图形的位似作图练习
23.5 位似图形
似的基础上要求对应顶点的连线相交于一点.
(2)如果两个图形是位似图形,那么这两个图形必是相 似图形,但是相似的两个图形不一定是位似图形, 因此位似是相似的特殊情况.
(来自《点拨》)
知1-讲
例1 判断如图所示的各图中的两个图形是否是位似
图形,如果是,请指出其位似中心.
(来自《点拨》)
知1-讲
解:(1)是位似图形,位似中心为点A;
∴△ABC与△A′B′C′的面积比为1∶4.
∵△ABC的面积是3, ∴△A′B′C′的面积是12.
(来自《点拨》)
知2-讲
总 结
两个图形位似,则两个图形相似,所以相似图 形的性质位似图形都满足,可以直接运用.
(来自《点拨》)
知2-练
1 如图,线段CD两个端点的坐标分别为C(1,2)、 D(2,0),以原点为位似中心,将线段CD放大得 到线段AB,若点B的坐标为(5,0),则点A的坐
标为(
A.(2,5)
)
B.(2.5,5) C.(3,5) D.(3,6)
(来自《典中点》)
知2-练
2 如图,以点O为位似中心,将△ABC放大得到 △DEF,若AD=OA,则△ABC与△DEF的面积 之比为( A.1∶2 ) B.1∶4 C.1∶5 D.1∶6
(来自 《典中点》)
知3-导
知识点
3
位似图形的作图
1.必做: 完成教材P80,习题T1-T2 2.补充: 请完成《点练测》剩余部分习题
1.任取一点O; 2.以点O为端点作射线OA、 OB、OC、……; 3.分别在射线OA、OB、 OC、……上取点A′、B′、C′、……, 使OA′∶OA=OB′∶OB=OC′∶OC=…=1.5; 4.连结A′B′、B′C′、……, 得到所要画的多边形A′B′C′D′E′.
初三数学位似试题
初三数学位似试题1.下列说法正确的是()A.分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC放大后的图形B.两位似图形的面积之比等于位似比C.位似多边形中对应对角线之比等于位似比D.位似图形的周长之比等于位似比的平方【答案】C【解析】本题主要考查了位似图形的定义如果两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),那么这样的两个图形叫位似图形,这个点叫做位似中心,位似图形是特殊的相似形,因而满足相似形的性质,因而正确的是C.解:∵分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC 放大或缩小后的图形,∴A错误.∵位似图形是特殊的相似形,满足相似形的性质,∴B,D错误,正确的是C.故选C.2.用作位似形的方法,可以将一个图形放大或缩小,位似中心()A.只能选在原图形的外部B.只能选在原图形的内部C.只能选在原图形的边上D.可以选择任意位置【答案】D【解析】本题主要考查了位似图形的作图位似中心的选择.用作位似形的方法,可以将一个图形放大或缩小,位似中心可以选择任意位置.解:位似中心可以选择任意位置.故选D.3.已知△ABC,以点A为位似中心,作出△ADE,使△ADE是△ABC放大2倍的图形,这样的图形可以作出个()A.1个B.2个C.4个D.无数个【答案】B【解析】本题主要考查了对位似图形的认识.根据题意作图,注意有两种作法,在位似中心的两侧或同侧.所以这样的图形可以作出2个.解:如图:∴这样的图形可以作出2个.故选B.4.如图,以A为位似中心,将△ADE放大2倍后,得位似图形△AB C,若表示△ADE的面积,表示四边形DBCE的面积,则= ()A.1︰2B.1︰3C.1︰4D.2︰3【答案】B【解析】本题主要考查了位似变换和相似三角形的性质以A为位似中心,将△ADE放大2倍后,得位似图形△ABC,根据面积比等于相似比的平方可知s 1:s2=1:4.解:∵以A为位似中心,将△ADE放大2倍后,得位似图形△ABC∴△ABC∽△ADE∴它们的面积比是1:4,∴故选B5.两个相似多边形,如果它们对应顶点所在的直线____ ____,那么这样的两个图形叫做位似图形.【答案】相交于一点【解析】本题主要考查了位似图形的定义.根据位似图形的定义得到对应顶点所在的直线相交于一点,那么这样的两个图形叫做位似图形.解:两个相似多边形,如果它们对应顶点所在的直线相交于一点,那么这样的两个图形叫做位似图形.6.如果两个位似图形的对应线段长分别为3cm和5cm,且较小图形周长为30cm,则较大图形周长为 .【答案】50cm【解析】本题考查了位似变换.两个位似图形的对应线段长分别为3cm和5cm,则相似比是3:5,而周长的比等于相似比,较小图形周长为30cm,则较大图形周长为50cm.解:∵相似比是3:5,小图形周长为30cm∴较大图形周长为50cm.7.如图,点是四边形与的位似中心,则________=________=________;________, ________.【答案】,∠,∠OCB【解析】本题主要考查了位似的定义位似是特殊的相似,因而对应边的比相等,对应角相等.解:点O是四边形ABCD与A'B'C'D'的位似中心,则这两个图形相似,因而对应边的比相等,对应角相等,因而则,∠,∠OCB8.如图,DC∥AB,OA=2OC,,则与的位似比是________.【答案】1︰2【解析】本题考查了位似变换.先证明△OAB∽△OCD,△OCD与OAB的对应点的连线都过点O,所以可得△OCD与△OAB 的位似,即可求得△OCD与△OAB的位似比为OC:OA=1:2.解:∵DC∥AB∴△OAB∽△OCD∵△OCD与OAB的对应点的连线都过点O∴△OCD与△OAB的位似∴△OCD与△OAB的位似比为OC:OA=1:2.9.在如图的方格纸中(每个小方格的边长都是1个单位)有一点和.(1)请以点为位似中心,把缩小为原来的一半(不改变方向),得到.(2)请用适当的方式描述的顶点,,的位置.【答案】见解析【解析】本题主要考查了相似图形里的位似作图运用相似的原理,进行图形的扩大或者缩小变换,要求熟练掌握相似作图.解:(1)利用三角形相似作图,连接OA,OB,OC,分别找出这三条线段的中点A′、B′、C′,顺次连接A′、B′、C′即可得到△A′B′C′;如图所示.(2)描述△A′B′C′的顶点A′、B′、C′的位置可建立坐标系用坐标来描述;也可说成点A′、B′、C′的位置分别为OA、OB、OC的中点等.10.如图,四边形ABCD和四边形A′B′C′D′位似,位似比,四边形A′B′C′D′和四边形A″B″C″D″位似,位似比.四边形A″B″C″D″和四边形ABCD是位似图形吗?位似比是多少?【答案】是位似图形,位似比为.【解析】本题考查了位似图形的判定方法与性质.因为四边形A″B″C″D″和四边形ABCD的对应顶点的连线已经相交于一点了,所以我们只要证明四边形A″B″C″D″∽四边形ABCD即可;相似具有传递性,所以可证得四边形A″B″C″D″∽四边形ABCD;又因为位似比等于相似比,所以可求得四边形A″B″C″D″和四边形ABCD的位似比.解:∵四边形ABCD和四边形A′B′C′D′位似,∴四边形ABCD∽四边形A′B′C′D′.∵四边形A′B′C′D′和四边形A″B″C″D″位似,∴四边形A′B′C′D′∽四边形A″B″C″D″.∴四边形A″B″C″D″∽四边形ABCD.∵对应顶点的连线过同一点,∴四边形A″B″C″D″和四边形ABCD是位似图形.∵四边形ABCD和四边形A′B′C′D′位似,位似比k=2,1四边形A′B′C′D′和四边形A″B″C″D″位似,位似比k=1,2∴四边形A″B″C″D″和四边形ABCD的位似比为.。
