8分钟就懂的毫米波雷达系统及毫米波技术发展趋势

合集下载

军用毫米波雷达的应用及其发展趋势

军用毫米波雷达的应用及其发展趋势

控制与制导军用毫米波雷达的应用及其发展趋势同武勤凌永顺蒋金水摘要随着毫米波技术的发展, 毫米波频率的雷达也得到了更深的研究和发展。

评述了毫米波雷达的优缺点, 以及它的应用, 同时详细阐述了军用毫米波雷达发展的新技术和新方法。

主题词毫米波毫米波雷达集成电路应用引言毫米波雷达技术的研究起步很早, 有文献称, 在二战结束前后即已开始, 但至少在20 世纪50 年代就已在毫米波器件研制及毫米波传播损耗水蒸汽与氧气等吸收谱等方面均已取得相当成就, 并已研制成功机场交通管制用的毫米波雷达[ 2 , 5 ] 。

最初, 对发展毫米波雷达的推动力主要来自要在用小口径天线即可获得比微波雷达更窄的天线波束, 高的天线增益。

窄波束具有的高分辨率和由于空间选择性好而带来的高抗干扰能力。

海湾战争和科索沃战争的实践已经表明,“远程打击, 精确打击”技术在军事应用中非常重要, 高精度、高分辨率测量、精确制导和精确目标指示、实现自动目标识别( ATR) 等需求对毫米波(MMW) 雷达的发展提供了巨大的新的推动力。

毫米波雷达的应用主要限制在近程雷达上, 其主要原因有两个: 一是难以获得符合要求的高发射功率和相应的低损耗传输馈线; 二是毫米波在大气中传输时损耗大。

例如, 在8mm 和3mm 窗口, 单程传播损耗分别为0. 08dB/ km 和0. 3dB/ km 左右[ 4 ] 。

1 毫米波雷达的系统概念毫米波雷达系统由两个Modcom p 9250 计算机控制, 并可细分为如图1 所示的一些主要分系统。

发射信号按雷达计算机控制的速率, 通过双工器输出。

回波信号的返回时间也由该计算机控制, 该信号被输入到接收机, 在此, 它经下变频处理并以20MHz 速率采样。

得到的信号由数字脉冲压缩系统压缩处理。

该数字信号被记录在一个“廉价硬盘冗余阵列”( redundant array of inexpensive di sks) ( R AID) 记录系统上, 并且也输入到一个阵列处理机上, 该阵列处理机对这些数字实施综合处理。

2024年毫米波雷达市场前景分析

2024年毫米波雷达市场前景分析

2024年毫米波雷达市场前景分析引言毫米波雷达是一种基于毫米波频段的无线通信技术,具有高速率、低延迟和大容量的特点。

随着无人驾驶技术和物联网的发展,毫米波雷达市场呈现出巨大的潜力和市场前景。

本文将对毫米波雷达市场前景进行分析,探讨其应用领域和发展趋势。

毫米波雷达的应用领域毫米波雷达在各个领域都有广泛的应用,主要包括以下几个方面:1.无人驾驶汽车:毫米波雷达可以实现对车辆周围环境的高精度感知,提供实时的障碍物检测和距离测量,为无人驾驶汽车的安全驾驶提供支持。

2.智能交通系统:毫米波雷达可以应用于智能交通系统中,实现对交通流量的监测、拥堵预警和自动驾驶的功能。

3.安防监控:毫米波雷达可以用于安防监控领域,实现对人员和物体的实时监测,提供高精度的运动检测和跟踪能力。

4.无人机:毫米波雷达可以应用于无人机中,实现对周围环境的感知,提供高精度的导航和避障功能。

毫米波雷达市场的发展趋势1.技术进步:随着技术的不断进步,毫米波雷达的性能将不断提高,包括测距精度的提高、可靠性的增加和成本的降低,进一步推动其市场的发展。

2.政策支持:政府对于无人驾驶和智能交通等领域的支持和推动,将为毫米波雷达市场的增长提供重要的推动力。

3.市场需求:随着无人驾驶、智能交通和物联网的普及,对毫米波雷达的需求将不断增加,市场规模将快速扩大。

4.竞争格局:随着市场的逐渐成熟,竞争格局将逐渐形成,技术和产品的差异化将成为企业竞争的关键。

毫米波雷达市场前景展望毫米波雷达市场具有广阔的发展前景,主要体现在以下几个方面:1.市场规模扩大:随着无人驾驶和智能交通等领域的迅猛发展,毫米波雷达市场的规模将不断扩大。

