二氧化碳保护焊丝成分
CO2气保焊
一、 CO2气体保护焊原理
1、定义:
电弧在一个熔化的电极和工件之间燃烧,这个熔化的 电极同时又作为填充金属,保护气体是惰性的或活性 的。(按ISO4063标准代号135)
二氧化碳气体保护电弧焊,简称CO2焊, CO2亦具有氧化性,本质上也属于MAG焊。 使用的保护气体: CO2、CO2+O2 优点: CO2气体来源容易、易于制取、价格 低廉。 范围:广泛用于黑色金属材料的焊接 • 另外,由于CO2的物理特性和化学特性,须 要在焊接过程中从设备、工艺、以及焊丝等 方面采取措施。
• 惯性力、母材蒸发反作用力是收缩力是促进熔 滴的过渡; • 表面张力和粘性则起到影响熔滴在焊丝端部保 持多长时间的作用。
熔化极气体保护焊中作用在熔滴上的力
收缩效应的作用原理
• 对于熔化极脉冲惰性气体保护焊来讲,收缩力最为重 要,它是一种电磁力,它将对熔滴的过渡有重大的影 响,电流流过的任何导体将产生一磁场,并形成指向 中心的径向作用力,
压缩力的作用结果是:
1)使焊丝液态端收缩。 2)提高了收缩位置的电流密度。 3)增强了收缩力
收缩效应是以电流强度平方的形式增大。因此, 对于熔化极脉冲惰性气体保护焊,较低的基础电 流是不会使熔滴过渡的。仅当脉冲电流强度提高 时才会过渡。这样就实现了脉冲控制的熔滴过渡, 即收缩效应才会增大,熔滴通过每一个脉冲来促 使一个熔滴过渡。这种方式只有在收缩效应足够 大的时候,如在用惰性气体保护焊接时,才能实 现。如使用二氧化碳或其它氧化性混合气体时, 由于这些气体改变了电弧的形态,熔滴的表面张 力加大,收缩效应对熔滴过渡的影响很小。因些, 这样用脉冲电流就没有什么意义,甚至带来缺点, 如飞溅大等。
MAG焊保护气体的选择 -通常:CO2 -Ar为主的气体优点:高熔化效率时飞溅减少.
CO2保护焊
防气孔的可靠性由二氧化碳(CO2)分解出的氧或作为保护气体加入的氧和熔池起反应。
除引起合金元素烧损外,有可能在熔池中形成气体状物质。
如焊缝金属内有足够的与氧有较大化合力的元素存在的话,可避免产生气体状氧化物。
产生的氧立即被化合以焊渣形式迅速从熔池分离出去。
焊接非合金钢时必须采用合金钢焊丝。
为了避免气孔,应让保护气体与焊丝合理搭配,此外还应确定合理的电弧工作点。
电弧电压调节不当和熔化功率偏高时均可能引起气孔。
烧损和夹渣如前所述,氧的最重要的化学反应是造成氧化物夹渣。
夹渣沉积在焊缝区内,此外氧还易造成烟气并导致合金元素的烧损。
在表1-13中M3类混合保护气体以及用CO2保护气体时,其夹渣情况比用M1和M2时严重一些。
因为夹渣量随焊丝中的锰和硅含量增加而增加。
此外,这种夹渣量还随电弧长度(电弧电压)增加,并随电弧功率提高和焊接速度降低而增多。
必须采用有足够高合金成分的焊丝来弥补合金元素的烧损。
焊缝金属中残留的氧化物可导致焊接接头韧性的降低。
尽管如此,用CO2或高含氧量的混合保护气体(如M3.3)所取得的冲击韧性在许多应用范围也是完全可满足要求的。
在用强氧化性保护气体进行多道焊时必须注意,不得有夹渣。
为此,每焊一道焊缝之前必须仔细检查,看看前一首这焊缝内是否有夹渣,如有,必须先清除掉夹渣后再焊。
对铬镍钢的耐腐蚀性不能用纯二氧化碳保护气体焊接低碳奥氏体铬镍钢。
可以用混合保护气体,但其中的二氧化碳含量应限制在一定范围(CO2<5%=。
当采用的二氧化碳含量小于此。
5%的富氩的混合保护气体时,可得到基本上无氧化的焊缝表面。
当用非镇定的铬镍钢焊丝焊接时,保护气体中应完全放弃采用CO2,而改用含1-5%氧的富氩的混合保护气体。
若保护气体中的二氧化碳偏高,熔池内吸收由保护气体中分离出的碳。
那些仅仅微量增高的碳也可能促进产生晶间腐蚀。
对于没有明显腐蚀应力的铬镍钢,例如低温技术中应用的铬镍钢,用较高二氧化碳含量(<20%=)的混合保护气体也没有问题。
二氧化碳气体保护焊
• 药芯焊丝电弧焊优点
• 药芯焊丝电弧焊综合了手工电弧焊和 普通熔化极气体保护焊的优点。其主要优 点是:
• (1)采用气渣联合保护,焊缝成形美观 ,电弧稳定性好,飞溅少且颗粒细小。
•
• C2>焊丝熔敷速度快,熔敷效率(大约为 85%^-90%)和生产率都较高(生产率比 手工焊高3^}5倍)。
2) 在短路过渡焊接时,合理选择焊接电源特性,并匹配 合适的可调电感,以便当采用不同直径的焊丝时,能调 得合适的短路电流增长速度。
3) 采用直流反接进行焊接。
4) 当采用不同熔滴过渡形式焊接时,要合理选择焊接工 艺参数,以获得最小的飞溅。
二、CO2焊用的气体和焊丝
(一)保护气体(CO2) CO2气钢瓶外表涂铝白
极材料。
• (2)常用钨极材料的特点 钨极氩弧焊用的 非熔化极材料有纯钨极、钍钨极、铈钨极、 镧钨极、锆钨极、钇钨极等。其中前三种是 最常见的。
• ①纯钨极 是使用历史最长的一种非熔 化电极。但其有一些缺点:一是电子发射能 力较差,要求电源有较高的空载电压;二是 抗烧损性差,使用寿命较短,需要经常更换 重磨钨极端头。目前主要用于交流电焊接铝 、镁及其合金时,利用其破碎氧化膜的作用 好的特点。
三、药芯焊丝CO2气体保护焊
药芯焊丝CO2气体保护电弧焊的基本原理与普通 CO2焊一样,是以可熔化的药芯焊丝作为电极(通常接正 极),焊件作为另一极。
采用CO2或CO2+Ar混合气体作为保护气体。 与普通熔化极气体保护焊的主要区别,在与焊丝内 部装有焊剂混合物。焊接时,在电弧热的作用下,熔化状 态的焊剂材料、焊丝金属、焊件金属和保护气体相互之间 发生冶金反应,同时形成一层薄的液态熔渣包覆熔滴并覆 盖熔池,对熔化金属又形成了一层保护。
CO2气体保护焊的污染与控制
CO2气体保护焊的污染与控制我国的CO2焊接技术是近二三十年才发展起来的焊接方法,它具有焊接质量好、焊接变形小、焊接效率高、节省电能、焊接成本低以及容易实现自动化等优越性,受到工业企业的普遍重视。
然而,从我国目前对CO2气保焊接的使用情况看,对其污染性危害还没有得到充分的认识,本文旨在从CO2气保焊接污染的因素分类及成因入手,分析CO2气保焊接的污染危害,结合我公司的使用经验,提出相应的治理控制方法。