北师大版初三数学上册《图形的位似》知识讲解及例题演练
图形的位似--知识讲解【学习目标】1、了解位似多边形的概念,知道位似变换是特殊的相似变换,能利用位似的方法,将一个图形放大或缩小;2、能在同一坐标系中,感受图形放缩前后点的坐标的变化.【要点梳理】要点一、位似多边形1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.要点二、坐标系中的位似图形在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k|.要点诠释:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标等于原来点的坐标乘以(或除以)k或-k.【典型例题】类型一、位似多边形1.下列每组的两个图形不是位似图形的是().A. B. C. D.【思路点拨】根据位似图形的概念对各选项逐一判断,即可得出答案.【答案】D【解析】解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.据此可得A 、B 、C 三个图形中的两个图形都是位似图形;而D 的对应顶点的连线不能相交于一点,故不是位似图形.故选D .【总结升华】位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.举一反三【变式】在小孔成像问题中, 根据如图4所示,若O 到AB 的距离是18cm ,O 到CD 的距离是6cm ,则像CD 的长是物AB 长的( ).A. 3倍B. 21 C. 31 D. 不知AB 的长度,无法判断 【答案】C2. 利用位似图形的方法把五边形ABCDE 放大1.5倍.【答案与解析】即是要画一个五边形A′B′C′D′E′,要与五边形ABCDE 相似且相似比为1.5.画法是: 1.在平面上任取一点O. 2.以O 为端点作射线OA 、OB 、OC 、OD 、OE. 3.在射线OA 、OB 、OC 、OD 、OE 上分别取点A′、B′、C′、D′、E′,使OA′:OA = OB′:OB =OC′:OC =OD′:OD =OE′:OE =1.5. 4.连结A′B′、B′C′、C′D′、D′E′、E′A′.这样:A′B′AB =B′C′BC =C′D′CD =D′E′DE =A′E′AE=1.5. 则五边形A′B′C′D′E′为所求. 另外一种情况,所画五边形跟原五边形分别在位似中心的两侧.【总结升华】由本题可知,利用位似的方法,可以把一个多边形放大或缩小.举一反三【变式】在已知三角形内求作内接正方形.【答案与解析】作法:(1)在AB 上任取一点G′,作G′D′⊥BC ;(2)以G′D′为边,在△ABC 内作一正方形D′E′F′G′;(3)连接BF′,延长交AC 于F ;(4)作FG ∥CB ,交AB 于G ,从F 、G 分别作BC 的垂线FE , GD ;∴四边形DEFG 即为所求.类型二、坐标系中的位似图形3. 如图,在10×10的正方形网格中,点A ,B ,C ,D 均在格点上,以点A 为位似中心画四边形AB′C′D′,使它与四边形ABCD 位似,且相似比为2.A 1B 1C 1D 1E 1 A B C D E(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是三角形.【思路点拨】(1)延长AB到B′,使AB′=2AB,得到B的对应点B′,同样得到C、D的对应点C′,D′,再顺次连接即可;(2)利用勾股定理求出AC′2=42+82=80,AD′2=62+22=40,C′D′2=62+22=40,那么AD′=C′D′,AD′2+C′D′2=AC′2,即可判定△AC′D′是等腰直角三角形.【答案与解析】解:(1)如图所示:(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.【总结升华】本题考查了作图﹣位似变换.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.同时考查了勾股定理及其逆定理等知识.熟练掌握网格结构以及位似变换的定义是解题的关键.4. 如图△ABC的顶点坐标分别为A(1,1),B(2,3),C(3,0).(1)以点O为位似中心画△DEF,使它与△ABC位似,且相似比为2.(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,则△DEF的边上与点M 对应的点M′的坐标为.【思路点拨】(1)把点A、B、C的横、纵坐标都乘以2可得到对应点D、E、F的坐标,再描点可得△DEF;把点A、B、C的横、纵坐标都乘以﹣2可得到对应点D′、E′、F′的坐标,然后描点可得△D′E′F′;(2)利用以原点为位似中心的位似变换的对应点的坐标特征求解.【答案与解析】解:(1)图略;(2)点M对应的点M′的坐标为(2a,2b)或(﹣2a,﹣2b).故答案为(2a,2b)或(﹣2a,﹣2b).【总结升华】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.举一反三:【变式】如图,将△AOB中各顶点的纵坐标,横坐标分别乘-1,•得到的图形与原图形相比有什么变化?作出所得的图形,这个过程可以看作是一个什么图形变换?【答案】解:图形的形状和大小都没有变化;可以看作是△AOB绕O•点按逆时针方向旋转180°得到的.。
2021秋九上3、6位似1位似图形的概念与位似作图习题湘教版
B.位似图形都是相似图形,且位似比等于相似比
C.利用位似变换只能放大图形,不能缩小图形
D.利用位似变换只能缩小图形,不能放大图形
4.【2020·重庆B卷】如图,△ABC与△DEF位似,点O 为位似中心.已知OA∶OD=1∶2,则△ABC与 △DEF的面积比为( C ) A.1∶2 B.1∶3 C.1∶4 D.1∶5
11.用位似作图的方法可以画△AOB的内接等边三角形,阅 读后解答相应问题. 画法:如图①,①在△AOB内画等边三角形CDE,使点C 在OA上,点D在OB上;②连接OE并延长,交AB于点E′, 过点E′作E′C′∥EC交OA于点C′,E′D′∥ED交OB于点D′; ③连接C′D′,则△C′D′E′是△AOB的内接等边三角形.
