高考综合复习——原子结构-原子核专题复习电子教案
高中物理原子核结构教案
高中物理原子核结构教案教学内容:原子核结构教学目标:1. 了解原子核的基本组成和结构2. 掌握原子核的重要性和稳定性3. 理解原子核的衰变现象和放射性教学重点:1. 原子核的组成和结构2. 原子核的稳定性和放射性教学难点:1. 掌握原子核的不同性质和特点2. 理解原子核的衰变过程和放射现象教学方法:讲授结合实验,激发学生兴趣,培养学生的实验能力和观察能力教学过程:一、导入通过介绍一些实际应用,如核能发电、核医学、核武器等,引出原子核结构的重要性和应用价值。
二、讲解原子核的基本组成和结构1. 原子核由质子和中子组成,质子带正电荷,中子不带电荷。
2. 质子数和中子数决定了原子核的元素和同位素。
三、讲解原子核的稳定性和放射性1. 原子核的稳定性取决于质子数和中子数的比例。
2. 放射性是原子核不稳定时放出的辐射。
四、实验演示进行一些简单的实验,例如测量不同元素的原子核的质子数和中子数,观察不同元素的放射性变化等。
五、讨论原子核的衰变过程和放射现象1. 介绍原子核的衰变方式,包括α衰变、β衰变和γ衰变。
2. 根据不同的放射性现象,着重讨论放射性的应用。
六、总结通过回顾原子核的组成和结构,稳定性和放射性,以及实验演示和讨论,对原子核结构有一个整体的认识和理解。
七、作业布置相关作业,包括课堂练习和实验报告等,巩固学生所学内容。
8. 拓展引导学生进一步了解原子核的研究进展和应用领域,激发学生的科学兴趣和探索精神。
教学评价:1. 学生听课态度和参与情况2. 学生对知识点的理解程度和应用能力3. 学生实验操作和观察能力教学反思:根据教学评价和学生反馈,及时调整教学方法和内容,促进学生的学习效果和能力提升。
高考物理一轮复习 专题13.4 原子结构 原子核教学案-人教版高三全册物理教学案
专题13.4 原子结构原子核1.知道两种原子结构模型,会用玻尔理论解释氢原子光谱.2.掌握氢原子的能级公式并能结合能级图求解原子的跃迁问题.3.掌握原子核的衰变、半衰期等知识.4.会书写核反应方程,并能根据质能方程求解核能问题.一、原子结构光谱和能级跃迁1.电子的发现英国物理学家汤姆孙在研究阴极射线时发现了电子,提出了原子的“枣糕模型〞.2.原子的核式结构(1)1909~1911年,英籍物理学家卢瑟福进行了α粒子散射实验,提出了核式结构模型.图1(2)α粒子散射实验的结果:绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞了回来〞,如图1所示.(3)原子的核式结构模型:原子中带正电部分的体积很小,但几乎占有全部质量,电子在正电体的外面运动.3.氢原子光谱(1)光谱:用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱.(2)光谱分类(3)氢原子光谱的实验规律:巴耳末系是氢光谱在可见光区的谱线,其波长公式1λ=R(122-1n2)(n=3,4,5,…,R是里德伯常量,R=1.10×107m-1).(4)光谱分析:利用每种原子都有自己的特征谱线可以用来鉴别物质和确定物质的组成成分,且灵敏度很高.在发现和鉴别化学元素上有着重大的意义.4.氢原子的能级结构、能级公式(1)玻尔理论①定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量.②跃迁:电子从能量较高的定态轨道跃迁到能量较低的定态轨道时,会放出能量为hν的光子,这个光子的能量由前后两个能级的能量差决定,即hν=E m-E n.(h是普朗克常量,h=6.63×10-34J·s)③轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.(2)能级和半径公式:①能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6eV.②半径公式:r n=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10m. 5.氢原子的能级图能级图如图2所示图2二、原子核核反应和核能1.原子核的组成(1)原子核由质子和中子组成,质子和中子统称为核子.质子带正电,中子不带电. (2)基本关系①核电荷数=质子数(Z )=元素的原子序数=核外电子数. ②质量数(A )=核子数=质子数+中子数.(3)X 元素的原子核的符号为AZ X ,其中A 表示质量数,Z 表示核电荷数. 2.天然放射现象 (1)天然放射现象元素自发地放出射线的现象,首先由贝可勒尔发现.天然放射现象的发现,说明原子核具有复杂的结构.(2)放射性同位素的应用与防护①放射性同位素:有天然放射性同位素和人工放射性同位素两类,放射性同位素的化学性质相同. ②应用:消除静电、工业探伤、做示踪原子等. ③防护:防止放射性对人体组织的伤害. 3.原子核的衰变、半衰期 (1)原子核的衰变①原子核放出α粒子或β粒子,变成另一种原子核的变化称为原子核的衰变. ②分类α衰变:A Z X→A -4Z -2Y +42He β衰变:AZ X→AZ +1Y +0-1e当放射性物质连续发生衰变时,原子核中有的发生α衰变,有的发生β衰变,同时伴随着γ辐射. ③两个典型的衰变方程 α衰变:23892U →23490Th +42He β衰变:23490Th →23491Pa +0-1e. (2)半衰期①定义:放射性元素的原子核有半数发生衰变所需的时间.②影响因素:放射性元素衰变的快慢是由核内部自身的因素决定的,跟原子所处的化学状态和外部条件没有关系.(3)公式:N余=N原·12tτ⎛⎫⎪⎝⎭,m余=m原·12tτ⎛⎫⎪⎝⎭.4.核力和核能(1)原子核内部,核子间所特有的相互作用力.(2)核子在结合成原子核时出现质量亏损Δm,其对应的能量ΔE=Δmc 2.(3)原子核分解成核子时要吸收一定的能量,相应的质量增加Δm,吸收的能量为ΔE=Δmc2.高频考点一原子的核式结构例1、(多项选择)(2016·天津理综·6)物理学家通过对实验的深入观察和研究,获得正确的科学认知,推动物理学的发展,以下说法符合事实的是( )A.赫兹通过一系列实验,证实了麦克斯韦关于光的电磁理论B.查德威克用α粒子轰击147N获得反冲核178O,发现了中子C.贝可勒尔发现的天然放射性现象,说明原子核有复杂结构D.卢瑟福通过对阴极射线的研究,提出了原子核式结构模型答案AC[举一反三](多项选择)如图3所示为卢瑟福和他的同事们做α粒子散射实验装置的示意图,荧光屏和显微镜一起分别放在图中的A、B、C、D四个位置时观察到的现象,下述说法中正确的选项是( )图3A.放在A位置时,相同时间内观察到屏上的闪光次数最多B.放在B位置时,相同时间内观察到屏上的闪光次数只比A位置时稍少些C.放在C、D位置时,屏上观察不到闪光D.放在D位置时,屏上仍能观察到一些闪光,但次数极少答案ABD解析根据α粒子散射现象,绝大多数α粒子沿原方向前进,少数α粒子发生较大偏转,A、B、D 正确.[变式探究](多项选择)以下说法正确的选项是( )A.汤姆孙首先发现了电子,并测定了电子电荷量,且提出了“枣糕模型〞B.卢瑟福做α粒子散射实验时发现绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,只有少数α粒子发生大角度偏转C.α粒子散射实验说明了原子的正电荷和绝大部分质量集中在一个很小的核上D.卢瑟福提出了原子核式结构模型,并解释了α粒子发生大角度偏转的原因答案BCD解析汤姆孙发现了电子符合物理史实,但电子电荷量是密立根测定的,A错误,B、C、D都符合物理史实.[举一反三](多项选择)在物理学的发展过程中,许多物理学家的科学发现推动了人类历史的进步.以下表述符合物理学史实的是( )A.普朗克为了解释黑体辐射现象,第一次提出了能量量子化理论B.爱因斯坦为了解释光电效应的规律,提出了光子说C.卢瑟福通过对α粒子散射实验的研究,提出了原子的核式结构模型D.贝可勒尔通过对天然放射性的研究,发现原子核是由质子和中子组成的答案 ABC高频考点二 玻尔理论和能级跃迁例2、(多项选择)有关氢原子光谱的说法正确的选项是( ) A .氢原子的发射光谱是连续谱B .氢原子光谱说明氢原子只发出特定频率的光C .氢原子光谱说明氢原子能级是分立的D .氢原子光谱线的频率与氢原子能级的能量差无关 答案 BC解析 由于氢原子的轨道是不连续的,而氢原子在不同的轨道上的能级E n =1n2E 1,故氢原子的能级是不连续的即是分立的,故C 正确;当氢原子从较高轨道第n 能级跃迁到较低轨道第m 能级时,发射的光子的能量为E =E n -E m =1n 2E 1-1m 2E 1=m 2-n 2n 2m2E 1=hν,显然n 、m 的取值不同,发射光子的频率就不同,故氢原子光谱线的频率与氢原子能级的能级差有关,故D 错误;由于氢原子发射的光子的能量E =m 2-n 2n 2m2E 1,所以发射的光子的能量值E 是不连续的,只能是一些特殊频率的谱线,故A 错误,B 正确.[举一反三](多项选择)如图5是氢原子的能级图,一群氢原子处于n =3能级,以下说法中正确的选项是( )图5A .这群氢原子跃迁时能够发出3种不同频率的波B .这群氢原子发出的光子中,能量最大为10.2eVC .从n =3能级跃迁到n =2能级时发出的光波长最长D.这群氢原子能够吸收任意光子的能量而向更高能级跃迁答案AC[变式探究]一群处于n=4能级的激发态的氧原子,向低能级跃迁时,最多发射出的谱线为( ) A.3种B.4种C.5种D.6种答案 D解析一群处于n=4能级的激发态的氧原子,向低能级跃迁时,最多发射出的谱线为C24=6种,选D.[举一反三]一群氢原子处于同一较高的激发态,它们向较低激发态或基态跃迁的过程中( )A.可能吸收一系列频率不同的光子,形成光谱中的假设干条暗线B.可能发出一系列频率不同的光子,形成光谱中的假设干条亮线C.只吸收频率一定的光子,形成光谱中的一条暗线D.只发出频率一定的光子,形成光谱中的一条亮线答案 B高频考点三原子核及核反应例3、(2016·全国Ⅱ·35(1))在以下描述核过程的方程中,属于α衰变的是________,属于β衰变的是________,属于裂变的是________,属于聚变的是________.(填正确答案标号)A.146C→147N+0-1eB.3215P→3216S+0-1eC.23892U→23490Th+42HeD.147N+42He→178O+11HE.23592U+10n→14054Xe+9438Sr+210nF.31H+21H→42He+10n答案 C AB E F解析α衰变是一种放射性衰变,α粒子(42He)会从原子核中射出,C项符合要求,β衰变是指自原子核内自发地放出一个电子(0-1e),同时原子序数加1的过程,A、B两项符合要求,裂变是指一些质量非常大的原子核,如铀、钍和钚等在吸收一个中子后分裂成两个或更多质量较小的原子核,同时放出多个中子和很大能量的过程,只有E项符合要求.聚变是指由两个轻原子核(一般是氘核和氚核)结合成较重原子核(氦核)并放出大量能量的过程,F项符合要求.[变式探究](多项选择)(2016·全国Ⅲ·35(1)一静止的铝原子核2713Al俘获一速度为1.0×107m/s的质子p后,变为处于激发态的硅原子核2814Si*.以下说法正确的选项是( )A.核反应方程为p+2713Al→2814Si*B.核反应过程中系统动量守恒C.核反应过程中系统能量不守恒D.核反应前后核子数相等,所以生成物的质量等于反应物的质量之和答案AB解析根据质量数和电荷数守恒可得,核反应方程为p+2713Al→2814Si*,A正确;核反应过程中释放的核力远远大于外力,故系统动量守恒,B正确;核反应过程中系统能量守恒,C错误;由于反应过程中,要释放大量的能量,伴随着质量亏损,所以生成物的质量小于反应物的质量之和,D错误.[举一反三](多项选择)关于核反应方程234 90Th→234 91Pa+X+ΔE(ΔE为释放的核能,X为新生成的粒子),234 90 Th的半衰期为1.2 min,那么以下说法正确的选项是( )A.此反应为β衰变B.234 91Pa核和234 90Th核具有相同的质量C.234 91Pa具有放射性D.64 g的234 90Th经过6 min还有1 g234 90Th尚未衰变答案AC[变式探究]目前,在居室装修中经常用到花岗岩、大理石等装饰材料,这些岩石都不同程度地含有放射性元素.比如,有些含有铀、钍的花岗岩等岩石会释放出放射性惰性气体氡,而氡会发生放射性衰变,放射出α、β、γ射线,这些射线会导致细胞发生癌变及呼吸道等方面的疾病.根据有关放射性知识可知,以下说法正确的选项是( )A.氡的半衰期为3.8天,假设取4个氡原子核,经7.6天后就剩下一个原子核了B.β衰变所释放的电子是原子核内的中子转化成质子和电子所产生的C.γ射线一般伴随着α或β射线产生,在这三种射线中,α射线的穿透能力最强,电离能力最弱D.发生α衰变时,生成核与原来的原子核相比,中子数减少了4答案 B解析半衰期遵循统计规律,对单个或少数原子核是没有意义的,A错误.根据3种射线的特性及衰变实质可知B正确,C、D错误.1.(多项选择)(2016·天津理综·6)物理学家通过对实验的深入观察和研究,获得正确的科学认知,推动物理学的发展,以下说法符合事实的是( )A.赫兹通过一系列实验,证实了麦克斯韦关于光的电磁理论B.查德威克用α粒子轰击147N获得反冲核178O,发现了中子C.贝可勒尔发现的天然放射性现象,说明原子核有复杂结构D.卢瑟福通过对阴极射线的研究,提出了原子核式结构模型答案AC2.(2016·全国Ⅱ·35(1))在以下描述核过程的方程中,属于α衰变的是________,属于β衰变的是________,属于裂变的是________,属于聚变的是________.(填正确答案标号)A.146C→147N+0-1eB.3215P→3216S+0-1eC.23892U→23490Th+42HeD.147N+42He→178O+11HE.23592U+10n→14054Xe+9438Sr+210nF.31H+21H→42He+10n答案 C AB E F解析α衰变是一种放射性衰变,α粒子(42He)会从原子核中射出,C项符合要求,β衰变是指自原子核内自发地放出一个电子(0-1e),同时原子序数加1的过程,A、B两项符合要求,裂变是指一些质量非常大的原子核,如铀、钍和钚等在吸收一个中子后分裂成两个或更多质量较小的原子核,同时放出多个中子和很大能量的过程,只有E项符合要求.聚变是指由两个轻原子核(一般是氘核和氚核)结合成较重原子核(氦核)并放出大量能量的过程,F项符合要求.3.(2016·北京理综·13)处于n=3能级的大量氢原子,向低能级跃迁时,辐射光的频率有( ) A.1种B.2种C.3种 D.4种解析:处于能级为n的大量氢原子向低能级跃迁能辐射光的种类为C2n,所以处于n=3能级的大量氢原子向低能级跃迁,辐射光的频率有C23=3种,故C项正确。
2024版高考物理一轮总复习专题十四原子与原子核第2讲原子结构课件
3.轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应. 原子的定态是不连续的,因此电子的轨道可能也是________的. 【答案】不连续 4.氢原子的能级、半径公式.
