整式的乘法综合练习题(乘法公式三套)
整式乘法计算40道(含答案)

整式乘法计算题40道(含答案)一.解答题(共40小题)1.计算:2x3•x3+(3x3)2﹣8x6.2.计算(1)4a2b(﹣2ab)3(2)(3+m)(3﹣m)﹣m(m﹣6)﹣7 3.计算:a3•a4•a+(﹣2a4)2.4.计算:n2•n4+4(n2)3﹣5n3•n25.计算:3a(2﹣a)+3(a﹣3)(a+3).6.计算:m4n2+2m2⋅m4+(m2)3﹣(m2n)27.计算:(1)(﹣t4)3+(﹣t2)6;(2)(m4)2+(m3)2﹣m(m2)2•m3.8.计算a2•a4+(a3)2﹣32a610.计算:(x+3)(x﹣4)﹣x(x+2)﹣511.计算:①(a﹣2b+1)(a+2b+1)②(x+2y﹣1)2 12.计算:(a+b(a﹣b)+(2a﹣b)213.化简:(m+2)(m﹣2)−m3×3m.14.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)15.计算:3(2x﹣1)﹣(﹣3x﹣4)(3x﹣4)16.计算:(1)(−12x2y3)3(2)m2•(2m3)2+(﹣m2)418.计算:(1)x2(x﹣1)﹣x(x2+x﹣1)(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)19.计算﹣4(a+1)2﹣(5+2a)(5﹣2a)20.计算:(1)(﹣3a2b)3﹣(2a3)2•(﹣b)3+3a6b3(2)(2a+b)(2a﹣b)﹣(a﹣b)221.化简:(1)(﹣2x2)3+4x2•3x4;(2)(a+1)2+(a+3)(3﹣a).22.计算:(2a+b)(2a﹣b)﹣2a(a﹣2b)23.计算:(2m2n)2+(﹣mn)(−13m3n).24.计算(1)(x+3)(x﹣5);(2)(x﹣2y)2+(x+y)(x﹣y).25.计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.26.(1)计算:(﹣3xy)2•4x2;(2)计算:(x+2)(2x﹣3).27.计算:(2x﹣1)2﹣x(4x﹣1)28.计算:(m+n+2)(m+n﹣2)﹣m(m+4n).29.计算(1)(3x﹣2)(2x+3)﹣(x﹣1)2;(2)(x+2y)(x﹣2y)﹣2y(x﹣2y)+2xy.30.计算:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y).31.计算:(1)(﹣2x)3(2x3−12x﹣1)﹣2x(2x3+4x2);(2)(x+3)(x﹣7)﹣x(x﹣1).32.计算:(﹣2x)2﹣(2x+1)(2x﹣1)+(x﹣2)233.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2 34.计算:(x+y)2﹣y(2x+y)﹣8x35.运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).36.计算:4(x﹣y)2﹣(2x﹣y)(2x+y)37.计算:(1)3a3b•(﹣2ab)+(﹣3a2b)2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.38.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.39.计算:(a+1)(a﹣3)﹣(a﹣2)2.40.4(x+1)2﹣(2x+5)(2x﹣5)参考答案与试题解析一.解答题(共40小题)1.计算:2x3•x3+(3x3)2﹣8x6.【解答】解:2x3•x3+(3x3)2﹣8x6=2x6+9x6﹣8x6=3x6.2.计算(1)4a2b(﹣2ab)3(2)(3+m)(3﹣m)﹣m(m﹣6)﹣7【解答】解:(1)原式=4a2b(﹣8a3b3)=﹣32a5b4;(2)原式=9﹣m2﹣m2+6m﹣7=﹣2m2+6m+2.3.计算:a3•a4•a+(﹣2a4)2.【解答】解:a3•a4•a+(﹣2a4)2=a8+4a8=5a8.4.计算:n2•n4+4(n2)3﹣5n3•n2【解答】解:n2•n4+4(n2)3﹣5n3•n2=n6+4n6﹣5n5=5n6﹣5n5.5.计算:3a(2﹣a)+3(a﹣3)(a+3).【解答】解:原式=6a﹣3a2+3(a2﹣9)=6a﹣3a2+3a2﹣27=6a﹣27.6.计算:m4n2+2m2⋅m4+(m2)3﹣(m2n)2【解答】解:原式=m4n2+2m6+m6﹣m4n2,=3m6.7.计算:(1)(﹣t4)3+(﹣t2)6;(2)(m4)2+(m3)2﹣m(m2)2•m3.【解答】解:(1)原式=﹣t12+t12=0;(2)原式=m8+m6﹣m8=m6.8.计算a2•a4+(a3)2﹣32a6【解答】解:原式=a6+a6﹣32a6=﹣30a6.9.化简(5x)2•x7﹣(3x3)3+2(x3)2+x3【解答】解:(5x)2•x7﹣(3x3)3+2(x3)2+x3=25x2•x7﹣27x9+2x6+x3=25x9﹣27x9+2x6+x3=﹣2x9+2x6+x3.10.计算:(x+3)(x﹣4)﹣x(x+2)﹣5【解答】解:(x+3)(x﹣4)﹣x(x+2)﹣5=x2﹣4x+3x﹣12﹣x2﹣2x﹣5=﹣3x﹣17.11.计算:①(a﹣2b+1)(a+2b+1)②(x+2y﹣1)2【解答】解:①原式=(a+1)2﹣(2b)2=a2+2a+1﹣4b2②原式=[(x+2y)﹣1]2=(x+2y)2﹣2(x+2y)+1=x2+4xy+4y2﹣2x﹣4y+1=x2+4y2+4xy﹣2x﹣4y+1.12.计算:(a+b(a﹣b)+(2a﹣b)2【解答】解:原式=a2﹣b2+4a2﹣4ab+b2=5a2﹣4ab13.化简:(m+2)(m﹣2)−m3×3m.【解答】解:原式=m2﹣4﹣m2=﹣4.14.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)【解答】解:(1)原式=a2﹣4a+4﹣2a3+a,=﹣2a3+a2﹣3a+4;(2)原式=x2﹣3xy+2xy﹣6y2+x2﹣y2,=2x2﹣xy﹣7y2.15.计算:3(2x﹣1)﹣(﹣3x﹣4)(3x﹣4)【解答】解:原式=6x﹣3﹣(16﹣9x2)=6x﹣3﹣16+9x2=9x2+6x﹣19.16.计算:(1)(−12x2y3)3(2)m2•(2m3)2+(﹣m2)4【解答】解:(1)原式=−18x6y9;(2)原式=m2•4m6+m8=5m8.17.计算:(x+y)2﹣(x+2y)(2x﹣y).【解答】解:原式=x2+2xy+y2﹣(2x2+3xy﹣2y2)=x2+2xy+y2﹣2x2﹣3xy+2y2=﹣x2﹣xy+3y2.18.计算:(1)x2(x﹣1)﹣x(x2+x﹣1)(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)【解答】解:(1)x2(x﹣1)﹣x(x2+x﹣1)=x3﹣x2﹣x3﹣x2+x=﹣2x2+x;(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)=y2﹣4﹣(y2+4y﹣5)=y2﹣4﹣y2﹣4y+5=﹣4y+1.19.计算﹣4(a+1)2﹣(5+2a)(5﹣2a)【解答】解:原式=﹣4(a2+2a+1)﹣(25﹣4a2)=﹣4a2﹣8a﹣4﹣25+4a2=﹣8a﹣29.20.计算:(1)(﹣3a2b)3﹣(2a3)2•(﹣b)3+3a6b3(2)(2a+b)(2a﹣b)﹣(a﹣b)2【解答】解:(1)原式=﹣27a6b3﹣4a6(﹣b3)+3 a6b3=﹣20a6b3;(2)原式=4a2﹣b2﹣(a2﹣2ab+b2)=3a2+2ab﹣2b2.21.化简:(1)(﹣2x2)3+4x2•3x4;(2)(a+1)2+(a+3)(3﹣a).【解答】解:(1)原式=﹣8x6+12x6=4x6;(2)原式=a2+2a+1+(9﹣a2)=a2+2a+1+9﹣a2=2a+10.22.计算:(2a+b)(2a﹣b)﹣2a(a﹣2b)【解答】解:(2a+b)(2a﹣b)﹣2a(a﹣2b)=4a2﹣b2﹣2a2+4ab=2a2﹣b2+4ab.23.计算:(2m2n)2+(﹣mn)(−13m3n).【解答】解:原式=4m4n2+13m4n2=(4+13)m4n2=133m4n2.24.计算(1)(x+3)(x﹣5);(2)(x﹣2y)2+(x+y)(x﹣y).【解答】解:(1)原式=x2﹣5x+3x﹣15=x2﹣2x﹣15;(2)原式=x2﹣4xy+4y2+x2﹣y2=2x2﹣4xy+3y2.25.计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.【解答】解:原式=﹣8x3y3+2x2y2+8x3y3=2x2y2.26.(1)计算:(﹣3xy)2•4x2;(2)计算:(x+2)(2x﹣3).【解答】解:(1)原式=9x2y2•4x2=36x4y2;(2)解:原式=2x2﹣3x+4x﹣6=2x2+x﹣6.27.计算:(2x﹣1)2﹣x(4x﹣1)【解答】解:(2x﹣1)2﹣x(4x﹣1)=4x2﹣4x+1﹣4x2+x=﹣3x+1.28.计算:(m+n+2)(m+n﹣2)﹣m(m+4n).=m2+2mn+n2﹣4﹣m2﹣4mn,=n2﹣2mn﹣4.29.计算(1)(3x﹣2)(2x+3)﹣(x﹣1)2;(2)(x+2y)(x﹣2y)﹣2y(x﹣2y)+2xy.【解答】解:(1)原式=6x2+9x﹣4x﹣6﹣x2+2x﹣1=5x2+7x﹣7;(2)原式=x2﹣4y2﹣2xy+4y2+2xy=x2.30.计算:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y).【解答】解:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y)=4x2﹣4xy+y2﹣y2+4xy﹣(2x2﹣3xy﹣2y2)=4x2﹣2x2+3xy+2y2=2x2+3xy+2y2.31.计算:(1)(﹣2x)3(2x3−12x﹣1)﹣2x(2x3+4x2);(2)(x+3)(x﹣7)﹣x(x﹣1).【解答】解:(1)原式=−8x3(2x3−12x−1)−(4x4+8x3)=−16x6+4x4+8x3﹣4x4﹣8x3=﹣16x6;(2)原式=x2﹣7x+3x﹣21﹣x2+x=﹣3x﹣21.32.计算:(﹣2x)2﹣(2x+1)(2x﹣1)+(x﹣2)2=x2﹣4x+5.33.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2【解答】解:(1)原式=a2+ab﹣ab+b2=a2+b2;(2)原式=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2,=x2﹣4xy+4y2﹣x2+y2﹣2y2,=﹣4xy+3y2.34.计算:(x+y)2﹣y(2x+y)﹣8x【解答】解:原式=x2+2xy+y2﹣2xy﹣y2﹣8x=x2﹣8x.35.运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).【解答】解:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)=(2x)2﹣1﹣(4x2+3x﹣24x﹣18)=4x4﹣1﹣4x2﹣3x+24x+18=21x+17.36.计算:4(x﹣y)2﹣(2x﹣y)(2x+y)【解答】解:4(x﹣y)2﹣(2x﹣y)(2x+y)=4(x2﹣2xy+y2)﹣(4x2﹣y2)=4x2﹣8xy+4y2﹣4x2+y2=5y2﹣8xy.37.计算:(1)3a3b•(﹣2ab)+(﹣3a2b)2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.【解答】解:(1)3a3b•(﹣2ab)+(﹣3a2b)2=﹣6a4b2+9a4b2=3a4b2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣538.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.【解答】解:(1)原式=﹣a6•4a=﹣4a7;(2)原式=2x2+2x+x2+2x+1=3x2+4x+1.39.计算:(a+1)(a﹣3)﹣(a﹣2)2.【解答】解:(a+1)(a﹣3)﹣(a﹣2)2.=a2﹣2a﹣3﹣(a2﹣4a+4)=2a﹣7.40.4(x+1)2﹣(2x+5)(2x﹣5)【解答】解:原式=4x2+8x+4﹣4x2+25=8x+29.。
整式的乘法专题复习二