1.如图所示的图形中是位似图形的有( C ) A.0对 B.1对 C.2对 D.3对
2.如图,已知BC∥DE,下列说法不正确的是( C ) A.两个三角形是位似图形 B.点A是两个三角形的位似中心 C.AE∶AD是位似比 D.点B与点E,点C与点D是对应点
3.
下列语句正确的是( B )
A.相似图形都是位似图形,位似图形都是相似图形
第3章 图形的相似
3.6 位 似 第1课时 位似图形的概念与位似作图
提示:点击 进入习题
新知笔记 1 >;<;常数k 2 相交于一点;平行 3 放大;缩小
1C 2C 3B 4C
5C
答案显示
6
2 5
7D
8 见习题
9 见习题
10 见习题
11 见习题
答案显示
1.一般地,取定一个点 O,如果一个图形 G 上每一个点 P 对应 于另一个图形 G′上的点 P′,且满足: ①直线 PP′经过点 O; ②OOPP′=|k|,其中 k 为非零常数,当 k____>____0 时,点 P′在 射线 OP 上;当 k___<_____0 时,点 P′在射线 OP 的反向延长 线上.
27.3位似
A
D
B E
0 F C
E B O C A F D
思考:判定位似图形或确定位似中心的方法? 两图形是否相似,对应边是否平行(或共线), 每组对应点所在的直线是否经过同一点
判断下列图形是否是位似图形
例2、判断下列各对图形哪些是相似图形,哪些是位似 图形.
①DE∥BC ②∠AED=∠B
相似且位似 A ③两个正方形 E 相似但不是位似 B C G D
分别为A(2,3),B(2, 1),C(6,2),以点O为
8 6 4 2
A'
A B
2
ห้องสมุดไป่ตู้C' B'
4
C
6 8 9 101112
位似中心,相似比为2,将
△ABC放大,观察对应顶点 坐标的变化,你有什么发
-12 -10-9 -8
-6
-4 -2 O B" -2 -4
C" A"
现?
-6 -8
位似变换后A,B,C的对应点为 A '( 4 ,6 ),B ' ( 4 , 2 ),C ' ( 12 ,4 );
例 如图,四边形ABCD的坐标分别 为A(-6,6),B(-8,2),C (-4,0),D(-2,4),画出它 的一个以原点O为位似中心,相似比 1 为 的位似图形.
A A' B
-8 -6
8
D6
4 2D' -2C' -2 -4 -6 2 4 6 8
2
B' C -4
分析:问题的关键是要确定位似
图形各个顶点的坐标.根据前面
).
依次连接点A'B'C'D'就是要求的四边形ABCD的位似图形.
《位似图形》练习及标准答案
《位似图形》配套练习一、选择题: 1.用作位似形的方法,可以将一个图形放大或缩小,位似中心( ) A.只能选在原图形的外部; B.只能选在原图形的内部;C.只能选在原图形的边上;D.可以选择任意位置。
2.已知:E (-4,2),F(-1,-1),以O 为位似中心,按比例尺1∶2,把△EOF 缩小,则点E的对应点E′ 的坐标为( )A .(2,-1)或(-2,1) B.(8,-4)或(-8,4)C .(2,-1) ﻩD .(8,-4)3.如图,△DEF是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E,F 分别是OA ,OB,O C的中点,则△DEF 与△AB C的面积比是( )A.1︰2B.1︰4C.1︰5D.1︰64.如图,五边形ABCDE 与五边形A ′B ′C′D ′E′是位似图形,O 为位似中心,O D=12OD ′,则A ′B ′:AB 为( )A .2:3 B.3:2 C.1:2 D.2:1(第3题图) (第4题图)5.图中的两个三角形是位似图形,它们的位似中心是( )A .P B.O C.M D .N6. 如图,以某点为位似中心,将△AO B进行位似变换得到△CDE,记△AO B与△CDE 对应边的比为k,则位似中心 的坐标和k 的值分别为( )A . (00),,2 B. (22),,12C . (22),,2 D. (22),,37. 如图,△ABC中,A,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0)。
以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边长放大到原来的2倍,记所得的像是△A ′B′C 。
设点B 的对应点B ′的横坐标是a,则点B 的横坐标是( ) A.12a -ﻩﻩ B.1(1)2a -+ C .1(1)2a --ﻩ D .1(3)2a -+O P M NA B C E D O B / A /C /D /E /(第5题图) (第6题图) (第7题图)二、填空题:1.关于对位似图形的表述,下列命题正确的是 。
《位似》习题
《位似》习题一、选择题(每小题5分,共25分)1.下列每组的两个图形不是位似图形的是()A.B.C.D.2.如图所示的两个三角形是位似图形,它们的位似中心是( )A.点O B.点P C.点M D.点N第2题图第3题图3.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A 的坐标为(1,0),则E点的坐标为( )A.(2,0) B.(0,2) C.(2,2) D.(2,2)4.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是( )A.3 B.6 C.9 D.125.关于对位似图形的表述,下列命题正确的是( )①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.A.①②B.①④C.②③D .③④二、填空题(每小题5分,共25分)6.下列四幅图中的两个图形属于位似图形的是__________.(将序号填入横线上)B DCAEB①②③④7.如图所示,DC∥AB,OA=2OC,则OCD△与OAB△的位似比是__________.8.如图所示,△ABC与△A′B′C′是位似图形,且位似比是1:2,若AB=2cm,则A′B ′=_________cm.第7题图第8题图第10题图9.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,位似比为2:1将△EFO缩小,则点E的对应点E′的坐标是__________.10.如图,将△DE F缩小为原来的一半,操作方法如下:任意取一点P,连接DP,取DP的中点A,再连接EP、FP,取它们的中点B、C,得到△ABC,则下列说法正确的有________ __个.①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比是1:2;④△ABC与△DEF的面积比是1:2.