(1)能级公式:En=n12E1(n=1,2,3,…),其中E1为基态能量,其数值 式为E1=-13.6 eV. (2)半径公式:rn=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔 半径,其数值为r1=0.53×10-10 m.
【解析】根据 C32 =3知这群氢原子能够发出3种不同频率的光子,A正确; 由n=3跃迁到n=1,辐射的光子能量最大,ΔE=(13.6-1.51) eV=12.09 eV,B错误;从n=3跃迁到n=2辐射的光子能量最小,频率最小,则波 长最长,C正确;一群处于n=3能级的氢原子发生跃迁,吸收的能量必 须等于两能级的能级差,D错误.
【解析】从n=3跃迁到n=1放出的光电子能量最大,根据Ek=E-W0,
可得此时最大初动能为Ek=9.8 eV,A错误;根据p=hλ = hcν,E=hν,又 因为从n=3跃迁到n=1放出的光子能量最大,故可知动量最大,B正确;
大量氢原子从n=3的激发态跃迁到基态能放出C32=3种频率的光子,其 中从n=3跃迁到n=2放出的光子能量为ΔEk=3.4 eV-1.51 eV=1.89 eV <2.29 eV,不能使金属钠产生光电效应,其他两种均可以,C错误;由 于从n=3跃迁到n=4能级需要吸收的光子能量为ΔE=1.51 eV-0.85 eV =0.66 eV≠0.85 eV,用0.85 eV的光子照射,不能使氢原子跃迁到n=4激 发态,D错误.
【解析】由于氢原子发射的光子的能量E=En-Em=n12E1-m12E1= mn22-mn22E1,所以发射的光子的能量值E是不连续的,只能是一些特定频 率的谱线,故A错误,B正确;由于氢原子的轨道是不连续的,根据玻尔 原子理论知氢原子的能级也是不连续的,即是分立的,故C错误;当氢 原子从较高轨道第n能级跃迁到较低轨道第m能级时,发射的光子能量E =En-Em=hν,显然n、m的取值不同,发射光子的频率就不同,故氢 原子光谱线的频率与氢原子能级的能量差有关,D错误.
2024届高考一轮复习化学教案(鲁科版):原子结构 核外电子排布规律
第26讲原子结构核外电子排布规律[复习目标] 1.掌握原子结构中微粒数目的关系。
2.了解原子核外电子的运动状态、能级分布和排布原理。
3.能正确书写1~36号元素原子核外电子排布式、价电子排布式和轨道表示式。
考点一原子结构、核素、同位素1.原子结构(1)构成微粒及作用(2)微粒间的数量关系①阳离子的核外电子数=质子数-所带电荷数。
②阴离子的核外电子数=质子数+所带电荷数。
(3)微粒符号周围数字代表的信息2.元素、核素、同位素(1)元素、核素、同位素的概念及相互关系(2)同位素的特征①同一元素的各种核素的中子数不同,质子数相同,化学性质几乎完全相同,物理性质差异较大。
②同一元素的各种稳定核素在自然界中所占的原子百分数(丰度)不变。
(3)氢元素的三种核素1H:名称为氕,不含中子;12H:用字母D表示,名称为氘或重氢;13H:用字母T表示,名称为氚或超重氢。
1(4)几种重要核素的用途核素235 92U 14 6C 21H 31H 18 8O用途核燃料用于考古断代制氢弹示踪原子1.一种元素可以有多种核素,也可能只有一种核素,有多少种核素就有多少种原子() 2.所有原子核内一定都有中子()3.质量数就是元素的相对原子质量()4.质子数相同的微粒一定属于同一种元素()5.核外电子数相同的微粒,其质子数一定相同()6.核聚变如21H+31H―→42He+10n,因为有新微粒生成,所以该变化是化学变化()7.氢的三种核素形成的单质有6种,它们物理性质有所不同,但化学性质几乎完全相同( ) 答案 1.√ 2.× 3.× 4.× 5.× 6.× 7.√一、微粒中“粒子数”的确定1.月球上的每百吨32He 聚变所释放出的能量相当于目前人类一年消耗的能量,地球上氦元素主要以42He 的形式存在。
已知一个 12C 原子的质量为a g ,一个32He 原子的质量为b g ,N A 为阿伏加德罗常数。
2024届高考化学一轮总复习:原子结构和核外电子排布课件
下列说法正确的是________(填序号)。 ①29325U 和29328U 是中子数不同,质子数相同的同种核素 ②中子数为 146、质子数为 92 的铀(U)原子:14962U ③235g 核素29325U 发生裂变反应:29325U+10n―裂―变→9308Sr+15346Xe+1010n,净产生的中子(10n) 数为 10NA ④所有原子都是由质子、中子和电子构成的 ⑤40K 和 40Ca 原子中的质子数和中子数都相等 ⑥某元素最外层只有一个电子,则它一定是金属元素
子的结构以及核外电子的排布规律,能从宏观 子数以及它们之间的相互关系。
和微观相结合的视角分析原子结构与元素性质 3.了解原子核外电子的运动状态、能
的关系。 级分布和排布原理,能正确书写1~36
2.证据推理与模型认知:能运用构造原理和 号元素原子核外电子、价电子的电子
能量最低原理揭示元素原子核外电子排布的规 排布式和电子排布图
考点一 原子的构成
一、原子的构成 原子原子核核外电子质中①②③子子围每相①②①②绕个对每相中相原电质个对子对子子量质质不质核带为子量带量做一一带约电约高个个一为为速单质个11运位子—单动负(—位电中决正荷子定电)同荷的位1—素81—3种6决素类—定种—元类最数的外决化层定学电元性子素质
有关粒子间的关系:质量数(A)=质子数(Z)+中子数(N);中性原子:质子数=核电 荷数=核外电子数;阳离子:质子数=核外电子数+电荷数;阴离子:质子数= 核外电子数-电荷数。
⑦任何原子或离子的组成中都含有质子 ⑧同位素的不同核素的物理、化学性质完全相同 ⑨baXn-含有的中子数为 a+b ⑩某元素 X,其原子的电子层数为(n-1),最外层电子数为(2n-1)。元素 X 的气态 氢化物一定极易溶于水 ⑪改变离子的电荷数可使一种元素的阳离子转化为另一种元素的阴离子 ⑫OH-与 H3O+组成元素相同,所含质子数相同 解析:29325U 和29328U 是不同核素,①错误;中子数为 146,质子数为 92 的铀原子表示 为29328U,②错误;核素29325U 发生裂变反应:29325U+10n―裂―变→9308Sr+15346Xe+1010n,净产生 的中子(10n)数为 10-1=9,235 g 核素29325U 的物质的量为 1 mol,则发生裂变时净产生
高考第一轮复习教案18原子核
高考第一轮复习教案18原子核目的要求:了解天然放射观象、原子核的人工转变和原子核的组成,会写核反应方程。
了解放射性同位素及其应用,了解质量亏损,会利用质能方程运算核反应中开释的能量;明白开释核能的两种途径. 重点难点: 教 具: 过程及内容:散 原子核基础知识 一、原子的核式结构模型 1、汤姆生的〝枣糕〞模型〔1〕1897年汤姆生发觉了电子,使人们认识到原子..有复杂结构,掀开了研究原子的序幕. (2)〝枣糕〞模型:原子是一个球体,正电荷平均分布在整个球内,电子像枣糕里的枣子一样镶嵌在原子里.2、卢瑟福的核式结构模型〔1〕α粒子散射实验的结果:α粒子通过金箔时,绝大多数不发生偏转,仍沿原先的方向前进,少数发生较大的偏转,极少数偏转角超过900,有的甚至被弹回,偏转角几乎达到1800. 〔2〕核式结构模型:在原子的中心有一个专门小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转.原子核所带的单位正电荷数等于核外的电子数,因此整个原子是呈电中性的.电子绕着核旋转所需的向心力确实是核对它的库仑引力.〔3〕从α粒子散射实验的数据估算出原子核大小的数量级为10-15一10-14 m ,原子大小的数量级为 10—10 m 。
【例1】在卢瑟福的α粒子散射实验中,有少数α粒子发生大角度偏转,其缘故是〔 〕 A .原子的正电荷和绝大部分质量集中在一个专门小的核上B .正电荷在原子中是平均分布的C 、原子中存在着带负电的电子D .原子只能处于一系列不连续的能量状态中解析:α粒子散射实验中,有少数α粒子发生了较大偏转.同时有极少数α粒子的偏转超过了900,有的甚至被反弹回去,偏转角达到l800,这讲明了这些α粒子受到专门大的库仑力,施力体应是体积甚小的带电实体。
依照碰撞知识,我们明白只有质量专门小的轻球与质量专门大的物体发生碰撞时,较小的球才被弹回去,这讲明被反弹回去的α粒子碰上了质量比它大得多的物质实体,即集中了全部质量和正电荷的原子核.答案:A【例2】关于α粒子散射实验,以下讲法中正确的选项是 〔 〕 A .绝大多数α粒子通过重金属箔后,发生了角度不太大的偏转 B .α粒子在接近原子核的过程中,动能减少,电势能减少 C 、α粒子离开原子核的过程中,动能增大,电势能增大D .对α粒子散射实验的数据进行分析,能够估算出原子核的大小解析:〝由于原子核专门小,α粒子十分接近它的机会专门少,因此绝大多数α粒子差不多上仍按直线方向前进,只有极少数发生大角度的偏转〞。
2024届高考一轮复习物理教案(新教材鲁科版):原子结构 原子核
第2讲原子结构原子核目标要求 1.知道原子的核式结构,了解氢原子光谱,掌握玻尔理论及能级跃迁规律.2.了解原子核的组成及核力的性质,了解半衰期及其统计意义.3.认识原子核的结合能,了解核裂变及核聚变,能根据质量数、电荷数守恒写出核反应方程.考点一原子结构和氢原子光谱1.原子结构(1)电子的发现:英国物理学家J·J·汤姆孙发现了电子.(2)α粒子散射实验:1909年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,极少数α粒子偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来.(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.2.氢原子光谱(1)光谱:用棱镜或光栅可以把光按波长(频率)展开,获得光的波长(频率)和强度分布的记录,即光谱.(2)光谱分类:①线状谱是一条条的亮线.②连续谱是连在一起的光带.(3)氢原子光谱的实验规律:①巴耳末系是氢原子光谱在可见光区的谱线,其波长公式1λ=R∞⎝⎛⎭⎫122-1n2(n=3,4,5,…),R∞是里德伯常量,R∞=1.10×107 m-1,n为量子数,此公式称为巴耳末公式.②氢光谱在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式.1.在α粒子散射实验中,少数α粒子发生大角度偏转是由于它跟金原子中的电子发生了碰撞.(×)2.原子中绝大部分是空的,原子核很小.(√)3.核式结构模型是卢瑟福在α粒子散射实验的基础上提出的.(√)4.发射光谱可能是连续谱,也可能是线状谱.(√)例1关于α粒子散射实验,下述说法中正确的是()A.在实验中观察到的现象是绝大多数α粒子穿过金箔后,仍沿原来方向前进,少数发生了较大偏转,极少数偏转超过90°,有的甚至被弹回接近180°B.使α粒子发生明显偏转的力来自带正电的核及核外电子,当α粒子接近核时是核的排斥力使α粒子发生明显偏转,当α粒子接近电子时,是电子的吸引力使之发生明显偏转C.实验表明原子中心有一个极小的核,它占有原子体积的极小部分,实验事实肯定了汤姆孙的原子结构模型D.实验表明原子中心的核带有原子的全部正电及全部质量答案 A解析在实验中观察到的现象是绝大多数α粒子穿过金箔后,仍沿原来方向前进,少数发生了较大偏转,极少数偏转超过90°,有的甚至被弹回接近180°,所以A正确;使α粒子发生明显偏转的力是来自带正电的核,当α粒子接近核时,核的排斥力使α粒子发生明显偏转,电子对α粒子的影响忽略不计,所以B错误;实验表明原子中心有一个极小的核,它占有原子体积的极小部分,实验事实否定了汤姆孙的原子结构模型,所以C错误;实验表明原子中心的核带有原子的全部正电及绝大部分质量,所以D错误.考点二玻尔理论能级跃迁1.玻尔理论(1)定态假设:电子只能处于一系列不连续的能量状态中,在这些能量状态中电子绕核的运动是稳定的,电子虽然绕核运动,但并不产生电磁辐射.(2)跃迁假设:电子从能量较高的定态轨道(其能量记为E n)跃迁到能量较低的定态轨道(能量记为E m,m<n)时,会放出能量为hν的光子,这个光子的能量由前后两个能级的能量差决定,即hν=E n-E m.