CO2气保焊接是利用电能加热,促使被焊接金属局部达到液态或接近液态,而使之结合形成牢固的不可拆卸统一整体的加工方法。
它是工业企业极为常见的一种机械加工工艺。
一、CO2气保焊接区域的污染CO2气保焊接区域的污染按形成方式不同,分为化学污染和物理污染两大类。
1.化学污染化学污染是指CO2气保焊接过程中产生的有害气体和烟尘。
进行CO2气保焊接时,在焊接区域,电弧周围会产生一些有害物质。
见表1~表3。
CO2气保焊接产生的有害物质可分为两类,一类是有害气体,主要是二氧化碳(CO2)、一氧化碳(CO)、二氧化氮(NO2)和臭氧(O3)。
一类是烟尘,其主要成分是三氧化二铁(Fe2O3)、二氧化硅(SiO2)和氧化锰(MnO)等。
这些有害物质,除了二氧化碳是为了保护电弧和熔池,从焊枪中喷出的,焊接没有用完而残存在焊接区域周围,其余的有害物质都是从焊接电弧和焊接熔池中产生出来的。
所以离焊接电弧越近,有害物质的浓度越高,焊接使用能量越强,有害物质浓度越大,焊接时间越长,有害物质产生的越多,其浓度也越大。
显而易见,焊接环境越封闭,通风条件越差,有害气体的浓度也越高。
2.物理污染物理污染主要包括:CO2气保焊接电弧光。
二、CO2气保焊接区域的污染对人体的影响1.CO2气体对人体的影响焊接工作是属于重体力劳动的工作,在一般情况下,焊工在焊接环境是需要有足够的空气的。
CO2气体虽然无毒,但空气中的含量过高,对人体亦有害处,当CO2气体在空气中的浓度过高时,人会发生呼吸困难,当浓度>5%时,人将呈昏迷状态,直至窒息死亡。
二氧化碳气体保护焊的焊接参数设定
二氧化碳气体保护焊的焊接参数设定二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角.一、焊丝直径,焊丝直径影响焊缝熔深。
本文就最常用的焊丝直径1。
2mm实心焊丝展开论述.牌号:H08MnSiA。
焊接电流在150~300时,焊缝熔深在6~7mm.二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小。
短路过渡的焊接电流在110~230A之间(焊工手册为40~230A);细颗粒过渡的焊接电流在250~300A之间。
焊接电流决定送丝速度.焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深明显增加,熔宽略有增加.三、电弧电压,电弧电压不是焊接电压.电弧电压是在导电嘴和焊件之间测得的电压,而焊接电压是焊机上的电压表所显示的电压。
焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和。
通常情况下,电弧电压在17~24V之间.电压决定熔宽。
四、焊接速度,焊接速度决定焊缝成形。
焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷.通常情况下,焊接速度在80mm/min比较合适.五、气体流量,CO2气体具有冷却特点。
因此,气体流量的多少决定保护效果。
通常情况下,气体流量为15L/min;当在有风的环境中作业,流量在20L/min以上(混合气体也应当加热)。
六、干伸长度,干伸长度是指从导电嘴到焊件的距离。
保证干伸长度不变是保证焊接过程稳定的重要因素。
干伸长度决定焊丝的预热效果,直接影响焊接质量。
当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷。
根据焊接要求,干伸长度在8~20mm之间.另外,干伸长度过短,看不清焊接线,并且,由于导电嘴过热会夹住焊丝,甚至烧毁导电嘴。
二氧化碳气体保护焊焊接工艺
CO2气体保护焊(二保焊)焊接工艺一、焊接材料二、焊前准备三、焊接工艺参数四、操作注意事项五、焊接符号六、焊接结构型式七、焊后清理、检查及焊接缺陷的修补八、焊接质量检验九、安全十、CO2焊机常见故障及焊接出现焊缝缺陷,产生的原因及排除故障十一、常见问题图例一、焊接材料1. CO2 气体纯度要求99.5%,含水量不超过0.1%。
2.焊丝牌号低碳钢及高强度低合金钢重要结构焊接选用H08Mn2SiA碳钢焊丝。
二、焊前准备1.了解焊接结构件产品图纸及技术要求。
2. 熟悉焊接工艺和施焊方法。
3. 检查和调整设备,使设备处于良好的工作状态。
4. 检查工作场地,周围不允许有易燃易爆品。
5. 检查工艺装备是否处于完好状态。
6. 清理焊件表面杂质及污垢。
7. 焊丝表面镀铜不允许有锈点存在。
三、焊接工艺参数1、二氧化碳气体保护焊主要工艺参数有焊丝牌号、直径、气体流量、电流、电压、焊接速度、焊丝伸出长度等。
2、注:若两焊件厚度不同,选择工艺参数时,可参照厚度较薄的焊件。
焊接工艺参数推荐值一般情况下,阳极区的产热大于阴极区,在焊接中常利用电弧的这个特性,将工件和电焊钳与焊接电源的不同极性相连接,从而达到某种要求,工件接电源正极,材料厚度 (mm) 焊丝直径 (mm) 焊接电流 (A) 焊接电压 (V) 气体流量 (L/min) 极性 1.0 0.8 50-110 17-21 6-9 直流反接 2.0 0.8 70-130 18-22 7-10 直流反接 3.0 1.0 90-160 19-24 7-10 直流反接 4.0 1.2 100-190 20-26 8-13 直流反接 6.01.2120-28022-2910-15直流反接称正接法。
反之,为反接法。
3、焊接速度随着焊接速度的增加,焊逢的熔宽、熔深和余高都减少;焊速过高,容易产生咬边和未焊透等缺陷。
同时气体保护效果变坏,易产生气孔;焊速过低易产生烧穿、变形增大、生产率降低。
CO2气体保护焊参数
CO2气体保护焊焊接工艺CO2气体保护焊焊接工艺钢结构二氧化碳气体保护焊工艺规程1 适用范围本标准适用于本公司生产的各种钢结构,标准规定了碳素结构钢的二氧化碳气体保护焊的基本要求。
注:产品有工艺标准按工艺标准执行。
1.1 编制参考标准《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形成与尺寸》GB.985-881.2 术语2.1 母材:被焊的材料2.2 焊缝金属:熔化的填充金属和母材凝固后形成的部分金属。