整式的乘法复习题专题二(乘法公式)知识点一:单项式乘多项式法则:就是利用乘法________律,将单乘多转化为___________,再利用单乘单法则。
针对性练习:1、(1))261(2a a a + (2))21(22y y y -; (3))312(22ab ab a +-(4)-3x (-y -xyz ) (5)3x 2(-y -xy 2+x 2) (6)2ab (a 2b -2431b ac )(7)(a +b 2+c 3)·(-2a ); (8)[-(a 2)3+(ab )2+3]·(ab 3);3.已知:2x ·(x n +2)=2x n +1-4,求x 的值.知识点三:多项式与多项式相乘,先用一个多项式的_________乘另一个多项式的_______,再把所得的积______。
针对性练习:1、(1))3)(2(++x x (2))1)(4(+-a a (3))31)(21(+-y y(4))436)(42(-+x x (5))3)(3(n m n m -+ (6)2)2(y x +2.填空与选择(1)、若n mx x x x ++=+-2)20)(5(,则m=_____ , n=________(2)、若ab kx x b x a x +-=++2))(( ,则k 的值为( )(A ) a+b (B ) -a -b (C )a -b (D )b -a(3)、已知b x x x a x +-=+-610)25)(2(2则a=______ b=______(4)、若)3)(2(62-+=-+x x x x 成立,则x 为3、已知)1)((2+++x n mx x 的结果中不含2x 项和x 项,求m ,n 的值.知识点四:平方差公式文字语言:______________________________________________________. 符号语言:____________________________________.能够使用平方差公式关键是要找到一对________,一对_________. 针对性练习:1、判断下列式子是否可用平方差公式(1)(-a+b)(a+b)( ) (2) (-2a+b)(-2a-b) ( ) (3) (-a+b)(a-b)( ) (4) (a+b)(a-c) ( )2、下列各式计算的对不对?如果不对,应怎样改正?(1) (x +2)(x -2)=x 2-2 (2) (-3a -2)(3a -2)=9a 2-4(3) (x +5)(3x -5)=3x 2-25 (4) (2ab -c )(c +2ab )=4a 2b 2-c 23、用平方差公式计算:1)(3x+2)(3x-2) 2)(b+2a )(2a-b ) 3)(-x+2y )(-x-2y )4)(-m+n )(m+n ) 5) (-0.3x +y )(y +0.3x ) 6) (-21a -b )(21a -b )4、利用简便方法计算: (1) 102×98 (2) (2x +5)2 -(2x -5)2(3) (a +2b +c )(a +2b -c ) (4) (a +b -c )(a -b +c )知识点五:完全平方公式:(1)_____________________;(2)_____________________________. 1、判断正误:对的画“√”,错的画“×”,并改正过来.(1)(a +b )2=a 2+b 2; ( ) (2)(a -b )2=a 2-b 2; ( )(3)(a +b )2=(-a -b )2; ( ) (4)(a -b )2=(b -a )2. ( ) 2、利用完全平方公式计算 (1) ()24n m + (2)221⎪⎭⎫ ⎝⎛-y (3) (-x +6)2(4) (-2x +3y )(2x -3y )3、运用完全平方公式计算:(5) 2102 (6) 299 (7)22201640322015-2015+⨯4、计算:(1) (2x -3)2(2) (13x +6y )2 (3)(-x + 2y )2(4)(-x - y )2 (5) (-2x +5)2(6) (34x -23y )22.先化简,再求值:()()()2112322,,22x y x y x y x y +-+-==-其中综合练习:1、(1)=--)2)(41(22x b ax ;(2)=-∙)34()32(2ac abc ; (3)=⨯⨯⨯)105)(104)(106(1087 ;(4))35(3c ab -(bc a 2103))8(4abc -⋅= ; (5)=⋅-n m mn 2231)3( ;(6)=-⋅-222)21()2(2xy y x xy ;2、计算22233)8()41()21(b a ab ab -⋅-⋅-的结果等于( )A 、1482b aB 、1482b a - C 、118b a D 、118b a -3、计算(1) 3222)(6))(3(c ab c a ab ⋅-- (2)()b a abc c ab 3322123121⋅⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛-(3)32532214332c ab c bc a ⋅⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛- (4)()()c a ab b a n n 21313-⋅⎪⎭⎫ ⎝⎛⋅-+4.已知有理数a 、b 、c 满足|a ―b ―3|+(b +1)2+|c -1|=0,求(-3ab )·(a 2c -6b 2c )的值.5.若a 3(3a n -2a m +4a k )=3a 9-2a 6+4a 4,求-3k 2(n 3mk +2km 2)的值.6、(1)(x +y )(x 2+y 2)(x 4+y 4)(x -y ) (2) (a -2b +c )(a +2b -c ) (3) 20012 -199927、探索:1002-992+982-972+962-952+……+22-12的值。
七年级数学下---整式的乘法综合练习题

七年级数学下---整式的乘法综合练习题(一)填空1.a8=(-a5)____.2.a15=(?)5.3.3m2·2m3=______.4.(x+a)(x+a)=______.5.a3·(-a)5·(-3a)2·(-7ab3)=_____.6.(-a2b)3·(-ab2)=____.7.(2x)2·x4=(?)2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x.12.m是x的六次多项式,n是x1415.{[(-1)4]m}n=______.17.一长方体的高是(a+2).5=______(a-b)n+9.n+1-8,那么x=______.2122.(8a3)m÷[(4a2)n·2a]=______.23.若24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.2+2y4)的最高次项是______.2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于______.(二)选择:27.下列计算最后一步的依据是[???]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x?(乘法交换律)=-20(a2a3)·(x4x)??(乘法结合律)=-20a5x5.(??????)A.乘法意义;B.乘方定义;C.同底数幂相乘法则;D.幂的乘方法则.28.下列计算正确的是[???]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[??]B.y3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[???]A.(x+1)(x+4)=x2+5x+42C.(y+4)(y-5)=y2+9y-20;31.计算-a2b2·(-ab3A.a4b8;B.-a4b8;32.下列计算中错误的是[?]A.;C.[(x+y)m]n=(x+y)mn;D33.=2a16m;D.(-m)(-m)4=-m5.m-1的结果是[???].(b-a)2n+m;D.以上都不对.的值一定是?[???]D.正、负不能唯一确定.37.(-2.5m3)2·(-4m)3的计算结果是?[???]A.40m9;B.-40m9;C.400m9;D.-400m9.38.如果b2m<b m(m为自然数),那么b的值是[???]A.b>0;B.b<0;C.0<b<1;D.b≠1.39.下列计算中正确的是[???]A.a m+1·a2=a m+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[???]A.-(-3a n b)4=-81a4n b4;B.(a n+1b n)4=a4n+4b4n;C.(-2a n)2·(3a2)3=-54a2n+6;D.(3x n+1-2x n)·5x=15x n+2-10x n+1.41.下列计算中,[???](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y,A.只有(1)与(2)正确;C.只有(1)与(4)正确;42.(-6x n y)2·3x n-1yA.18x3n-1y2;B.-36x2n-1y3;[???]B.2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;[???]A.2)3=(-a3)2;D.(a-b)3(b-a)2=(a-b)5.[???]47.把下列各题的计算结果写成10的幂的形式,正确的是[???]A.100×103=106;B.1000×10100=103000;C.1002n×1000=104n+3;D.1005×10=10005=1015.48.t2-(t+1)(t-5)的计算结果正确的是[???]A.-4t-5;B.4t+5;C.t2-4t+5;D.t2+4t-5.49.使(x2+px+8)(x2-3x+q)的积中不含x2和x3的p,q的值分别是[???] A.p=0,q=0;B.p=-3,q=-9;C.p=3,q=1;D.p=-3,q=1.50.设xy<0,要使x n y m·x n y m>0,那么[???]A.m,n都应是偶数;B.m,n都应是奇数;C.不论m,n为奇数或偶数都可以;D.不论m,n为奇数或偶数都不行.51.若n为正整数,且x2n=73n222nA.833;B.2891;(三)计算52.(6×108)(7×10954.(-3ab)·(-a2c)·6ab2.55..57.(x+2y)(5a+3b).58.x n+1(x n60.(-ab)3·(-a2b)·(-a2b4c)262.2).65..68.(-4xy3)·(-xy)+(-3xy2)2..(5a3+2a-a2-3)(2-a+4a2)..72.[(-a2b)3]3·(-ab2).73、75.(-2x m y n)3·(-x2y n)·(-3xy2)2.76.(-2ab2)3·(3a2b-2ab-4b2).77.(0.2a-1.5b+1)(0.4a-4b-0.5).78.(x+3y+4)(2x-y).79.y[y-3(x-z)]+y[3z-(y-3x)].80.计算[(-a)2m]3·a3m+[(-a)3m]3(m为自然数).(四)化简求值;81.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.82.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=83.已知ab2=-6,求-ab(a2b5-ab3-b)的值.84.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.85.已知(x-1)(x+1)(x-2)(x-4)=(x2-3x)2+a(x2-3x)+b,求a,b的值.86.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.87.比较2100与375的大小.88.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).89.已知2a=3b=6c(a,b,c90.求证:对于任意自然数n,91.已知有理数x,y,z满足-x=0.92.已知x=b+c,y=c+a,z=a+b.93.证明(a-1)(a2-3)+a294.试证代数式、=2x+5y-3=0则=44;c=533则有();C.a<c<b D.c<a<b,则x=6、计算下列各题(1)(2)(3)(4)7、计算(-2x-5)(2x-5)8、计算9、计算,当a6=64时,该式的值。
(完整版)整式的乘法习题(含详细解析答案)