(h是普朗克常量,h=6.63×10-34 J·s)(3)轨道量子化假设:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.2.能级跃迁(1)能级和半径公式:①能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV.②半径公式:r n =n 2r 1(n =1,2,3,…),其中r 1为基态轨道半径,其数值为r 1=0.53×10-10m.(2)氢原子的能级图,如图所示1.处于基态的氢原子可以吸收能量为11 eV 的光子而跃迁到高能级.( × ) 2.氢原子吸收或辐射光子的频率条件是hν=E n -E m (m <n ).( √ ) 3.氢原子各能级的能量指电子绕核运动的动能.( × ) 4.玻尔理论能解释所有元素的原子光谱.( × )1.两类能级跃迁(1)自发跃迁:高能级→低能级,释放能量,发射光子. 光子的频率ν=ΔE h =E 高-E 低h.(2)受激跃迁:低能级→高能级,吸收能量.①吸收光子的能量必须恰好等于能级差hν=ΔE .(注意:当入射光子能量大于该能级的电离能时,原子对光子吸收不再具有选择性,而是吸收以后发生电离) ②碰撞、加热等:只要入射粒子能量大于或等于能级差即可,E 外≥ΔE . 2.光谱线条数的确定方法(1)一个氢原子跃迁发出可能的光谱线条数最多为n -1. (2)一群氢原子跃迁发出可能的光谱线条数N =C 2n=n (n -1)2. 3.电离(1)电离态:n =∞,E =0.(2)电离能:指原子从基态或某一激发态跃迁到电离态所需要吸收的最小能量. 例如:氢原子从基态→电离态: E 吸=0-(-13.6 eV)=13.6 eV(3)若吸收能量足够大,克服电离能后,获得自由的电子还具有动能.例2(2022·重庆卷·6)如图为氢原子的能级示意图.已知蓝光光子的能量范围为2.53~2.76 eV,紫光光子的能量范围为2.76~3.10 eV.若使处于基态的氢原子被激发后,可辐射蓝光,不辐射紫光,则激发氢原子的光子能量为()A.10.20 eV B.12.09 eVC.12.75 eV D.13.06 eV答案 C解析由题知使处于基态的氢原子被激发后,可辐射蓝光,不辐射紫光,则由蓝光光子能量范围可知氢原子从n=4能级向低能级跃迁可辐射蓝光,不辐射紫光,即从n=4跃迁到n=2辐射蓝光,则需激发氢原子到n=4能级,则激发氢原子的光子能量为ΔE=E4-E1=12.75 eV,故选C.例3(2022·浙江6月选考·7)如图为氢原子的能级图.大量氢原子处于n=3的激发态,在向低能级跃迁时放出光子,用这些光子照射逸出功为2.29 eV的金属钠.下列说法正确的是()A.逸出光电子的最大初动能为10.80 eVB.n=3跃迁到n=1放出的光电子动量最大C.有3种频率的光子能使金属钠产生光电效应D.用0.85 eV的光子照射,氢原子跃迁到n=4激发态答案 B解析从n=3跃迁到n=1放出的光电子能量最大,根据E k=E-W0,可得此时最大初动能为E k=9.8 eV,故A错误;从n=3跃迁到n=1放出的光电子能量最大,根据p=hλ=hνc,E=hν,可知动量也最大,故B正确;大量氢原子从n=3的激发态跃迁到基态能放出C23=3种频率的光子,其中从n=3跃迁到n=2放出的光子能量为ΔE1=-1.51 eV-(-3.4 eV)=1.89 eV<2.29 eV,不能使金属钠发生光电效应,其他两种均可以,故C错误;由于从n=3跃迁到n=4需要吸收的光子能量为ΔE2=1.51 eV-0.85 eV=0.66 eV,所以用0.85 eV的光子照射,不能使氢原子跃迁到n=4激发态,故D错误.考点三原子核的衰变及半衰期1.原子核的组成:原子核是由质子和中子组成的,原子核的电荷数等于核内的质子数.2.天然放射现象放射性元素自发地发出射线的现象,首先由贝可勒尔发现.天然放射现象的发现,说明原子核具有复杂的结构.3.三种射线的比较名称构成符号电荷量质量电离能力贯穿本领α射线氦核42He+2e 4 u最强最弱β射线电子0-1e-e11 837u较强较强γ射线光子γ00最弱最强4.原子核的衰变(1)衰变:原子核自发地放出α粒子或β粒子,变成另一种原子核的变化称为原子核的衰变.(2)α衰变、β衰变衰变类型α衰变β衰变衰变方程M Z X→M-4Z-2Y+42He M Z X→MZ+1Y+0-1e衰变实质2个质子和2个中子结合成一个整体射出中子转化为质子和电子211H+210n→42He10n→11H+0-1e衰变规律电荷数守恒、质量数守恒(3)γ射线:γ射线经常是伴随着α衰变或β衰变同时产生的.5.半衰期(1)公式:N余=N原1()2tT,m余=m原1()2tT.(2)影响因素:放射性元素衰变的快慢是由核内部自身的因素决定的,跟原子所处的外部条件(如温度、压强)和化学状态(如单质、化合物)无关(选填“有关”或“无关”).6.放射性同位素的应用与防护(1)放射性同位素:有天然放射性同位素和人工放射性同位素两类,放射性同位素的化学性质相同.(2)应用:放射治疗、培优、保鲜、做示踪原子等.(3)防护:防止放射性对人体组织的伤害.1.三种射线按穿透能力由强到弱的排列顺序是γ射线、β射线、α射线.(√)2.β衰变中的电子来源于原子核外电子.(×)3.发生β衰变时,新核的电荷数不变.(×)4.如果现在有100个某放射性元素的原子核,那么经过一个半衰期后还剩50个.(×) 例4(2021·福建卷·9)核污水中常含有氚(31H)等放射性核素,处置不当将严重威胁人类安全.氚β衰变的半衰期长达12.5年,衰变方程为31H→A Z He+0-1e+νe,其中νe是质量可忽略不计的中性粒子,Z=________,A=________.若将含有质量为m的氚的核污水排入大海,即使经过50年,排入海中的氚还剩________m(用分数表示).答案231 16解析根据质量数守恒和电荷数守恒,可知Z=1-(-1)=2,A=3.由tT =5012.5=4,可知50年为4个半衰期.若将含有质量为m的氚的核污水排入大海,经过50年,排入海中的氚剩余质量为m′=m(12)4=116m.例5(多选)有一匀强磁场,磁感应强度大小为B,方向垂直纸面向外,一个原来静止在A 处的原子核发生衰变放射出两个粒子,两个新核的运动轨迹如图所示,已知两个相切圆半径分别为r1、r2.下列说法正确的是()A.原子核发生α衰变,根据已知条件可以算出两个新核的质量比B.衰变形成的两个粒子带同种电荷C.衰变过程中原子核遵循动量守恒定律D.衰变形成的两个粒子电荷量的关系为q1∶q2=r1∶r2答案BC解析衰变后两个新核速度方向相反,受力方向也相反,根据左手定则可判断出两个粒子带同种电荷,所以衰变是α衰变,衰变后的新核由洛伦兹力提供向心力,有Bq v=m v2r,可得r=m vqB,衰变过程遵循动量守恒定律,即m v相同,所以电荷量与半径成反比,有q1∶q2=r2∶r1,但无法求出质量比,故A、D错误,B、C正确.考点四核反应及核能的计算1.核反应的四种类型类型可控性核反应方程典例衰变α衰变自发238 92U→234 90Th+42He β衰变自发234 90Th→234 91Pa+0-1e人工转变人工控制147N+42He→17 8O+11H(卢瑟福发现质子)42He+94Be→12 6C+10n(查德威克发现中子)2713Al+42He→3015P+10n 约里奥-居里夫妇发现放射性同位素,同时发现正电子3015P→3014Si+0+1e重核裂变容易控制23592U+10n→144 56Ba+8936Kr+310n23592U+10n→136 54Xe+9038Sr+1010n轻核聚变现阶段很难控制21H+31H→42He+10n+17.6 MeV2.核反应方程式的书写(1)熟记常见基本粒子的符号,是正确书写核反应方程的基础.如质子(11H)、中子(10n)、α粒子(42He)、β粒子(0-1e)、正电子(0+1e)、氘核(21H)、氚核(31H)等.(2)掌握核反应方程遵循的规律:质量数守恒,电荷数守恒.(3)由于核反应不可逆,所以书写核反应方程式时只能用“→”表示反应方向.3.核力和核能(1)核力:原子核内部,核子间所特有的相互作用力.(2)结合能:原子核是核子凭借核力结合在一起构成的,要把它们分开需要的能量,叫作原子的结合能,也叫核能.(3)比结合能:原子核的结合能与核子数之比,叫作比结合能,也叫平均结合能.比结合能越大,原子核中核子结合得越牢固,原子核越稳定.(4)核子在结合成原子核时出现质量亏损Δm,其对应的能量ΔE=Δmc2.原子核分解成核子时要吸收一定的能量,相应的质量增加Δm,吸收的能量为ΔE=Δmc2.1.核力就是库仑力.(×)2.原子核的结合能越大,原子核越稳定.(×)3.核反应中,出现质量亏损,一定有核能产生.(√)核能的计算方法(1)根据ΔE=Δmc2计算,计算时Δm的单位是“kg”,c的单位是“m/s”,ΔE的单位是“J”.(2)根据ΔE=Δm×931.5 MeV计算.因1原子质量单位(u)相当于931.5 MeV的能量,所以计算时Δm的单位是“u”,ΔE的单位是“MeV”.(3)根据核子比结合能来计算核能:原子核的结合能=核子比结合能×核子数.例6下列说法正确的是()A.238 92U→234 90Th+X中X为中子,核反应类型为β衰变B.21H+31H→42He+Y中Y为中子,核反应类型为人工转变C.235 92U+10n→136 54Xe+9038Sr+K中K为10个中子,核反应类型为重核裂变D.14 7N+42He→17 8O+Z中Z为氢核,核反应类型为轻核聚变答案 C解析根据核反应的质量数和电荷数守恒可知,A选项反应中的X质量数为4,电荷数为2,为α粒子,核反应类型为α衰变,选项A错误;B选项反应中的Y质量数为1,电荷数为0,为中子,核反应类型为轻核聚变,选项B错误;C选项反应中的K质量数总数为10,电荷数为0,则K为10个中子,核反应类型为重核裂变,选项C正确;D选项反应中的Z质量数为1,电荷数为1,为质子,核反应类型为人工转变,选项D错误.例7(2022·湖北卷·1)上世纪四十年代初,我国科学家王淦昌先生首先提出证明中微子存在的实验方案:如果静止原子核74Be俘获核外K层电子e,可生成一个新原子核X,并放出中微子νe,即74Be+0-1e→X+00νe.根据核反应后原子核X的动能和动量,可以间接测量中微子的能量和动量,进而确定中微子的存在.下列说法正确的是()A.原子核X是73LiB.核反应前后的总质子数不变C.核反应前后总质量数不同D.中微子νe的电荷量与电子的相同答案 A解析根据质量数守恒和电荷数守恒可知,X的质量数为7,电荷数为3,即原子核X是73Li,A正确,C错误;由选项A可知,原子核X是73Li,则核反应方程为74Be+0-1e→73Li+00νe,则反应前的总质子数为4,反应后的总质子数为3,B错误;中微子不带电,则中微子νe的电荷量与电子的不相同,D错误.例8(2019·全国卷Ⅱ·15)太阳内部核反应的主要模式之一是质子—质子循环,循环的结果可表示为411H→42He+201e+2ν,已知11H和42He的质量分别为m p=1.007 8 u和mα=4.002 6 u,1 u =931 MeV/c2,c为光速.在4个11H转变成1个42He的过程中,释放的能量约为()A.8 MeV B.16 MeV C.26 MeV D.52 MeV答案 C解析因电子质量远小于质子的质量,计算中可忽略不计,核反应质量亏损Δm=4×1.007 8 u -4.002 6 u=0.028 6 u,释放的能量ΔE=0.028 6×931 MeV≈26.6 MeV,选项C正确.例9花岗岩、砖砂、水泥等建筑材料是室内氡的最主要来源.人呼吸时,氡气会随气体进入肺脏,氡衰变放出的α射线像小“炸弹”一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.一静止的氡核222 86Rn发生一次α衰变生成新核钋(Po),此过程动量守恒且释放的能量全部转化为α粒子和钋核的动能.已知m氡=222.086 6 u,mα=4.002 6 u,m钋=218.076 6 u,1 u相当于931 MeV的能量.