2.3 层间温度:多层焊时,停后续焊接之前,相邻焊道应保持的最低温度。
2.4 船形焊:T形、十字形和角接接头处于水平位置进行的焊接.3 焊接准备3.1按图纸要求进行工艺评定。
3.2材料准备3.2.1产品钢材和焊接材料应符合设计图样的要求。
3.2.2焊丝应储存在干燥、通风良好的地方,专人保管。
3.2.3焊丝使用前应无油锈。
3.3坡口选择原则焊接过程中尽量减小变形,节省焊材,提高劳动生产率,降低成本。
3.4 作业条件3.4.1 当风速超过2m/s时,应停止焊接,或采取防风措施。
3.4.2 作业区的相对湿度应小于90%,雨雪天气禁止露天焊接。
4 施工工艺4.1 工艺流程清理焊接部位检查构件、组装、加工及定位按工艺文件要求调整焊接工艺参数按合理的焊接顺序进行焊接自检、交检焊缝返修焊缝修磨合格交检查员检查关电源现场清理4 操作工艺4.1 焊接电流和焊接电压的选择不同直径的焊丝,焊接电流和电弧电压的选择见下表焊丝直径短路过渡细颗粒过渡电流(A)电压(V)电流(A)电压(V)0.8 50--100 18--211.0 70--120 18--221.2 90--150 19--23 160--400 25--381.6 140--200 20--24 200--500 26--404.2 焊速:半自动焊不超过0.5m/min.4.3 打底焊层高度不超过4㎜,填充焊时,焊枪横向摆动,使焊道表面下凹,且高度低于母材表面1.5㎜――2㎜:盖面焊时,焊接熔池边缘应超过坡口棱边0.5――1.5㎜防止咬边。
(碳钢二氧化碳气体保护焊丝1.2mm技术标书(实芯焊丝))
设备购置技术标书审批表第一节供货范围、技术规格、参数与要求一、货物需求一览表二、使用环境1.工作环境1.1周围环境温度:-10℃~35℃。
1.2设备安装场所海拔高度:不低于1200m。
1.3周围空气相对湿度:95%(在25℃时)。
1.4使用电源:AC380V,50Hz 。
1.5使用地点:室内、外使用。
1.6使用焊机:YD-350GR 。
三、技术参数及要求1.技术参数1.1焊丝类型:实芯。
1.2焊丝型号:ER50-6。
1.3焊丝材质:低碳钢(WC ≤ 0.25%)。
1.4焊丝直径:1.2mm。
2. 技术要求2.1焊丝尺寸应符合GB/T 25775的规定。
2.2焊丝使用时容易引弧并能稳定地连续熔化,焊缝形成美观可用于各种空间的焊缝。
2.3焊丝应适合在自动或半自动焊接设备上均匀、连续地送进。
2.4焊丝的药芯应填充均匀,以使焊接工艺性能和熔敷金属力学性能不受影响。
2.5焊丝表面应平滑光洁,不应有毛刺、凹坑、划痕、锈皮,也不应有其他对焊接性能或焊接设备操作性能具有不良影响的杂质。
镀铜焊丝的镀层应均匀牢固,不应出现起皮或脱落,焊丝表面应采用其他不影响焊接和力学性能的处理方法。
2.6每个焊丝卷、焊丝盘、焊丝筒上的焊丝应是同一批号连续长度的焊丝,焊丝的缠绕不允许有锐弯、扭结、波浪、嵌入等影响平稳送丝的不良现象,焊丝的外端应固定,明显易找。
2.7射线探伤要求:应按GB/T 3323 中的试验方法进行,其试验结果应符合GB/T 3323 附录C中表C.4的Ⅱ级规定。
2.8力学性能应符合焊接接头冲击试验国家标准GB(2650~2655)-2008,力学性能试样的制备及检验应符合GB/T25774.1。
2.9抗裂性要求符合国标GB(4675.1~4675.5)-1984。
2.10焊丝发尘量要符合国家焊丝飞溅要求。
2.11焊丝储藏温度要求:10℃~35℃。
3. 招标人提出的特别技术要求3.1必须对所有技术条款逐条解释并满足使用环境。
二氧化碳气体保护焊
四、二氧化碳气体保护焊工艺参数
1.焊丝直径 焊丝直径大于1.2mm称为粗丝。 2.焊接电流 焊接电流的选择,应根据焊件厚度、焊丝直
径、坡口形式、焊接位置和熔滴过渡形式等 来确定。
3.电弧电压 通常在细丝焊接时,电弧电压为16~24V;粗 丝焊接时,电弧电压为25~36V。
4.焊接速度 焊接速度一般为20~60cm/min。
三、二氧化碳气体保护焊设备
1.焊接电源 (1)对电源性的要求:由于CO2焊用交流电 源焊接的电弧不稳定,所以必须使用直流电源。
(2)对电源外特性的要求: 1)平特性电源——用于细丝(短路过渡)
焊接,配用等速送丝系统。
2)下降特性电源——用于粗丝焊接,配用 变速送丝系统。
2.送丝系统 CO2焊送丝系统由送丝机构、送丝软管、焊 丝盘三部分组成。
化碳气瓶的颜色为铝白色,标有黑色“二氧 化碳”字样。
在 0℃ 和 一 个 大 气 压 下 的 CO2 气 体 密 度 是 1.9768g/L,为空气的1.5倍。
2.焊丝 CO2气体保护焊对焊丝的化学成分还
有一些特殊要求:
(1)焊丝必须有足够数量的脱氧元素。 (2)焊丝的含C量要低,一般要求 C<0.11%。 (3)应保证焊缝金属具有满意的力学性 能和抗裂性能。
2. 二氧化碳气体保护的分类 CO2焊按所用焊丝直径不同 ,可分为细丝
CO2气体保护焊(焊丝直径为0.5~1.2mm.)和 粗丝保护焊(焊丝直径为6-5.0mm)。 操作方式又可分为CO2半自动焊和CO2自动焊。
3. 二氧化碳气体保护焊特点 (1)生产效率高。对于10mm以下的钢板不开坡 口可一次焊透,生产效率比手弧焊提高1~4倍。 (2)抗锈能力。 (3)焊接变形小。 (4)冷裂倾向小。 (5)采用明弧焊。 (6)适宜范围广。 (7)CO2焊的缺点:1)使用大电流焊接时,飞溅 较大且焊缝表面成形较差;2)很难用交流电源焊 接,设备比较复杂;3)抗风能力差,较难在有风 的地方和室外施焊;4)不能焊接容易氧化的有色 金属材料。
二氧化碳气体保护焊工艺参数
100-110
120-130
140-180
生产上所用
工艺参数
电弧电压(V)
18~24
18~26
20~28
焊接电流(A)
60~160
80~260
二氧化碳保护焊接规范和操作工艺作业指导书分类:默认栏目
二氧化碳保护焊接规范和操作工艺作业指导书