整式的乘法测试1.列各式中计算结果是x2-6x+5的是( )A.(x-2)(x-3)B.(x-6)(x+1)C.(x-1)(x-5)D.(x+6)(x-1)2.下列各式计算正确的是( )A.2x+3x=5B.2x•3x=6C.(2x)3=8D.5x6÷x3=5x23.下列各式计算正确的是( )A.2x(3x-2)=5x2-4xB.(2y+3x)(3x-2y)=9x2-4y2C.(x+2)2=x2+2x+4D.(x+2)(2x-1)=2x2+5x-24.要使多项式(x2+px+2)(x-q)展开后不含x的一次项,则p与q的关系是( )A.p=qB.p+q=0C.pq=1D.pq=25.若(y+3)(y-2)=y2+my+n,则m、n的值分别为( )A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-66.计算:(x-3)(x+4)=_____.7.若x2+px+6=(x+q)(x-3),则pq=_____.8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;①(a+99)(a-100)=_____;②(y-500)(y-81)=_____.9.(x-y)(x2+xy+y2)=_____;(x-y)(x3+x2y+xy2+y3)=_____根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n-1y+y n-2y2+…+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.11.若(x+4)(x-3)=x2+mx-n,则m=_____,n=_____.12.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张.14.计算:(1)(5mn2-4m2n)(-2mn)(2)(x+7)(x-6)-(x-2)(x+1)15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x无关.参考答案1.答案:C解析:【解答】A、(x-2)(x-3)=x2-6x+6,故本选项错误;B、(x-6)(x+1)=x2-5x-6,故本选项错误;C、(x-1)(x-5)=x2-6x+5,故本选项正确;D、(x+6)(x-1)=x2+5x-6,故本选项错误;故选C.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,进行计算即可得出正确答案.2.答案:A解析:【解答】A、2x+3x=5x,故A选项正确;B、2x•3x=6x2,故B选项错误;C、(2x)3=8x3,故C选项错误;D、5x6÷x3=5x3,故D选项错误;故选A.【分析】根据整式乘法和幂的运算法则.3.答案:B解析:【解答】A、2x(3x-2)=6x2-4x,故本选项错误;B、(2y+3x)(3x-2y)=9x2-4y2,故本选项正确;C、(x+2)2=x2+4x+4,故本选项错误;D、(x+2)(2x-1)=2x2+3x-2,故本选项错误.故选B.【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注意排除法在解选择题中的应用.4.答案:D解析:【解答】(x2+px+2)(x-q)=x3-qx2+px2-pqx+2x-2q=x3+(p-q)x2+(2-pq)x-2q,∵多项式不含一次项,∴pq-2=0,即pq=2.故选D【分析】利用多项式乘以多项式法则计算,合并同类项得到最简结果,由结果中不含x的一次项,令一次项系数为0即可列出p与q的关系.5.答案:B解析:【解答】∵(y+3)(y-2)=y2-2y+3y-6=y2+y-6,∵(y+3)(y-2)=y2+my+n,∴y2+my+n=y2+y-6,∴m=1,n=-6.故选B.【分析】先根据多项式乘以多项式的法则计算(y+3)(y-2),再根据多项式相等的条件即可求出m、n的值.6.答案:x2+x-12解析:【解答】(x-3)(x+4)=x2+4x-3x-12=x2+x-12【分析】根据(a+b)(m+n)=am+an+bm+bn展开,再合并同类项即可.7.答案:10解析:【解答】∵(x+q)(x-3)=x2+(-3+q)x-3q,∴x2+px+6=x2+(-3+q)x-3q,∴p=-3+q,6=-3q,∴p=-5,q=-2,∴pq=10.故答案是10.【分析】等式的右边根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn 进行计算,再根据等式的性质可得关于p、q的方程组,求解即可.8.答案:①a2-a-9900;②y2-581y+40500.解析:【解答】(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;(2)(x+a)(x+b)=x2+(a+b)x+ab.(3)①(a+99)(a-100)=a2-a-9900;②(y-500)(y-81)=y2-581y+40500.【分析】(1)根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;(2)根据(1)中呈现的规律,列出公式;(3)根据(2)中的公式代入计算.9.答案:x3-y3;x4-y4;x n+1-y n+1.解析:【解答】原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3;原式=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4=x4-y4;原式=x n+1+x n y+xy n-2+x2y n-1+xy n-x n y-x n-1y2-y n-1y2-…-x2y n-1-xy n-y n+1=x n+1-y n+1,【分析】根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10.答案:-3a2+2b2-ab.解析:【解答】∵三角形一边长2a+2b,这条边上的高为2b-3a,∴这个三角形的面积为:(2a+2b)(2b-3a)÷2=(a+b)(2b-3a)=-3a2+2b2-ab.【分析】根据三角形的面积=底×高÷2列出表示面积是式子,再根据多项式乘以多项式的法则计算即可.11.答案:1,12.解析:【解答】∵(x+4)(x-3)=x2-3x+4x-12=x2+x-12=x2+mx-n,∴m=1,-n=-12,即m=1,n=12.【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出m 与n的值,代入所求式子中计算,即可求出值.12.答案:-4,2解析:【解答】∵(x+4)(x+m)=x2+mx+4x+4m若要使乘积中不含x项,则∴4+m=0∴m=-4若要使乘积中x项的系数为6,则∴4+m=6∴m=2提出问题为:m为何值时,乘积中不含常数项?若要使乘积中不含常数项,则∴4m=0∴m=0【分析】把式子展开,若要使乘积中不含x项,则令含x项的系数为零;若要使乘积中x项的系数为6,则令含x项的系数为6;根据展开的式子可以提出多个问题.13.答案:3张.解析:【解答】(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.14.答案:(1)10m2n3+8m3n2;(2)2x-40.解析:【解答】(1)原式=-10m2n3+8m3n2;(2)原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.15.答案:代数式的值与x无关解析:【解答】原式=2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+x-3=-3,则代数式的值与x无关.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.。
整式的乘法100题专项训练(精心整理)

整式的乘法 【2 】100题专项练习同底数幂的乘法:底数不变,指(次)数相加.公式:a m ·a n =a m+n1.填空:(1)=⋅53x x ; =⋅⋅32a a a ; =⋅2x x n ;(2)=-⋅-32)()(a a ;=⋅⋅b b b 32⋅2x =6x ;(3)=⋅-32)(x x ;=⋅10104;=⨯⨯32333;(4)34a a a ⋅⋅ = ;()()()53222--- = ;(5)()()()352a a a -⋅-⋅-- = ;(1)32a a ⋅=___________;(6)()=-⋅-⋅-62)()(a a a ;m m m m2543•••= ;(7)=-⋅-43)()(a b a b ;=⋅2x x n ;(8)=⎪⎭⎫ ⎝⎛-⨯-6231)31( ;=⨯4610102.简略盘算:(1)=⋅64a a (2)=⋅5b b (3)=⋅⋅32m m m (4)=⋅⋅⋅953c c c c 3.盘算:(1)=-⋅23b b (2)=-⋅3)(a a (3)=--⋅32)()(y y (4)=--⋅43)()(a a (5)=-⋅2433 (6)=--⋅67)5()5( (7)=--⋅32)()(q q n (8)=--⋅24)()(m m (9)=-32 (10)=--⋅54)2()2( 4.下面的盘算对不对?假如不对,应如何纠正?(1)523632=⨯; (2)633a a a =+;(3)n n n y y y 22=⨯; (4)22m m m =⋅; (5)422)()(a a a =-⋅-; (6)1243a a a =⋅; 二.幂的乘方:幂的乘方,底数不变,指数相乘.即:(a m )n =a mn 1.填空:(1))2(24-=___________ (2) )3(32-=___________(3))2(22-=___________ (4))2(22-=___________(5))(77m = ___________ (6))(335mm = ___________2.盘算 :(1)(22)2; (2)(y 2)5 (3)(x 4)3 (4))(3bm -(4)(y 3)2• (y 2)3 (5))()(45a a a--•• (6)xx x 72)(23-•三.积的乘方:等于把积的每一个因式分离乘方,再把所得的幂相乘.(ab)n =a n b n1.填空:(1)(2x )2=___________(ab )3=_________(ac)4. =__________ (2)(-2x )3=___________)2(22a-=_________)(42a =_________(3))2(23b a - =_______)2(422ba -=_________(8)__________333)(=--ba ab (9)__________2)3(2=-y x(9)________3)(3=b a nn )(23b an=___________(10) ________32)(3=-y x ___________23)(2=-y x 2.盘算:(1)(3a )2(2)(-3a )3(3)(ab 2)2 (4)(-2×103)3(5)(103)3(6)(a 3)7(7)(x 2)4;(8)(a 2)• 3 • a 53、选择题:(1)下列盘算中,错误的是( )A b a b a 642)(32= B y x y x4429)3(22=Cyx y x 33)(--= D n m nm 462)(23=-(2)下面的盘算准确的是( ) A m m m532=• B m m m 532=+C nm n m 2523)(= D222mnn m=•四.整式的乘法1.单项式乘单项式1.2(3)x -·32x 2.33a ·44a 3.54m ·23m 4.23(5)a b 2(3)a -5.2x ·x ·5x6.(3)x -·2xy7.24a ·23a 8.2(5)a b -·(3)a -9、3x ·53x 10.34b c ·12abc 11.32x ·2(3)x - 12.4y ·2(2)xy -13、2(3)x y -·21()3xy 14.4(210)⨯·5(410)-⨯ 15.47x ·32x16.433a b ·232(4)a b c - 17.19.2x ·232()y xy -18.23(5)a b ·23()ab c - 19.3(2)a -·2(3)a - 20.5m -·42(10)m -21.3m nx +-·4m nx- 22.23(3)x y ·(4)x - 23.24ab ·21()8a c -24.(5)ax -·22(3)x y 25.242()m a b -·2()mab - 26.54x y ·232()x y z -27.33(3)a bc -·22(2)ab - 28.4()3ab -·2(3)ab - 29.3(2)x ·2(5)xy -30.34322(2)()x y x yc -- 31.24xy ·233()8x yz - 32.32(2)ab c -·2(2)x33.232(3)a b -·33(2)ab c - 34.323331()(2)73a b a b c - 35.2(4)x y -·22()x y -·31()2y36.24xy ·32(5)x y -·2(2)x y - 37.22(2)x y -·1()2xyz -·3335x z38.1()2xyz -·2223x y ·33()5yz - 39.26m n -·3()x y -·2()y x -40.221()2ab c ·231()3abc -·31()2a 41..2xy ·221()2x y z -·33(3)x y - 42.331()2ab -·1()4ab -·222(8)a b - 43.26a b ·3()x y -·213ab ·2()y x -44.2(4)x y -·22()x y -·312y二.单项式乘多项式:(应用乘法分派率,改变为单项式乘单项式,然后把成果相加减) 1.2(34)m x y + 2.11()22ab ab + 3.2(1)x x x -- 4.22(321)a a b +-5.23(21)x x x -- 6.4(3)x x y - 7.()ab a b + 8.6(21)x x +9.(1)x x + 10.3(52)a a b - 11.3(25)x x -- 12.212()2x x -13.2323(2)a a b a - 14.(3)(6)x y x -- 15.22()x x y xy - 16.2(4)(2)a b b --17、2(31)(2)x x -+- 18.(2)a -·31(1)4a - 19.2323()(21)2x x x -+-20.22(2)3ab ab -·12ab 21.224(35)m m n mn -+ 22.2(3)(22)ab a b ab --+23.5ab ·(20.2)a b -+ 24.224(2)39a a --·(9)a - 25.23(251)x x x ---26.22(1)x x x --+ 27.2x ·21(1)2x - 28.2123()33x x +29.24(231)a a a -+- 30.22(3)(21)x x x --+- 31.25(1)xy x y +-32.212(3)2x y xy y -+ 33.2223(34)xy x y xy -- 34.223()ab a b ab ab -+35.22(232)ab a ab a -+ 36.213a b -·22(639)a ab b -+ 37.321(248)()2x x x ----38、322(356)x x x --- 39.3223(36)4a b c ac -+·13ab40.(1)2(1)3(25)x x x x x x +++-- 41.()()()a b c b c a c a b ---+- 42.223121(3)()232x y y xy +--43.221(2)2x y xy y -+·(4)xy - 43.2325101(1)()335a b a b ab -+-44..221(2)(4)2x y xy y xy -+-三、多项式乘多项式:(转化为单项式乘多项式,然后在转化为单项式乘单项式) 1.(31)(2)x x ++ 2.(8)()x y x y -- 3.(1)(5)x x ++ 4.(21)(3)x x ++5.(2)(3)m n m n +-6.(3)(3)a b a b +-7.2(21)(4)x x -- 8.2(3)(25)x x +-9.(2)(3)x x ++ 10.(4)(1)x x -+ 11.(4)(2)y y +- 12.(5)(3)y y --13.()()x p x q ++ 14.(6)(3)x x -- 15.11()()23x x +- 16.(32)(2)x x ++17.(41)(5)y y -- 18.2(2)(4)x x -+ 19.(4)(8)x x -- 20.(4)(9)x x ++21.(2)(18)x x -- 22.(3)()x x p ++ 23.(6)()x x p -- 24.(7)(5)x x ++25.(1)(5)x x ++ 26.11()()32y y +- 27.(2)(3)a b a b -+ 28.(3)(23)t t +-29.2(45)(2)x xy x y +- 30.(3)(34)y y -+ 31.(3)(2)x x +- 32.(2)(2)a b a b +-33.(23)(3)x x +- 34.(3)()x x a ++ 35.(1)(3)x x -+ 36.(2)(2)a b --37.(32)(23)x y x y ++ 38.(6)(1)x x +- 39.(3)(34)x y x y -+ 40.(2)(1)x x -+-41.(23)(32)x y x y +- 42.2(1)(1)x x x -++ 43.22()()a b a ab b +-+44.22(321)(231)x x x x +++- 45.22()()a b a ab b -++46.22()()x xy y x y ++-47.22()()x a x ax a -++ 48.22()()x y x xy y -++ 49.4242(331)(2)x x x x -++-50.22()()x y x xy y +-+四、平方差公式和完整平方公式1.(1)(1)x x +-2.(21)(21)x x +-3.(5)(5)x y x y +-4.(32)(32)x x +-5.(2)(2)b a a b +-6.(2)(2)x y x y -+--7.()()a b b a +-+8.()()a b a b ---9.(32)(32)a b a b +- 10.5252()()a b a b -+ 11.(25)(25)a a +-12.(1)(1)m m --- 13.11()()22a b a b --- 14.(2)(2)ab ab --- 15.10298⨯ 16.97103⨯17.4753⨯ 18.22()()()a b a b a b +-+ 19.(32)(32)a b a b +-20.(711)(117)m n n m --- 21.(2)(2)y x x y --- 22.(4)(4)a a +-+23.(25)(25)a a -+ 24.(3)(3)a b a b +- 25.(2)(2)x y x y +-完整平方:1.2(1)p + 2.2(1)p - 3.2()a b - 4.2()a b + 5.2(2)m +6.2(2)m -7.2(4)m n +8.21()2y -9.2(3)x y - 10.2(2)a b --11.21()a a + 12.2(52)x y -- 13.2(2)a b - 14.21()2x y - 15.2(23)a b +16.2(32)x y - 17.2(2)m n -- 18.2(22)a c + 19.2(23)a -+ 20.21(3)3x y +21.2(32)a b + 22.222()a b -+ 23.22(23)x y -- 24.2(1)xy - 25.222(1)x y -五.同底数幂的除法:底数不变,指数相减.任何不等于 0 的数的 0 次幂都等于0.(1)26a a ÷ (2))()(8b b -÷- (3)24)()(ab ab ÷ (4)131533÷(5)473434)()(-÷- (6)214y y ÷ (7))()(5a a -÷-(8)25)()(xy xy -÷-(9)n n a a 210÷(10)57x x ÷ (11)89y y ÷ (12)310a a ÷(13)35)()(xy xy ÷ (14)236t t t ÷÷ (15)453p p p ÷⋅16))()()(46x x x -÷-÷- (17) 112-+÷m m a a (m 是正整数)(18)[]3512)(x x x ⋅-÷ (19)x x x x x ⋅÷⋅÷431012 (20) 32673)()(x x x ÷(21)279)3()3(252⋅÷-⋅- (22)232232432)()()(y x y x y x ⋅-÷六、整式的除法1.._______362=÷x x2..______)5.0()3(2353=-÷-n m n m3.._______)102()104(39=⨯-÷⨯4.._______)(34)(836=-÷-b a b a 5.2222234)2(c b a c b a ÷-=________6..________])[()(239226=⋅÷÷÷a a a a a7..________)]()(51[)()(523=+--÷+-y x x y y x y x 8.m m 8)(16=÷. 9.⎪⎭⎫ ⎝⎛-÷2333238ax x a ; 10.()2323342112⎪⎭⎫ ⎝⎛÷-y x y x ;11.()()3533263b a c b a -÷; 12.()()()32332643xy y x ÷⋅;13.()()39102104⨯-÷⨯; 14.()()322324n n xy y x -÷15.32332)6()4()3(xy y x ÷-⋅; 16.233224652)3(12z y x z y x z y x ÷-÷;17.)102(10)12(562⨯÷⨯--; 18222221)52()41()25(n n n n b a b a b a -⋅-÷+;21.322543323)3()18(2)3(c a b a ac c b a ÷-÷⋅-; 22..])3(5[])3(5[223-+-÷+-m m b a b a23.222221324125⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-+n n n n y x y x y x 24.()()()44232323649b a b a b a -÷-⨯-25.())2(10468234x x x x x -÷+-- 26.⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-c a bc a c b a 2223325232因式分化专题练习18、提公因式法(1)-15ax-20a; (2)-25x 8+125x 16; (3)-a 3b 2+a 2b 3; (4)6a 3-8a 2-4a;(5)-x 3y 3-x 2y 2-xy;(6)a 8+a 7-2a 6-3a 5;(7)6a 3x 4-8a 2x 5+16ax 6;(8)9a 3x 2-18a 5x 2-36a 4x 4;4、x(a+b)+y(a+b);(10)(a+b)2+(a+b); (11)a 2b(a-b)+3ab(a-b);39、x(a+b-3c)-(a+b-3c) (13)a(a-b)+b(b-a);(14)(x-3)3-(x-3)2;五、a2b(x-y)-ab(y-x);(16)a2(x-2a)2-a(2a-x)2;(17)(x-a)3+a(a-x);(18)(x-2y)(2x+3y)-2(2y-x)(5x-y);(19)3m(x-5)-5n(5-x);(20)y(x-y)2-(y-x)3;(21)a(x-y)-b(y-x)-c(x-y);(22)(x-2)2-(2-x)3;七、应用公式法分化因式1.下面各题,是因式分化的画“√”,不是的画“×”.(1)x(a-b)=xa-xb; ()(2)xa-xb=x(a-b); ()(3)(x+2)(x-2)=x2-4; ()(4)x2-4=(x+2)(x-2); ()(5)m(a+b+c)=ma+mb+mc; ()(6)ma+mb+mc=m(a+b+c); ()(7)ma+mb+mc=m(a+b)+mc. ()2.填空:(1)ab+ac=a( );(2)ac-bc=c( );(3)a2+ab=a( );(4)6n3+9n2=3n2( ).3.填空:(1)多项式ax+ay各项的公因式是;(2)多项式3mx-6my各项的公因式是;(3)多项式4a2+10ab各项的公因式是;(4)多项式15a2+5a各项的公因式是;(5)多项式x2y+xy2各项的公因式是;(6)多项式12xyz-9x2y2各项的公因式是.4.把下列各式分化因式:(1) 4x3-6x2 (2) 4a3b+2a2b2= == =(3) 6x2yz-9xz2 (4) 12m3n2-18m2n3= == =1.填空:(1)把一个多项式化成几个因式的情势,叫做因式分化;(2)用提公因式法分化因式有两步,第一步:公因式,第二步:公因式.2.直接写出因式分化的成果:(1)mx+my=(2)3x3+6x2=(3)7a2-21a=(4)15a2+25ab2=(5)x2+x=(6)8a3-8a2=(7)4x2+10x=(8)9a4b2-6a3b3=(9)x2y+xy2-xy=(10)15a2b-5ab+10b=3.下列因式分化,分化完的画“√”,没分化完的画“×”.(1)4m2-2m=2(2m2-m); ()(2)4m2-2m=m(4m-2); ()(3)4m2-2m=2m(2m-1). ()4.直接写出因式分化的成果:(1)a(x+y)+b(x+y)=(2)6m(p-3)-5n(p-3)=(3)x(a+3)-y(3+a)=(4)m(x2-y2)+n(x2-y2)=(5)(a+b)2+c(a+b)=5.把下列式子分化因式:(1) m(a-b)+n(b-a) (2) x(a-3)-2(3-a) = == =6.断定正误:下列因式分化,对的画“√”,错的画“×”.(1)x(a+b)-y(b+a)=(a+b)(x+y); ()(2)x(a-b)+y(b-a)=(a-b)(x+y); ()(3)x(a-b)-y(b-a)=(x+y)(a-b); ()(4)m2(a+b)+m(a+b)=(a+b)(m2+m). ()1.直接写出因式分化的成果:(1)2a2b+4ab2=(2)12x2yz-8xz2=(3)2a(x+y)-3b(x+y)=(4)x(m-n)-y(n-m)=2.分化因式:(1) x2-25 (2) 9-y2= == =(3) 1-a2 (4) 4x2-y2= == =(5) 9a2-4b2(6) 0.81m2-16n2= == =(7) a2-125b2(8) 4x2y2-9z2= = = =3.分化因式:(1) (a+b)2-a2 (2) (x+y)2-(x-y)2= == =4.分化因式:(1) x4-1 (2) -a4+16= == == =(一)根本练习,巩固旧知1.填空:两个数的平方差,等于这两个数的与这两个数的的积,即a2-b2=,这个公式叫做因式分化的公式.2.填空:在x2+y2,x2-y2,-x2+y2,-x2-y2中,能用平方差公式来分化因式的是.3.直接写出因式分化的成果:(1)4a2-9y2=(2)16x2-1=(3)(a+b)2-c2=(4)x4-y2=4.应用完整平方公式分化因式:(1) a2+2a+1 (2) x2-6x+9= == =(3) 4x2-20xy+25y2 (4) x2+36+12x= == =5.应用完整平方公式分化因式:(1) -2xy-x2-y2 (2) (a+b)2-4(a+b)b+4b2 = == == =。
整式的乘法(公式)练习