2.技术创新:毫米波雷达技术的不断创新和突破将带来更高的性能和更广泛的应用领域,进一步推动市场的发展。

3.市场竞争加剧:随着市场的热度不断提高,竞争将日趋激烈,只有不断创新和提高产品性能,企业才能在市场竞争中立于不败之地。

4.合作机会增多:随着市场的发展,毫米波雷达相关产业链的合作机会将不断增多,各个环节的企业都有机会参与到市场中,实现共赢。

2024年毫米波雷达市场发展现状

2024年毫米波雷达市场发展现状

2024年毫米波雷达市场发展现状1. 简介毫米波雷达是一种利用毫米波频段(30-300 GHz)进行探测和测距的雷达系统。

由于毫米波具有高频率、短波长的特点,毫米波雷达在无线通信、自动驾驶、安防监控等领域具有广泛应用前景。

本文将对毫米波雷达市场的发展现状进行分析。

2. 毫米波雷达市场规模根据市场调研公司的数据,预计到2027年,全球毫米波雷达市场规模将达到XX亿美元。

市场规模的增长主要得益于以下几个因素:•自动驾驶技术的发展推动了毫米波雷达在汽车领域的应用。

毫米波雷达可以提供高精度的障碍物检测和测距能力,为自动驾驶车辆提供关键的感知能力。

•5G技术的快速发展也为毫米波雷达的应用带来了新的机遇。

毫米波雷达可以在5G网络中提供具有高带宽和低时延的通信能力,实现大规模的智能物联网应用。

•安防监控领域对高精度、高分辨率的监测需求不断增加,毫米波雷达在人体检测、人脸识别等方面具有独特优势,成为安防监控系统中的重要组成部分。

3. 毫米波雷达市场应用3.1 自动驾驶随着自动驾驶技术的快速发展,毫米波雷达成为自动驾驶系统中不可或缺的核心感知器。

毫米波雷达可以实现高精度的障碍物检测和测距,为自动驾驶车辆提供重要的环境感知信息。

3.2 5G通信毫米波雷达在5G通信中具有广泛的应用前景。

毫米波雷达可以提供高带宽、低时延的通信能力,支持大规模的智能物联网应用。

同时,毫米波雷达在5G通信中还可以实现多输入多输出(MIMO)技术,提升通信的可靠性和容量。

3.3 安防监控毫米波雷达在安防监控领域具有广泛应用。

由于毫米波雷达能够实现高分辨率的人体检测,可以在夜间或复杂环境下提供可靠的监测能力。

此外,毫米波雷达还可以进行人脸识别等高级监控功能,为安防系统提供更完善的功能。

4. 毫米波雷达关键技术挑战虽然毫米波雷达市场有较大的应用前景,但仍然存在一些技术挑战需要克服:•随着频率的增加,毫米波信号对障碍物的穿透力较差,容易受到雨、雪、雾等天气影响,限制了毫米波雷达的应用范围。

毫米波雷达技术及其发展趋势

毫米波雷达技术及其发展趋势

1.引言毫米波的工作频率介于微波和光之间,因此兼有两者的优点。

它具有以下主要特点: 1)极宽的带宽。

通常认为毫米波频率范围为26.5~300GHz,带宽高达273.5GHz。

超过从直流到微波全部带宽的10倍。

即使考虑大气吸收,在大气中传播时只能使用四个主要窗口,但这四个窗口的总带宽也可达135GHz,为微波以下各波段带宽之和的5 倍。

这在频率资源紧张的今天无疑极具吸引力。

2)波束窄。

在相同天线尺寸下毫米波的波束要比微波的波束窄得多。

例如一个 12cm的天线,在9.4GHz时波束宽度为18度,而94GHz时波速宽度仅1.8度。

因此可以分辨相距更近的小目标或者更为清晰地观察目标的细节。

3)与激光相比,毫米波的传播受气候的影响要小得多,可以认为具有全天候特性。

4)和微波相比,毫米波元器件的尺寸要小得多。

因此毫米波系统更容易小型化。

由于毫米波的这些特点,加上在电子对抗中扩展频段是取得成功的重要手段。

毫米波技术和应用得到了迅速的发展。

2.毫米波技术的应用表面上看来毫米波系统和微波系统的应用范围大致是一样的。

但实际上两者的性能有很大的差异,优缺点正好相反。

因此毫米波系统经常和微波系统一起组成性能互补的系统。

下面分述各种应用的进展情况。

2.1毫米波雷达毫米波雷达的优点是角分辨率高、频带宽因而有利于采用脉冲压缩技术、多普勒颇移大和系统的体积小。

缺点是由于大气吸收较大,当需要大作用距离时所需的发射功率及天线增益都比微波系统高。

下面是一些典型的应用实例。

2.1.1 空间目标识别雷达它们的特点是使用大型天线以得到成像所需的角分辨率和足够高的天线增益,使用大功率发射机以保证作用距离。

例如一部工作于35GHz的空间目标识别雷达其天线直径达36m。

用行波管提供10kw的发射功率,可以拍摄远在16,000km处的卫星的照片。

一部工作于94GHz的空间目标识别雷达的天线直径为13.5m。

当用回族管提供20kw的发射功率时,可以对14400km 远处的目标进行高分辨率摄像。

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势概述:雷达技术是一种利用电磁波进行探测和测量的技术,广泛应用于军事、航空航天、气象、地质勘探、交通管理等领域。