二氧化碳气体保护焊用的CO 2气体,大部分为工业副产品,经过压缩成液态装瓶供应。在常温下标准瓶满瓶时,压力为5~7MPa(5 O~7 Okgf/cm2)。低于1 MPa(1 0个表压力)时,不能继续使用。焊接用的C02气体,一般技术标准规定的纯度为9 9%以上,使用时如果发现纯度偏低,应作提纯处理。
160~310
在小电流焊接时,电弧电压过高,金属飞溅将增多;电弧电压太低,则焊丝容易伸人熔池,使电弧不稳。在大电流焊接时,若电弧电压过大,则金属飞溅增多,容易产生气孔;电压太低,则电弧太短,使焊缝成形不良。
(四)气体流量 二氧化碳气体流量与焊接电流、焊接速度、焊丝伸出长度及喷嘴直径等有关。气体流量应随焊接电流的增大、焊接速度的增加和焊丝伸出长度的增加而加大。一般二氧化碳气体流量的范围为8~2 5I。/min。如果二氧化碳气体流量太大,由于气体在高温下的氧化作用,会加剧合金元素的烧损,减弱硅、锰元素的脱氧还原作用,在焊缝表面出现较多的二氧化硅和氧化锰的渣层,使焊缝容易产生气孔等缺陷;如果二氧化碳气体流量太小,则气体流层挺度不强,对熔池和熔滴的保护效果不好,也容易使焊缝产生气孔等缺陷。
(七)直流回路电感 在焊接回路中,为使焊接电弧稳定和减少飞溅,一般需串联合适的电感。当电感值太大时,短路电流增长速度太慢,就会引起大颗粒的金属飞溅和焊丝成段炸断,造成熄弧或使起弧变得困难;当电感值太小时,短路电流增长速度太快,会造成很细颗粒的金属飞溅,使焊缝边缘不齐,成形不良。再者,盘绕的焊接电缆线就相当于一个附加电感,所以一旦焊接过程稳定下来以后,就不要随便改动。
二氧化碳气体保护焊
1、坡口设计
CO2气体保护焊采用细颗粒过渡时,电弧穿透力较大,熔深 较大,容易烧穿焊件,所以对装配质量要求较严格。坡口开 得要小一些,钝边适当大些,对接间隙不能超过2mm。如用 直径1.6mm的焊丝钝边可留4~6mm,坡口角度可减小到45° 左右。
示例:
2、坡口加工方法与清理
坡口加工的方法主要有机械加工、气割和碳弧气刨 等。CO2气体保护焊时对坡口精度的要求比焊条电弧焊高。 定位焊之前应将坡口周围10~20mm范围内的油污、铁锈、 氧化皮及其他脏物除掉,否则将严重影响焊接质量。6mm 以下薄板上的氧化膜对质量几乎无影响;焊厚板时,氧化 皮能影响电弧稳定性、恶化焊缝成形和生成气孔。为了去 除氧化皮中的水分和油污,焊前最好用气体火焰烤一下, 但要充加热;否则,在焊件冷却时会生成水珠,它进入 坡口间隙内将产生相反的效果。
方法? 3、 CO2气体保护焊焊前在工艺上要做哪些准备?
21
➢二、CO2气体保护气罩
1、CO2保护罩的建立
➢ CO2保护气流可以调整到大于周围空气流动的 流量从喷嘴向外喷射。
➢ CO2气体的密度大。 ➢ 保护气罩内的电弧高温,使CO2发生分解反应。
2、CO2焊接时可有效地施行保护
➢三、CO2焊易产生的问题 1、合金元素烧损
2CO2=2CO+O2 O2=2O Si+2O=SiO2 Mn+O=MnO
➢ 二氧化碳气体保护电弧焊 Schutzgaslichtbogenschweißung unter Kohlensäure
CO2气体保护电弧 焊
➢一、CO2气体保护电弧焊的构成要素
1、CO2保护气体,形成保护气罩 2、直流CO2气体焊接电源,构成闭合焊接回路 3、焊丝连续向电弧区均匀输送 4、焊枪沿着待焊的对缝均匀移动
二氧化碳气体保护焊
焊接电流 焊接电流的大小应根据焊接厚度、焊丝直径、焊接位置及熔滴过渡
形式来确定。焊接电流越大,焊缝厚度、焊缝宽度及余高相应增加。通 常0.8~1.6 mm短路过渡时,焊接电流在50~230A内细滴过渡焊接电流在 250~500A
松下CO2 气体保护焊直流机
培训用标准机型:Panasonic YD-350GM3
• 操作简单,使用方便。内置焊接专家数据,只需调节焊接电流旋钮, 焊接电压和电弧参数自动匹配,获得最佳焊接规范,实现了单一旋钮 的焊接规范设定,实现完全的一元化调节。
• YD-350GM3 为逆变式弧焊整流器,即工频交流直流高、中频交流降压 交流并再次变成直流。
CO2焊的分类
CO2焊按使用焊丝直径的不同,可分为 细丝CO2焊(焊丝直径小于1.6mm)和 粗丝CO2焊(焊丝直径大于1.6mm)。
按操作的方式分类,又可分为半自动 CO2焊 和自动CO2焊。
缺点
• 1) 飞溅率较大,并且焊缝表面成形较差。金属飞 溅是CO2焊中较为突出的问题,这是主要缺点。
• 2)很难用交流电源进行焊接,焊接设备比较复杂 。
时 • 3容易烧坏工作服、甚至产生烫伤
防止措施
• 1采用含锰、硅脱氧元素的焊丝,并降低焊 丝中的含碳量
• 2、采用直流反接 • 3、调节回路中的电感 • 4、避免非非轴向过渡造成的飞溅 • 5、选择恰当的工艺参数
焊枪
• 焊枪的作用是导电、导丝、 导气
• 按送丝方式分为推丝焊枪和 拉丝焊枪
• 按冷却方式分为空气冷却和 内循环水冷却焊枪
2、脱氧方法是采取有足够的脱氧元素的焊丝
• 常用的脱氧元素是锰,硅、吕钛等。对于低碳钢主要采用 锰、硅联合脱氧的方法,因此焊后生成MnO和SIO2能形成 复合物浮出熔池,形成一层微薄的渣壳覆盖在焊缝表面。
二氧化碳气体保护焊
▪
碳同氧化合生成的CO气体会增大金属飞溅,且可能
在焊缝金属中生成气孔。
▪ 另外,碳的大量烧损,也要降低焊缝金属的力学性能。
h
15
(2)二氧化碳气体保护焊的冶金特点
▪ 1)焊接过程合金元素的氧化与脱氧
▪ 一般常用的脱氧元素有Al、Ti、Si、Mn等。
▪ 在A1、Ti、Si、Mn四种元素中,各自单独作用时其脱氧 效果并不理想。
h
22
▪ 飞溅金属粘在导电嘴端面和喷嘴内壁上, 不仅会使送丝不畅而影响电弧稳定性,或
者降低保护气的保护作用,恶化焊缝成形
质量,还需待焊后进行清理,这就增加了
焊接的辅助工时。另外,飞溅出的金属还
容易烧坏焊工的工作服,甚至烫伤皮肤,
恶化劳动条件。因此,如何减小和防止产 生金属飞溅,一直是使用CO2气体保护焊 时必须给予重视的பைடு நூலகம்题。
▪ 1)焊接过程合金元素的氧化与脱氧 ▪ CO2电弧高温下会分解, ▪ 放出的原子态氧, ▪ 易与合金元素产生化学反应, ▪ 可能造成合金元素烧损。
h
14
(2)二氧化碳气体保护焊的冶金特点
▪ 1)焊接过程合金元素的氧化与脱氧
