A × B = |A| × |B| × sin θ × n2.向量的向量积的性质:–反交换律:A × B = - (B × A)–结合律:(kA) × B = k(A × B) = A × (kB)–分配律:A × (B + C) = A × B + A × C第三章平面解析几何3.1 坐标系1.平面直角坐标系2.极坐标系3.2 平面直角坐标系下的方程1.直线的方程:–一般式:Ax + By + C = 0–点斜式:y - y1 = k(x - x1)–斜截式:y = kx + b–截距式:x / a + y / b = 12.圆的方程:–标准方程:(x - a)^2 + (y - b)^2 = r^2–一般方程:x^2 + y^2 + Dx + Ey + F = 0 3.3 极坐标系下的方程1.直线的极坐标方程:–ρ = cos θ / cos α2.圆的极坐标方程:–ρ = r3.4 平面解析几何的应用1.求点到直线的距离–利用距离公式:d = |Ax0 + By0 + C| / √(A^2 + B^2)2.求点到圆的距离–利用距离公式:d = |Ax0 + By0 + C| / √(A^2 + B^2) - r以上就是《高中数学必修四答案》的内容,希望对你有帮助!。

高中数学必修四课后习题答案 (3)

高中数学必修四课后习题答案 (3)

高中数学必修四课后习题答案第一章三角函数的概念1.1 弧度制练习题1-11.将下列角度制角转化为弧度制角:a)60°b)45°c)120°d)150°答案:a)$60° \\div 180° \\times \\pi = \\frac{\\pi}{3}$b)$45° \\div 180° \\times \\pi = \\frac{\\pi}{4}$c)$120° \\div 180° \\times \\pi = \\frac{2\\pi}{3}$d)$150° \\div 180° \\times \\pi = \\frac{5\\pi}{6}$1.2 单位圆和终边练习题1-23.利用单位圆绘制下列角的终边:a)$\\pi$b)$\\frac{\\pi}{2}$c)$\\frac{3\\pi}{2}$d)$-\\frac{5\\pi}{4}$答案:a)对应角为最右侧的点(1,0)b)对应角为最上方的点(0,1)c)对应角为最下方的点(0,−1)d)对应角为最左下方的点$(-\\frac{\\sqrt{2}}{2}, -\\frac{\\sqrt{2}}{2})$第二章三角函数的性质与图像2.1 三角函数的特点练习题2-11.求下列三角函数的正周期:a)$y = \\sin (2x)$b)$y = \\cos (\\frac{x}{3})$c)$y = \\tan (\\frac{x}{6})$答案:a)$\\frac{2\\pi}{2} = \\pi$b)$\\frac{2\\pi}{\\frac{1}{3}} = 6\\pi$c)$\\frac{2\\pi}{\\frac{1}{6}} = 12\\pi$2.2 正弦函数图像的性质练习题2-24.求解下列方程:b)$\\sin 2x = 0$ 在区间$(0, \\pi)$ 上的解c)$\\sin 4x = -1$ 在区间$(0, 2\\pi)$ 上的解d)$2\\sin x = \\frac{1}{2}$ 在区间$(0, 2\\pi)$ 上的解答案:a)$x = \\frac{\\pi}{2}$b)$x = \\frac{\\pi}{2}$, $x = \\frac{\\pi}{2}$c)$x = \\frac{7\\pi}{4}$, $x = \\frac{11\\pi}{4}$d)$x = \\frac{\\pi}{6}$, $x = \\frac{5\\pi}{6}$2.3 余弦函数图像的性质练习题2-35.求解下列方程:a)$\\cos x = 1$ 在区间$(0, \\pi)$ 上的解b)$\\cos 2x = -1$ 在区间$(0, \\pi)$ 上的解d)$2\\cos x = \\frac{1}{2}$ 在区间$(0, 2\\pi)$ 上的解答案:a)x=0b)$x = \\frac{\\pi}{2}$c)$x = \\frac{\\pi}{6}$, $x = \\frac{5\\pi}{6}$d)$x = \\frac{\\pi}{3}$, $x = \\frac{5\\pi}{3}$第三章一次函数与二次函数3.1 一次函数的性质练习题3-11.已知一次函数x(x)=2x−3,求x(x)=7的解。