(结果均保留3位有效数字)(1)写出上述核反应方程;(2)求上述核反应放出的能量ΔE;(3)求α粒子的动能E kα.答案(1)222 86Rn→218 84Po+42He(2)6.89 MeV(3)6.77 MeV解析(1)根据质量数和电荷数守恒有222Rn→218 84Po+42He86(2)质量亏损Δm=222.086 6 u-4.002 6 u-218.076 6 u=0.007 4 u,ΔE=Δm×931 MeV,解得ΔE≈6.89 MeV(3)设α粒子、钋核的动能分别为E kα、E k钋,动量分别为pα、p钋,由能量守恒定律得ΔE=E kα+E k钋由动量守恒定律得0=pα+p钋,又E k=p22m故E kα∶E k钋=218∶4解得E kα≈6.77 MeV.课时精练1.(2022·湖南卷·1)关于原子结构和微观粒子波粒二象性,下列说法正确的是()A.卢瑟福的核式结构模型解释了原子光谱的分立特征B.玻尔的原子理论完全揭示了微观粒子运动的规律C.光电效应揭示了光的粒子性D.电子束穿过铝箔后的衍射图样揭示了电子的粒子性答案 C解析玻尔的原子理论成功地解释了氢原子的分立光谱,但不足之处是它保留了经典理论中的一些观点,如电子轨道的概念,还不能完全揭示微观粒子的运动规律,A、B错误;光电效应揭示了光的粒子性,C正确;电子束穿过铝箔后的衍射图样,证实了电子的波动性,D 错误.2.(2022·北京卷·1)氢原子从某激发态跃迁到基态,则该氢原子()A.放出光子,能量增加B.放出光子,能量减少C.吸收光子,能量增加D.吸收光子,能量减少答案 B解析 氢原子从某激发态跃迁到基态,则该氢原子放出光子,且放出光子的能量等于两能级之差,能量减少,故选B.3.(2022·辽宁卷·2)2022年1月,中国锦屏深地实验室发表了首个核天体物理研究实验成果.表明我国核天体物理研究已经跻身国际先进行列.实验中所用核反应方程为X +2512Mg →2613Al ,已知X 、2512Mg 、2613Al 的质量分别为m 1、m 2、m 3,真空中的光速为c ,该反应中释放的能量为E .下列说法正确的是( ) A .X 为氘核21HB .X 为氚核31H C .E =(m 1+m 2+m 3)c 2 D .E =(m 1+m 2-m 3)c 2 答案 D解析 根据质量数和电荷数守恒可知,X 的质量数为1,电荷数为1,为11H ,选项A 、B 错误;该反应释放的能量为E =(m 1+m 2-m 3)c 2,选项C 错误,D 正确.4.(多选)(2022·浙江6月选考·14)秦山核电站生产14 6C 的核反应方程为14 7N +10n →14 6C +X ,其产物14 6C 的衰变方程为14 6C →14 7N +0-1e.下列说法正确的是( )A .X 是11HB.14 6C 可以用作示踪原子C.0-1e 来自原子核外D .经过一个半衰期,10个14 6C 将剩下5个 答案 AB解析 根据质量数守恒和电荷数守恒可知,X 为11H ,故A 正确;常用的示踪原子有:14 6C 、 18 8O 、31H ,故B 正确;β衰变是由原子核内的一个中子转化为一个质子和一个电子,电子被释放出来,所以 0-1e 来自原子核内,故C 错误;半衰期是一个统计规律,对于大量原子核衰变是成立的,个数较少时规律不成立,故D 错误.5.(2022·广东卷·5)目前科学家已经能够制备出能量量子数n 较大的氢原子.氢原子第n 能级的能量为E n =E 1n 2,其中E 1=-13.6 eV .图是按能量排列的电磁波谱,要使n =20的氢原子吸收一个光子后,恰好失去一个电子变成氢离子,被吸收的光子是( )A .红外线波段的光子B .可见光波段的光子C .紫外线波段的光子D .X 射线波段的光子答案 A解析 要使处于n =20的氢原子吸收一个光子后恰好失去一个电子变成氢离子,则需要吸收光子的能量为E =0-(-13.6202) eV =0.034 eV ,结合题图可知被吸收的光子是红外线波段的光子,故选A.6.如图所示为氢原子能级图,以及从n =3、4、5、6能级跃迁到n =2能级时辐射的四条光谱线.则下列叙述正确的有( )A .H α、H β、H γ、H δ的频率依次增大B .可求出这四条谱线的波长之比,H α、H β、H γ、H δ的波长依次增大C .处于基态的氢原子要吸收3.4 eV 的能量才能被电离D .如果H δ可以使某种金属发生光电效应,H β一定可以使该金属发生光电效应 答案 A解析 根据hν=E m -E n (m >n ,m 、n 都只能取正整数),可以判定H α、H β、H γ、H δ的频率依次增大,波长依次减小,且能定量地计算出频率或波长的大小之比,故A 正确,B 错误;处于基态的氢原子至少要吸收13.6 eV 的能量才能被电离,故C 错误;H δ的频率大于H β的频率,根据光电效应产生的条件可以判定,H δ可以使某种金属发生光电效应,H β不一定可以使该金属发生光电效应,故D 错误.7.(2023·福建莆田市模拟)碲123 52Te 为斜方晶系银白色结晶,溶于硫酸、硝酸、王水、氰化钾、氢氧化钾,可由半衰期约为13 h 的放射性元素123 53I 衰变而成,其衰变方程为123 53I →123 52Te +X ;可以用于检测人体甲状腺对碘的吸收.该衰变产物中的X 为________(选填“质子”“中子”“电子”或“正电子”),质量为10 g 的12353I 经过26 h 后,剩余123 53I 的质量为________g.答案 正电子 2.5解析根据衰变方程、质量数守恒和电荷数守恒可知X的电荷数为1,质量数为0,所以X为正电子;根据半衰期计算公式,剩余质量为m=m012tT⎛⎫⎪⎝⎭=14m0=2.5 g.8.(多选)(2022·浙江1月选考·14)2021年12月15日秦山核电站迎来了安全发电30周年,核电站累计发电约6.9×1011kW·h,相当于减排二氧化碳六亿多吨.为了提高能源利用率,核电站还将利用冷却水给周围居民供热.下列说法正确的是()A.秦山核电站利用的是核聚变释放的能量B.秦山核电站发电使原子核亏损的质量约为27.6 kgC.核电站反应堆中需要用镉棒控制链式反应的速度D.反应堆中存在235 92U+10n→144 56Ba+8936Kr+310n的核反应答案CD解析秦山核电站利用的是重核裂变释放的能量,故A错误;由题知原子核亏损释放的能量一部分转化为电能,一部分转化为内能,原子核亏损的质量大于27.6 kg,故B错误;核电站反应堆中需要用镉棒能吸收中子的特性,通过控制中子的数量控制链式反应的速度,故C正确;反应堆利用铀235的裂变,生成多个中等质量的核和中子,且产物有随机的两分裂、三分裂,即存在235 92U+10n→144 56Ba+8936Kr+310n的核反应,故D正确.9.(多选)铀核裂变的一种方程为235 92U+X→9438Sr+139 54Xe+310n,已知原子核的比结合能与质量数的关系如图所示,下列说法中正确的有()A.X是中子B.X是质子C.235 92U、9438Sr、139 54Xe相比,9438Sr的比结合能最大,最稳定D.235 92U、9438Sr、139 54Xe相比,235 92U的质量数最大,结合能最大,最稳定答案AC解析根据质量数守恒和电荷数守恒可知,X的质量数为1,电荷数为0,为中子,A正确,B错误;根据题图可知,235 92U、9438Sr、139 54Xe相比,9438Sr的比结合能最大,最稳定,235 92U的质量数最大,结合能最大,比结合能最小,最不稳定,C正确,D错误.10.(2020·全国卷Ⅱ·18)氘核21H可通过一系列聚变反应释放能量,其总效果可用反应式621H→242He+211H+210n+43.15 MeV表示.海水中富含氘,已知1 kg海水中含有的氘核约为1.0×1022个,若全都发生聚变反应,其释放的能量与质量为M的标准煤燃烧时释放的热量相等;已知1 kg标准煤燃烧释放的热量约为2.9×107 J,1 MeV=1.6×10-13 J,则M约为()A.40 kg B.100 kgC.400 kg D.1 000 kg答案 C解析根据核反应方程式,6个氘核聚变反应可释放出43.15 MeV的能量,1 kg海水中的氘核反应释放的能量为E=1.0×102222 MeV≈1.15×1010 J,则相当于燃6×43.15 MeV≈7.19×10烧的标准煤的质量为M=1.15×1010kg≈396.6 kg,约为400 kg.故选C.2.9×10711.(2023·福建泉州市模拟)静止在真空匀强电场中的某原子核发生衰变,其衰变粒子与反冲核的初速度方向均与电场方向垂直,且经过相等的时间后形成的轨迹如图所示(a、b表示长度).原子核重力不计,则该衰变方程可能是()A.238 92U→42He+23490ThB.22688Ra→42He+22286RnC.234 90Th→0-1e+234 91PaD.14 6C→0-1e+14 7N答案 A解析 由轨迹弯曲方向可以看出,反冲核与衰变粒子的受力方向均与电场强度方向相同,均带正电,C 、D 错误;设运动时间为t ,上边轨迹粒子电荷量为q 1,质量为m 1,下轨迹粒子电荷量为q 2,质量为m 2,由动量守恒有m 1v 1=m 2v 2,根据类平抛运动处理规律,则有v 1t =9a ,12q 1E m 1·t 2=a ,v 2t =b ,12q 2E m 2t 2=5b ,联立得到q 1q 2=145 ,所以A 选项中方程粒子符合,B 选项中方程粒子不符合,A 正确,B 错误.12.(多选)(2023·福建省福州第一中学模拟)1899年,物理学家列别捷夫首先从实验上证实了“光射到物体表面上时会产生压力”,我们将光对物体单位面积的压力叫作压强或光压.已知频率为ν的光子的动量为hνc ,式中h 为普朗克常量(h =6.63×10-34 J·s),c 为光速(c =3×108 m/s),某激光器发出的激光功率为P =1 000 W ,该光束垂直射到某平整元件上,其光束截面积为S =1.00 mm 2,该激光的波长λ=500 nm ,下列说法正确的有( ) A .该激光器单位时间内发出的光子数可表示为PλhcB .该激光一定能使金属钨(截止频率为1.095×1015Hz)发生光电效应C .该激光不能使处于第一激发态的氢原子(E 2=-3.4 eV =-5.44×10-19J)电离D .该光束可能产生的最大光压约为6.67 Pa 答案 AC解析 单位时间内射到平整元件上的光能为W =Pt ,每个光子的能量为E =mc 2=hν=h cλ,则该激光器单位时间内发出的光子数n =W Et =Pλhc ,故A 正确;该激光的频率为ν=cλ=0.6×1015 Hz ,小于金属钨的截止频率,不能使金属钨发生光电效应,故B 错误;激光的光子能量为E =hν≈4×10-19 J ,光子能量小于处于第一激发态的氢原子的电离能,不能使其电离,故C 正确;对单位时间内发出的光子,根据动量定理有F Δt =nmc =Pλhc mc ,根据以上分析可知m =hcλ,代入Δt =1 s, 可得p m =F S =PcS≈3.33 Pa ,故D 错误.。
高考化学一轮复习 第1部分 专题5 第1单元 原子结构 核外电子排布教案
原子结构 核外电子排布 考纲定位 核心素养 1.了解元素、核素和同位素的含义。
2.了解原子构成。
了解原子序数、核电荷数、质子数、中子数、核外电子数及它们之间的相互关系。
3.了解原子的核外电子排布规律。
掌握原子结构示意图、原子符号、离子符号、元素符号的表示方法。
1.微观探析——从核电荷数、质子数、中子数、核外电子数及其排布掌握原子的微观结构。
2.模型认知——根据核外电子排布规律领会原子结构模型。
3.科学探究——能发现和提出有探究价值的原子结构及核外电子排布规律。
考点一| 原子结构和核素、同位素1.原子结构(1)原子的构成(2)核素(原子)符号表示AZ X 表示质子数为Z 、质量数为A 、中子数为A -Z 的核素,如氘21H 。
(3)微粒中的“各数”间的关系①质量关系:质量数(A )=质子数(Z )+中子数(N )。