▪ 生成FeO会使WM产生气孔及夹渣等缺陷。
▪ 其使次焊,缝氧金化属生的成力学SiO性2能与降Mn低O。减少了焊缝中Si、Mn的含量,
氮气孔。
h
20
▪ ③焊缝金属溶解了过量的氢: ▪ 污用与下C水这O分些2气,物体或质保者会护分CO焊解2时并气,产体如生中果氢含焊。有丝氢水及在分焊高,件温则表下在面也电有易弧铁溶高锈于温、熔作油池
金属中。随后,当熔池冷凝结晶时。氢在金属中的溶解度 急剧下降,若析出的氢来不及从熔池中逸出,就引起焊缝 金属产生氢气孔。因此,为了防止氢气孔,在焊前应对焊 件及焊丝进行清理,去除它们表面上的铁锈、油污、水分 ▪ 等出一。现种不另氢公过外气认,,孔的由还的低于可可氢C对能焊O性接C2O气还方2体气是法具体较。有进小氧行的化提,性纯因,与而氢干CO和燥2氧。气会体化保合护,焊故是
二氧化碳气体保护焊
CO2气体保护焊1.焊接的分类名词解释熔化焊接:将被连接金属局部熔化,然后冷却结晶使分子或原子彼此达到晶格距离并形成结合力,这种焊接方法叫熔化焊接。
熔化焊接需要一个能量集中,热量足够的热源。
电弧焊:以气体导电时产生的电弧热为热源。
熔化极:焊丝或焊条既是电极又是填充金属。
铝热焊:利用金属氧化物和金属铝之间的放热反应所产生的过热熔融金属来加热金属而实现结合的方法。
压力焊接:焊接过程中必须对焊件施加压力,加热或不加热的焊接方法。
钎焊:利用某些熔点低于被连接金属熔点的熔化金属(钎料)在连接界面上起流散浸润作用,然后冷却形成结合力。
2.熔化焊接的主要特征焊接部位必须采取有效的隔离空气保护,使焊接部位不能和空气接触,以免造成焊道的成分和性能不良,保护方式有三种:气相、渣相、真空。
熔化焊接的保护方式3.气体保护焊的定义用外加气体作为电弧介质并保护电弧和焊接区的电弧焊称为气体保护电弧焊,简称气体保护焊。
常用的保护气体:二氧化碳气(CO2)、氩气(Ar)、氦气(He)及它们的混合气体: CO2+Ar、CO2+Ar+He、……。
4.二氧化碳气体保护焊的简单介绍气体保护焊的定义:用外加气体作为电弧介质并保护电弧和焊接区的电弧焊称为气体保护电弧焊,简称气体保护焊。
常用的保护气体:二氧化碳气( CO2)、氩气( A r )、氦气(He)及它们的混合气体: CO2+Ar、CO2+Ar+He、……。
CO2气体保护焊,全称是熔化极二氧化碳气体保护电弧焊接,是焊接方法中的一种,是以CO2气为保护气体,进行焊接的方法。
在应用方面操作简单,适合自动焊和全方位焊接。
在焊接时不能有风,适合室内作业。
但如采用优质焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度。
由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的高质量焊接接头。
因此这种焊接方法目前已成为黑色金属材料最重要焊接方法之一。
二氧化碳气体保护电弧焊详解——有图有实例
二氧化碳气体保护电弧焊一CO气体保护焊21、CO焊原理2§定义:二氧化碳气体保护焊是作为焊接保护气的一种利用CO2熔化极、气体保护的电弧焊方法。
§为何要用CO作为焊接保护气?2/工业生①焊条药皮造气剂的造气结果就是CO2产中产生大量廉价的CO。
2②与焊条电弧焊相比,熔化极气体保护焊效率高。
2、CO焊的特点2优点:⑴焊接生产率高:比MMA高2~4倍⑵焊接成本低:是MMA或SAW的40~50%⑶焊接变形小:尤适于薄板焊接⑷焊接质量高:对铁锈不敏感,焊缝含氢量低⑸适用范围广; 操作简便.缺点:⑴不能焊接有色金属,不锈钢;⑵焊接设备较“复杂”;⑶抗风能力差;⑷飞溅较大。
3. CO2气体保护电弧焊的分类n按焊丝粗细分类:细丝CO2焊ds≤1.6mm Vf=C 自身调节粗丝CO2焊ds> 1.6mm Vf≠C自动调节n按焊丝类型分:实芯焊丝CO2焊药芯焊丝CO2焊n按自动化程度分:半自动CO2焊适用于焊缝不够规则的场合自动CO2焊适用于焊缝长而且规则的场合二CO2焊的冶金特性和焊接材料221O CO +=CO 2Me (Fe 、Si )+CO 2=MeO+CO (合金元素与C02 作用)Me +0 = Me0(合金元素与0 作用)Mn+FeO=MnO+Fe (合金元素与Fe0作用)(可能参加反应的金属元素:Fe 、C 、Si 、Mn )结果:①合金元素烧损;②可能造成气孔、飞溅和夹渣。
解决之道:冶金脱氧,Mn-Si 联合脱氧CO2焊专用焊丝H08Mn2Si&H08Mn2SiA脱氧剩下的Mn 、Si 用于补充碳和合金元素的损失1问题:如何解决C02气体保护焊中合金元素烧损、飞溅及气孔等质量潜在问题?1)、相应的焊接冶金措施在焊材中加入Al 、Ti 、Si 、Mn 等强脱氧剂,通过脱氧去除FeO 。
通常采用Si 、Mn 联合脱氧。
FeSiO FeO Si FeMnO FeO Mn 222+=++=+脱氧反应式如下:2)、CO 2气体保护焊中的气孔问题气孔是因焊丝脱氧元素不足而造成CO 的形成,即FeO + C =Fe + CO正常焊接条件下,CO 2焊并不容易产生气孔。
二氧化碳气体保护焊PPT课件
2021/6/7
31
▪ 2.焊丝 ▪ C02焊的焊丝设计、制造和使用原则,除与上述的MIG
焊、MAG焊有相同之处,还对焊丝的化学成分有特殊要 求,如: ▪ 1)焊丝必须含有足够数量的脱氧元素。 ▪ 2)焊丝的含碳量要低,一般要求WC<0.15%。
▪ 3)应保证焊缝金属具有满意的力学性能和抗裂性能。
2021/6/7
7
2)短路过渡
▪ 短路过渡的特点是弧长较短(较低电弧电 压)。
▪ 短路过渡的过程如图3-12所示。
2021/6/7
8
2)短路过渡
▪ 短路过渡电弧的燃烧、熄灭和熔滴过渡过 程均很稳定,
▪ 飞溅小, ▪ 在要求较小的薄板焊接生产中采用。
2021/6/7
9
3)潜弧射滴过渡
▪ 潜弧射滴过渡是介于上述两种过渡形式之间的过渡形 式.此时的焊接电流和电压比短路过渡大,比细颗粒滴 状过渡小。
2021/6/7
32
▪ 目前H08Mn2SiA焊丝是CO2焊中应用最广 泛的一种焊丝。它有较好的工艺性能和力
学性能以及抗热裂纹能力,适宜于焊接低