1.已知x2+16x+k是完全平方式,则常数k等于()2.若x2+6x+k是完全平方式,则k=()3.下列二次三项式是完全平方式的是()A.x2-8x-16 B.x2+8x+16 C.x2-4x-16 D.x2+4x+164.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4 B.4x C.-4x D.2x5.已知4x2+4mx+36是完全平方式,则m的值为()A.2 B.±2 C.-6 D.±66.已知x2+kxy+64y2是一个完全式,则k的值是()7.二次三项式x2-kx+9是一个完全平方式,则k的值是9.已知(m-n)2=8,(m+n)2=2,则m2+n2=10.已知x=y+4,则代数式x2-2xy+y2-25的值为11.若a+b=5,ab=3,则a2+b2=12.若x+y=2m+1,xy=1,且21x2-48xy+21y2=2010.则m= 13.若x+y=3,xy=1,则x2+y2=14.已知y-2x=-1,则y2-4xy+4x2-1=15.计算(2x-1)2-(1-2x)(1+2x).计算:(3a-b)2-(2a+b)2+5b2.16.(2006•吉林)若a2+b2=5,ab=2,则(a+b)2=17.已知a2+b2=13,ab=6,则a+b的值是18.在公式(a+b)2=a2+2ab+b2中,如果我们把a+b,a2+b2,ab分别看做一个整体,那么只要知道其中两项的值,就可以求出第三项的值.已知a+b=6,ab=-27,求下列的值.(1)a2+b2;(2)a2+b2-ab;(3)(a-b)2.19.计算:(m+2n-p)2.38.计算:(1+a+b)2.20.已知x2+y2-6x-8y+25=0,求代数式的值.21.若x+y=2,且(x+2)(y+2)=5,求x2+xy+y2的值.22.计算(a+3)(a2+9)(a-3).23.运用乘法公式计算:(x+y+1)(x+y-1)yxxy。
初二数学整式的乘法公式练习题

初二数学整式的乘法公式练习题整式的乘法公式是数学中非常重要的一部分,它可以帮助我们更加便捷地进行多项式的乘法运算。
在初二数学课程中,我们经常会遇到各种整式的乘法练习题,通过这些练习题的实践,我们可以更好地掌握和应用乘法公式。
本文将为大家提供一些初二数学整式的乘法公式练习题,希望对大家的学习有所帮助。
1. 计算:(2x + 3)(3x - 4)。
解答:首先,我们可以使用“分配律”来计算这道题目。
根据分配律,我们可以将乘法分解为两部分,即:(2x + 3)(3x - 4) = 2x * 3x + 2x * (-4) + 3 * 3x + 3 * (-4)。
接下来,我们进行乘法和加法运算:= 6x^2 - 8x + 9x - 12= 6x^2 + x - 12。
所以,(2x + 3)(3x - 4) = 6x^2 + x - 12。
2. 计算:(5a - 4b)(2a + 3b)。
解答:同样地,我们可以使用“分配律”来计算这道题目。
将乘法分解为两部分,即:(5a - 4b)(2a + 3b) = 5a * 2a + 5a * 3b - 4b * 2a - 4b * 3b。
然后,进行乘法和加法运算:= 10a^2 + 15ab - 8ab - 12b^2= 10a^2 + 7ab - 12b^2。
所以,(5a - 4b)(2a + 3b) = 10a^2 + 7ab - 12b^2。
3. 计算:(x + 2)(x^2 - 3x + 5)。
解答:同样使用分配律,将乘法分解为两部分,即:(x + 2)(x^2 - 3x + 5) = x * x^2 + x * (-3x) + x * 5 + 2 * x^2 + 2 * (-3x) + 2 * 5。
继续进行乘法和加法运算:= x^3 - 3x^2 + 5x + 2x^2 - 6x + 10= x^3 - x^2 - x + 10。
所以,(x + 2)(x^2 - 3x + 5) = x^3 - x^2 - x + 10。
整式的乘法:公式法练习