②电性关系⎩⎪⎨⎪⎧ 原子AZ X :核外电子数=质子数Z = 核电荷数=原子序数阴离子o\al(A ,Z )X n -:核外电子数=Z +n 阳离子A Z X n +:核外电子数=Z -n提醒:原子结构中的“不一定”(1)原子中不一定都含有中子,如11H 中没有中子;(2)电子排布完全相同的原子不一定是同一种原子,如互为同位素的各原子;(3)易失去1个电子形成+1价阳离子的不一定是金属原子,如氢原子失去1个电子形成H+;(4)形成稳定结构的离子最外层不一定是8个电子,如Li+为2电子稳定结构;(5)阳离子不一定均有电子,如H+。
2.元素、核素、同位素(1)“三素”关系及含义(2)几种重要的核素及其应用11H:用字母H表示,名称为氕,不含中子。
21H:用字母D表示,名称为氘或重氢,含1个中子。
31H:用字母T表示,名称为氚或超重氢,含2个中子。
提醒:(1)现行元素周期表已发现的元素有118种,由于同位素的存在,故核素(或原子)的种数远大于118种。
(2)不同核素可能具有相同的质子数,如21H、31H;也可能具有相同的中子数,如14 6C、16 8 O;也可能具有相同的质量数,如11 6C、11 7N。
高考一轮复习化学课件原子结构核外电子排布规律
电子云概念及形状
电子云概念
电子在原子核外很小的空间内作高速运动,其运动规律跟 一般物体不同,没有确定的运动轨道,只能用电子云来描 述。
电子云形状
s电子云是球形对称的,在核外半径方向呈现球对称分布 ;p电子云是纺锤形,并不是电子运动轨迹,而是表示电 子出现的几率大小;d电子云是花瓣形。
电子云伸展方向
领域。
02
核外电子排布原理
能量最低原理与电子排布顺序
01
能量最低原理
电子在原子核外排布时,总是尽可能排布在能量最低的电子层里。
02
电子排布顺序
即电子层顺序,遵循1s、2s、2p、3s、3p、4s、3d、4p、5s、4d、
5p、6s、4f…的顺序。
03
电子层与能级
电子层可用n(n=1、2、3…)表示,n值越小,电子层离核越近,能量
非金属元素
非金属元素的原子最外层电子数一般较多,容易得到电子形成阴离子,或与其 他非金属元素共用电子形成共价键。其核外电子排布通常具有较少的电子层, 且最外层电子数接近或达到稳定构型。
过渡元素核外电子排布特征
过渡元素
过渡元素是指元素周期表中d区的一系列金属元素,其核外电 子排布特点是具有未填满的d电子层。这些元素的原子最外层 通常只有1-2个电子,而次外层(即d层)电子数则依次增加 。
高考一轮复习化学课
件原子结构核外电子
排布规律 汇报人:XX
20XX-02-04
• 原子结构基本概念 • 核外电子排布原理 • 原子核外电子排布规律 • 典型元素核外电子排布分析 • 化学键与分子结构基础 • 高考一轮复习策略与技巧
目录
01
原子结构基本概念
原子组成与性质
01
2024届高考一轮复习化学教案(通用版):原子结构 核外电子排布
第14讲原子结构核外电子排布复习目标1.了解元素、核素和同位素的含义;2.了解原子的构成,了解原子序数、核电荷数、质子数、中子数、核外电子数以及它们之间的关系;3.了解原子核外电子的运动状态、能级分布和排布原理,能正确书写1~36号元素原子核外电子、价电子的排布式和轨道表示式;4.了解电子在原子轨道之间的跃迁及其简单应用。
考点一原子结构核素同位素必备知识整理1.原子构成(1)构成微粒及作用(2)微粒间的数量关系①阳离子的核外电子数=________-所带电荷数。
②阴离子的核外电子数=________+所带电荷数。
(3)微粒符号周围数字代表的信息微点拨(1)原子中不一定都含有中子,如11H中没有中子。
(2)破坏原子结构的核裂变不属于化学变化。
(3)质子数相同的微粒不一定属于同一种元素,如F和OH-。
2.元素、核素、同位素(1)元素、核素、同位素的概念及关系(2)同位素①天然存在的同一元素的各核素所占原子百分数一般不变。
②同位素的“六同”与“三不同”(3)常见的重要核素及其应用核素92235U________12H13H________用途核燃料用于考古断代制________示踪原子微点拨(1)由于同位素的存在,核素的种数远大于元素的种类。
(2)不同核素可能具有相同的质子数,如12H和13H;也可能具有相同的中子数,如614C和816O;也可能具有相同的质量数,如614C和714N。
[正误判断](1)所有原子核内一定都有中子()(2)质子数相同的微粒一定属于同一种元素()(3)核外电子数相同的微粒,其质子数一定相同()(4)同位素的物理性质不同,但化学性质几乎相同()(5)不同核素之间的转化属于化学反应()(6)一种元素可以有多种核素,也可能只有一种核素,有多少种核素就有多少种原子()(7)核聚变如12H+13H―→24He+01n,因为有新微粒生成,所以该变化是化学变化()(8)1735Cl与1737Cl得电子能力几乎相同()(9)一种核素只有一种质量数()对点题组训练题组一微粒中“粒子数”的确定1.铯(55137Cs)可用于医学、工业测量仪器以及水文学。
高考物理二轮复习专题15原子结构与原子核教学案(含解析)
专题15 原子结构与原子核本专题的内容主要是动量及其守恒定律和原子物理学部分.高考对本部分内容的唯一Ⅱ级要求是动量守恒定律.用动量守恒定律解决碰撞或原子核衰变类问题是近几年新课标地区的命题热点.高考对本部分内容考查的重点和热点有以下几个方向:①动量守恒定律及其应用;②原子的能级跃迁;③原子核的衰变规律;④核反应方程的书写;⑤质量亏损和核能的计算;⑥原子物理部分的物理学史和α、β、γ三种射线的特点及应用等.选修命题会涉及有关原子、原子核或量子理论、动量问题,且动量问题一般以计算题的形式,其它问题则以填空或选择性填空形式出现.一、原子结构模型特别提醒:(1)原子的跃过条件:hν=E初-E终只适用于光子和原子作用而使原子在各定态之间跃迁的情况.(2)至于实物粒子和原子碰撞情况,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的动能大于或等于原子某两定态能量之差,也可以使原子受激发而向较高能级跃迁.二、原子核的变化 1.几种变化方式的比较2.各种放射线性质的比较3.三种射线在电磁场中的偏转情况比较图13-1如图13-1所示,在匀强磁场和匀强电场中都是β比α的偏转大,γ不偏转;区别是:在磁场中偏转轨迹是圆弧,在电场中偏转轨迹是抛物线.如图13-1丙图中γ肯定打在O点;如果α也打在O点,则β必打在O点下方;如果β也打在O点,则α必打在O点下方.三、核力与质能方程的理解1.核力的特点(1)核力是强相互作用的一种表现,在它的作用范围内,核力远大于库仑力.(2)核力是短程力,作用范围在1.5×10-15 m之内.(3)每个核子只跟相邻的核子发生核力作用,这种性质称为核力的饱和性.2.质能方程E=mc2的理解(1)质量数与质量是两个不同的概念.核反应中质量数、电荷数都守恒,但核反应中依然有质量亏损.(2)核反应中的质量亏损,并不是这部分质量消失或质量转化为能量,质量亏损也不是核子个数的减少,核反应中核子的个数是不变的.(3)质量亏损不是否定了质量守恒定律,生成的γ射线虽然静质量为零,但动质量不为零,且亏损的质量以能量的形式辐射出去.特别提醒:在核反应中,电荷数守恒,质量数守恒,质量不守恒,核反应中核能的大小取决于质量亏损的多少,即ΔE=Δmc2.考点一原子结构氢原子光谱例1.2015·福建理综,30(1),6分](难度★★))下列有关原子结构和原子核的认识,其中正确的是( )A.γ射线是高速运动的电子流B.氢原子辐射光子后,其绕核运动的电子动能增大C.太阳辐射能量的主要来源是太阳中发生的重核裂变D.21083 Bi的半衰期是5天,100克21083Bi经过10天后还剩下50克答案 B【变式探究】(2014·天津理综,6,6分)(难度★★)(多选)下列说法正确的是( )A.玻尔对氢原子光谱的研究导致原子的核式结构模型的建立B.可利用某些物质在紫外线照射下发出荧光来设计防伪措施C.天然放射现象中产生的射线都能在电场或磁场中发生偏转D.观察者与波源互相远离时接收到波的频率与波源频率不同答案BD考点二天然放射现象核反应核能例2.(2015·北京理综,14,6分)(难度★★)下列核反应方程中,属于α衰变的是( )A.14 7N+42He→17 8O+11HB.238 92U→234 90Th+42HeC.21H+31H→42He+10nD.234 90Th→234 91Pa+0-1e解析α衰变是重核自发的发出α粒子的天然放射现象,其中α粒子是42He,所以B正确;A为人工转变,C为轻核的聚变,D是β衰变,故A、C、D皆错误.答案 B【变式探究】2014·新课标全国Ⅰ,35(1),6分](难度★★)(多选)关于天然放射性,下列说法正确的是________.A.所有元素都可能发生衰变B.放射性元素的半衰期与外界的温度无关C.放射性元素与别的元素形成化合物时仍具有放射性D.α、β和γ三种射线中,γ射线的穿透能力最强E.一个原子核在一次衰变中可同时放出α、β和γ三种射线解析原子序数大于或等于83的元素,都能发生衰变,而原子序数小于83 的部分元素能发生衰变,故A错;放射性元素的衰变是原子核内部结构的变化,与核外电子的得失及环境温度无关,故B、C项正确;在α、β、γ三种射线中,α、β为带电粒子,穿透本领较弱,γ射线不带电,具有较强的穿透本领,故D项正确;一个原子核不能同时发生α和β衰变,故E项错误.答案BCD1.2016·全国Ⅰ,35(1),5分](多选)现用一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生.下列说法正确的是( )A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大B.入射光的频率变高,饱和光电流变大C.入射光的频率变高,光电子的最大初动能变大D.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生E.遏止电压的大小与入射光的频率有关,与入射光的光强无关2.(2016·北京理综,13,6分)处于n=3能级的大量氢原子,向低能级跃迁时,辐射光的频率有( ) A.1种 B.2种 C.3种 D.4种1.C n=3能级的大量氢原子向低能级跃迁时,辐射光子可能为3→1,3→2,2→1,故种类为N=C23=3种,C正确.3.(2016·天津理综,6,6分)(多选)物理学家通过对实验的深入观察和研究,获得正确的科学认知,推动物理学的发展,下列说法符合事实的是( )A.赫兹通过一系列实验,证实了麦克斯韦关于光的电磁理论B.查德威克用α粒子轰击14 7N获得反冲核17 8O,发现了中子C.贝克勒尔发现的天然放射性现象,说明原子核有复杂结构D.卢瑟福通过对阴极射线的研究,提出了原子核式结构模型1.AC 赫兹通过著名的电火花实验证实了电磁波的存在,并通过一系列实验证明了电磁波的波速为光速等麦克斯韦关于光的电磁理论,A正确.查德威克通过α粒子轰击铍核(94Be)获得碳核(126C) 的实验发现了中子,B错误.C项与事实相符是正确的.卢瑟福是根据α粒子的散射实验提出的原子核式结构模型,D 错误.4.2016·全国Ⅲ,35(1),5分]一静止的铝原子核2713Al俘获一速度为1.0×107m/s的质子p后,变为处于激发态的硅原子核2814Si*.下列说法正确的是( )A.核反应方程为p+2713Al→2814Si*B.核反应过程中系统动量守恒C.核反应过程中系统能量不守恒D.核反应前后核子数相等,所以生成物的质量等于反应物的质量之和E.硅原子核速度的数量级为105 m/s,方向与质子初速度的方向一致5.2016·江苏物理,12C(1)]贝克勒尔在120年前首先发现了天然放射现象,如今原子核的放射性在众多领域中有着广泛应用.下列属于放射性衰变的是( )A.146C→147N+0-1eB.23592U+10n→13153I+9539Y+210nC.21H+31H→42He+10nD.42He+2713Al→3015P+10n3.A 一个放射性原子核自发地放出一个粒子变成新的原子核的过程是原子核的衰变,A为原子核衰变,B为重核的裂变,C为轻核的聚变,D为原子核的人工转变,A正确.6.2016·全国Ⅱ,35(1),5分]在下列描述核过程的方程中,属于α衰变的是________,属于β衰变的是________,属于裂变的是________,属于聚变的是________.