本文将介绍雷达技术的发展历程,并展望未来雷达技术的发展趋势。

一、雷达技术的发展历程1. 早期雷达技术早期雷达技术起源于20世纪初,最早应用于军事领域。

当时的雷达系统主要采用机械扫描方式,使用长波或短波频段的电磁波进行探测。

这些系统具有较低的分辨率和探测距离有限的缺点,但仍然为军事战略提供了重要的情报支持。

2. 二战时期的雷达技术突破二战期间,雷达技术取得了重大突破。

通过引入脉冲压缩和窄波束技术,雷达系统的分辨率和探测距离得到了显著提高。

此外,雷达系统还开始应用于航空领域,用于飞机导航和目标跟踪。

这一时期的雷达技术进一步巩固了其在军事领域的地位。

3. 后二战时期的雷达技术发展二战后,雷达技术得到了广泛应用和发展。

雷达系统开始采用固态电子器件,提高了系统的可靠性和稳定性。

同时,频率范围也得到了扩展,从长波和短波频段发展到微波和毫米波频段。

这一时期的雷达技术进一步提高了分辨率、探测距离和目标识别能力。

4. 现代雷达技术的发展近年来,雷达技术在多个领域取得了显著进展。

现代雷达系统采用数字信号处理和宽带技术,使得雷达系统具有更高的分辨率、更远的探测距离和更强的抗干扰能力。

此外,雷达系统还开始应用于民用领域,如交通管理、气象预报和地质勘探等。

二、未来雷达技术的发展趋势1. 高分辨率雷达系统未来雷达技术将继续追求更高的分辨率。

通过采用更高频率的电磁波、更精密的天线设计和更先进的信号处理算法,雷达系统将能够实现更精确的目标识别和跟踪。

2. 多功能雷达系统未来雷达系统将朝着多功能化发展。

传统雷达系统通常只能实现单一功能,如目标探测或跟踪。

而未来的雷达系统将集成多种功能,如目标识别、环境感知和通信等,以满足不同领域的需求。

3. 主动阵列雷达技术主动阵列雷达技术是未来雷达技术的一个重要发展方向。

2024年毫米波雷达行业报告

2024年毫米波雷达行业报告

一、市场概述毫米波雷达是一种新兴的无线通信技术,具有高频率、大带宽、高速率等优点,在未来的智能交通、智能制造、智慧城市等领域有着广阔的应用前景。

2023年,毫米波雷达市场呈现快速增长的趋势,预计行业规模将继续扩大。

二、市场驱动因素1.智能交通领域需求增加:随着城市交通拥堵问题的日益突出,智能交通系统需求不断增加,毫米波雷达作为重要的感知技术,可以提供高精度的目标检测和跟踪能力。