高1数学必修4复习题答案

高1数学必修4复习题答案

高1数学必修4复习题答案高一数学必修4复习题答案在高中数学学习中,复习题是非常重要的一部分。

通过复习题的练习,我们可以巩固知识点,提高解题能力,为考试做好充分的准备。

在这篇文章中,我将为大家提供一些高一数学必修4复习题的答案,希望能够帮助大家更好地理解和掌握相关知识。

一、函数与方程1. 已知函数f(x) = 2x - 3,求f(4)的值。

答案:将x = 4代入函数中,得到f(4) = 2 × 4 - 3 = 8 - 3 = 5。

2. 解方程2x + 5 = 13。

答案:将方程两边减去5,得到2x = 13 - 5 = 8。

再将方程两边除以2,得到x = 8 ÷ 2 = 4。

二、三角函数1. 已知直角三角形的一条直角边长为3,斜边长为5,求另一条直角边的长度。

答案:根据勾股定理,可以得到3² + x² = 5²,即9 + x² = 25。

解得x² = 16,再开平方得到x = 4或x = -4。

由于直角边的长度不能为负数,所以另一条直角边的长度为4。

2. 已知sinθ = 3/5,求cosθ的值。

答案:根据三角函数的定义,sinθ = 对边/斜边,cosθ = 邻边/斜边。

已知sinθ = 3/5,可以得到对边为3,斜边为5。

根据勾股定理,可以求得邻边的长度为4。

所以cosθ = 4/5。

三、平面向量1. 已知向量a = (2, -3)、b = (1, 4),求向量a + b的值。

答案:将向量a和向量b的对应分量相加,得到向量a + b = (2 + 1, -3 + 4) = (3, 1)。

2. 已知向量a = (3, -2)、向量b = (5, 1),求向量a与向量b的数量积。

答案:向量a与向量b的数量积等于它们对应分量的乘积之和,即a · b =3 ×5 + (-2) × 1 = 15 - 2 = 13。

高三理科数学小题狂做4

高三理科数学小题狂做4

高三理科数学小题狂做(4)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合{}22x x M =-≤≤,{}230x x x N =-=,则MN =( )A .{}3B .{}0C .{}0,2D .{}0,32、若复数()()12bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( ) A .2-B .12-C .2D .123、阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出的S 的值是( ) A .64B .73C .512D .5854、棱长为2的正方体挖去一个几何体后的三视图如图所示,则剩余部分的体积是( )A .283π-B .83π-C .82π-D .23π 5、已知4sin 45x π⎛⎫-= ⎪⎝⎭,则sin 2x 的值等于( )A .825B .725C .825-D .725-6、已知实数x ,y 满足1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,若2z x y a =++的最小值是2,则实数a 的值是( )A .0B .32C .2D .1-7、等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则数列{}n a 的公比是( )A .12B .13C .25D .498、已知a 、b 表示两条不同的直线,α,β表示两个不同的平面,则下列命题正确的是( )A .若//αβ,//a α,//b β,则//a bB .若a α⊂,b β⊂,//a b ,则//αβC .若a α⊥,b β⊥,αβ⊥,则//a bD .若a α⊥,b β⊥,a b ⊥,则αβ⊥ 9、曲线sin y x x =在点,22ππ⎛⎫- ⎪⎝⎭处的切线与x 轴、直线x π=所围成的三角形的面积是( )A .22πB .2πC .22πD .()2122π+10、已知正方形的四个顶点分别为()0,0O ,()1,0A ,()1,1B ,()C 0,1,点D ,E 分别在线段C O ,AB 上运动,且D O =BE ,设D A 与OE 交于点G ,则点G 的轨迹方程是( )A .2y x =(01x ≤≤) B .()1x y y =-(01y ≤≤) C .()1y x x =-(01x ≤≤) D .21y x =-(01x ≤≤)11、设()f x 是R 上以2为周期的奇函数,已知当(]0,1x ∈时,()21log 1f x x=-,则()f x 在区间()1,2上是( )A .增函数,且()0f x <B .增函数,且()0f x >C .减函数,且()0f x <D .减函数,且()0f x >12、已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且12F F 3π∠P =,记椭圆和双曲线的离心率分别为1e ,2e ,则121e e 的最大值是( ) A .3B .433C .2D .233二、填空题(本大题共4小题,每小题5分,共20分.) 13、若向量()1,1OA =,OA =OB ,0OA⋅OB =,则AB =.14、若12nx x ⎛⎫+ ⎪⎝⎭的二项展开式中前三项的系数成等差数列,则常数n 的值是.15、右面茎叶图是甲、乙两人在5次综合测评中成绩(所有成绩取整数)的茎叶图,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是. 16、以下命题,错误的有.①若()()32131f x x a x x =+-++没有极值点,则24a -<<;②()13mx f x x +=+在区间()3,-+∞上单调,则13m ≥; ③若函数()ln x f x m x =-有两个零点,则1m e<;④已知()log a f x x =(01a <<),k ,m ,R n +∈且不全等,则()()()222k m m n k n f f f f k f m f n +++⎛⎫⎛⎫⎛⎫++<++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.高三理科数学小题狂做(4)参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCBADCBDACAD13、2 14、8 15、4516、①②③高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (AB )32(CD )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