三、解答题(共50分)11.(10分)如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出位似中心.12.(10分)如图,在方格纸上,与是关于点O为位似中心的位似图形,他ABC∆111CBA∆们的顶点都在格点上.(1)画出位似中心O;(2)求出与的位似比;ABC∆111CBA∆CABD E(2)(1)O(4)(5)(3)以O 点为位似中心,再画一个使它与的位似比等于3222C B A∆13.(10分)如图,△ABC 在方格纸中.(1)请在方格纸上建立平面直角坐标系,使A (2,3),C (6,2),并求出B 点坐标;(2)以原点O 为位似中心,位似比为2,在第一象限内将△ABC 放大,画出放大后的位似图形;A B C '''△(3)计算的面积S .A B C '''△14.(10分)如图,已知矩形ABCD 与矩形AB C D '''是位似图形,A 为位似中心,已知矩形ABCD 的周长为24,4,2BB DD ''==.求AB 与AD 的长.15.(10分)如图,在平面直角坐标系中,△AOB 的顶点坐标分别为A (2,1)、O (0,0)、B (1,-2).(1)P (a ,b )是△AOB 的边AB 上一点,△AOB 经平移后点P 的对应点为P 1(a -3,b +1),请画出上述平移后的△A 1O 1B 1,并写出点A 1的坐标;DB 'C 'D(2)以点O为位似中心,在y轴的右侧画出△AOB的一个位似△A2OB2,使它与△AOB的相似比为2:1,并分别写出点A、P的对应点A2、P2的坐标;(3)判断△A2OB2与△A1O1B1能否是关于某一点Q为位似中心的位似图形,若是,请在图中标出位似中心Q,并写出点Q的坐标.参考答案1.B【解析】根据位似图形的概念对各选项逐一判断,即可得出答案.解:对应顶点的连线相交于一点的两个相似多边形叫位似图形;据此可得A、C、D三个图形中的两个图形都是位似图形;而B的对应顶点的连线不能相交于一点,故不是位似图形.故选B.2.B.【解析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.点P在对应点M和点N所在直线上,故选B.3.C【解析】由题意可得OA:OD=1:2,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,∴OA:OD=1:2,∵点A的坐标为(1,0),即OA=1,∴OD=2,∵四边形ODEF是正方形,∴DE=OD=2.∴E点的坐标为:(2,2).故选C.4.D.【解析】∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,△ABC的面积是3,∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选:D.5.C【解析】如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,这个点是位似中心,但不是所有的相似图形都是位似图形,并且位似图形上对应点与位似中心的距离之比等于位似比.解:①相似图形不一定是位似图形,位似图形一定是相似图形,错误;②位似图形一定有位似中心,是对应点连线的交点,正确;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,正确;④位似图形上对应点与位似中心的距离之比等于位似比,错误.故选C.6.①②③【解析】根据位似图形的定义分析各图,对各选项逐一分析,即可得出答案.解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.根据位似图形的概念,①②③三个图形中的两个图形都是位似图形;④中的两个图形是相似三角形,但不符合概念,故不是位似图形.故填①②③.7.1︰2【解析】先证明△OAB∽△OCD,△OCD与OAB的对应点的连线都过点O,所以可得△OC D与△OAB的位似,即可求得△OCD与△OAB的位似比为OC:OA=1:2.解:∵DC∥AB∴△OAB∽△OCD∵△OCD与OAB的对应点的连线都过点O∴△OCD与△OAB的位似∴△OCD与△OAB的位似比为OC:OA=1:2.8.4.【解析】根据△ABC与△A′B′C′是位似图形,可知△ABC∽△A′B′C′,利用位似比是1:2,即可求得A′B′=4cm.解:∵△ABC与△A′B′C′是位似图形∴△ABC ∽△A ′B ′C ′∵位似比是1:2∴AB :A ′B ′=1:2∵AB =2cm ∴A ′B ′=4cm .9.(﹣2,1)或(2,﹣1)【解析】根据题意得:则点E 的对应点E ′的坐标是(﹣2,1)或(2,﹣1).10.3【解析】位似图形同时也是相似图形,位似比等于其相似比,等于其对应边的比,对应周长的比,面积比等于位似比的平方.解:由于△ABC 是由△DEF 缩小一半得到,所以△ABC 与△DEF 是位似图形,①正确;位似图形也是相似图形,②正确;将△DEF 缩小为原来的一半,得到△ABC ,所以△ABC 与△DEF 的位似比为1:2,所以其周长比也为1:2,③正确;所以其面积比为1:4,④错误.题中共有3个结论正确.11.答案见解析【解析】根据位似图形的定义及位似中心分析各图,即可得出答案.解:图(1)(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点P ,图(2)中的点A ,图(4)中的点O .12. 答案见解析【解析】(1)如下图所示;(2)与的位似比是2;ABC ∆111C B A ∆(3)如下图所示.e 【解析】(1)根据A (2,3),C (6,2),找出原点,求出点B 的坐标即可;(2)根据位似比为2,得出三角形各顶点坐标即可得出答案;(3)利用所画图形得出三角形的底与高求出即可.解:(1)B 点:(2,1)(2)(3)的面积S =16A B C '''△14. 答案见解析【解析】解:∵矩形ABCD 的周长为24∴12AB AD +=设,12AB x AD x==-则 ∴4,14AB AB BB x AD AD DD x ''''=+=+=+=- ∵矩形ABCD 与矩形AB C D '''是位似图形 ∴AB ADAB AD ='' 即12414x x x x-=+- 解得8x =∴8,4AB AD ==15.(1)作图见解析,A 1(﹣1,2);(2)作图见解析,A 2(4,2),P 2 (2a ,2b );(3)是,Q (﹣6,2).【解析】(1)如图所示,画出平移后的△A1O1B1,找出A1的坐标即可;(2)如图所示,画出位似图形△A2OB2,求出A2、P2的坐标即可;(3)根据题意得到△A2OB2与△A1O1B1是关于点Q为位似中心的位似图形,找出Q坐标即可.解:(1)如图所示,A1(﹣1,2);(2)如图所示,A2(4,2),P2 (2a,2b);(3)如图所示,△A2OB2与△A1O1B1是关于点Q为位似中心的位似图形.此时Q(﹣6,2).。