2.5G通信技术的普及:5G通信技术的快速发展,为毫米波雷达的应用提供了更大的带宽和更快的传输速度,推动了毫米波雷达的市场需求。

3.智能制造的发展:在工业自动化领域,毫米波雷达具有较强的穿透能力和较高的测距精度,可以实现对移动机器人、物料堆放等精确检测,提高生产效率和安全性。

三、市场应用1.智能交通领域:毫米波雷达可以应用于车辆自动驾驶、智能停车、智能交通信号灯等场景,为交通管理和道路安全提供重要支持。

2.工业自动化领域:毫米波雷达可以用于物流设备的智能感知、机器人导航、工业物料堆放等场景,提高生产效率和智能化水平。

3.安防监控领域:毫米波雷达可以用于室内外安防监控和边界防护,检测和跟踪入侵者,防止犯罪事件的发生。

4.环境监测领域:毫米波雷达可以应用于气象预测、气候监测等领域,提供高精度的天气数据和环境信息。

四、市场竞争格局目前,国内外毫米波雷达市场竞争激烈,国际厂商有多家公司在该领域具备技术优势和市场份额。

国内企业也积极推进毫米波雷达的研发和应用,与国际竞争企业展开合作与竞争。

未来市场竞争将更加激烈,相关企业需要不断提升自身技术实力和创新能力,开展更深入的市场拓展和产品研发。

五、市场发展趋势1.小型化趋势:未来毫米波雷达产品将逐渐实现小型化,并且与其他传感器融合,形成多模态智能感知系统。

2.高精度需求增加:随着各个领域对目标检测和跟踪精度要求的提高,毫米波雷达的应用将更加广泛。

3.创新应用领域拓展:随着技术的不断发展,毫米波雷达在医疗、农业、无人机等领域的应用有望得到拓展。

雷达技术的最新应用趋势

雷达技术的最新应用趋势

雷达技术的最新应用趋势雷达技术是现代科技中不可或缺的一部分,它具有多种应用场景,包括军事、民用、空间探测、气象预报、移动通信等诸多领域。

随着技术的不断发展,雷达的应用越来越广泛,而且不断出现新的应用趋势。

本文将探讨雷达技术的最新应用趋势。

一、毫米波雷达毫米波雷达是近年来发展起来的一种新型雷达技术,主要用于近距离测量和成像。

相比于传统的雷达技术,毫米波雷达具有更高的分辨率和更广泛的应用范围。

毫米波雷达可以用于成像、人体监测、无人驾驶车辆等应用中,尤其是在无人驾驶领域中,毫米波雷达可以更好地识别路面障碍物,提高车辆的自主行驶能力。

二、人工智能应用雷达技术在人工智能领域中的应用也越来越广泛。

利用雷达技术可以实现人机交互、目标检测、行为识别等多项功能。

在视觉识别无法完成的场景下,如雾霾天气、低照度环境、粒子污染等情况下,雷达技术的应用可以更好地识别和定位目标物,为智能化设备提供更多可能。

三、多传感器融合多传感器融合是指结合多个传感器对目标进行识别和定位,以达到更高的准确率和可靠性。

除了雷达技术之外,多传感器融合还需要结合声学、光学、红外等多种传感器技术。

多传感器融合可以在多种应用中得到应用,特别是在军事、安防、智能交通等领域中,它可以提高命中率、识别率以及识别准确度,从而更好地保障社会安全和人民生命财产。

四、3D图像雷达3D图像雷达是近年来发展起来的一种新型雷达技术。

它利用激光波浪对目标进行扫描,可以实现目标的三维成像和定位。

相比于传统的雷达技术,3D图像雷达可以提供更多的信息,包括目标的大小、形状、距离、速度、方向等等。

这种技术可以应用在机器人导航、无人机探测和军事情报等多种场景中。

五、基于雷达的无线充电基于雷达技术的无线充电是目前新兴的一个应用领域。

它可以通过射频波浪向目标传输电能,实现对目标设备的无线充电。

在多种无法传输电能的场景下,包括雨雾天气、远距离无法进行有线充电的场合等等,基于雷达技术的无线充电可以提供便利和实用性,并将为人们的生活和工作带来极大的便利。

2024年毫米波雷达市场分析现状

2024年毫米波雷达市场分析现状

2024年毫米波雷达市场分析现状引言毫米波雷达是一种基于毫米波频段的雷达技术,具有高分辨率和远距离探测能力,广泛应用于军事、航空、汽车、安防等领域。

本文将对当前毫米波雷达市场的分析现状进行探讨。

市场规模分析近年来,随着技术的不断进步和应用领域的拓展,毫米波雷达市场呈现快速增长的趋势。

市场规模方面,根据市场研究机构的数据显示,2019年全球毫米波雷达市场规模达到XX亿美元,预计到2025年将增长到XX亿美元。

这说明毫米波雷达市场具有巨大的发展潜力。

应用领域分析军事领域毫米波雷达在军事领域中有广泛的应用。

它可以用于目标探测、目标跟踪、弹道导弹防御、敌我识别等方面。

毫米波雷达具有高分辨率和抗干扰能力,在军事作战中起到了关键作用。

航空领域毫米波雷达在航空领域中也有重要的应用。

它可以用于飞行器的无人驾驶、障碍物检测、空中交通管制等方面。

毫米波雷达具有低功耗和高可靠性的特点,在航空领域中有着广阔的市场需求。

汽车领域毫米波雷达在汽车领域中被广泛应用于智能驾驶系统中。

它可以用于车辆的自动刹车、自动泊车、车道偏离预警等功能。

毫米波雷达具有较高的探测距离和良好的适应性,对于提高汽车安全性具有重要意义。

安防领域毫米波雷达在安防领域中也有着广泛的应用。

它可以用于人员检测、边境监控、目标追踪等方面。

毫米波雷达具有良好的穿透性和隐蔽性,对于加强安防工作具有重要作用。

市场竞争格局分析目前,全球毫米波雷达市场竞争格局较为激烈。

主要的市场参与者包括Honeywell、Raytheon、Lockheed Martin、Thales Group等知名企业。

这些企业在技术研发、产品创新和市场推广方面具有一定的优势。

此外,新兴企业也在毫米波雷达市场中崭露头角。

它们通过技术创新和市场定位的灵活性获得了市场份额的增长。

然而,由于市场的技术门槛较高,新兴企业面临着技术挑战和市场竞争的压力。

发展趋势展望随着科技的不断进步和市场需求的增加,毫米波雷达市场有望迎来更广阔的发展前景。

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势一、发展历程雷达(Radar)是一种利用电磁波进行目标探测和测距的技术。

它的发展可以追溯到20世纪初期,以下是雷达技术的发展历程:1. 早期实验(20世纪初期至第一次世界大战):雷达技术的雏形可以追溯到早期的无线电实验。

当时,人们开始意识到无线电波在空中传播时会受到反射和散射,这为雷达的发展奠定了基础。

2. 第二次世界大战(1939-1945):雷达在第二次世界大战期间得到了广泛应用。

雷达系统被用于探测敌方飞机、舰船和潜艇,有效地提高了军事作战的效率。

这一时期的雷达技术取得了重大突破,包括脉冲雷达、连续波雷达和相控阵雷达的发展。

3. 后战时期(1945年至今):战后,雷达技术得到了进一步的发展和应用。

雷达系统不仅被广泛应用于军事领域,还在民用领域发挥着重要作用。

雷达在航空、航海、气象、地质勘探等领域的应用越来越广泛。

二、未来发展趋势随着科技的不断进步,雷达技术也在不断发展,以下是雷达技术未来的发展趋势:1. 多波束雷达:多波束雷达是指能够同时发射和接收多个波束的雷达系统。

它可以提高雷达的探测效率和目标定位精度,适用于复杂环境下的目标探测和跟踪。

2. 超高频雷达:超高频雷达是指工作频率超过30 GHz的雷达系统。

相比传统的雷达系统,超高频雷达具有更高的分辨率和探测灵敏度,可以更好地探测小型目标,如无人机和导弹。

3. 毫米波雷达:毫米波雷达是指工作波长在毫米级别的雷达系统。

毫米波雷达具有更高的分辨率和穿透能力,可以用于人体成像、安全检测和无人驾驶等领域。

4. 合成孔径雷达:合成孔径雷达利用雷达系统与目标之间的相对运动来合成一个大孔径,从而提高雷达图像的分辨率。

合成孔径雷达可以应用于地质勘探、环境监测和目标识别等领域。

5. 雷达与人工智能的结合:人工智能技术在雷达领域的应用越来越广泛。

通过将深度学习和神经网络等人工智能技术应用于雷达数据处理和目标识别,可以提高雷达的自动化程度和目标识别的准确性。

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势一、雷达技术发展历程雷达(Radar)是一种利用电磁波进行探测和测量的无线电设备,广泛应用于军事、航空、航海、气象等领域。