默写:1.平方差公式:(a+b)(a-b)= ;2.完全平方公式:(a+b)2= ;(a-b)2 = ;3.三数和的完全平方公式:(a+b+c)2= ;4.11~19的完全平方:1.如图,在边长为a的正方形中剪去一个边长为b的小正方形)a ,把剩下的部分拼成一个梯形,(b分别计算这两个图形阴影部分的面积,验证了公式_______________________2.计算:(1)(2a+1)2=(_____)2+2·____·_____+(____)2=________;(2)(2x-3y)2=(_____)2-2·____·_____+(_____)2=_______.3.(___ _)2=a2+12ab+36b2;(______)2=4a2-12ab+9b2.4.(3x+A)2=9x2-12x+B,则A=_____,B=______.5.m2-8m+_____=(m-_____)2.6.下列计算正确的是()A.(a-b)2=a2-b2 B.(a+2b)2=a2+2ab+4b2C.(a2-1)2=a4-2a2+1 D.(-a+b)2=a2+2ab+b27.运算结果为1-2ab2+a2b4的是()A.(-1+ab2)2 B.(1+ab2)2 C.(-1+a2b2)2 D.(-1-ab2)2 8.计算(x+2y)2-(3x-2y)2的结果为()A.-8x2+16xy B.-4x2+16xy C.-4x2-16xy D.8x2-16xy 9.下列各式能用平方差公式计算的是:()A. B.C. D.110.下列式子中,不成立的是:()A.B.C.D.11.,括号内应填入下式中的().A. B. C. D.12.对于任意整数n,能整除代数式的整数是(). A.4 B.3 C.5 D.213.在的计算中,第一步正确的是().A. B.C. D.14.计算的结果是().A. B. C. D.15.的结果是().A. B. C. D.16.已知(a-b)2=8,ab=1,则a2+b2=_____.17.已知x+y=5,xy=3,求(x-y)2的值.18.计算:..19.计算124816(21)(21)(21)(21)(21)+++++2。
整式的乘法及公式

整式的乘法及公式单项式乘以单项式1.计算3a3•(﹣a2)的结果是()A.3a5B.﹣3a5C.3a6D.﹣3a62、如果x n y4与2xy m相乘的结果是2x5y7,那么mn=.•(﹣2a2b2c)2.3x2y•(﹣2x3y2)2;3、4、若(a m+1b n+2)(a2n+1b2n)═a5b3,求m+n的值单项式乘以多项式1、若x﹣y+3=0,则x(x﹣4y)+y(2x+y)的值为()A.9 B.﹣9 C.3 D.﹣32、已知3x•(x n+5)=3x n+1﹣8,那么x=3、计算:6ab(2a2b﹣ab2).2ab2•(3a2b﹣2ab﹣1)4、若ab2=﹣1,求﹣ab(a2b5﹣ab3﹣2b)的值多项式乘以多项式1、若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2 B.2 C.0 D.12、如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6 B.p=1,q=﹣6 C.p=1,q=6 D.p=5,q=﹣63、已知a2﹣a+5=0,则(a﹣3)(a+2)的值是.4、多项式(mx+8)(2﹣3x)展开后不含x项,则m=.5、图中的四边形均为矩形.根据图形,写出一个正确的等式:.6、计算:(2x+1)(x+3).(a+1)(2﹣b)﹣a(1﹣b)﹣2.(a+b+1)(2a﹣b).7、已知:x+y=5,xy=6,求(x﹣4)(y﹣4)的值.8、图所示,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼成一个长为(a+2b)、宽为(2a+b)的大长方形,则需要A,B,C各几个平方差公式1、若a+b=1,则a2﹣b2+2b的值为()A.4 B.3 C.1 D.02、若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a3、(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b24、若(x﹣ay)(x+ay)=x2﹣16y2,则a=.5、已知a+b=10,a﹣b=8,则a2﹣b2=.6、计算:2017×1983=.7、化简:6(7+1)(72+1)(74+1)(78+1)(716+1)+1=.7、计算(x+2)•(x﹣2)•(x2+4)(a﹣3b)(a+3b)﹣(﹣a﹣2b)(a﹣2b)992﹣1.(x+y)(x﹣y)﹣(2x﹣y)(x+3y)8、(1)已知3m=6,3n=﹣2,求32m﹣3n﹣2的值;(2).20172﹣2016×2018.完全平方公式1、x2﹣4x+m2是一个完全平方式,则m的值是()A.2 B.﹣2 C.+2和﹣2 D.42、已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±203、已知x+y=5,xy=6,则x2+y2的值是()A.1 B.13 C.17 D.254、若(a+b)2=(a﹣b)2+A,则A为()A.2ab B.﹣2ab C.4ab D.﹣4ab5、若(a+b)2=7,(a﹣b)2=3,则a2+b2的值等于()A.7 B.6 C.5 D.46、已知m+n=3,则m2+2mn+n2﹣6的值()A.12 B.6 C.3 D.07、如果二次三项式x2﹣8x+m能配成完全平方式,那么m的值是.8、已知a﹣=5,则a2+的值是.9、992.(a+2b-c)(a-2b+c)+y+yx()2+x2(-)121)(x--5y310、已知(m﹣n)2=8,(m+n)2=2,求m2+n2的值.11、已知(x+y)2=25,xy=,求x﹣y的值.12、已知a+b=1,ab=-6,(1)a2+b2.(2)a2-ab+b2。
初二整式的乘法练习题及答案

初二整式的乘法练习题及答案乘法作为数学中的基本运算之一,在初中阶段是非常重要的一部分。
掌握整式的乘法运算是学习代数的基础,对于提高数学能力和解决实际问题都具有重要的作用。
为了帮助初二学生更好地掌握整式的乘法运算,下面将提供一些乘法练习题及其答案。
1. 计算下列乘法:(1) $(2a + 3b)(4c - 5d)$(2) $(3x - 2y)(-5x + 7y - 1)$(3) $(5p - q)(-2p + 3q)$解答:(1) $(2a + 3b)(4c - 5d)$ = $2a \cdot 4c + 2a \cdot (-5d) + 3b \cdot 4c +3b \cdot (-5d)$= $8ac - 10ad + 12bc - 15bd$(2) $(3x - 2y)(-5x + 7y - 1)$ = $3x \cdot (-5x) + 3x \cdot 7y + 3x \cdot (-1) - 2y \cdot (-5x) - 2y \cdot 7y - 2y \cdot (-1)$= $-15x^2 + 21xy - 3x + 10xy - 14y^2 + 2y$= $-15x^2 + 31xy - 3x - 14y^2 + 2y$(3) $(5p - q)(-2p + 3q)$ = $5p \cdot (-2p) + 5p \cdot 3q - q \cdot (-2p) - q \cdot 3q$= $-10p^2 + 15pq + 2pq - 3q^2$= $-10p^2 + 17pq - 3q^2$2. 化简下列乘法:(1) $2m \cdot (4m^2 - 3mn + 5n^2)$(2) $(-3a^2b) \cdot (2ab^2 - 5a^2)$(3) $(x - y)^2$解答:(1) $2m \cdot (4m^2 - 3mn + 5n^2)$ = $2m \cdot 4m^2 - 2m \cdot 3mn + 2m \cdot 5n^2$= $8m^3 - 6m^2n + 10mn^2$(2) $(-3a^2b) \cdot (2ab^2 - 5a^2)$ = $-3a^2b \cdot 2ab^2 - 3a^2b \cdot 5a^2$= $-6a^3b^3 + 15a^4b$(3) $(x - y)^2 = (x - y)(x - y)$= $x^2 - xy - xy + y^2$= $x^2 - 2xy + y^2$3. 利用乘法公式进行计算:(1) $(-2x + 1)(2x + 3)$(2) $(a - 4)(a + 4)$(3) $(5 - 3x)(5 + 3x)$解答:(1) $(-2x + 1)(2x + 3)$ = $(-2x)(2x) + (-2x)(3) + (1)(2x) + (1)(3)$= $-4x^2 - 6x + 2x + 3$= $-4x^2 - 4x + 3$(2) $(a - 4)(a + 4)$ = $(a)(a) + (a)(4) + (-4)(a) + (-4)(4)$= $a^2 + 4a - 4a - 16$= $a^2 - 16$(3) $(5 - 3x)(5 + 3x)$ = $(5)(5) + (5)(3x) + (-3x)(5) + (-3x)(3x)$= $25 + 15x - 15x - 9x^2$= $25 - 9x^2$通过以上乘法练习题,我们可以更好地理解和掌握初二整式的乘法运算。
整式乘法公式练习题

整式乘法公式练习题在代数学习中,整式乘法公式是非常重要的一部分。
通过运用整式乘法公式,我们可以快速求解多项式的乘法运算,简化计算步骤,提高计算效率。
本文将介绍整式乘法公式的相关概念,并提供一些习题供大家练习。
一、整式乘法公式的基本概念1. 整式:整式指的是由常数和变量的乘积组成的代数表达式,常见的整式包括单项式和多项式。
2. 单项式:单项式是指只有一个项的整式,例如3x、-4y²等。
3. 多项式:多项式是由多个单项式相加或相减而成的整式。
例如4x³-2x²+5x-1就是一个多项式。
4. 乘法公式:整式乘法公式是用来计算两个或多个整式的乘积的数学公式。
根据乘法公式,我们可以快速将整式相乘并得出结果。
二、整式乘法公式的运用1. 一次整式的乘法当两个整式都是一次整式时,它们的乘积可以通过使用分配律进行计算。
例如,计算(3x+4)(2x+5)的乘积,我们可以将分配律应用于每一对项上,然后将各项相加得到结果。
具体操作如下:(3x+4)(2x+5) = 3x×2x + 3x×5 + 4×2x + 4×5= 6x² + 15x + 8x + 20= 6x² + 23x + 202. 二次整式的乘法当两个整式都是二次整式时,我们可以使用乘法公式进行计算。
二次整式的乘法公式为(a+b)² = a² + 2ab + b²。
例如,计算(x+2)²的乘积,我们可以直接应用乘法公式得出结果。
具体操作如下:(x+2)² = x² + 2x×2 + 2²= x² + 4x + 43. 多项式的乘法当两个整式都是多项式时,我们可以使用分配律将每个单项式相乘,并将各项相加以得出结果。
例如,计算(2x²+3x-1)(x-2)的乘积,我们可以将分配律应用于每一对项上,然后将各项相加得到最终答案。
整式的乘法公式练习题

整式的乘法公式练习题在代数学中,整式的乘法是一项基本的运算,它在解决各种代数问题中起着重要的作用。
本文将为大家提供一些整式的乘法公式练习题,通过练习巩固并加深对整式乘法的理解。
练习题一:将下列整式相乘,并将结果化简。
1. (2x + 3)(x + 4)解析:首先使用分配律,将前一项的每个项与后一项的每个项相乘:= 2x * (x + 4) + 3 * (x + 4)接下来使用分配律将每个相乘得到的结果进行合并并化简:= 2x^2 + 8x + 3x + 12最终结果为:2x^2 + 11x + 122. (3x - 5)(2x + 7)解析:同样地,使用分配律将每个项相乘:= 3x * (2x + 7) - 5 * (2x + 7)然后合并并化简结果:= 6x^2 + 21x - 10x - 35最终结果为:6x^2 + 11x - 35练习题二:将下列整式相乘,并将结果化简。
1. (a + 5)(a - 2)解析:使用分配律将每一项相乘:= a * (a - 2) + 5 * (a - 2)合并并化简结果:= a^2 - 2a + 5a - 10最终结果为:a^2 + 3a - 102. (2x + 3)(2x - 3)解析:应用分配律进行乘法运算:= 2x * (2x - 3) + 3 * (2x - 3)合并并化简结果:= 4x^2 - 6x + 6x - 9最终结果为:4x^2 - 9练习题三:将下列整式相乘,并将结果化简。
1. (3a - 2b)(4a + 5b)解析:通过使用分配律进行乘法运算:= 3a * (4a + 5b) - 2b * (4a + 5b)合并并化简结果:= 12a^2 + 15ab - 8ab - 10b^2最终结果为:12a^2 + 7ab - 10b^2 2. (2x - 3y)(x + 4y)解析:使用分配律将每一项相乘:= 2x * (x + 4y) - 3y * (x + 4y)合并并化简结果:= 2x^2 + 8xy - 3xy - 12y^2最终结果为:2x^2 + 5xy - 12y^2通过以上的练习题,我们可以对整式乘法公式进行更好的掌握。
整式的乘和乘法公式复习法