4.8+图形的位似+同步练习+2024-2025学年北师大版九年级数学上册
4.8 图形的位似课时1 图形的位似基础过关题型1 位似多边形的有关概念1、关于对位似图形的表述中:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③利用位似变换只能放大图形,不能缩小图形;④如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;⑤位似图形上任意两点与位似中心的距离之比等于位似比。
正确的个数为( )A.2个B.3个C.4个D.5个2、下列3组图形中是位似图形的有( )A.0个B.1个C.2个D.3个3、下列四边形ABCD和四边形EFGD是位似图形,它们的位似中心是( )A.点EB.点FC.点GD.点D题型2 位似多边形的性质及应用4、如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为( )A.1B.2C.4D.85、如图,以点O为位似中心,将△ABC 放大后得到△DEF,已知△ABC 与△DEF 的面积比为1:9,则OC:CF的值为()A.1:2B.1:3C.1:8D.1:96、已知△ABC与△DEF是关于点P的位似图形,它们的对应点到P点的距离分别为3cm和4cm,则△ABC与△DEF的面积比为()A.3:4B.3:7C. 9:16D.9:49题型3 位似变换作图7、如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点。
(1)在图中△ABC的内部做△A′B′C′,使△A′B′C′和△ABC位似,且位似中心为点O,位似比为1:2;(2)连接(1)中的AA′,则线段AA′的长度是.8、如图,△DEF是△ABC经过位似变换得到的,位似中心是点O,请确定点O的位置,如果OC=3.6cm,OF=2.4cm,求它们的相似比。
课时2 平面直角坐标系中的位似变换题型1 平面直角坐标系中位似变换的相关计算1、如图,已知线段AB两端点的坐标分别为A(1,2),B(3,1),以点O为位似中心,相似比为3,将AB在第一象限内放大,点A的对应点C的坐标为 ( )A.(3,6)B.(9,3)C.(-3,-6)D.(6,3)2、如图,已知△ABC三个顶点的坐标分别为(1,2),(−2,3),(−1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点A′,B′,C′.下列说法正确的是( )A.△A′B′C′与△ABC是位似图形,位似中心是点(1,0)B.△A′B′C′与△ABC是位似图形,位似中心是点(0,0)C.△A′B′C′与△ABC是相似图形,但不是位似图形D.△A′B′C′与△ABC不是相似图形3、如图,在平面直角坐标系中,有一条鱼,它有六个顶点,则( )A.将各点横坐标乘以2,纵坐标不变,得到的鱼与原来的鱼位似B.将各点纵坐标乘以2,横坐标不变,得到的鱼与原来的鱼位似C.将各点横,纵坐标都乘以2,得到的鱼与原来的鱼位似,得到的鱼与原来的鱼位似D.将各点横坐标乘以2,纵坐标乘以124、如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(−1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍。
如何画位似图形
如何画位似图形位似变换是新课程标准中涉及的一个重要知识点,它是图形变换的一种,实际上它是相似变换的一种特殊情形,存在位似中心———即对应顶点连线的交点.其位似比就是相似比.作为一个新的知识点,越来越受到中考命题者的青睐.图形放大、缩小通常用位似变换的思想作图,位似中心的位置可在图形顶点处、图形边上、图形内部、图形外部.本文以一道中考题为例介绍几种常见画法,供同学们参考.(锦州)如图1,己知四边形ABCD ,用尺规将它放大,使放大前后的图形对应线段的比为1:2.画法一:延长AD 到1D ,使1DD AD =,延长AC 到点1C ,使1CC AC =,延长AB 到点1B ,使1BB AB =,连接11D C ,11C B ,则四边形1111A B C D 即为所求(如图2). 说明:延长AD 得到1D 后,也可以过点1D 作11D C DC ∥,交AC 的延长线于1C ,再过点1C 作11B C BC ∥,交AC 的延长线于1B ,得到四边形1111A B C D . 画法二:延长DA 到点1D ,使12A D A D =,延长CA 到点1C ,使12A C A C =,延长BA 到点1B ,使12AB AB =连接11B C ,11C D ,则四边形1111A B C D 即为所求(如图3).画法三:任取一点O ,连接OA 并延长到点1A ,使1A A O A =,连接OB 并延长到点1B ,使1BB OB =、连接OC 并延长到点1C ,使1CC OC =,连接OD 并延长到点1D ,使1DD OD =,顺次连接11A B ,11B C ,11C D ,11D A ,则四边形1111A B C D 即为所求(如图4).运用这些作图方法可以解决不少数学问题.现举例说明:例 如图5,在给定的锐角ABC △中,求作一个正方形DEFG ,使D E ,落在BC 上,F G ,分别落在AC AB ,边上,要求写出画法.画法:第一步:画一个有三个顶点落在ABC △两边上的正方形D E F G ''''(如图5);第二步:连接BF '并延长交AC 于点F ;第三步:过F 点作FE BC ⊥,垂足为点E ;第四步:过F 作FG BC ∥交AB 于点G ;第五步:过G 作GD BC ⊥,垂足为点D .四边形DEFG 即为所求的正方形.(如图5)想一想:为什么四边形DEFG 是正方形?请读者思考.。
2022-2023学年人教版九年级数学下册《27-3位似》同步题型分类练习题(附答案)