碳钢和σb≤500MPa的低合金钢,以及焊后 热处理强度σb≤1200MPa的低合金高强度 钢。
2021/6/7
33
CO2焊焊丝的发展趋势
▪
从焊丝的发展情况看,很多焊丝新产品中均降低了含
▪ 目前一种极少飞溅的CO2焊的新技术、新设备已成熟地 应用于实际生产。
2021/6/7
24
CO2焊减小飞溅措施
▪ 措施对可一供般考的虑CO:2气体保护焊来说,有下列一些减小飞溅
▪ 1)选用合适的焊丝材料或保护气成分
▪
①尽可能选用含碳量低的钢焊丝,以减少焊接过程
二氧化碳气体保护焊的焊接参数设定
二氧化碳气体保护焊的焊接参数设定二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角.一、焊丝直径,焊丝直径影响焊缝熔深.本文就最常用的焊丝直径1.2mm实心焊丝展开论述.牌号:H08MnSiA.焊接电流在150~300时,焊缝熔深在6~7mm.二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小.短路过渡的焊接电流在110~230A之间焊工手册为40~230A;细颗粒过渡的焊接电流在250~300A之间.焊接电流决定送丝速度.焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深明显增加,熔宽略有增加.三、电弧电压,电弧电压不是焊接电压.电弧电压是在导电嘴和焊件之间测得的电压,而焊接电压是焊机上的电压表所显示的电压.焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和.通常情况下,电弧电压在17~24V之间.电压决定熔宽.四、焊接速度,焊接速度决定焊缝成形.焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷.通常情况下,焊接速度在80mm/min比较合适.五、气体流量,CO2气体具有冷却特点.因此,气体流量的多少决定保护效果.通常情况下,气体流量为15L/min;当在有风的环境中作业,流量在20L/min以上混合气体也应当加热.六、干伸长度,干伸长度是指从导电嘴到焊件的距离.保证干伸长度不变是保证焊接过程稳定的重要因素.干伸长度决定焊丝的预热效果,直接影响焊接质量.当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷.根据焊接要求,干伸长度在8~20mm之间.另外,干伸长度过短,看不清焊接线,并且,由于导电嘴过热会夹住焊丝,甚至烧毁导电嘴.七、电源极性,通常采取直流反接反极性.焊件接阴极,焊丝接阳极,焊接过程稳定、飞溅小、熔深大.如果直流正接,在相同条件下,焊丝融化速度快约为反接的1.6倍,熔深浅,堆高大,稀释率小,飞溅大.八、回路电感,回路电感决定电弧燃烧时间,进而影响母材的熔深.通过调节焊接电流的大小来获得合适的回路电感,应当尽可能的选择大电流.通常情况下,焊接电流150A,电弧电压19V;焊接电流280A,电弧电压22~24V比较合适,能够满足大多数焊接要求.九、焊枪倾角,当倾角大于25°时,飞溅明显增大,熔宽增加,熔深减小.所以焊枪倾角应当控制在10~25°之间.尽量采取从右向左的方向施焊,焊缝成形好.如果采用推进手法,焊枪倾角可以达到60度,并且可以得到非常平整、光滑的漂亮焊缝.焊接电流是控制送丝速度,电弧电压是控制焊丝融化速度,电流加大焊丝送进加快、电压增大焊丝熔化加快.焊接电流是根据焊接结构母材厚度及焊缝位置来确定,如平焊时焊接电流一般在160-320A、立焊、仰焊、横焊时一般在100-130A.电弧电压是根据焊接电流而定公式如下:(1)实芯焊丝:当电流≥300A时×0.04+20±2=电压当电流≤300A时×0.05+16±2=电压(2)药芯焊丝:当电流≥200A时×0.06+20±2=电压当电流≤200A时×0.07+16±2=电压CO2气体保护焊机操作规程CO2气体保护焊机操作规程1、操作者必须持电焊操作证上岗.2、打开配电箱开关,电源开关置于“开”的位置,供气开关置于“检查”位置.3、打开气瓶盖,将流量调节旋钮慢慢向“OPEN”方向旋转,直到流量表上的指示数为需要值.供气开关置于“焊接”位置.4、焊丝在安装中,要确认送丝轮的安装是否与丝径吻合,调整加压螺母,视丝径大小加压.5、将收弧转换开关置于“有收弧”处,先后两次将焊枪开关按下、放开进行焊接.6、焊枪开关“ON”,焊接电弧的产生,焊枪开关“OFF”,切换为正常焊接条件的焊接电弧,焊枪开关再次“ON”,切换为收弧焊接条件的焊接电弧,焊枪开关再次“OFF”焊接电弧停止.7、焊接完毕后,应及时关闭焊电源,将CO2气源总阀关闭.8、收回焊把线,及时清理现场.9、定期清理机上的灰尘,用空压机或氧气吹机芯的积尘物,一般时间为一周一次.CO2气体保护焊焊接工艺钢结构二氧化碳气体保护焊工艺规程1适用范围本标准适用于本公司生产的各种钢结构,标准规定了碳素结构钢的二氧化碳气体保护焊的基本要求.注:产品有工艺标准按工艺标准执行.1.1编制参考标准气焊、手工电弧焊及气体保护焊焊缝坡口的基本形成与尺寸GB.985-881.2术语2.1母材:被焊的材料2.2焊缝金属:熔化的填充金属和母材凝固后形成的部分金属.2.3层间温度:多层焊时,停后续焊接之前,相邻焊道应保持的最低温度.2.4船形焊:T形、十字形和角接接头处于水平位置进行的焊接.3焊接准备3.1按图纸要求进行工艺评定.3.2材料准备3.3坡口选择原则焊接过程中尽量减小变形,节省焊材,提高劳动生产率,降低成本.3.4作业条件3.4.1当风速超过2m/s时,应停止焊接,或采取防风措施.3.4.2作业区的相对湿度应小于90%,雨雪天气禁止露天焊接.4施工工艺4.1工艺流程清理焊接部位检查构件、组装、加工及定位按工艺文件要求调整焊接工艺参数按合理的焊接顺序进行焊接自检、交检焊缝返修焊缝修磨合格交检查员检查关电源现场清理4操作工艺4.1焊接电流和焊接电压的选择不同直径的焊丝,焊接电流和电弧电压的选择见下表焊丝直径短路过渡细颗粒过渡电流A电压V0.850--10018--211.070--12018--221.290--15019--23160--40025--381.6140--20020--24200--50026--404.2焊速:半自动焊不超过0.5m/min.4.3打底焊层高度不超过4㎜,填充焊时,焊枪横向摆动,使焊道表面下凹,且高度低于母材表面1.5㎜――2㎜:盖面焊时,焊接熔池边缘应超过坡口棱边0.5――1.5㎜防止咬边.4.4不应在焊缝以外的母材上打火、引弧.4.5定位焊所用焊接材料应与正式施焊相当,定位焊焊缝应与最终焊缝有相同的质量要求.