雷达技术的发展经历了多个阶段,下面将对其发展历程进行详细介绍。

1. 早期雷达技术发展阶段(20世纪20年代-40年代)20世纪20年代至40年代初,雷达技术处于起步阶段。

最早的雷达系统由英国科学家罗伯特·沃森-瓦特(Robert Watson-Watt)于1935年发明,用于探测飞机。

这一阶段的雷达系统主要采用脉冲雷达技术,通过发送短脉冲信号并测量其回波时间来确定目标的距离。

2. 雷达技术的进一步发展(40年代-60年代)40年代至60年代,雷达技术得到了进一步的发展和完善。

在第二次世界大战期间,雷达在军事应用中发挥了重要作用,成为战争中的关键技术。

这一阶段的雷达系统不仅可以测量目标的距离,还可以测量目标的方位和高度。

同时,雷达系统的工作频率也逐渐增加,从甚高频(VHF)发展到超高频(UHF)和毫米波(mmWave)。

3. 雷达技术的数字化和多功能化(60年代-80年代)60年代至80年代,雷达技术开始向数字化和多功能化方向发展。

传统的摹拟雷达系统逐渐被数字雷达系统所取代,数字信号处理技术的应用使雷达系统的性能得到了显著提升。

此外,雷达系统还开始具备多种功能,如目标识别、目标跟踪、天气探测等。

这一阶段的雷达系统还引入了自适应波形和脉冲压缩等技术,提高了雷达系统的探测性能和抗干扰能力。

4. 雷达技术的应用拓展和集成化(80年代至今)80年代至今,雷达技术的应用范围不断拓展,并逐渐实现了雷达系统的集成化。

在军事领域,雷达技术被广泛应用于导弹谨防、空中监视、战术侦察等任务中。

同时,雷达技术也被应用于民用领域,如航空交通管制、天气预报、地质勘探等。

雷达系统的集成化发展使得雷达设备更加小型化、轻便化,并具备更高的性能和可靠性。

二、雷达技术未来发展趋势随着科技的不断进步,雷达技术在未来将继续发展,具有以下几个主要趋势:1. 高频段和毫米波雷达技术的应用增加随着通信技术的发展,频谱资源日益紧张,传统的雷达频段面临一定的限制。

毫米波雷达的应用和发展

毫米波雷达的应用和发展

毫米波雷达的应用和发展摘要:毫米波雷达技术根植于电磁波传感领域的长期积累和技术进步,毫米波波段在电磁频谱中处于高频端,波长较短,因此具备较高分辨率,使得毫米波雷达能够精确识别和定位目标,适用于军事情报收集和监测等高精度应用领域。

本文围绕毫米波雷达展开研究,着重探讨其在不同领域中的应用,以及其未来发展趋势,旨在为其更多应用提供广阔发展空间。

关键词:毫米波雷达;应用;发展引言:作为前沿技术,毫米波雷达的应用和发展在当今科技领域引起了广泛关注。

毫米波雷达系统在毫米波段(30 GHz至300 GHz)内工作,以其高频率和高带宽的特点,成为无线通信、感测、监测以及安全领域的重要工具。

本文旨在深入研究毫米波雷达的应用领域和发展趋势,以探讨其在各个领域中的重要性以及未来可能的发展方向,为未来技术进步和创新提供有益参考。

1 毫米波雷达的应用1.1 军事领域应用毫米波雷达在军事领域的应用方面具有广泛潜力,其高频率操作和卓越的性能特征使其在现代战争和国防中发挥了关键作用,其在军事领域中的主要应用领域分述如下:(1)军事情报收集和目标检测。

毫米波雷达的高频率工作使其能够在强降雨、雪暴以及雾霾等各种气象条件下进行精确的目标探测,提供可靠的数据。

此种可靠性能够帮助决策者了解敌方军事活动和部署情况,对于军事战略规划和情报收集至关重要[1]。

(2)目标跟踪和导航。

在现代战斗中,目标的高速移动和机动性使其成为难以捉摸的挑战。

毫米波雷达的高分辨率成像和快速扫描能力使其能够精确追踪这些目标,提供实时位置信息,有助于确保精准打击及作战成功。

(3)隐身飞行器探测。

隐身技术使敌方飞行器更难以被传统雷达系统探测到,但毫米波雷达能够探测到这些隐身飞行器的微小的雷达截面,提供有效解决方案,有助于确保国防的安全。

(4)陆地和海上监测。

毫米波雷达的高分辨率成像能力使其能够监测未经授权的人员或车辆等潜在威胁,此外,毫米波雷达还用于监测海洋环境,完成船只和潜艇探测,有助于提高国土安全和领海保护。

毫米波技术的国内外发展现状与趋势(已看)(DOC)

毫米波技术的国内外发展现状与趋势(已看)(DOC)

毫米波技术的国内外发展现状与趋势【主要整理与翻译自“mm-Wave Silicon Technology, 60GHz and Beyond, Ali M. Niknejad, Hossein Hashemi, Springer 2008”,以及部分网络资料,如有侵权请勿怪!】随着千兆比特流(Gb/s)点对点链接通信、大容量的无线局域网(WLAN)、短距离高速无线个人局域网(WPAN)和车载雷达等高速率宽频带通信应用的市场需求不断扩大,设计实现具有高集成度、高性能、低功耗和低成本的毫米波单片集成电路(MMIC)迫在眉睫。

毫米波可以广泛应用于军事雷达系统、射电天文学和太空以及短距离无线高速传输等领域。

采用GaAs 或InP基的毫米波频段的MMIC已经应用于军事上的雷达和卫星通信中。

由于GaAs和InP材料具有较高的电子迁移率和电阻率,因此电路可以获得较好的RF性能,但成本较高。

由于受到成本和产量的限制,毫米波产品还没有真正实现商业化。

作为成熟的工艺,Si基CMOS具有低成本、低功耗以及能与基带IC 模块的工艺相兼容等优点,但是与GaAs相比,其在高频性能和噪声性能方面并不具备优势。

然而,随着深亚微米和纳米工艺的日趋成熟,设计实现毫米波CMOS集成电路已经成为可能。

近年来,美、日、韩等国相继开放了无需授权使用的毫米波频段(北美和韩国57-64GHz,欧洲和日本59-66GHz),从而进一步刺激了对毫米波CMOS技术的研究。

可以预期,在今后几年里,毫米波CMOS 技术将会突飞猛进,成为设计毫米波MMIC的另一种有效的选择。

硅基毫米波的研究起始于2000年左右,同年Berkeley的无线研究中心专门设立了60GHz项目,但是当时很少有人认为硅技术能够应用于60GHz频段。

而时至今日,毫米波的研究已经从一项模糊的课题演变至今日的研究热点,引起了工业界与风险投资商的浓厚兴趣。

目前,该项研究已经拓展到了商业领域,NEC、三星、松下和LG等消费类电子厂商共同成立了WirelessHD联盟来推动60GHz技术在无压缩高清视频传输中的应用,并于2007年制定了相关协议白皮书。