2022-2023学年人教版九年级数学下册《27.3位似》同步题型分类练习题(附答案)一.位似变换1.如图,已知△ABC与△DEF位似,位似中心为O,且△ABC的面积与△DEF的面积之比是16:9,则AO:AD的值为()A.4:7B.4:3C.6:4D.9:52.如图平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为,点A,B,E在x轴上,若正方形ABCD的边长为3,则F点坐标为()A.(16.5,9)B.(18,12)C.(16.5,12)D.(16,12)3.在如图所示的网格中,以点O为位似中心,能够与四边形ABCD是位似图形的为()A.四边形NGMF B.四边形NGME C.四边形NHMF D.四边形NHME 4.如图所示,在平面直角坐标系中,A(1,0),B(0,2),C(﹣2,1),以A为位似中心,把△ABC在点A同侧按相似比1:2放大,放大后的图形记作△A'B'C',则C'的坐标为()A.(﹣6,2)B.(﹣5,2)C.(﹣4,2)D.(﹣3,2)5.如图,在直角坐标系中,矩形ABCD与矩形EFGO位似,矩形ABCD的边CD在y轴上,点B的坐标为(﹣4,4),矩形EFGO的两边都在坐标轴上,且点F的坐标为(2,1),则矩形ABCD与EFGO的位似中心的坐标是.6.如图,平面直角坐标系中,点A在x轴正半轴上,且OA=4,∠BOA=30°,∠B=90°,以点O为位似中心,在第一象限内将△AOB放大,使相似比为2:1,则点B的对应点B′的坐标为.7.如图,在平面直角坐标系中,A、B两点的坐标分别为A(﹣1,2)、B(0,2),C、D 两点的坐标分别为C(0,﹣1)、D(2,﹣1).若线段AB和线段CD是位似图形,且位似中心在y轴上,则位似中心的坐标为.8.《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为.9.如图,△ABC与△A1B1C1是以原点O为位似中心的位似图形,且位似比为1:2,则点A(1,2)在第一象限的对应点A1的坐标是.10.如图,在平面直角坐标系中,O是坐标原点,以点O为位似中心,△A1B1C1和△ABC 相似比为2:1,在网格中画出新图象△A1B1C1,若每个小正方形边长均为1,请写出A1,B1,C1的坐标.11.如图所示,由位似的正△A1B1C1,正△A2B2C2,正△A3B3C3,…正△A n B n∁n组成的相似图形,其中第一个△A1B1C1的边长为1,点O是B1C1中点,A2是OA1的中点,A3是OA2的中点…A n是OA n﹣1的中点,顶点B2,B3,…,B n.C2,C3,…,∁n都在B1C1边上.(1)试写出△A10B10C10和△A7B7C7的相似比和位似中心;(2)求出第n个三角形△A n B n∁n(n≥2)的周长.12.如图,△ABC中,P′是边AB上一点,四边形P'Q'M'N'是正方形,点Q',M'在边BC上,点N′在△ABC内.连接BN′,并延长交AC于点N,过点N作NM⊥BC于点M,NP⊥MN交AB于点P,PQ⊥BC于点Q.(1)求证:四边形PQMN为正方形;(2)若∠A=90°,AC=1.5m,△ABC的面积=1.5m2.求PN的长.13.(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴t,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是,若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E'点E重合,则点E表示的数是.(2)在平面直角坐标系xOy中,已知△ABC的顶点A(﹣2,0),B(2,0),C(2,4),对△ABC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a,将得到的点先向右平移m单位,再向上平移n个单位(m>0,n>0),得到△A′B′C′及其内部的点,其中点A,B的对应点分别为A′(1,2),B′(3,2).△ABC内部是否存在点F,使得点F经过上述操作后得到的对应点F′与点F重合,若存在,求出点F 的坐标;若不存在请说明理由.14.在平面直角坐标系中,抛物线L:y=﹣x2+x+2与y轴交于点C,与x轴交于A、B两点(点A在点B的左侧).(1)求A、B、C三点的坐标;(2)连接AC、BC,以点C为位似中心,将△ABC扩大到原来的2倍得到△A1B1C,其中点A1、B1分别是点A、B的对应点,如何平移抛物线L才能使其同时经过点A1、B1,求出所有的平移方式.二.作图-位似变换15.如图所示△DEF是△ABC位似图形的几种画法,其中正确的个数是()A.4B.3C.2D.116.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出与△AOB的位似比为k的位似△CDE,则位似中心的坐标和k的值分别为()A.(0,0),2B.(2,2),C.(2,2),2D.(1,1),17.如图,在坐标系中,以A(0,2)为位似中心,在y轴右侧作△ABC放大2倍后的位似图形△AB'C',若C的对应点C'的坐标为(m,n),则点C的坐标为()A.(m,n+3)B.(m,n﹣3)C.(m,n+2)D.(m,n﹣2)18.如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为.19.如图,以点O为位似中心,把△ABC放大2倍得到△A'B'C'',①AB∥A'B';②△ABC∽△A'B'C';③AO:AA'=1:2;④点C、O、C'三点在同一直线上.则以上四种说法正确的是.20.如图,在平面直角坐标系中,矩形AOCB的两边OA,OC分别在x轴和y轴上,且OA =2.OC=1,则矩形AOCB的对称中心的坐标是;在第二象限内,将矩形AOCB 以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2,…,按此规律,则矩形A4OC4B4的对称中心的坐标是.21.在平面直角坐标系中,△ABC的顶点A的坐标为(2,﹣5),若以原点O为位似中心,作△ABC的位似图形△A1B1C1,使△ABC与△A1B1C1的位似比为2:1,且点A1和点A 不在同一象限内,则点A1的坐标为.22.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是.23.如图所示,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,0),B(3,1),C (2,3).请在所给直角坐标系中按要求画图和解答下列问题:(1)以原点O为位似中心,在原点的另一侧画出△ABC的位似三角形△DEF,△ABC 与△DEF的位似比为;(2)如果△ABC内部一点M的坐标为(a,b),请写出M的对应点M'的坐标(,).24.如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1.(1)在平面直角坐标系中画出位似中心;(2)设点P(a,b)为△ABC内一点,确定点P在△A1B1C1内的对应点P1的坐标.25.