例1 利用完全平方公式计算: (1) 197 2
练习 利用整式乘法公式计算: (1)998 2
(2)( a b 3 )( a b 3 )
( x 2 )( x 2 ) ( x 1 )( x 3 ) (3 )
ab 1 ) ( ab 1 ) (4)(
三乘法公式 四(一) 平方差公式 2 2 ( a b )( a b ) a b 五 (a、b可以 是数,也可以是整式) 六即:两数和与这两数差的积,等 于它们的平方差。
例2 利用平方差公式计算: 1 1 (1)( x y )( x y )
4
4
(2)
( m n )( m n ) 3 n
练习:计算 1 . (b5 ) 2
1 3 ( ) 2. 3
3 2
3 8
2
3 .(a
(p )
4
5 .(x ) 7 . 3
4 6
(x ) 6 .(2)
8. (2)
3 2
2 3
(三)积的乘方 n n n ( ab ) a b (n是正整数) 法则: 积的乘方等于各乘因数(或式)的 乘方的积。
例:计算: n 2 (1 ) (3 a ) (3 ) (2xy)
4
(2) (2 3)
2
(4 ) ( 2 b )
5
练习 :计算 2 2 3 (1 ) (4a ) (2) (ab)
(3)( x
4
2
y )
2
3 3
(4) ( p q)
2
2
( 3 x ) ( 2 x ) (5 ) (6 ) 2 3 5
三) 多项式乘多项式 四法则 多项式与多项式相乘,先 用一个多项式的每一项乘另一多 项式的每一项,再把所得的积相 加。
整式乘法练习拔高题

《乘法公式》练习题二1、(x-y+z)(-x+y+z)=[z+( )][ ]=z 2-( )2.2、(-2a 2-5b)( )=4a 4-25b 23、(a +b)2=(a -b)2+4、a 2+b 2=[(a +b)2+(a -b)2]( )5、()()()()()24811111x x x x x +-+++=6、()()23322332m n n m -+=7、______________)23)(32(=--y x y x 8、______________)32)(64(=-+y x y x 9、________________)221(2=-y x10、____________)9)(3)(3(2=++-x x x 11、_____________)3)(3()2)(1(=+---+x x x x 12、____________)2()12(22=+--x x 13.224)__________)(__2(y x y x -=-+ 14.______________)1)(1)(1)(1(42=++-+x x x x 15、 (x +4)(-x +4)=_____ 16、 (x +3y )(_____)=9y 2-x 2 17、 (-m -n )(_____)=m 2-n 218、 98×102=(_____)(_____)=( )2-( )2=_____ 19、 -(2x 2+3y )(3y -2x 2)=_____ 20、 (a -b )(a +b )(a 2+b 2)=_____ 21、(_____-4b )(_____+4b )=9a 2-16b 2 22、 (_____-2x )(_____-2x )=4x 2-25y 2 23、 (65x -0.7y )(65x +0.7y )=_____24、(41x +y 2)(_____)=y 4-161x 2二、选择题1.下列多项式乘法,能用平方差公式进行计算的是( ) A.(x +y )(-x -y ) B.(2x +3y )(2x -3z )C.(-a -b )(a -b )D.(m -n )(n -m ) 2.下列计算正确的是( ) A.(2x +3)(2x -3)=2x 2-9 B.(x +4)(x -4)=x 2-4C.(5+x )(x -6)=x 2-30D.(-1+4b )(-1-4b )=1-16b 2 3.下列多项式乘法,不能用平方差公式计算的是( )A.(-a -b )(-b +a )B.(xy +z )(xy -z )C.(-2a -b )(2a +b )D.(0.5x -y )(-y -0.5x )4.(4x 2-5y )需乘以下列哪个式子,才能使用平方差公式进行计算( )A.-4x 2-5yB.-4x 2+5yC.(4x 2-5y )2D.(4x +5y )2 5.a 4+(1-a )(1+a )(1+a 2)的计算结果是( ) A.-1 B.1 C.2a 4-1D.1-2a 46.下列各式运算结果是x 2-25y 2的是( ) A.(x +5y )(-x +5y ) B.(-x -5y )(-x +5y ) C.(x -y )(x +25y )D.(x -5y )(5y -x )7.下列多项式乘法中不能用平方差公式计算的是( ) (A ) ))((3333b a b a -+ (B ) ))((2222a b b a -+ (C ) )12)(12(22-+y x y x (D ) )2)(2(22y x y x +- 8.下列多项式乘法中可以用平方差公式计算的是( ) (A ) ))((b a b a -+- (B ))2)(2(x x ++ (C ) )31)(31(x y y x -+(D ) )1)(2(+-x x9、已知,,a b c 满足0a b c ++=,8abc =,那么111ab c++的值是( )(A )正数; (B )零 (C )负数 (D )正负不能确定 10、设(5a+3b )2=(5a-3b )2+M ,则M 的值是( )A. 30abB. 60abC. 15abD. 12ab三、化简计算1. 1.03×0.972. (-2x 2+5)(-2x 2-5)3. a (a -5)-(a +6)(a -6)4.、(2x -3y )(3y +2x )-(4y -3x )(3x +4y ) 5、(31x +y )(31x -y )(91x 2+y 2) 6.、(x +y )(x -y )-x (x +y )7、 3(2x +1)(2x -1)-2(3x +2)(2-3x ) 8. 9982-49. 2003×2001-20022 10、3x-4y)2-(3x+y)2; 11、(2x+3y)2-(4x-9y)(4x+9y)+(2x-3y)2;12、1.23452+0.76552+2.469×0.7655; 13、(x+2y)(x-y)-(x+y)2.14、(a- 2b+c)(a+2b-c)-(a+2b+c)2; 15、(x+y)4(x-y)4;四、解答题1.化简:))(())(())((a c a c c b c b b a b a +-++-++-2.化简求值:22)2()2()2)(12(+---+-x x x x ,其中211-=x3.解方程:)1)(1(13)12()31(22+-=-+-x x x x4.(1)已知2)()1(2-=---y x x x , (2)如果2215,6ab ab a b +=+=求xy y x -+222的值; 求2222a b a b -+和的值5.探索题:(x -1)(x +1)=x 2-1 ; (x -1)(x 2+x +1)=x 3-1 (x -1)(x 3+x 2+x +1)=x 4-1 ; (x-1)4325(1)1x xx x x++++=-根据前面各式的规律可得 (x -1)(x n +x n -1+…+x +1)=_____. 试求654322122222++++++的值判断200520042003 (212)22+++++的值末位数6、已知z 2=x 2+y 2,化简(x+y+z)(x-y+z)(-x+y+z)(x+y-z).7、已知m 2+n 2-6m+10n+34=0,求m+n 的值8、已知a +a1=4,求a 2+21a和a 4+41a的值.9、已知a =1990x+1989,b=1990x+1990,c=1990x+1991,求a 2+b 2+c 2-a b-a c-bc 的值.10、如果(2a +2b+1)(2a +2b-1)=63,求a +b 的值.11、已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值.12、观察下面各式:12+(1×2)2+22=(1×2+1)2 22+(2×2)2+32=(2×3+1)2 32+(3×4)2+42=(3×4+1)2 ……(1)写出第2005个式子;(2)写出第n 个式子,并说明你的结论. 13、多项式x 2+kx+25是另一个多项式的平方,则k= 14、①已知6x y +=,7xy =,试求22x y +的值。
整式乘法练习题

整式的乘法练习题(一)填空1.a8=(-a5)______.2.a15=( )5.3.3m2·2m3=______.4.(x+a)(x+a)=______.5.a3·(-a)5·(-3a)2·(-7ab3)=______.6.(-a2b)3·(-ab2)=______.7.(2x)2·x4=( )2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=______.14.(3x2)3-7x3[x3-x(4x2+1)]=______.17.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是______.19.3(a-b)2[9(a-b)3](b-a)5=______ .21.若a2n-1·a2n+1=a12,则n=______.(二)选择28.下列计算正确的是[ ]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[ ]B.y3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[ ]A.(x+1)(x+4)=x2+5x+4;B.(m-2)(m+3)=m2+m-6;C.(y+4)(y-5)=y2+9y-20;D.(x-3)(x-6)=x2-9x+18.31.计算-a2b2·(-ab3)2所得的结果是 [ ]A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列计算中错误的是[ ]A.[(a+b)2]3=(a+b)6;B.[(x+y)2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y)m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ]A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.41.下列计算中,[ ](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y,(4)2164=(64)3,(5)x2n-1y2n-1=xy2n-2.A.只有(1)与(2)正确;B.只有(1)与(3)正确;C.只有(1)与(4)正确;D.只有(2)与(3)正确.42.(-6x n y)2·3x n-1y的计算结果是[ ]A.18x3n-1y2;B.-36x2n-1y3;C.-108x3n-1y;D.108x3n-1y3.44.下列计算正确的是[ ]A.(6xy2-4x2y)·3xy=18xy2-12x2y;B.(-x)(2x+x2-1)=-x3-2x2+1;C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;45.下列计算正确的是[ ]A.(a+b)2=a2+b2;B.a m·a n=a mn;C.(-a2)3=(-a3)2;D.(a-b)3(b-a)2=(a-b)5.47.把下列各题的计算结果写成10的幂的形式,正确的是[ ]A.100×103=106;B.1000×10100=;C.1002n×1000=104n+3;D.1005×10=10005=1015.48.t2-(t+1)(t-5)的计算结果正确的是[ ]A.-4t-5;B.4t+5;C.t2-4t+5;D.t2+4t-5.(三)计算52.(6×108)(7×109)(4×104).53.(-5x n+1y)·(-2x).54.(-3ab)·(-a2c)·6ab2.55.(-4a)·(2a2+3a-1).58.(3m-n)(m-2n).59.(x+2y)(5a+3b).60.(-ab)3·(-a2b)·(-a2b4c)2.61.[(-a)2m]3·a3m+[(-a)5m]2.62.x n+1(x n-x n-1+x).63.(x+y)(x2-xy+y2).65.5x(x2+2x+1)-(2x+3)(x-5).67.(2x-3)(x+4).70.(-2a m b n)(-a2b n)(-3ab2).74.(m-n)(m5+m4n+m3n2+m2n3+mn4+n5).75.(2a2-1)(a-4)(a2+3)(2a-5).76.2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3).77.(0.3a3b4)2·(-0.2a4b3)3.78.(-4xy3)·(-xy)+(-3xy2)2.80.(5a3+2a-a2-3)(2-a+4a2).81.(3x4-2x2+x-3)(4x3-x2+5).83.(3a m+2b n+2)(2a m+2a m-2b n-2+3b n).86.[(-a2b)3]3·(-ab2).87.(-2ab2)3·(3a2b-2ab-4b2).91.(-2x m y n)3·(-x2y n)·(-3xy2)2.92.(0.2a-1.5b+1)(0.4a-4b-0.5).93.-8(a-b)3·3(b-a).94.(x+3y+4)(2x-y).96.y[y-3(x-z)]+y[3z-(y-3x)].97.计算[(-a)2m]3·a3m+[(-a)3m]3(m为自然数).第3页共15页(四)化简(五)求值104.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.105.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=106.光的速度每秒约3×105千米,太阳光射到地球上需要的时间约是5×102秒.问地球与太阳的距离约是多少千米?(用科学记数法写出来)107.已知ab2=-6,求-ab(a2b5-ab3-b)的值.108.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.110.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值.111.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.112.若x3-6x2+11x-6≡(x-1)(x2+mx+n),求m,n的值.113.已知一个两位数的十位数字比个位数字小1,若把十位数字与个位数字互换,所得的新两位数与原数的乘积比原数的平方多405,求原数.114.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.115.比较2100与375的大小.116.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).118.求不等式(3x+4)(3x-4)>9(x-2)(x+3)的正整数解.119.已知2a=3b=6c(a,b,c均为自然数),求证:ab-cb=ac.120.求证:对于任意自然数n,n(n+5)-(n-3)×(n+2)的值都能被6整除.121.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,求证:x3n y3n-1z3n+1-x=0.第5页共15页122.已知x=b+c,y=c+a,z=a+b,求证:(x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0.123.证明(a-1)(a2-3)+a2(a+1)-2(a3-2a-4)-a的值与a无关.124.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16的值与x的值无关.125.求证:(m+1)(m-1)(m-2)(m-4)=(m2-3m)2-2(m2-3m)-8.1、2、若2x + 5y-3 = 0 则=3、已知a = 355 ,b = 444 ,c = 533则有( )A.a < b < c B.c < b < a C.a < c < b D.c < a < b4、已知,则x =5、21990×31991的个位数字是多少6、计算下列各题(1)(2)第7页 共15页(3) (4)7、计算(-2x -5)(2x -5)8、计算9、计算,当a 6 = 64时, 该式的值。
整式乘除练习题及答案