钢衬垫的定位焊宜在接头坡口内焊接,定位焊厚度不宜超过设计焊缝厚度的2/3,定位焊长度不宜大于40㎜,填满弧坑,且预热高于正式施焊预热温度.定位焊焊缝上有气孔和裂纹时,必须清除重焊.4.9焊接工艺参数见表一和表二表一:Φ1.2焊丝CO2焊对接工艺参数板厚层数焊接电流电弧电压焊丝外伸焊机速度气体流量装配间隙㎜AVmmm/minLminmm612702712-140.5510-151.0-1.562190/21019/30150.25150-182120-130/130-14026-27/28-30150.55201-1.5102130-140/280-30020-30/30-33150.55201-1.5102300-320/300-32037-39/37-39150.55201-1.5121310-33032-33150.5201-1.5163120-140/300-340/300-340A25-2733-3535-3715201-1.5 164140-160/260-280/270-290/270-290A24-26/31-33/34-36/34-3615201-1.5204120-140/300-340/300-340/300-340A25-2733-3533-3533-3715251-1.5204140-160/260-280/300-320/300-320A24-26/31-33/35-37/201-1.5表二:Φ1.2焊丝CO2气体保护焊T形接头板厚焊丝直径焊接电流电弧电压焊接速度气体流量焊角尺寸㎜㎜Avm/minL/min㎜2.3Φ1.2120200.510-153.03.2Φ1.214020.50.510-153.04.5Φ1.2160210.4510-154.06Φ1.2230230.5510-156.012Φ1.2290280.510-157.05交检6焊接缺陷与防止方法,缺陷形成原因,防止措施焊缝金属裂纹形成原因:1.焊缝深宽比太大2.焊道太窄3.焊缝末端冷却快.防治措施:1.增大焊接电弧电压,减小焊接电流2.减慢焊接速度3.适当填充弧坑.夹杂形成原因:1.采用多道焊短路电弧2.高的行走速度.防治措施:1.仔细清理渣壳2.减小行走速度,提高电弧电压.气孔形成原因:1.保护气体覆盖不足2.焊丝污染3.工件污染4.电弧电压太高5.喷嘴与工件距离太远.防治措施:1.增加气体流量,清除喷嘴内的飞溅,减小工件到喷嘴的距离2.清除焊丝上的润滑剂3.清除工件上的油锈等杂物.4.减小电压5.减小焊丝的伸出长度.咬边形成原因:1.焊接速度太高2.电弧电压太高3.电流过大4.停留时间不足5.焊枪角度不正确.防治措施:1.减慢焊速2.降低电压3.降低焊速4.增加在熔池边缘停留时间5.改变焊枪角度,使电弧力推动金属流动.未融合形成原因:1.焊缝区有氧化皮和锈2.热输入不足3.焊接熔池太大4.焊接技术不高5.接头设计不合理.防治措施:1.仔细清理氧化皮和锈2.提高送丝速度和电弧电压,减慢焊接速度3.采用摆动技术时应在靠近坡口面的边缘停留,焊丝应指向熔池的前沿4.坡口角度应足够大,以便减小焊丝伸出长度,使电弧直接加热熔池底部.未焊透形成原因:1.坡口加工不合适2.焊接技术不高3.热输入不合适.防治措施:1.加大坡口角度,减小钝边尺寸,增大间隙2.调整行走角度3.提高送丝的速度以获得较大的焊接电流,保持喷嘴与工件的距离合适.飞溅形成原因:1.电压过低或过高2.焊丝与工件清理不良3.焊丝不均匀4.导电嘴磨损5.焊机动特性不合适.防治措施:1.根据电流调电压2.清理焊丝和坡口3.检查送丝轮和送丝软管4.更新导电嘴5.调节直流电感.蛇行焊道形成原因:1.焊丝伸出过长2.焊丝的矫正机构调整不良3.导电嘴磨损.防治措施:1.调焊丝伸出长度2.调整矫正机构3.更新导电.CO2气保焊的使用近况CO2气体保护焊自50年代诞生以来,作为一种高效率的焊接方法,在我国工业经济的各个领域获得了广泛的运用.尤其是近几年,中国成为“世界工厂”后,大量的外贸金属加工、钢结构行业大力发展,CO2气体保护焊以其高生产率比手工焊高1~3倍、焊接变形小和高性价比的特点,得到了前所未有的普及,成为最优先选择的焊接方法之一.但是据我们这几年的工作经历,CO2气体保护焊在实际生产运用中还存在不少问题,综合如下:一、气源的问题我国现在还没有对焊接用CO2气体纯度要求的国家标准,市场上出售的CO2气体主要是制氧厂、酿造厂、化工厂的副产品,如未经处理就作为焊接保护气体使用,其水分及杂质气体含量很高且不稳定,从而增加焊接飞溅、焊缝产生气孔及影响焊缝塑性等焊接缺陷.比对国外多数国家规定,要求焊接用CO2气体纯度不低于99.5%,有些国家甚至要求CO2纯度高于99.8%,水分含量低于0.0066%,来作为获得优质焊缝的前提条件.二、焊接参数选择的问题一般焊工培训大多把手工电弧焊作为基础项目,主要让焊工掌握焊接电流的选择、焊接速度及运条方法、焊接电弧的控制.在施焊操作上,一个熟练的手工电弧焊焊工对掌握CO2气保焊基本不成问题,但在焊接参数的选择上,很大一部份焊工显得不够老练,以我国CO2气保焊中应用最为广泛的短路过渡形式为例,归纳下来问题主要在电弧电压、焊接电流、焊接回路电感匹配得不太合适,以及焊丝干伸长不合适,造成焊接电弧不稳定、飞溅以及未焊透等,影响焊缝成形、焊缝的机械性能.只有电弧电压与焊接电流匹配得较合适时,才能获得较稳定的焊接过程,在一定的焊丝直径和焊接电流下,若电弧电压偏低,电弧短、焊缝成型高,甚至会造成冲丝、电弧引燃困难,使焊接过程不稳定;若电弧电压偏高,则熔滴过渡的频率变慢、颗粒变大,电弧长度长、焊缝成型宽,过高的电弧电压会烧毁导电咀;因焊接回路电感量的大小直接影响焊接电弧的燃烧时间,关系到熔滴过渡的稳定、焊接熔深及焊缝成型,在一定的焊丝直径和焊接电流、电压下,若选择过小的电感量,焊接时会造成熔深太浅,即使再增加焊接电流、电压,只能会使过渡到熔池的液态金属溢出熔池,形成未熔合、未焊透.