如图,小明在学习图形的位似时,利用几何画板软件,在平面直角坐标系中画出了△ABC的位似图形△A1B1C1.(1)在图中标出△ABC和△A1B1C1的位似中心M点的位置并写出M点的坐标.(2)若以点A1为位似中心,请你帮小明在图中画出△A1B1C1的位似图形△A2B2C2,且△A1B1C1与△A2B2C2的位似比为2:1.(3)直接写出(2)中C2点的坐标.26.如图,△ABC三个顶点分别为A(0,﹣3),B(3,﹣2),C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移5个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使得△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并写出A2的坐标.27.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1)、B(﹣3,2)、C(﹣1,4).(1)以原点O为位似中心,在第二象限内画出将△ABC放大为原来的2倍后的△A1B1C1.(2)画出△ABC绕O点顺时针旋转90°后得到的△A2B2C2.28.如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,并直接写出△A′B′C′各顶点的坐标.参考答案一.位似变换1.解:∵△ABC与△DEF位似,∴△ABC∽△DEF,AC∥DF,∵△ABC的面积与△DEF的面积之比是16:9,∴=,∵AC∥DF,∴△AOC∽△DOF,∴==,∴AO:AD=4:7,故选:A.2.解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为,∴==,即==,解得:EF=12,OB=4,∴F(16,12).故选:D.3.解:如图,四边形ABCD的位似图形是四边形NGMF.故选:A.4.解:∵以A为位似中心,把△ABC按相似比1:2放大,放大后的图形记作△AB'C',∴AC=AC′,∴点C是线段AC′的中点,∵A(1,0),C(﹣2,1),∴C'的坐标为(﹣5,2).故选:B.5.解:连接BF交y轴于点P,∵C和F是对应点,∴点P为位似中心,由题意得,GF=2,AD=4,GC=4﹣1=3,∵BC∥GF,∴△BPC∽△FPG,∴=,即=2,解得,GP=1,∴OP=2,∴位似中心的坐标是(0,2),故答案为:(0,2).6.解:作BE⊥OA于E,则∠BEO=90°,∵∠ABO=90°,∠BOA=30°,∴OB=OA•cos30°=4×=2,∴BE=OB=,OE=OB•cos30°=2×=3,∴点B的坐标为:(3,),∵以点O为位似中心,在第一象限内将△AOB放大,使相似比为2:1,∴点B的对应点B'的坐标为:(3×2,×2),即(6,2),故答案为:(6,2).7.解:连接AD交BC于E,则点E为位似中心,∵A(﹣1,2)、B(0,2),C(0,﹣1)、D(2,﹣1).∴AB=1,CD=2,BC=3,∵线段AB和CD是位似图形,∴AB∥CD,∴=,即=,解得BE=1,∴OE=OB﹣BE=1,∴位似中心点E的坐标为(0,1),故答案为:(0,1).8.解:如图,连接B′D′.设B′D′的中点为O.∵正方形ABCD∽正方形A′B′C′D′,相似比为1:2,又∵正方形ABCD的面积为4,∴正方形A′B′C′D′的面积为16,∴A′B′=A′D′=4,∵∠B′A′D′=90°,∴B′D′=A′B′=4,∴正方形A′B′C′D′的外接圆的周长=4π,故答案为:4π.9.解:∵△ABC与△A1B1C1是以原点O为位似中心的位似图形,且位似比为1:2,∵A(1,2),点A(1,2)在第一象限的对应点是A1,∴点A1的坐标为:(2,4).故答案为:(2,4).10.解:如图,△A1B1C1即为所求,A1(0,8),B1(6,6),C1(6,2).11.解:(1)∵△A1B1C1的边长为1,点O是B1C1中点,A2是OA1的中点,∴正△A2B2C2的边长为,正△A3B3C3的边长为()2,正△A10B10C10和的边长为()9,正△A7B7C7的边长为()6,∴正△A10B10C10和正△A7B7C7的相似比==;它们的位似中心为点O;(2)∵第n个三角形△A n B n∁n(n≥2)的边长为()n﹣1,∴第n个三角形△A n B n∁n(n≥2)的周长为.12.(1)证明:∵NM⊥BC,NP⊥MN,PQ⊥BC,∴四边形PQMN为矩形,∵四边形P'Q'M'N'是正方形,∴PN∥P′N′,∴=,∵MN∥M′N′,∴=,∴=,而P′N′=M′N′,∴PN=MN,∴四边形PQMN为正方形;(2)解:作AD⊥BC于D,AD交PN于E,如图,∵△ABC的面积=1.5,∴AB•AC=1.5,∴AB=2,∴BC==2.5,∵BC•AD=1.5,∴AD==,设PN=x,则PQ=DE=x,AE=﹣x,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得x=,即PN的长为m.13.解:(1)点A′:﹣3×+1=﹣1+1=0,设点B表示的数为a,则a+1=2,解得a=3,设点E表示的数为b,则b+1=b,解得b=;故答案为:0,3,;(2)根据题意,得:,解得:,设点F的坐标为(x,y),∵对应点F′与点F重合,∴x+2=x,y+2=y,解得x=y=4,所以,点F的坐标为(4,4),∵点F的坐标为(4,4)不在△ABC内,故△ABC内部不存在点F,使得点F经过上述操作后得到的对应点F′与点F重合.14.解:(1)在y=﹣x2+x+2中,令y=0,即0=﹣x2+x+2,解得:x1=2,x2=﹣1,∴A(﹣1,0),B(2,0),令x=0,即y=2,∴C(0,2);(2)如图,当抛物线经过A1(2,6),B1(﹣4,6)时,设抛物线的解析式,y=﹣x2+bx+c,则有,解得,,∴抛物线的解析式为y=﹣x2﹣2x+14=﹣(x+1)2+15,当抛物线经过A2(﹣2,﹣2),B2(4,﹣2)时,同法可得抛物线的解析式为:y=﹣x2+2x+6=﹣(x﹣1)2+7.∵原来的抛物线的解析式为y=﹣(x﹣)2+,∴+1=,15﹣=,∴原来抛物线向左平移,再向上平移单位得到y=﹣x2﹣2x+14.1﹣=,7﹣=,原来抛物线向右平移单位,再向上平移单位得到y=﹣x2+2x+6.二.作图-位似变换15.解:第一个图形中的位似中心为A点,第二个图形中的位似中心为AD与BC的交点,第三个图形中的位似中心为O点,第四个图形中的位似中心为O点.故选:A.16.解:如图所示:位似中心F的坐标为:(2,2),k的值为:=.故选:B.17.