2023年毫米波雷达行业市场发展现状

2023年毫米波雷达行业市场发展现状

2023年毫米波雷达行业市场发展现状随着自动驾驶、智能交通、智慧城市等领域的快速发展,毫米波雷达行业迎来了全新的发展机遇。

毫米波雷达具有波长短、穿透能力强、抗干扰能力强、分辨率高等优点,在工业、军事、汽车、智能交通等领域都有广泛应用。

一、毫米波雷达行业市场发展现状1、市场规模不断扩大随着人工智能、5G等技术的快速发展,毫米波雷达逐渐被广泛应用。

根据《毫米波雷达市场报告》的数据显示,全球毫米波雷达市场规模从2015年的24.7亿美元,到2019年的34.5亿美元,年复合增长率达到了9%。

预计到2025年,全球毫米波雷达市场规模将达到62亿美元。

2、应用场景多样化毫米波雷达作为一种功能强大的感知设备,逐渐涉及到了汽车辅助驾驶、智能家居、安防监控、工业自动化等多个领域。

在汽车领域,毫米波雷达可以用来实现自动泊车、智能巡航、智能制动等功能。

在智能家居领域中,毫米波雷达可以用来实现人体动作识别、智能家具控制等功能。

同时,在工业自动化、安防监控等领域中,毫米波雷达也逐渐得到应用。

3、产业链不断完善目前,全球毫米波雷达主要供应商集中在美国、日本、德国等国家。

其中,美国企业RadarWave在车用毫米波雷达市场具有绝对优势;日本企业日立、尼康等则在安防监控领域处于领先地位;德国企业Fraunhofer IOSB-AST具有较高的技术水平和研发实力。

目前,国内企业在毫米波雷达领域仍然处于起步的阶段,但是随着国内自主创新能力的提升,国内企业也将逐渐走向成熟。

二、毫米波雷达行业未来发展趋势1、技术创新将趋于多元化随着毫米波雷达在各个领域的应用不断扩大,技术也将变得更加多元化。

目前,毫米波雷达主要应用于距离测量、速度测量、血液流量测量等方面。

未来,随着人工智能、自然语言处理等技术的发展,毫米波雷达将逐渐应用于语音识别、人机交互等领域。

2、行业应用场景进一步深化目前,毫米波雷达在汽车、智能家居、安防监控、工业自动化等领域逐渐得到了应用。

8分钟就懂的毫米波雷达系统及毫米波技术发展趋势

8分钟就懂的毫米波雷达系统及毫米波技术发展趋势

8分钟就懂的毫米波雷达系统及毫米波技术发展趋势随着ADAS普及率的提升,要能够全方位覆盖汽车周围环境的感测,一辆汽车会装载“长+中+短”多颗毫米波雷达,到了最终L5级自动驾驶阶段甚至超过10颗,预计2021年全球毫米波雷达的出货量将达到8400万个。

在上一篇《毫米波雷达在ADAS中的应用》中,麦姆斯咨询提到随着ADAS普及率的提升,要能够全方位覆盖汽车周围环境的感测,一辆汽车会装载“长+中+短”多颗毫米波雷达,到了最终L5级自动驾驶阶段甚至超过10颗,预计2021年全球毫米波雷达的生货量将达到8400万个。

这是一个可预见的庞大市场,所以无论是传统的汽车Tier1厂商,还是新兴的初创企业,都纷纷加入到汽车雷达产业中来,希望能分一杯羹!不过现实的竞争又是很残忍的。

首先,汽车的空间容量有限,特别是现在汽车主流是向轻便、节能方向发展,别说增加零部件了;其次,精明的消费者只接受加量不加价,性能提高了,价格还得降低。

所以,能不能抢到市场先机,摆在各家毫米波雷达厂商面前的主要问题是如何实现“更小巧、更便宜、更智能”的毫米波雷达!带着这些疑问,今天我们来了解一下车载毫米波雷达系统及其核心元器件,探一探毫米波雷达技术的发展趋势。

毫米波雷达系统基本结构在《认识毫米波雷达》文章中,我们知道了毫米波雷达是基于多普勒原理,根据回波和发射波之间的时间差和频率差来实现对目标物体距离、速度以及方位的测量。

根据辐射电磁波方式不同,毫米波雷达主要有脉冲和连续波两种工作方式(图1)。

其中连续波又可以分为FSK(频移键控)、PSK(相移键控)、CW(恒频连续波)、FMCW(调频连续波)等方式。

图1、毫米波雷达工作方式FMCW雷达具有可同时测量多个目标、分辨率较高、信号处理复杂度低、成本低廉、技术成熟等优点,成为目前最常用的车载毫米波雷达,德尔福(Delphi)、电装(Denso)、博世(Bosch)等Tier1供应商士!!采用FMCW调制方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8分钟就懂的毫米波雷达系统及毫米波技术发展趋势随着ADAS普及率的提升,要能够全方位覆盖汽车周围环境的感测,一辆汽车会装载“长+中+短”多颗毫米波雷达,到了最终L5级自动驾驶阶段甚至超过10颗,预计2021年全球毫米波雷达的出货量将达到8400万个。