(word完整版)人教版高中数学必修4课后习题答案(2021年整理)

(word完整版)人教版高中数学必修4课后习题答案(2021年整理)

(word完整版)人教版高中数学必修4课后习题答案(word版可编辑修改) 编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)人教版高中数学必修4课后习题答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)人教版高中数学必修4课后习题答案(word版可编辑修改)的全部内容。

人教版高中数学必修4课后习题答案。

最新高一数学题库 数学必修4参考答案及评分标准

最新高一数学题库 数学必修4参考答案及评分标准

第三章试卷说明学校:卧龙寺中学命题人:吴亮检测人:李丰明一、命题意图三角恒等变形是新课标中三角函数综合运用的重点内容,其中既有包含三角函数的基础,也蕴含了丰富综合运用等变形的思想方法,新课程标准要求重视数学之间的联系应用,培养和发展数学联系意识,所以本章内容一定会成为高考中的热点与重点。

本套试题依据“重视基础,考察能力,体现导向,注重发展”的命题原则。

注重学生的基础能力,同时考察学生的应用能力,体现了新课程标准数学应用的理念,更考察了学生在数学方面的运用能力以及核心知识的掌握情况,难度中等,对数学学科在新课程的理念下有很好的检测作用。

二、试卷结构特点本试题是对高一数学必修4第三章“三角恒等变形”的单元检测,满分150分,时间120分钟,分为Ⅰ卷和Ⅱ卷,共有试题21道,其中10道选择题,共50分;6道填空题,共30分;5道解答题,共70分。

难度为中等水平,既有基础能力题,也有拔高扩展题。

用基础题考察学生对知识的掌握能力,也同时用拔高题来提高学生的应变能力,为学生对数学意识的培养和在数学方面的应用打好一个基础。

三、典型试题例说1.选择第5题:5.在△ABC中,如果sinA=2sinCcosB,那么这个三角形是A.锐角三角形B.直角三角形C.等腰三角形 D.等边三角形【分析】此题主要考虑到三角形内角和为180度,然后利用诱导公式和两角和公式得出结果,对学生的综合运用能力是一个考察,在当前高考中也有这样的运用。

解:选C∵A+B+C=π,∴A=π-(B+C).由已知得sin(B+C)=2sinCcosB,∴sinBcosC +cosBsinC =2sinCcosB. ∴sinBcosC -cosBsinC =0. ∴sin(B -C)=0.∴B =C.故△ABC 为等腰三角形.2. 解答第20题:已知函数x x b x a x f cos sin cos 2)(2+=,且2321)3(,2)0(+==πf f 。

2021届高三数学新高考“8+4+4”小题狂练(35)(原卷)[精选]doc

2021届高三数学新高考“8+4+4”小题狂练(35)(原卷)[精选]doc
16.已经知道点 分别为双曲线 的左、右焦点,点A,B在C的右支上,且点 恰好为 的外心,假设 ,那么C的离心率为__________.
A. “ , 〞B. “ , 〞
C. “ , 〞D. “ , 〞
7.已经知道实数 均为正数,满足 , ,那么 的最小值是
A. 10B. 9C. D.
8.函数 是偶函数,且函数 图象关于点 成中心对称,当 时, ,那么 ( )
A. B. C. 0D. 2
二、多项选择题(此题共4小题,每题5分,共20分.在每题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)
A. B. C. D.
4.已经知道奇函数 在区间 上是增函数,且最大值为 ,最小值为 ,那么在区间 上 的最大值、最小值分别是( )
A. B. C. D.不确定
5.已经知道集合A= ,B= ,假设“ 〞是“ 〞的〔〕
A 充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
6.命题“ , 〞的否定为〔〕
A.椭圆 焦距为 B.椭圆 的短轴长为
C. 的最小值为 D.过点 的圆 的切线斜率为
12.已经知道函数 ,那么以下结论中,正确的有〔〕
A. 是 的最小正周期
B. 在 上单调递增
C. 的图象的对称轴为直线
D. 的值域为
三、填空题〔此题共4小题,每题5分,共20分〕
13.假设曲线 在点 处的切线与直线 平行,那么 _________.
D.倾向于复工后在家办公或在公司办公的职工超过986名
10.已经知道向量 (2,1), (1,﹣1), (m﹣2,﹣n),其中m,n均为正数,且( )∥ ,以下说法正确的选项是〔〕
A.a与b的夹角为钝角
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档