(填正确答案标号)A.146C→147N+0-1eB.3215P→3216S+0-1eC.23892U→23490Th+42HeD.147N+42He→178O+11HE.23592U+10n→14054Xe+9438Sr+210nF.31H+21H→42He+10n【解析】α衰变是一种放射性衰变,α粒子(42He)会从原子核中射出,C项符合要求.β衰变是指自原子核内自发地放出一个电子(0-1e),同时原子序数加1的过程,A、B两项符合要求.裂变是指一些质量非常大的原子核,像铀、钍和钚等在吸收一个中子后分裂成两个或更多质量较小的原子核,同时放出两个或三个中子和很大能量的过程,只有E项符合要求.聚变是指由两个轻原子核(一般是氘和氚)结合成较重原子(如氦)并放出大量能量的过程,F项符合要求.【答案】 C AB E F7.2016·江苏物理,12C(3)]几种金属的逸出功W 0见下表:由一束可见光照射上述金属的表面,请通过计算说明哪些能发生光电效应.已知该可见光的波长的范围为4.0×10-7~7.6×10-7m ,普朗克常数h =6.63×10-34 J·s.1.(2015·重庆理综,1,6分)(难度★★)图中曲线a 、b 、c 、d 为气泡室中某放射物发生衰变放出的部分粒子的径迹,气泡室中磁感应强度方向垂直于纸面向里.以下判断可能正确的是( )A .a 、b 为β粒子的径迹B .a 、b 为γ粒子的径迹C .c 、d 为α粒子的径迹D .c 、d 为β粒子的径迹解析 γ粒子是不带电的光子,在磁场中不偏转,选项B 错误;α粒子为氦核带正电,由左手定则知向上偏转,选项A 、C 错误;β粒子是带负电的电子,应向下偏转,选项D 正确.答案 D2.2015·海南单科,17(1),4分](难度★★★)氢原子基态的能量为E 1=-13.6 eV. 大量氢原子处于某一激发态.由这些氢原子可能发出的所有的光子中,频率 最大的光子能量为-0.96E 1,频率最小的光子的能量为______eV(保留2位有 效数字),这些光子可具有________种不同的频率.解析 频率最大的光子能量为-0.96E 1,即E n -E 1=-0.96E 1,则E n =E 1-0.96E 1=(-13.6 eV)-0.96×(-13.6 eV)=0.54 eV ,即n =5,从n =5能级开始跃迁,这些光子能发出的频率数n =5×(5-1)2=10种.频率最小的光子是从n =5能级跃迁到n =4能级,其能量为E min =-0.54 eV -(-0.85 eV)=0.31 eV.答案0.31 eV 103.(2015·广东理综,18,6分)(难度★★)(多选)科学家使用核反应获取氚,再利用氘和氚的核反应获得能量,核反应方程分别为:X+Y→42He+31H+4.9 MeV 和21H+31H→42He+X+17.6 MeV,下列表述正确的有( )A.X是中子B.Y的质子数是3,中子数是6C.两个核反应都没有质量亏损D.氘和氚的核反应是核聚变反应解析根据核反应中质量数和电荷数守恒,可知X是10X,所以为中子,A正确;Y应为63Y,所以Y的质子数为3,核子数为6,中子数为3,B错误;两核反应均有能量释放,根据爱因斯坦质能方程,两核反应都有质量亏损,C错误;由聚变反应概念知,D正确.答案AD4.(2015·天津理综,1,6分)(难度★★)物理学重视逻辑,崇尚理性,其理论总是建立在对事实观察的基础上.下列说法正确的是( )A.天然放射现象说明原子核内部是有结构的B.电子的发现使人们认识到原子具有核式结构C.α粒子散射实验的重要发现是电荷是量子化的D.密立根油滴实验表明核外电子的轨道是不连续的答案 A5.(2015·北京理综,17,6分)(难度★★)实验观察到,静止在匀强磁场中A点的原子核发生β衰变,衰变产生的新核与电子恰在纸面内做匀速圆周运动,运动方向和轨迹示意如图,则( )A .轨迹1是电子的,磁场方向垂直纸面向外B .轨迹2是电子的,磁场方向垂直纸面向外C .轨迹1是新核的,磁场方向垂直纸面向里D .轨迹2是新核的,磁场方向垂直纸面向里解析 静止的原子核发生β衰变,动量守恒,即MV =mv ,新核和电子在磁 场中做匀速圆周运动,根据qvB =m v 2r 知r =mv qB ,即r ∝1q,故轨迹1是电子的,轨迹2是新核的,又由左手定则可知磁场的方向为垂直于纸面向里,所以只 有选项D 正确.答案 D6.2015·山东理综,39(1)](难度★★)(多选)14C 发生放射性衰变成为14N ,半衰期 约5700年.已知植物存活期间,其体内14C 与12C 的比例不变;生命活动结束后,14C 的比例持续减少.现通过测量得知,某古木样品中14C 的比例正好 是现代植物所制样品的二分之一.下列说法正确的是( ) a .该古木的年代距今约5700年 b .12C 、13C 、14C 具有相同的中子数 c .14C 衰变为14N 的过程中放出β射线d .增加样品测量环境的压强将加速14C 的衰变答案 ac7.2015·江苏单科,12C(2)(3)](难度★★)(2)核电站利用原子核链式反应放出的 巨大能量进行发电,235 92U 是核电站常用的核燃料.235 92U 受一个中子轰击后裂变 成144 56Ba 和8936Kr 两部分,并产生________个中子.要使链式反应发生,裂变物质的体积要________(选填“大于”或“小于”)它的临界体积.(3)取质子的质量m p =1.672 6×10-27kg ,中子的质量m n =1.674 9×10-27kg , α粒子的质量m α=6.646 7×10-27kg ,光速c =3.0×108 m/s.请计算α粒子的 结合能.(计算结果保留两位有效数字)解析 (2)由质量数和电荷数守可知:23592U +10n→14456Ba +8936Kr +310n ,可见产生 了3个中子,链式反应的一个条件是铀燃料的体积必须大于或等于临界体积. (3)根据爱因斯坦质能方程ΔE =Δmc 2,可求:ΔE =(2m p +2m n -m α)c 2= 4.3×10-12J.答案 (2)3 大于 (3)4.3×10-12J8.2015·海南单科,17(2)](难度★★)运动的原子核AZ X 放出α粒子后变成静止的原子核Y.已知X 、Y 和α粒子的质量分别是M 、m 1和m 2,真空中的光速为c ,α粒子的速度远小于光速.求反应后与反应前的总动能之差以及α粒子的动能.解析 反应后由于存在质量亏损,所以反应前、后总动能之差等于质量亏损 而释放出的能量,根据爱因斯坦质能方程可得12m 2v 2α-12Mv 2x =(M -m 1-m 2)c 2①反应过程中三个粒子组成的系统动量守恒,故有Mv x =m 2v α②联立①②可得12m 2v 2α=M M -m 2(M -m 1-m 2)c 2.答案 (M -m 1-m 2)c 2MM -m 2(M -m 1-m 2)c 21.【物理——选修3-5]【2014·新课标全国卷Ⅰ】(1)关于天然放射性,下列说法正确的是________. A .所有元素都可能发生衰变B .放射性元素的半衰期与外界的温度无关C .放射性元素与别的元素形成化合物时仍具有放射性D .α、β和γ三种射线中,γ射线的穿透能力最强E .一个原子核在一次衰变中可同时放出α、β和γ三种射线 【答案】(1)BCD2.【2014·新课标Ⅱ卷】【物理——选修3-5](1)在人类对微观世界进行探索的过程中,科学实验起到了非常重要的作用.下列说法符合历史事实的是________.A .密立根通过油滴实验测出了基本电荷的数值B .贝克勒尔通过对天然放射现象的研究,发现了原子中存在原子核C .居里夫妇从沥青铀矿中分离出了钋(Po )和镭(Ra )两种新元素D .卢瑟福通过α粒子散射实验证实了在原子核内部存在质子E .汤姆逊通过阴极射线在电场和磁场中偏转的实验,发现了阴极射线是由带负电的粒子组成的,并测出了该粒子的比荷【答案】(1)ACE【解析】(1)密立根通过油滴实验测出了基本电荷的电量,A项正确;卢瑟福通过α粒子散射实验建立了原子核式结构模型,发现了原子中心有一个核,B、D两项错误;居里夫妇从沥青铀矿中分离出了钋和镭两种新元素,并因此获得了诺贝尔奖,C项正确;汤姆逊通过研究阴极射线,发现了电子,并测出了电子的比荷,E项正确.3.【2014·北京卷】质子、中子和氘核的质量分别为m1、m2和m3.当一个质子和一个中子结合成氘核时,释放的能量是(c表示真空中的光速)( )A.(m1+m2-m3)c B.(m1-m2-m3)cC.(m1+m2-m3)c2 D.(m1-m2-m3)c2【答案】C【解析】本题考查质能方程,ΔE=Δmc2,其中Δm=(m1+m2-m3),则ΔE=(m1+m2-m3)c2,C正确,A、B、D错误.4.【2014·全国卷】一中子与一质量数为A(A>1)的原子核发生弹性正碰.若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( )A.A+1A-1B.A-1A+1C.4A(A+1)2D.(A+1)2(A-1)2【答案】A5.【2014·福建卷Ⅰ】(1)如图所示,放射性元素镭衰变过程中释放出α、β、γ三种射线,分别进入匀强电场和匀强磁场中,下列说法正确的是________.(填选项前的字母)A.①表示γ射线,③表示α射线B.②表示β射线,③表示α射线C.④表示α射线,⑤表示γ射线D.⑤表示β射线,⑥表示α射线【答案】(1)C【解析】α射线带正电,β射线带负电,γ射线不带电.在匀强电场中,α射线与β射线分别在电场力的作用下发生偏转,α射线偏向负极板,β射线偏向正极板,γ射线不受电场力,不发生偏转;在磁场中,由左手定则可以判断α射线向左偏,β射线向右偏,γ射线不受洛伦兹力,不发生偏转.故C项正确.6.【2014·广东卷】在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是( )A.增大入射光的强度,光电流增大B.减小入射光的强度,光电效应现象消失C.改用频率小于ν的光照射,一定不发生光电效应D.改用频率大于ν的光照射,光电子的最大初动能变大【答案】AD7.【2014·江苏卷】【选修3-5】(1)已知钙和钾的截止频率分别为7.73×1014Hz和5.44×1014Hz,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的________.A.波长 B.频率 C.能量 D.动量(2)氡222是一种天然放射性气体,被吸入后,会对人的呼吸系统造成辐射损伤.它是世界卫生组织公布的主要环境致癌物质之一.其衰变方程是22286Rn→21884Po+________.已知22286Rn的半衰期约为3.8天,则约经过________天,16 g的22286Rn衰变后还剩1 g.【答案】(1)A【解析】两种金属的截止频率不同,则它们的逸出功也不同,由W=hν0可知截止频率大的,逸出功也大.由E k =h ν-W 可知,用同样的单色光照射,钙逸出的光电子的最大初动能较小,由p =2mE k 知,其动量也较小,根据物质波p =h λ知,其波长较长. 【答案】(2)42He(或α粒子) 15.2【解析】①根据核反应过程中电荷数守恒和质量数守恒可推得该反应的另一种生成物为42He.②根据m 余=m 原⎝ ⎛⎭⎪⎫12t T 知t T=4,解得t =3.8×4=15.2天. 8.【2014·山东卷】【物理35】 (1)氢原子能级如图所示,当氢原子从n =3跃迁到n =2的能级时,辐射光的波长为656 nm.以下判断正确的是________.(双选,填正确答案标号)a .氢原子从n =2跃迁到n =1的能级时,辐射光的波长大于656 nmb .用波长为325 nm 的光照射,可使氢原子从n =1跃迁到n =2的能级c .一群处于n =3能级上的氢原子向低能级跃迁时最多产生3种谱线d .用波长为633 nm 的光照射,不能使氢原子从n =2跃迁到n =3的能级【答案】(1)cd9.【2014·天津卷】下列说法正确的是( )A .玻尔对氢原子光谱的研究导致原子的核式结构模型的建立B .可利用某些物质在紫外线照射下发出荧光来设计防伪措施C .天然放射现象中产生的射线都能在电场或磁场中发生偏转D .观察者与波源互相远离时接收到波的频率与波源频率不同【答案】BD【解析】本题是对玻尔理论、天然放射现象及多普勒效应等知识的考查,α粒子散射实验导致原子核式结构模型的建立,A 错误;紫外线可以使荧光物质发光,B 正确;天然放射现象中产生的γ射线在电场或磁场中不会发生偏转,C 错误;观察者和波源发生相对运动时,观察者接收到的频率就会发生改变,D 正确.10.【2014·浙江卷】 (2)玻尔氢原子模型成功解释了氢原子光谱的实验规律,氢原子能级图如图2所示,当氢原子从n=4的能级跃迁到n=2的能级时,辐射出频率为________Hz的光子.用该频率的光照射逸出功为2.25 eV的钾表面,产生的光电子的最大初动能为________eV.(电子电荷量e=1.60×10-19C,普朗克常量h=6.63×10-34J·s)n E/eV∞ 06——————-0.385——————-0.544——————-0.853——————-1.512——————-3.401——————-13.60图2【答案】(2)6.2×1014Hz 0.3 eV【解析】(2)本题考查能级、光电效应方程等知识.由跃迁条件可知hν=E4-E2=(3.40-0.85 )eV=4.08×10-19 J,解得辐射出的光子的频率为6.2×1014Hz,根据爱因斯坦光电效应方程E k=hν-W,计算可得产生电子的最大初动能为0.3 eV.11.【2014·重庆卷】碘131的半衰期约为8天,若某药物含有质量为m的碘131,经过32天后,该药物中碘131的含量大约还有( )A.m4B.m8C.m16D.m32。