要选择合适的电感量,一般视焊丝直径、母材厚薄及不同的焊接设备通过试焊来确定;合适的焊丝伸出导电咀长度应为焊丝直径的10~12倍一般在10~20mm范围内,焊丝的干伸长太短,就会因为焊枪喷嘴与工件距离近而增加飞溅金属堵塞喷嘴,焊丝的干伸长太长,则会增加飞溅、引起焊接不稳定,气体保护效果变差等.在实际工作中,一般先根据工件厚薄、坡口形式、焊接位置等选好焊丝直径,再确定焊接电流,调节好回路电感量,使飞溅降低到最小.CO2气体保护焊操作规程1.准备工作1认真熟悉焊接有关图样,弄清焊接位置和技术要求.2焊前清理.CO2焊虽然没有钨极氩弧焊那样严格,但也应清理坡口及其两侧表面的油污、漆层、氧化皮以及铁金属等杂物.3检查设备.检查电源线是否破损;地线接地是否可靠;导电嘴是否良好;送丝机构是否正常;极性是否选择正确.4气路检查.CO2气体气路系统包括CO2气瓶、预热器、干燥器、减压阀、电磁气阀、流量计.使用前检查各部连接处是否漏气,CO2气体是否畅通和均匀喷出.2.安全技术1穿好白色帆布工作服,戴好手套,选用合适的焊接面罩.2要保证有良好的通风条件,特别是在通风不良的小屋内或容器内焊接时,要注意排风和通风,以防CO2气体中毒.通风不良时应戴口罩或防毒面具.3CO2气瓶应远离热源,避免太阳曝晒,严禁对气瓶强烈撞击以免引起爆炸.4焊接现场周围不应存放易燃易爆品.3.焊接工艺CO2气体保护焊的工艺参数有焊接电流、电弧电压、焊丝直径、焊丝伸出长度、气体流量等.在其采用短路过渡焊接时还包括短路电流峰值和短路电流上升速度.1焊接电流和电弧电压短路过渡焊接时,焊接电流和电弧电压周期性的变化.电流和电压表上的数值是其有效值,而不是瞬时值,一定的焊丝直径具有一定的电流调节范围.2焊丝伸出长度是指导电嘴端面至工件的距离.由于CO2焊时选用焊丝较细,焊接电流流经此段所产生的电阻热对焊接过程有很大影响.生产经验表明,合适的伸出长度应为焊丝直径的10~20倍,一般在5~15mm范围内.3气体流量小电流时,气体流量通常为5~15L/min;大电流时,气体流量通常为10~20L/min,并不是流量越大保护效果越好.气体流量过大时,由于保护气流的紊流度增大,反而会把外界空气卷入焊接区.4电源极性CO2气体保护焊一般都采用直流反接,飞溅小,电弧稳定,成形好.常用焊接术语在实际应用过程中,经常会碰到一些与焊接相关的术语,行话.先总结如下:正极性:指直流焊接时,被焊物接+极,焊条、焊丝接-极反极性:与正极性直流电弧焊或电弧切割时,焊件与焊接电源输出端正、负极的接法称为极性.极性分正极性和反极性两种.焊件接电源输出端的正极,电极接电源输出端的负极的接法为正极性常表示为DCSP.反之,焊件接电源输出端的负极,电极接电源输出端的正极的接法为反极性常表示为DCRP.欧美常常用另外一种表示方法,将DCSP称为DCEN,而将DCRP称为DCEP.焊接电流:为向焊接提供足够的热量而流过的电流电弧电压指电弧部的电压,与电弧长大致成比例地增加,一般电压表所示电压值包括电弧电压及焊丝伸出部,焊接电缆部的电压下降值.弧长:弧部长度弧坑:在焊缝终点产生的凹坑气孔:熔敷金属里有气产生空洞飞溅:焊接时未形成熔融金属而飞出来的金属小颗粒焊渣:焊后覆盖在焊缝表面上的固态熔渣熔渣:包覆在熔融金属表面的玻璃质非金属物咬边:由于焊缝两端的母材过烧,致使熔融金属未能填满,形成槽状凹坑.熔深:母材熔化部的最深位与母材表面之间的距离熔池:因焊弧热而熔化成池状的母材部分熔化速度:单位时间里熔敷金属的重量熔敷率:有效附着在焊接部的金属重量占熔融焊条、焊丝重量的比例未熔合:对焊底部的熔深不良部,或第一层等里面未融合部余高:鼓出母材表面的部分或角焊末端连接线以上部分的熔敷金属坡口角度:母材边缘加工面的角度预热:为防止急热,焊接前先对母材预热如火焰加热后热:为防止急冷进行焊后加热如火焰加热平焊:从接头上面焊接横焊:从接头一侧开始焊接立焊:沿接头由上而下或由下而上焊接仰焊:从接头下面焊接垫板:为防止熔融金属落下,在焊接接头下面放上金属、石棉等支撑物.夹渣:夹渣是非金属固体物质残留于焊缝金属中的现象,夹杂物出现在熔焊过程中焊剂:焊接时,能够熔化形成熔渣和气体,对熔化金属起保护和冶金处理作用的一种物质.碳弧气刨:使用石磨棒或碳棒与工件间产生的电弧将金属熔化,并用压缩空气将其吹掉,实现在金属表面上加工沟槽的方法保护气体:焊接过程中用于保护金属熔滴、熔池及焊缝区的气体,它使高温金属免受外界气体的侵害焊接夹具:为保证焊件尺寸,提高装配精度和效率,防止焊接变形所采用的夹具焊接工作台为焊接小型焊件而设置的工作台焊接操作机:将焊接机头或焊枪送到并保持在待焊位置,或以选定的焊接速度沿规定的轨迹移动焊剂的装置焊接变位机:将焊件回转或倾斜,使接头处于水平或船行位置的装置焊接滚轮架:借助焊件与主动滚轮间的摩擦力来带动圆筒形或圆锥形焊件旋转的装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二氧化碳保护焊丝成分
二氧化碳保护焊丝是一种常用的焊接材料,常用于气体保护弧焊和埋弧焊等焊接工艺中。
其成分主要包括以下几个方面:
1. 焊丝芯材料:焊丝的主要成分通常为低碳钢或低合金钢。
这些钢材具有良好的可焊性和机械性能,能够满足焊接工艺的要求。
2. 包覆剂:焊丝表面覆盖有一层特殊的包覆剂,主要用于保护焊接过程中的熔融金属和热源。
同时,包覆剂还可以起到稳定电弧、减少飞溅和提高焊缝质量等作用。
3. 技术要求:二氧化碳保护焊丝的成分要求不同于普通焊丝,其主要区别在于焊丝中添加了一定量的二氧化碳气体。
这是因为二氧化碳气体能够提供稳定的电弧和有效的保护,从而提高焊接质量。
总而言之,二氧化碳保护焊丝的成分主要包括焊丝芯材料和特殊的包覆剂,其中焊丝芯材料通常是低碳钢或低合金钢,并添加了一定量的二氧化碳气体。
这些成分的合理组合能够保证焊接过程中的稳定性和焊缝质量。