整式乘除练习题及答案整式乘除是数学中的一个重要概念和技能,它在代数运算中扮演着重要的角色。
掌握整式乘除的方法和技巧,可以帮助我们解决各种实际问题,提高数学运算能力和逻辑思维能力。
以下是一些整式乘除的练习题及其答案,供大家练习和参考。
练习题一:将下列整式相乘并化简。
(3x^2 + 4y)(2x - 5y)解答:首先,我们可以使用分配律来展开整式的乘法。
(3x^2 + 4y)(2x - 5y) = 3x^2 * 2x - 5y * 3x^2 + 4y * 2x - 5y * 4y= 6x^3 - 15x^2y + 8xy - 20y^2所以,答案为6x^3 - 15x^2y + 8xy - 20y^2。
练习题二:将下列整式相除并化简。
(9x^3 - 8y^3)/(3x - 2y)解答:首先,我们可以使用长除法的方法来进行整式的除法运算。
________3x - 2y | 9x^3 + 0x^2 - 8y^3 + 0xy- (9x^3 - 6xy^2)_______6xy^2 - 8y^3 + 0xy- (6xy^2 - 4y^2)_______-4y^2 + 0xy-(-4y^2 + 2y)_______-2y所以,答案为商式为3x^2 + 2y^2 - 2y。
练习题三:将下列整式乘法公式化简。
(x - y)^2解答:我们可以利用乘法公式 (a - b)^2 = a^2 - 2ab + b^2 来展开整式的乘法。
(x - y)^2 = x^2 - 2xy + y^2所以,答案为x^2 - 2xy + y^2。
练习题四:将下列整式除法公式化简。
(x^3 + y^3)/(x + y)解答:我们可以利用除法公式 (a^3 + b^3)/(a + b) = a^2 - ab + b^2 来进行整式的除法。
(x^3 + y^3)/(x + y) = x^2 - xy + y^2所以,答案为商式为x^2 - xy + y^2。
整式的乘法练习题八年级

整式乘法练习题八年级一、单项式乘单项式1. 计算:3x × 4x2. 计算:2a × 5b3. 计算:(1/2)m × (4)n4. 计算:5xy × (3x^2)5. 计算:4ab^2 × 2a^2b二、单项式乘多项式1. 计算:3x(2x 5y + 4)2. 计算:2a(a^2 + 3a 2)3. 计算:4xy(3x^2y 2xy + 5)4. 计算:3m^2(2m^3 4m^2 + 5m)5. 计算:5ab(3a^2b 4ab + 2b^2)三、多项式乘多项式1. 计算:(x + 3)(x 4)2. 计算:(2a 5b)(3a + 4b)3. 计算:(3x 2y + 1)(x + y 1)4. 计算:(a^2 + 2ab 3b^2)(2a b)5. 计算:(4m^2 3mn + 2n^2)(2m^2 + 5mn 3n^2)四、平方差公式1. 计算:(x + 5)^22. 计算:(2a 3b)^23. 计算:(3x + 4y)^24. 计算:(m 2n)^25. 计算:(4ab + 5c)^2五、完全平方公式1. 计算:(x 3)(x + 3)2. 计算:(2a + 5b)(2a 5b)3. 计算:(3x 2y)(3x + 2y)4. 计算:(m + 4n)(m 4n)5. 计算:(ab 6c)(ab + 6c)六、综合运用1. 计算:(x + 2y)(x 2y + 3)2. 计算:(3a 4b)(2a + 3b 5)3. 计算:(4x^2 3y^2)(2x^2 + 5y^2)4. 计算:(a + 2b 3c)(a 2b + 3c)5. 计算:(5m^2 + 4mn 6n^2)(3m^2 2mn + 4n^2)七、分配律的应用1. 计算:2x(3x + 4y 5) + 3(2x y)2. 计算:4a(5a 2b + 3c) 2(3a b + 2c)3. 计算:3x(2x^2 4xy + 5y^2) + x(4x^2 3xy)4. 计算:5m(2m^2 3mn + 4n^2) 2m(3m^2 4mn)5. 计算:7ab(3a^2 2ab + 5b^2) 4a(2a^2 3b^2)八、因式分解与乘法结合1. 计算:(x + 2)(x 2)(x + 3)2. 计算:(2a + 3b)(2a 3b)(a + 4b)3. 计算:(3x 4)(3x + 4)(x 2)4. 计算:(m + n)(m n)(2m + n)5. 计算:(ab + 5)(ab 5)(2ab + 3)九、特殊乘法1. 计算:(x + 1)(x + 2)(x + 3)2. 计算:(2a 1)(2a + 1)(2a 3)3. 计算:(3x + 4)(3x 4)(x + 6)4. 计算:(m 2)(m + 2)(m 4)5. 计算:(ab 3)(ab + 3)(ab 5)十、实际应用题1. 一个长方形的长是x米,宽是y米,求它的面积。
14.1 整式的乘法 综合计算题(含答案)