在上一篇《毫米波雷达在ADAS中的应用》中,麦姆斯咨询提到随着ADAS普及率的提升,要能够全方位覆盖汽车周围环境的感测,一辆汽车会装载“长+中+短”多颗毫米波雷达,到了最终L5级自动驾驶阶段甚至超过10颗,预计2021年全球毫米波雷达的出货量将达到8400万个。

这是一个可预见的庞大市场,所以无论是传统的汽车Tier 1厂商,还是新兴的初创企业,都纷纷加入到汽车雷达产业中来,希望能分一杯羹!不过现实的竞争又是很残忍的。

首先,汽车的空间容量有限,特别是现在汽车主流是向轻便、节能方向发展,别说增加零部件了;其次,精明的消费者只接受加量不加价,性能提高了,价格还得降低。

所以,能不能抢到市场先机,摆在各家毫米波雷达厂商面前的主要问题是如何实现“更小巧、更便宜、更智能”的毫米波雷达!带着这些疑问,今天我们来了解一下车载毫米波雷达系统及其核心元器件,探一探毫米波雷达技术的发展趋势。

毫米波雷达系统基本结构在《认识毫米波雷达》文章中,我们知道了毫米波雷达是基于多普勒原理,根据回波和发射波之间的时间差和频率差来实现对目标物体距离、速度以及方位的测量。

根据辐射电磁波方式不同,毫米波雷达主要有脉冲和连续波两种工作方式(图1)。

其中连续波又可以分为FSK(频移键控)、PSK(相移键控)、CW(恒频连续波)、FMCW(调频连续波)等方式。

图1、毫米波雷达工作方式FMCW雷达具有可同时测量多个目标、分辨率较高、信号处理复杂度低、成本低廉、技术成熟等优点,成为目前最常用的车载毫米波雷达,德尔福(Delphi)、电装(Denso)、博世(Bosch)等Tier 1供应商均采用FMCW调制方式。

以FMCW为例(图2),毫米波雷达系统主要包括天线、前端收发组件、数字信号处理器(DSP)和控制电路,其中天线和前端收发组件是毫米波雷达的最核心的硬件部分。

以下将分别详细介绍。

图2、FMCW雷达系统天线天线作为毫米波发射和接收的重要部件,是汽车毫米波雷达有效工作的关键设计之一,同时也影响到毫米波雷达能否赢得市场芳心。

如果你路过雷达基站,一定对其庞大的机械扫描天线印象深刻(图3),显然这些天线对于外观和体积要求苛刻的汽车是不适合的。

那么毫米波雷达的天线要如何设计?首先,天线的生产要能够大批量且低成本。

其次,天线的设计要便于安装在车的头部。

同时,天线必须被集成在车内而不能影响汽车的外观。

图3、不同尺寸与性状的的雷达天线理论和实践证明,当天线的长度为无线电信号波长的1/4时,天线的发射和接收转换效率最高。

因此,天线的长度将根据所发射和接收信号的频率或波长来决定。

幸运的是,毫米波的波长只有几个毫米,所以毫米波雷达的天线可以做的很小,同时还可以使用多根天线来构成阵列天线,达到窄波束的目的。

目前毫米波雷达天线的主流方案是微带阵列,最常见的一种是设计成可集成在PCB板上的“微带贴片天线”,如图4,在PCB板上的ground层上铺几个开路的微带线形成天线。

图4、24GHz毫米波雷达PCB天线相比一般的微波天线,这种微带天线具有的优点:(1)体积小,重量轻,低剖面,能与载体(如飞行器)共形;(2)低成本,适合于印刷电路技术大批量生产;(3)电性能多样化,不同设计的微带元,其最大辐射方向可以从边射到端射范围内调整,易于得到各种极化;(4)易集成,能和有源器件、电路集成为统一的组件等。

上述优点极大地满足了车载雷达低成本和小体积的需求。

当然,由于毫米波的波长较短,电路极易发射色散和产生高次模,而且基板材料的介电常数和损耗随频率的增加也变化非常明显,为了确保电路性能稳定一致,毫米波雷达需要选择介电常数稳定、损耗特性低等高性能的高频PCB基材。

车载毫米波雷达市场的扩大,同样也驱动着高频基材及基材生产企业在此市场中的竞争,目前主要的国内外高频PCB 基材厂商有:Rogers(美国)、Taconic(美国)、Isola(德国)、生益科技(中国)、沪士(中国)等。

前端收发组件前端收发组件是毫米波雷达的核心射频部分,负责毫米波信号调制、发射、接收以及回波信号的解调。

车载雷达要求前端收发组件具有体积小、成本低、稳定性好等特点,最可行方法就是将前端收发组件集成化。

目前前端收发组件集成的方法主要有混合微波集成电路(HMIC)和单片微波集成电路(MMIC)两种形式。

HMIC是采用薄膜或厚膜技术,先将微波电路制作在适合传输微波信号的基片(如蓝宝石、石英等),再将分立的有源器件连接、组装起来的集成电路。

而MMIC则是采用平面技术,将所有的微波功能电路用半导体工艺制造在砷化镓(GaAs)、锗硅(SiGe)或硅(Si)等半导体芯片上的集成电路。

MMIC集成的功能电路主要包括低噪声放大器(LNA)、功率放大器、混频器、上变频器、检波器、调制器、压控振荡器(VCO)、移相器、开关、MMIC收发前端,甚至整个发射/接收(T/R)组件(收发系统)。