第五章第24讲原子结构核外电子排布2025年高考化学一轮复习
— 返回 —
— 22 —
— 返回 —
3.电子自旋 (1)电子自旋在空间有顺时针和逆时针两种取向,简称自旋相反,常用上下箭头(↑和↓)
表示自旋□1 相反 的电子。 (2)能量相同的原子轨道(简并轨道),箭头表示一种□2 自旋状态的电子,“↑↓”称电
子对电子称自旋□3 平行。
— 17 —
解析 答案
— 返回 —
4.(2024·青岛黄岛区期中)现有下列 9 种微粒:11H、21H、136C、146C、147N、5266Fe2+、5266Fe3 +、168O2、
168O3。按要求完成以下各题: (1)11H、21H 分别是氢元素的一种___核__素___,它们互称为_同__位__素___。 (2)互为同素异形体的微粒是_16_8O__2_和__16_8O__3______。 (3)5266Fe2+的中子数为___3_0____,核外电子数为___2_4____。 (4)上述 9 种微粒中有____7____种核素,含有___5_____种元素。 (5)136C、146C 的化学性质___相__同___。
— 14 —
答案
— 返回 —
【解析】 2HmX 分子含 N 个中子,则同位素 X 含中子数为(N-m),由同位素 X 的原子
质量数为 A 可知,质子数为(A-N+m),则每个 2HmX 分子含有质子数为(A-N+2m),a g 2HmX
的
物
质
的
量
为
a 2m+A
g g·mol-1
=
a 2m+A
mol , 故 含 有 质 子 物 质 的 量 为 2ma+A (A - N + 2m)
— 2—
考点一 原子结构、核素、同位素 考点二 原子核外电子排布
2024高考物理第十二章第2讲原子结构原子核教案鲁科版选修3_5
第2讲原子结构原子核学问排查原子结构1.电子的发觉:英国物理学家汤姆孙发觉了电子。
2.原子的核式结构(1)α粒子散射试验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的试验,试验结果表明,绝大多数α粒子穿过金箔后仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转,有极少数α粒子偏转角超过了90°,有的甚至被原路弹回。
(如图1所示)图1(2)原子的核式结构模型:原子内部有一个很小的核,叫做原子核,原子的全部正电荷以及几乎全部的质量都集中在原子核内,带负电的电子绕核运动。
氢原子光谱1.光谱:用光栅或棱镜可以把各种颜色的光按波长绽开,获得光的波长(频率)和强度分布的记录,即光谱。
2.光谱分类3.氢原子光谱的试验规律:巴耳末系是氢光谱在可见光区的谱线,其波长公式1λ=R⎝⎛⎭⎪⎫122-1n2,(n=3,4,5,…,R是里德伯常量,R=1.10×107 m-1)。
4.光谱分析:利用每种原子都有自己的特征谱线可以用来鉴别物质和确定物质的组成成分,且灵敏度很高。
在发觉和鉴别化学元素上有着重大的意义。
氢原子的能级、能级公式1.玻尔理论(1)定态:原子只能处于一系列能量不连续的状态中。
在这些状态中,原子是稳定的,电子虽然做加速运动,但并不向外辐射能量。
(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或汲取肯定频率的光子,光子的能量由这两个定态的能量差确定,即hν=E m-E n。
(h是普朗克常量,h=6.63×10-34J·s) (3)轨道:原子的不同能量状态对应于电子的不同运行轨道,原子的能量状态是不连续的,电子不能在随意半径的轨道上运行。
2.氢原子的能级、能级公式(1)氢原子的能级能级图如图2所示图2(2)氢原子的能级和轨道半径①氢原子的能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6eV。
高三物理最新教案-原子、原子核一、原子结构教案 精品
原子、原子核一、原子结构教学目标1.通过原子结构理论的发展过程的复习讨论,使学生强化树立辩证唯物主义认识论的观点,培养构建科学思维与研究方法.从19世纪末的1897年发现电子后,在大约20年内科学家们提出了原子结构的以下模型:汤姆生的“枣糕结构”、卢瑟福的“核式结构”、玻尔的“能级结构”、量子力学的“电子云结构”.学生应搞清这四种原子结构理论的内容并区分开这四种模型,特别是以最简单的氢原子为例,后三种原子结构模型各是如何,不能混淆.要使学生了解,每种原子结构理论的提出,都有特定的实验基础和背景,提出后也都有应用上的成功和困难;而理论认识由低级到高级的发展,总是离不开科学实践与科学家们符合实际的大胆猜想与假设,即“实践、认识、再实践、再认识……,每一循环的内容,都比较地进到了高一级的程度”.2.使学生加强理解掌握在卢瑟福核式结构学说基础上的玻尔原子结构理论;能够对氢原子根据能级(轨道)定态跃迁知识解决相关问题.应使学生明确,根据玻尔理论所描述的原子结构图景,仍然是卢瑟福所描述的核武结构,不同之处在于:以氢原子为例,它的核外的一个电子并非处在唯一确定轨道,绕核旋转时虽有加速度但不向外辐射电磁波,所以电子不至于因能量减少而落到核上,原子是稳定的;这个电子是处在一系列可能的、不连续的轨道上,即氢原子处在一系列可能的、不连续的能量定态(能级)上,当原子发生能级跃迁即电子轨道跃变时,才辐射或吸收一定频率的光波(光子).这样,就克服了卢瑟福学说的原子不稳定和解释不了氢原子光谱的困难.3.通过氢原子的电子绕核旋转和能级跃迁与卫星绕地球旋转的类比和分析讨论,提高学生应用力、电、原子知识的综合分析能力,特别是加强从能量转化守恒观点出发分析解决问题的能力.教学重点、难点分析卢瑟福的核式结构学说与波尔的原子结构理论,作为重点难点知识,学生在理解掌握上的困难,一是不明确两种原子结构理论的区别与联系;二是对原子的定态和能级跃迁等知识的理解认识不够透彻,以致分析解决相关问题时易混易错.氢原子各定态的能量值,是电子绕核运动的动能(Ek)和电势能()的代数和.由于取离核无穿远处=0,则电子在正电荷的电场总能量为负值.至于处在基态的氢原子,其能量(E1)、电子轨道半径(r1)之值作为结论给出,不要求推导得出.若一群氢原子处于量子数为n的激发态时,可能辐射的光谱线条数(不同波长、频率的光波或不同能量的光子数),可据下式计算:教学过程设计教师活动问:何人何时发现的电子.电子的发现对人类认识原子结构有何意义?电子发现后的大约20年内科学家们先后提出了哪几种原子结构模型?学生活动同学们回忆或看书后答出:1897年,英国人汤姆生研究阴极射线时发现了电子.电子的发现说明原子是可分的.四种原子结构理论模型为:汤姆生提出“枣糕模型”;1911年英国人卢瑟福提出“卢瑟福核结构学说”,1913年丹麦人玻尔提出“玻尔原子理论”;20世纪20年代,海森堡等科学家提出“量子力学的原子理论”.问:四种原子结构理论的实验基础、内容、成功之处、困难各如何?同学们看书、议论.利用多媒体手段进行如下投影,并简要说明.看投影出的结论.教师活动引导同学们对一个卫星环绕地球与一个电子环绕氢原子核的卢瑟福结构模型进行类比分析.问:什么力提供卫星、电子的向心力?如何表示?学生活动同学参与分析回答:地球引力场中的卫星所受地球的万有引力作为向心力.原子核(正电荷)电场中的电子受核的库仑引力作为向心力.问:卫星、电子的环绕速度和动能如何表示?(与距离关系)问:若规定距地球和原子核无穷远时,卫星、电子势能为零,地球卫星系统与原子核电子系统的总能量多大?地球的卫星重力势能EP=0动能Ek=0地球系统总能量(机械能)=0电子的电势能=0动能EK=0原子系统总能量=0问:环行的卫星与电子为什么有能量损失?它们的动能、势能、系统的总能量各如何变化?将有怎样的结果?卫星要克服大气阻力做功,损耗机械能转化为内能.↓E总=Ep↓+Ek↑Ep减少多,Ek增加少,E总减少.环绕速度V增大,高度h(r)降低,沿螺旋线最终坠入大气层烧毁或溅落于地球上.据经典电磁理论,速度变化的电子要辐射电磁波能量,使它总能量减少.↓E总= ↓+Ek↑减少多,Ek增加少,E总减少.环绕速度V增大,与核距离减小,辐射电磁波(光)的频率逐渐增大,(波长逐减)为生成连续光谱,沿螺旋线最终落于核上.问:根据玻尔理论、氢原子的电子为什么最终不落在核上?为什么原子发光生成原子光谱?电子在某一定态轨道上虽有加速度,但不辐射电磁波能量,所以电子不会落到核上,原子是稳定的.这是因为宏观的经典电磁理论并不适用于微观电子的运动.氢原子定态能量的减少,是由于高能级的激发态向低能级定态或基态跃迁,辐射一定能量光子造成.由于各定态有确定能量差,所以能生成有确定光子能量(hv)或确定光波频率(v)、[例题](投影)氢原子基态能量E1=-13.6eV,电子绕核运动半径r1=0.53×10-10m.求氢原子处于n=4激发态时:(1)原子系统具有的能量?(2)电子在轨道上运动的动能?(3)电子具有的电势能?(4)向低能级跃迁辐射的光子频率最多有多少种?其中最低频率为多少(保留两位有效数字)?解:(3)因为E4=Ek4+ 4所以4=E4-Ek4=-0.85-0.85=-1.7eV(4)最多有六种.从n=4→3;3→2;2→1;4→2;4→1;3→1.能级差最小的是n=4→n=3,所辐射的光子能量为:最低频率:(普朗克恒量h=6.63×10-34J·S不需记)问:已知氢原子基态能量E1,氢原子在量子数为n的激发态时,电子的动能和电势能各为多少?处于量子数为n激发态的氢原子最多能辐射多少种频率的光谱线?学生讨论后得出:老师酌情回答.同学们提问题.同步练习一、选择题1.在α粒子散射实验中,当α粒子最接近金原子核时,α粒子符合下列哪种情况?[]A.动能最小B.电势能最小C.α粒子与金原子核组成的系统的能量最小D.所受原子核的斥力最大2.卢瑟福的原子核式结构学说初步建立了原子结构的正确图景,能解决的问题有[]A.解释α粒子散射现象B.用α粒子散射数据估算原子核的大小C.结合经典电磁理论解释原子的稳定性D.结合经典电磁理论解释氢光谱3.根据玻尔理论,氢原子的电子由外层轨道跃迁到内层轨道后,则[]A.原子的能量增加,电子的动能减少B.原子的能量增加,电子的动能增加C.原子的能量减少,电子的动能减少D.原子的能量减少,电子的动能增加4.关于玻尔的原子模型,下列说法中正确的有[] A.它彻底否定了卢瑟福的核式结构学说B.它发展了卢瑟福的核式结构学说C.它完全抛弃了经典的电磁理论D.它引入了普朗克的量子理论5.按照玻尔理论、当氢原子中电子由半径为ra的圆轨道跃迁到半径为rb的圆轨道上,若rb>ra,则在跃迁过程中[]A.氢原子要吸收一系列频率的光子B.氢原子要辐射一系列频率的光子C.氢原子要吸收某一频率的光子D.氢原子要辐射某一定频率的光子6.处于基态的氢原子被一束单色光照射后,共发出三种频率分别为v1、v2、v3的光子,且v1>v2>v3,则入射光子的能量应为[]A.hv1B.hv2C.hv3D.h(v1+v2+v3)二、非选择题7.氢原子的核外电子由基态跃迁到n=2的激发态时,吸收的光子能量为E,若氢原子的核外电子从n=3的能级跃迁到n=2的能级时,释放的光子能量是______.8.当氢原子在最低的四个能级之间跃迁时,所辐射的光子的最大频率为______,最大波长为______.9.氢原子从能级A跃迁到能级B时,辐射出波长为λ1的光子,从能级A跃迁到能级C时,辐射出波长为λ2的光子.若λ1>λ2,则氢原子从能级B跃迁到能级C时,将______光子,光子波长为______.10.已知氢原子基态电子轨道半径r1=0.53×10-10m,基态能量E1=-13.6eV.电子的质量m=0.9×10-30kg.求:(1)电子绕核运行的速度和频率.(2)若氢原子处于n=2的激发态,电子绕核运行的速度.11.将氢原子电离,需要从外部给电子以能量,使其从基态或激发态脱离原子核束缚而成为自由电子.若要使n=2激发态的氢原子电离,至少用多大频率的电磁波照射该氢原子?参考答案1.A D2.A B3.D4.B D5.C6.A10.(1)2.2×106m/s 6.6×1015Hz(2)1.1×106m/s11.8.21×1014Hz。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考综合复习——原子结构原子核专题复习总体感知知识网络第一部分原子结构知识要点梳理知识点一——原子的核式结构模型▲知识梳理一、电子的发现1.阴极射线的发现19世纪,科学家研究稀薄气体放电,发现阴极发出一种射线——阴极射线。