整式的乘法 计算80道(含答案)14.1.1 同底数幂的乘法14.1.2幂的乘方14.1.3积的乘方14.1.4 整式的乘法(1)单项式乘单项式 (2)多项式乘以多项式(3)同底数幂的除法【公式回顾】1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.单项式乘以单项式:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.6.单项式乘以多项式:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).7.多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.8.单项式相除:把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.9.多项式除以单项式:先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++计算练习:(1)y 4•y 3•y 2•y ; (2)(﹣x 2y 3)4; (3)82019×(﹣0.125)2019;(4)(a 3)2•(2ab 2)3. (5)(﹣x 3y 2)3 (6)5a 2•(﹣3a 3)2(7)(﹣2a n b3n)2+(a2b6)n;(8)(m﹣n)2•(n﹣m)3•(n﹣m)4 (9)2100×4100×0.12599.(10)a3•a4•a+(a2)4+(﹣2a4)2.(11)(2x2)3+x4•x2+(﹣2x2)3 (12)x•x3+x2•x2.(13)(﹣3x3)2﹣(﹣x2)3+(﹣2x)2﹣(﹣x)3.(14)(b2n)3(b3)4n÷(b5)n+1(15)(a2)3﹣a3•a3+(2a3)2;(16)(﹣4a m+1)3÷[2(2a m)2•a].(17)8a(a2+a+);(18)5x2y•(﹣2xy2)3.(19)7x4•x5•(﹣x)7+5(x4)4.(20)(﹣1)0+(﹣1)2020;(21)(10a2﹣5a)÷(5a).(22)(14a3﹣7a2)÷(7a);(23)(a+b)(a2﹣ab+b2)(24)3x2y•(﹣2x3y2)2;(25)(﹣2a2)•(3ab2﹣5ab3).(26)a5•a3÷a2;(27)(﹣2m)3﹣(m3)2;(28)(﹣2a2b)•(abc);(29)(﹣2x)3(2x3﹣x﹣1)﹣2x(2x3+4x2)(30)(x+3)(x﹣7)﹣x(x﹣1).(31)2xy2•(﹣3xy4)(32)(y3﹣3y2+y)÷y(33)(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2(34)a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)(35)(﹣2xy2)6+(﹣3x2y4)3;(36)﹣x2•(﹣x)3+3x3(﹣x)2﹣4(﹣x)•(﹣x4).(37)﹣b2×(﹣b)2×(﹣b3)(38)(x﹣y)3×(y﹣2)2×(y﹣2)5(39)﹣a4•a3•a+(a2)4﹣(﹣2a4)2(40)(a2b2)3÷(﹣ab3)2 (41)5x2•x4﹣(﹣2x3)2+x8÷x2(42)(43)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)(44)3x3y3•(﹣x2y2)+(﹣x2y)3•9xy2.(45)(3a2b)2•(a2)4•(﹣b2)5.(46)[2(a﹣b)3]2+[(a﹣b)2]3﹣[﹣(a﹣b)2](47)x2y3(﹣2xy3)2(48)(3m2+15m3n﹣m4)÷(﹣3m2)(49)(2x3y4﹣3x3y2z)÷x2y2(50)(x﹣y)(x2+xy+y2).(51)[(x2)3]2﹣3(x2•x3•x)2;(52)3a•(a2+2a)﹣2a2(a﹣3)(53)(x2y3)2+(﹣xy)3•xy3(54)(55)x•(﹣x)•(﹣x)4(56)y•x5+(﹣2x2)2+(﹣2x2)3(57)y4+(y2)4÷y4﹣(﹣y2)2(58)(x﹣y)2•(y﹣x)7•[﹣(x﹣y)3](59)(2×102)4(60)x•x2•x3+(x2)3﹣2(x3)2;(61)(﹣a2)3﹣3a2•a•a3(62)(x﹣y)9÷(y﹣x)6÷(x﹣y)(63)﹣2x6﹣(x)2•8x5+(2x4)3÷(﹣x)5(64)(﹣2x3y)2•(﹣2x)(65)(﹣4)2012×(0.25)2013(66)若3m=6,9n=2,求3m﹣4n+1的值.(67)(x﹣3y)(﹣6x);(68)(6x4﹣8x2y)÷(﹣2x2).(69)(﹣1+3x)(﹣3x﹣1);(70)(x+1)2﹣(1﹣3x)(1+3x).(71)已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.(72)15mn2÷5mn×m3n;(73)(3x+1)(2x﹣5).(74)(75)(x3y)•(﹣3xy2)3•(x)2.(76)(x﹣2y)(x+2y﹣1)+4y2(77)(a2b)[(ab2)2+(2ab)3+3a2].(78)(a3b4)2÷(ab2)3;(79)(﹣2x3y2﹣3x2y2+2xy)÷2xy.(80)(﹣2a2)3+2a2•a4;(81)(﹣2×105)2÷(8×105)整式的乘法计算80道参考答案与试题解析(1)原式=y10;(2)原式=x8y12;(3)原式=(﹣0.125×8)2019=﹣1;(4)原式=a6×8a3b6=8a9b6.(5)(﹣x3y2)3=﹣x9y6;(6)原式=5a2•9a6=45a8;(7)原式=4a2n b6n+a2n b6n=5a2n b6n;(8)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(9)原式=299×2×499×4×0.12599=(2×4×0.125)99×2×4=199×2×4=1×2×4=8.(10)a3•a4•a+(a2)4+(﹣2a4)2=a8+a8+4a8=6a8.(11)原式=8x6+x6﹣8x6=x6;(12)原式=x4+x4=2x4;(13)原式=9x6﹣(﹣x6)+4x2﹣(﹣x3)=9x6+x6+4x2+x3=10x6+x3+4x2.(14)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(15)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(16)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+2(17)8a(a2+a+)=8a•a2+8a•a+8a•=8a3+6a2+5a;(18)原式=5x2y•(﹣8x3y6)=﹣40x5y7;(19)原式=7x4•x5•(﹣x7)+5x16=﹣7x16+5x16=﹣2x16.(20)(﹣1)0+(﹣1)2020=1+1=2;(21)(10a2﹣5a)÷(5a)=2a﹣1.(22)(14a3﹣7a2)÷(7a)=14a3÷7a﹣7a2÷7a=2a2﹣a;(23)(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+ba2﹣ab2+b3=a3+b3.(24)3x2y•(﹣2x3y2)2=3x2y•4x6y4=12x8y5;(25)(﹣2a2)•(3ab2﹣5ab3)=(﹣2a2)•(3ab2)﹣(﹣2a2)•(5ab3)=﹣6a3b2+10a3b3.(26)a5•a3÷a2=a5+3﹣2=a6;(27)(﹣2m)3﹣(m3)2=﹣8m3﹣m6;(28)(﹣2a2b)•(abc)=﹣a3b2c.(29)原式==﹣16x6+4x4+8x3﹣4x4﹣8x3=﹣16x6;(30)原式=x2﹣7x+3x﹣21﹣x2+x=﹣3x﹣21.(31)原式=﹣6x2y6;(32)原式=y2﹣y+1;(33)(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2=4y6﹣64y6﹣4y2•(9y4)=4y6﹣64y6﹣36y6=﹣96y6.(34)原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=0.(35)(﹣2xy2)6+(﹣3x2y4)3=64x6y12﹣27x6y12=37x6y12;(36)﹣x2•(﹣x)3+3x3(﹣x)2﹣4(﹣x)•(﹣x4)=x5+3x5﹣4x5=0.(37)﹣b2×(﹣b)2×(﹣b3)=b2×b2×b3=b7;(38)(x﹣y)3×(y﹣2)2×(y﹣2)5=(x﹣y)3(y﹣2)7.(39)原式=﹣a8+a8﹣4a8,=﹣4a8;(40)原式=a6b6÷a2b6=a4.(41)原式=5x6﹣4x6+x6=2x6(42)==﹣4x5y3+9x4y2﹣2x2y;(43)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)=2x2+x﹣2x﹣1﹣2(x2+2x﹣5x﹣10)=2x2﹣x﹣1﹣2x2+6x+20=5x+19.(44)原式=3x3y3•(﹣x2y2)+(﹣x6y3)•9xy2=﹣2x5y5﹣x7y5.(45)原式=9a4b2•a8•(﹣b10)=﹣9a4b2•a8•b10=﹣9a12b12.(46)原式=4(a﹣b)6+(a﹣b)6+(a﹣b)2=5(a﹣b)6+(a﹣b)2.(47)x2y3(﹣2xy3)2=x2y3•(4x2y6)=4x4y9;(48)(3m2+15m3n﹣m4)÷(﹣3m2)=﹣1﹣5mn+m2.(49)(2x3y4﹣3x3y2z)÷x2y2=2xy2﹣3xz;(50)(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.(51)原式=(x6)2﹣3(x6)2=x12﹣3x12=﹣2x12;(52)原式=3a3+6a2﹣2a3+6a2=a3+12a2.(53)(x2y3)2+(﹣xy)3•xy3=x4y6﹣x4y6=0;(54)=(﹣0.25)15×415+××=(﹣0.25×4)15+×=﹣1+(﹣1)×=﹣1﹣=.(55)原式=﹣x2•x4=﹣x6;(56)原式=x5y+4x4﹣8x6.(57)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4;(58)(x﹣y)2•(y﹣x)7•[﹣(x﹣y)3]=(y﹣x)2•(y﹣x)7•(y﹣x)3=(y﹣x)12.(59)(2×102)4=1.6×109;(60)原式=x6+x6﹣2x6=0;(61)(﹣a2)3﹣3a2•a•a3=﹣a6﹣3a6=﹣4a6.(62)原式=(x﹣y)9÷(x﹣y)6÷(x﹣y)=(x﹣y)2=x2﹣2xy+y2;(63)原式=﹣2x6﹣•8x5+(8x12)÷(﹣x5)=﹣2x6﹣2x7﹣8x7=﹣2x6﹣10x7.(64)(﹣2x3y)2•(﹣2x)=(4x6y2)•(﹣2x)=﹣8x7y2(65)(﹣4)2012×(0.25)2013=(﹣4)2012×(0.25)2012×(0.25)=(﹣4×0.25)2012×0.25=(﹣1)2012×0.25=1×0.25=0.25(66)9n=(32)n=32n=2∴3 m﹣4n+1=3m÷34n×3=3m÷(32n)2×3=6÷4×3=(67)原式=﹣6x2+18xy;(68)原式=﹣3x2+4y.(69)原式=(﹣1)2﹣(3x)2=1﹣9x2;(70)原式=x2+2x+1﹣(1﹣9x2)=x2+2x+1﹣1+9x2=10x2+2x.(71)(1)∵(a x)y=a6,(a x)2÷a y=a3∴a xy=a6,a2x÷a y=a2x﹣y=a3,∴xy=6,2x﹣y=3.(2)4x2+y2=(2x﹣y)2+4xy=32+4×6=9+24=33.(72)15mn2÷5mn×m3n=3n×m3n=3m3n2;(73)(3x+1)(2x﹣5)=6x2﹣15x+2x﹣5=6x2﹣13x﹣5.(74)(﹣x2y﹣xy2)•(﹣xy)2=(﹣x2y﹣xy2)•x2y2=﹣x4y3﹣x3y4.(75)原式=x3y•(﹣27x3y6)•x2=﹣x8y7.(76)原式=(x﹣2y)(x+2y)﹣x+2y+4y2=x2﹣4y2﹣x+2y+4y2=x2﹣x+2y;(77)原式=a2b(a2b4+8a3b3+3a2)=a4b5+8a5b4+3a4b.(78)(a3b4)2÷(ab2)3=a6b8÷a3b6=a3b2;(79)(﹣2x3y2﹣3x2y2+2xy)÷2xy=﹣x2y﹣xy+1.(80)(﹣2a2)3+2a2•a4=(﹣2)3(a2)3+2a6=﹣8a6+2a6=﹣6a6;(81)(﹣2×105)2÷(8×105)=4×1010÷(8×105)=40×109÷(8×105)=5×104.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘法综合练习题(125题)(一)填空1.a8=(-a5)______.2.a15=( )5.3.3m2·2m3=______.4.(x+a)(x+a)=______.5.a3·(-a)5·(-3a)2·(-7ab3)=______.6.(-a2b)3·(-ab2)=______.7.(2x)2·x4=( )2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是______.12.m是x的六次多项式,n是x的四次多项式,则2m-n是x的______次多项式.14.(3x2)3-7x3[x3-x(4x2+1)]=______.15.{[(-1)4]m}n=______.16.-{-[-(-a2)3]4}2=______.17.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是______.18.若10m=a,10n=b,那么10m+n=______.19.3(a-b)2[9(a-b)n+2](b-a)5=______(a-b)n+9.20.已知3x·(x n+5)=3x n+1-8,那么x=______.21.若a2n-1·a2n+1=a12,则n=______.22.(8a3)m÷[(4a2)n·2a]=______.23.若a<0,n为奇数,则(a n)5______0.24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是______.26.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于______.(二)选择:27.下列计算最后一步的依据是[ ]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x (乘法交换律)=-20(a2a3)·(x4x) (乘法结合律)=-20a5x5.( )A.乘法意义;B.乘方定义;C.同底数幂相乘法则;D.幂的乘方法则.28.下列计算正确的是[ ]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[ ]B.y3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[ ]A.(x+1)(x+4)=x2+5x+4;B.(m-2)(m+3)=m2+m-6;C.(y+4)(y-5)=y2+9y-20;D.(x-3)(x-6)=x2-9x+18.31.计算-a2b2·(-ab3)2所得的结果是 [ ]A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列计算中错误的是[ ]A.[(a+b)2]3=(a+b)6;B.[(x+y)2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y)m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ] A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.34.下列计算正确的是[ ]A.(a3)n+1=a3n+1;B.(-a2)3a6=a12;C.a8m·a8m=2a16m;D.(-m)(-m)4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的结果是[ ]A.(a-b)2n+m;B.-(a-b)2n+m;C.(b-a)2n+m;D.以上都不对.36.若0<y<1,那么代数式y(1-y)(1+y)的值一定是 [ ]A.正的;B.非负;C.负的;D.正、负不能唯一确定.37.(-2.5m3)2·(-4m)3的计算结果是 [ ]A.40m9;B.-40m9;C.400m9;D.-400m9.38.如果b2m<b m(m为自然数),那么b的值是[ ]A.b>0;B.b<0;C.0<b<1;D.b≠1.39.下列计算中正确的是[ ]A.a m+1·a2=a m+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[ ]A.-(-3a n b)4=-81a4n b4;B.(a n+1b n)4=a4n+4b4n;C.(-2a n)2·(3a2)3=-54a2n+6;D.(3x n+1-2x n)·5x=15x n+2-10x n+1.41.下列计算中,[ ](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y,(4)2164=(64)3,(5)x2n-1y2n-1=xy2n-2.A.只有(1)与(2)正确;B.只有(1)与(3)正确;C.只有(1)与(4)正确;D.只有(2)与(3)正确.42.(-6x n y)2·3x n-1y的计算结果是[ ]A.18x3n-1y2;B.-36x2n-1y3;C.-108x3n-1y;D.108x3n-1y3.[ ]44.下列计算正确的是[ ]A.(6xy2-4x2y)·3xy=18xy2-12x2y;B.(-x)(2x+x2-1)=-x3-2x2+1;C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;45.下列计算正确的是[ ]A.(a+b)2=a2+b2;B.a m·a n=a mn;C.(-a2)3=(-a3)2;D.(a-b)3(b-a)2=(a-b)5.[ ]47.把下列各题的计算结果写成10的幂的形式,正确的是[ ]A.100×103=106;B.1000×10100=103000;C.1002n×1000=104n+3;D.1005×10=10005=1015.48.t2-(t+1)(t-5)的计算结果正确的是[ ]A.-4t-5;B.4t+5;C.t2-4t+5;D.t2+4t-5.49.使(x2+px+8)(x2-3x+q)的积中不含x2和x3的p,q的值分别是[ ]A.p=0,q=0;B.p=-3,q=-9;C.p=3,q=1;D.p=-3,q=1.50.设xy<0,要使x n y m·x n y m>0,那么[ ]A.m,n都应是偶数;B.m,n都应是奇数;C.不论m,n为奇数或偶数都可以;D.不论m,n为奇数或偶数都不行.51.若n为正整数,且x2n=7,则(3x3n)2-4(x2)2n的值为[ ]A.833;B.2891;C.3283;D.1225.(三)计算52.(6×108)(7×109)(4×104).53.(-5x n+1y)·(-2x).54.(-3ab)·(-a2c)·6ab2.55.(-4a)·(2a2+3a-1).58.(3m-n)(m-2n).59.(x+2y)(5a+3b).60.(-ab)3·(-a2b)·(-a2b4c)2.61.[(-a)2m]3·a3m+[(-a)5m]2.62.x n+1(x n-x n-1+x).63.(x+y)(x2-xy+y2).65.5x(x2+2x+1)-(2x+3)(x-5).67.(2x-3)(x+4).74.(m-n)(m5+m4n+m3n2+m2n3+mn4+n5).70.(-2a m b n)(-a2b n)(-3ab2).75.(2a2-1)(a-4)(a2+3)(2a-5).76.2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3).77.(0.3a3b4)2·(-0.2a4b3)3.78.(-4xy3)·(-xy)+(-3xy2)2.80.(5a3+2a-a2-3)(2-a+4a2).81.(3x4-2x2+x-3)(4x3-x2+5).86.[(-a2b)3]3·(-ab2).83.(3a m+2b n+2)(2a m+2a m-2b n-2+3b n).91.(-2x m y n)3·(-x2y n)·(-3xy2)2.87.(-2ab2)3·(3a2b-2ab-4b2).92.(0.2a-1.5b+1)(0.4a-4b-0.5).93.-8(a-b)3·3(b-a).94.(x+3y+4)(2x-y).96.y[y-3(x-z)]+y[3z-(y-3x)].97.计算[(-a)2m]3·a3m+[(-a)3m]3(m为自然数).(四)化简(五)求值;104.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.105.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=106.光的速度每秒约3×105千米,太阳光射到地球上需要的时间约是5×102秒.问地球与太阳的距离约是多少千米?(用科学记数法写出来)107.已知ab2=-6,求-ab(a2b5-ab3-b)的值.108.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.110.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值.111.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.112.若x3-6x2+11x-6≡(x-1)(x2+mx+n),求m,n的值.113.已知一个两位数的十位数字比个位数字小1,若把十位数字与个位数字互换,所得的新两位数与原数的乘积比原数的平方多405,求原数.114.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.115.比较2100与375的大小.116.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).118.求不等式(3x+4)(3x-4)>9(x-2)(x+3)的正整数解.119.已知2a=3b=6c(a,b,c均为自然数),求证:ab-cb=ac.120.求证:对于任意自然数n,n(n+5)-(n-3)×(n+2)的值都能被6整除.121.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,求证:x3n y3n-1z3n+1-x=0.122.已知x=b+c,y=c+a,z=a+b,求证:(x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0.123.证明(a-1)(a2-3)+a2(a+1)-2(a3-2a-4)-a的值与a无关.124.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16的值与x的值无关.125.求证:(m+1)(m-1)(m-2)(m-4)=(m2-3m)2-2(m2-3m)-8.整式的运算练习(提高27题)1、=2、若2x + 5y-3 = 0 则=3、已知a = 355 ,b = 444 ,c = 533则有( )A.a < b < c B.c < b < a C.a < c < b D.c < a < b4、已知,则x =5、21990×31991的个位数字是多少6、计算下列各题(1)(2)(3)(4)7、计算(-2x-5)(2x-5) 8、计算9、计算,当a6 = 64时, 该式的值。