相比HMIC,显然MMIC大大简化了雷达系统结构,集成度高、成本低且成品率高,更适合于大规模生产。

图5、MMIC组成早期的MMIC主要采用化合物半导体工艺,如砷化镓(GaAs)、磷化铟(InP)等。

化合物半导体具有大的禁带宽度、高的电子迁移率和击穿场强等优点,但缺点是集成度不高且价格昂贵。

所以,近十几年来低成本、集成度高的硅基(CMOS、SiGe BiCMOS等)MMIC发展迅速。

图6对这几种MMIC工艺技术的性能进行了对比。

图6、不同工艺技术的MMIC性能对比目前大多数毫米波雷达前端MMIC基于SiGe BiCMOS 技术,SiGe高频特性良好,材料安全性佳,导热性好,而且制程成熟,整合度较高,成本较低的优势。

不过SiGe MMIC 大都是分立式的,即发射器、接收器和处理组件均为独立单元,这使得其设计过程十分复杂,并且整体方案体积庞大。

正如文章开头所说,一辆自动驾驶汽车最终需要有10多个雷达传感器,如果采用SiGe传感器,空间上的限制使得其“难堪重任”。

所以,成本更低、产业链更成熟的CMOS 工艺将成为“中意”的选择。

利用CMOS工艺,不仅可将MMIC做得更小,甚至可以与微控制单元(MCU)和数字信号处理(DSP)集成在一起,实现更高的集成度。

所以这不仅能显著地降低系统尺寸、功率和成本,还能嵌入更多的功能。

虽然CMOS雷达面临速度和低频噪声等问题,随着深亚微米和纳米工艺的不断发展,硅基工艺特征尺寸不断减小,栅长的缩短弥补了电子迁移率的不足,从而使得晶体管的截止频率和最大振荡频率不断提高,这使得CMOS工艺在毫米波雷达应用方面不断地取得突破。

例如,恩智浦(NXP)和片,其中NXP率先将MCU集成进入了其RF CMOS收发MCU单芯片雷达解决方案(AWR1642)已实现了大规模量产,相比于传统的24GHz方案,其外形尺寸缩小33%、功耗减少50%、范围精度提高10倍以上,且整体方案成本更低。

构框图目前MMIC技术主要由国外半导体公司掌控,如英飞凌亚德诺半导体(ADI)。

随着近些年国内创新创业厂商逐渐增长,如厦门意行、加特兰、清能华波、矽杰微电子等,国内24GHz/77GHz MMIC关键技术已取得了突破,其中由意行半导体自主研发的24GHz SiGe雷达射频前端MMIC套片,实现了国内该领域零的突破,打破国外垄断,现已实现量产和供货。

去年,加特兰也发布了其国内首款77GHz CMOS 车载毫米波雷达收发芯片。

数字信号处理器(DSP)数字信号处理系统也是雷达重要的组成部分,通过嵌入不同的信号处理算法,提取从前端采集得到的中频信号,获得特定类型的目标信息。

毫米波雷达的数字处理主要算法包括:阵列天线波速形成和扫描算法、信号预调理、杂波处理算法、目标检测/测量的算法、目标分类与跟踪算法以及信息融合算法。

数字信息处理是毫米波雷达稳定性、可靠性的核心。

数字信号处理可以通过DSP芯片或FPGA芯片来实现。

DSP芯片即指能够实现数字信号处理技术专用集成电路。

DSP芯片是一种快速强大的微处理器,独特之处在于它能即时处理资料。

DSP芯片的内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,可以用来快速的实现各种数字信号处理算法。

FPGA即现场可编程门阵列,它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。

FPGA芯片与DSP芯片是有区别的。

DSP是专门的微处理器,适用于条件进程,特别是较复杂的多算法任务。

FPGA 包含有大量实现组合逻辑的资源,可以完成较大规模的组合逻辑电路设计,同时还包含有相当数量的触发器,借助这些触发器,FPGA又能完成复杂的时序逻辑功能。

在雷达信号处理、数字图像处理等领域中,信号处理的实时性至关重要。

由于FPGA芯片在大数据量的底层算法处理上的优势及DSP 芯片在复杂算法处理上的优势,融合DSP+FPGA的实时信号处理系统的应用越来越广泛。

目前高端DSP芯片和FPGA芯片主要被国外企业垄断,意法半导体(ST)、英飞凌(Infineon)、恩智浦(NXP)等。

FPGA 市场的主要厂商有赛灵思(Xilinx)、阿尔特拉(Altera,被Intel 收购)、美高森美(Microsemi)以及莱迪思(Lattice)。

控制电路控制电路是汽车雷达系统实现汽车主动安全控制执行的最后一环,根据信号处理器获得的目标信息,结合车身动态信息进行数据融合,最终通过主处理器进行智能处理,对车辆前方出现的障碍物进行分析判断,并迅速做出处理和发出指令,及时传输给报警显示系统和制动执行系统。

当前方车辆或物体距离过近超警戒设置时,报警显示系统能以声、光及触觉等多种方式告知或警告驾驶员,前方有危险需要谨慎驾驶。

如遇危险时启动制动系统迅速根据险情对车辆做出包括减速、重刹、停车等主动干预动作,从而保证驾驶过程的安全性和舒适性,减少事故发生几率。

毫米波雷达发展趋势综上分析,毫米波雷达技术的发展趋势是朝着体积更小、功耗更低、集成度更高和多项技术共存融合(性价比更高)方向发展。

从频段上,由于77GHz比24GHz具有更小的波长,可进一步缩减天线尺寸,更便于安装部署。

同时77GHz频段带宽更大、探测距离更远、精度更高,正逐渐成为主流。

不过24GHz在短程BSD/LCA等应用成本优势明显,将长期与77GHz互补共存。

在前端收发组件,高集成化的MMIC成为了主流,在工艺上先是SiGe替代了GaAs,当前正慢慢朝CMOS方向发展。

相关文档
最新文档