2.电子的发现汤姆孙确定阴极射线是由带负电的粒子组成,并测定出它的荷质比,之后用油滴实验测定了它的电量,确定它是组成各种物质的基本成分,称之为电子。
3.电子的发现说明原子也是有结构的。
二、原子的核式结构模型粒子散射实验(1)实验装置(2)实验条件:金属箔是由重金属原子组成,很薄,厚度接近单原子的直径。
全部设备装在真空环境中,因为粒子很容易使气体电离,在空气中只能前进几厘米。
显微镜可在底盘上旋转,可在的范围内进行观察。
(3)实验现象绝大多数粒子穿过金箔后仍沿原方向前进,少数粒子发生较大偏转,个别粒子偏转超过了有的甚至近。
(4)实验结论原子有一个很小的核,它集中了原子的全部正电荷和几乎全部质量,电子绕核运转。
——这就是卢瑟福原子核式结构模型。
根据粒子散射实验的数据,可以估算原子核的大小为~m。
▲疑难导析1.英国物理学家汤姆孙在研究阴极射线时发现了电子。
实验装置如图所示。
从高压电场的阴极发出的阴极射线,穿过后沿直线打在荧光屏上。
(1)当在平行极板上加一如图所示的电场,发现阴极射线打在荧光屏上的位置向下偏,则可判定,阴极射线带有负电荷。
(2)为使阴极射线不发生偏转,则请思考可在平行极板区域采取什么措施。
在平行极板区域加一磁场,且磁场方向必须垂直纸面向外。
当满足条件时,则阴极射线不发生偏转。
则:。
(3)如图所示,根据带电的阴极射线在电场中的运动情况可知,其速度偏转角为:,又因为,且则,根据已知量,可求出阴极射线的比荷。
2.粒子散射现象的分析(1)由于电子质量远远小于粒子的质量(电子质量约为粒子质量的1/7 300),即使粒子碰到电子,其运动方向也不会发生明显偏转,就像一颗飞行的子弹碰到尘埃一样,所以电子不可能使粒子发生大角度的散射。
(2)使粒子发生大角度散射的只能是原子核带正电的部分,按照汤姆孙的原子模型,正电荷在原子内是均匀分布的,粒子穿过原子时,它受到两侧正电荷的斥力有相当大一部分互相抵消,因而也不可能使粒子发生大角度偏转,更不可能把粒子反向弹回,这与粒子散射实验的结果相矛盾,从而否定了汤姆孙的原子模型。
(3)实验中,粒子绝大多数不发生偏转,少数发生较大的偏转,极少数偏转,个别甚至被弹回,都说明原子中绝大部分是空的,带正电的物质只能集中在一个很小的体积内(原子核)。
3.粒子散射的实质粒子散射的实质是带正电荷的粒子向固定的正电粒子靠近,由于斥力的作用,使粒子偏转,此过程中,开始电场力做负功,电势能增加,后来电场力做正功,电势能减小。
:卢瑟福通过对粒子散射实验结果的分析,提出()A.原子的核式结构模型 B.原子核内有中子存在C.电子是原子的组成部分 D.原子核是由质子和中子组成的答案:A解析:英国物理学家卢瑟福的粒子散射实验的结果是绝大多数粒子穿过金箔后基本上仍沿原方向前进,但有少数粒子发生较大的偏转。
粒子散射实验只发现原子可以再分,但并不涉及原子核内的结构。
查德威克在用粒子轰击铍核的实验中发现了中子,卢瑟福用粒子轰击氮核时发现了质子。
知识点二——玻尔的原子模型和氢原子的能级▲知识梳理一、玻尔的原子模型1.原子只能处于一系列的不连续的能量状态之中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外辐射能量,这些状态叫定态。
2.原子从一种定态(设能量为)跃迁到另一种定态(设能量为)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即。
3.原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应,原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。
特别提醒:玻尔模型的成功之处在于它引入了量子概念,局限之处在于它过多地保留了经典理论,现代量子理论认为电子的轨道只能用电子云来描述。
二、氢原子光谱1.光谱(1)定义:用光栅或棱镜可以把光按波长展开,获得光的波长(频率)成分和强度分布的记录。
(2)分类:发射光谱:物体发光直接产生的光谱叫做发射光谱。
发射光谱有连续光谱和明线光谱两种。
连续光谱由炽热的固体、液体或高压气体所发出的光形成;明线光谱是稀薄气体或蒸气发出的光生成的。
原子的特征光谱为明线光谱,不同原子的明线光谱不同。
吸收光谱:吸收光谱是温度很高的光源发出来的白光,通过温度较低的蒸气或气体后产生的。
太阳光谱为吸收光谱。
(3)特征谱线:线状谱中的亮线,不同原子中是不一样的,这些亮线称为原子的特征谱线。
(4)光谱分析:用原子的特征谱线,来鉴别和确定物质的组成成分。
光谱分析的优点:灵敏度高。
样本中一种元素的含量达到g时就可以检测到。
2.氢原子光谱(1)氢光谱:如图所示。
(2)氢原子光谱的实验规律巴耳末系是氢光谱在可见光区的谱线,其波长公式式中R为里德伯常量,。
特别提醒:卢瑟福的原子核式结构模型与经典电磁理论的矛盾主要有两点:按照经典电磁理论,电子在绕核做加速运动的过程中,要向外辐射电磁波,因此能量要减少,电子轨道半径也要变小,最终会落到原子核上,因而原子是不稳定的;电子在转动过程中,随着转动半径的缩小,转动频率不断增大,辐射电磁波的频率不断变化,因而大量原子发光的光谱应该是连续光谱。
然而事实上,原子是稳定的,原子光谱也不是连续光谱而是线状光谱。
三、氢原子的能级和能级图1.氢原子的能级和能级图原子各定态的能量值叫做原子的能级,能级图如图所示。
对于氢原子,其能级公式为,轨道半径公式为,其中n称为量子数,只能取正整数。
13.6eV,。
特别提醒:相邻横线间的距离,表示相邻的能级差,量子数越大,相邻的能级差越小。
2.氢原子的跃迁及电离(1)氢原子受激发由低能级向高能级跃迁当光子作用使原子发生跃迁时,只有光子能量满足的跃迁条件时,原子才能吸收光子的全部能量而发生跃迁。
当用电子等实物粒子作用在原子上,只要入射粒子的动能大于或等于原子某两“定态”能量之差,即可使原子受激发而向较高能级跃迁。
如果光子或实物粒子与原子作用而使原子电离(绕核电子脱离原子的束缚而成为“自由电子”,即∞的状态)时,不受跃迁条件限制,只不过入射光子能量越大,原子电离后产生的自由电子的动能越大。
(2)氢原子自发辐射由高能级向低能级跃迁当一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为当单个氢原子处于某个能级向低能级跃迁时,最多可能产生(n一1)个频率的光子。
四.激光1.自发发射:处于能量较高状态的原子是不稳定的,会自发地跃迁到较低能量状态,同时放出光子。
2.受激吸收:一个入射光子的能量恰好等于原子基态与某个激发态的能量差,原子吸收这个光子而跃迁到这个激发态。
3.受激发射:一个入射光子的能量正好等于原子的某一对能级的能量差,则处于激发态的原子就可能受到这个光子的激发而跃迁到能量较低的状态,同时发射-个与入射光子完全相同的光子。
4.激光的产生:受激发射的过程不断进行,形成光子的“雪崩”,这样的输出光即激光。
5. 激光器构造:激活介质、抽运装置、光学共振腔。
激光器工作原理图:如图。
种类:固体、液体、气体、染料、半导体激光器等红宝石激光器激介质:红宝石氦、氖激光器激介质:氖;辅助物质:氦▲疑难导析1.某定态时氢原子中的能量关系设r为某定态时氢原子核外电子的轨道半径,电子绕核运动的向心力由库仑力提供,有:①由电子动能:②电子在轨道r上的电势能:③该定态能级能量为:④将②③④式比较可得:(1)某定态时,核外电子的动能总是等于该定态总能量的绝对值,原子系统的电势能总是等于该定态总能量值的两倍。
(2)电子动能随轨道半径r的减小而增大,随r增大而减小(与v也直接相关);系统电势能随轨道半径r的增大而增大,随r的减小而减小;原子的总能量也随轨道半径r的增大而增大,随r的减小而减小。
(3)某定态能量,表明氢原子核外电子处于束缚态,欲使氢原子电离,外界必须对系统至少补充的能量,原子的能级越低,需要的电离能就越大。
例如:当氢原子处于n=1能级时,13. 6eV,立即得出该态下电子动能13.6eV,电势能-27.2eV,最小电离能13.6eV,当氢原子处于n=5激发态时,0. 544eV,即刻可知此定态下电子动能0.544eV,电势能-1.088eV,最小电离能0.544eV,这的确快捷、准确。
2.玻尔理论对氢光谱的解释玻尔理论很好地解释了氢光谱(1)由玻尔的频率条件可得出巴耳末公式代表的是电子从量子数的能级向量子数为2的能级跃迁时发出的光谱线。
玻尔理论很好地解释并预言了氢原子的其他谱线系。
(2)通常情况原子处于基态,是最稳定的,原子吸收光子或受到电子的撞击,跃迁到激发态,不稳定,自发地向能量较低的能级跃迁,放出光子。
(3)原子跃迁放出的光子,,能级是分立的,所以光子的能量也是分立的,所以发射光谱只有一些分立的亮线。
不同原子结构不同,能级各不相同,辐射(或吸收)的光子频率也不相同.因此不同元素的原子具有不同的特征谱线。
3.夫兰克一赫兹实验(1)原理图(2)激发原子可以通过吸收电磁辐射、加热或使粒子碰撞等方式。
夫兰克一赫兹实验证实了能量是量子化的。
:处于基态的一群氢原子受某种单色光的照射时,只发射波长为、、的三种单色光,且>>,则照射光的波长为()A.B.++ C. D.答案:D解析:处于基态的氢原子吸收单色光发出三种波长的光,一定是由基态跃迁到n=3的激发态,吸收的光的波长是,①,②,③,由①②③可得,D正确。
典型例题透析题型一——粒子散射实验和原子核式结构(1)原子的核式结构模型:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间运动。
(2)核式结构模型的实验基础是粒子散射实验。
从粒子散射的实验数据,估计原子核半径的数量级为m~m,而原子半径的数量级是m。
(3)在粒子散射中,注意构建物理模型。
散射中,动量守恒,能量守恒。
粒子轰击金箔并不是直接接触原子核,所以只能是估算原子核的大小。
题型二——能级跃迁与光谱线(1)原子跃迁条件只适用于光子和原子作用而使原子在各定态之间跃迁的情况。
对于光子和原子作用而使原子电离时,只要入射光的能量13.6 eV,原子就能吸收。
对于实物粒子与原子作用使原子激发时,粒子能量大于或等于能级差即可。
(2)原子跃迁发出的光谱线条数,是一群氢原子,而不是一个,因为某一个氢原子有固定的跃迁路径。
2、如图所示为氢原子最低的四个能级,当氢原子在这些能级间跃迁时:(1)有可能放出_____________种能量的光子。
(2)在哪两个能级间跃迁时,所放出光子波长最长?波长是多少?思路点拨:本题考查了能级及跃迁公式,辐射出的光谱线条数。