解:过点A作x轴的平行线DD′,作CD⊥DD′于D,作C′D′⊥DD′于D′,设C(x,y),则CD=y﹣2、AD=﹣x,C′D′=2﹣n,AD′=m,∵△AB′C′与△ABC的位似比为2:1,∴==,即==,解得:x=﹣m,y=﹣n+3,∴点C的坐标为(﹣m,﹣n+3),故选:A.18.解:由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点C的坐标为(3×,6×),即(1,2),当点C值第三象限时,C(﹣1,﹣2)故答案为:(1,2)或(﹣1,﹣2).19.解:∵以点O为位似中心,把△ABC放大2倍得到△A'B'C'',∴AB∥A'B,△ABC∽△A'B'C';AO:AA'=2:1;点C、O、C'三点在同一直线上,①①②④正确,故答案为:①②④.20.解:∵OA=2.OC=1,∴B(﹣2,1),∴矩形AOCB的对称中心的坐标为(﹣1,),∵将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,∴B1(﹣3,),同理可得B2(﹣,),B3(﹣,),B4(﹣,),∴矩形A4OC4B4的对称中心的坐标是(﹣,).故答案为(﹣1,),(﹣,).21.解:在同一象限内,∵△ABC与△A′B′C′是以原点O为位似中心的位似图形,其中相似比是2:1,A坐标为(2,﹣5),∴则点A′的坐标为:(1,﹣2.5),不在同一象限内,∵△ABC与△A′B′C′是以原点O为位似中心的位似图形,其中相似比是2:1,A坐标为(2,﹣5),∴则点A′的坐标为:(﹣1,2.5),故答案为:(﹣1,2.5).22.解:如图所示:△A1B1C1和△A′B′C′与△ABC的相似比为2,点B的对应点B1的坐标是:(4,2)或(﹣4,﹣2).故答案为:(4,2)或(﹣4,﹣2).23.解:(1)如图,△DEF即为所求;(2)M′(﹣2a,﹣2b).故答案为:﹣2a,﹣2b.24.解:(1)如图点O即为位似中心;(2)设点P(a,b)为△ABC内一点,则点P在△A1B1C1内的对应点P1的坐标(2a,2b).25.解:(1)如图,点M为所作,M点的坐标为(0,2);(2)如图,△A2B2C2即为所求;(3)C2(﹣4,2).26.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.A2的坐标(﹣2.,﹣2).27.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.28.解:(1)如图,(2)2:1,(3)A′(﹣6,0),B′(﹣3,2),C′(﹣4,4).。
位似中心的确定
1、画出下列图形的位似中心.【考点】作图-位似变换.【专题】作图题.【分析】连接两个位似图形两对对应点,对应点连线的交点就是位似中心.【解答】解:点O就是所求的位似中心.【点评】考查位似中心的画法:两个位似图形应点连线的交点就是位似中心.提高训练:位似变换;坐标与图形性质.【专题】计算题;压轴题.【分析】由图形可得两个位似图形的位似中心必在x轴上,连接AF、DG,其交点即为位似中心,进而再由位似比即可求解位似中心的坐标.【解答】解:当位似中心在两正方形之间,连接AF、DG,交于H,如图所示,则点H为其位似中心,且H在x轴上,∵点D的纵坐标为2,点F的纵坐标(2014•槐荫区二模)正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(﹣3,2)和(1,﹣1),则这两个正方形的位似中心的坐标为(﹣1,0)或(5,﹣2).为1,∴其位似比为2:1,∴CH=2HO,即OH=OC,又C(﹣3,0),∴OC=3,∴OH=1,所以其位似中心的坐标为(﹣1,0);当位似中心在正方形OEFG的右侧时,如图所示,连接DE并延长,连接CF并延长,两延长线交于M,过M作MN⊥x轴,∵点D的纵坐标为2,点F的纵坐标为1,∴其位似比为2:1,∴EF=DC,即EF为△MDC的中位线,∴ME=DE,又∠DEC=∠MEN,∠DCE=∠MNE=90°,∴△DCE≌△MNE,∴CE=EN=OC+OE=3+1=4,即ON=5,MN=DC=2,则M坐标为(5,﹣2),综上,位似中心为:(﹣1,0)或(5,﹣2).故答案为:(﹣1,0)或(5,﹣2).【点评】本题主要考查了位似变换以及坐标与图形结合的问题,能够熟练运用位似的性质求解一些简单的位似计算问题.。
4.8 图形的位似
(1)上述所求作的四边形DEFG是正方形吗?为 什么?
(2)在△ABC中,如果BC=10,高AQ=6,求上
述正方形DEFG的边长.
A
G
F
G1 F1
B D1 E1 D
EC
(1)以点P为位似中心,按相似比2:1将图形放大,
得图1;
(2)以点Q为位似中心,按相似比1:2将图形缩小,
得图2。
图1与图2的相似比是(
A1 A
.
C
O
B
B1
C1 B
CO A
A2 C2
B2
1. 在上图中,两个多边形不仅相似,而且 对应顶点的连线交于一点,像这样的两个图形
叫做位似形,这个点叫做位似中 心. (对应边互相平行)
A1
A
.
C
O
B
C1 B
CO A
B1
2.位似形有哪些性质呢?:
A2 C2
B2
(1)两个位似形一定是相似形; (2)对应顶点所在的直线都经过同一点; (3)对应顶点到位似中心的距离之比等于相似比.
在下列每个图形中,位似图形的对
应线段AB与A′B′是否平行?BC与
B′C′,CD与C′D′,AD与A′D′是否平
行?为什么?
不经过位似中
心的对应线段
平行.
A
如图,已知△ABC∽△DEF, 它们对应顶点的连线
AD,BE,CF相交于点O,这 D
两个三角形是不是位似三 角形?
B E
0
F
C
课堂小结
通过这节课的学习,你有哪些收获?
A′ C′
B′
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
4.8 图形的位似(分层练习)(解析版)
第四章图形的相似4.8 图形的位似精选练习一、单选题1.(2022·全国·九年级专题练习)如图,在直角坐标系xOy中,矩形EFGO的两边OE,OG在坐标轴上,以y轴上的某一点P为位似中心,作矩形ABCD,使其与矩形EFGO位似,若点B,F的坐标分别为(4,4),(-2,1),则位似中心P的坐标为()A.(0,1.5)B.(0,2)C.(0,2.5)D.(0,3)故选:B .【点睛】此题主要考查了位似中心的概念和位似图形的性质等知识,熟练掌握位似中心的概念和位似图形的性质是解题的关键.2.(2022·江苏·西附初中八年级期末)2020年是紫禁城建成600年暨故宫博物院成立95周年,在此之前有多个国家曾发行过紫禁城元素的邮品.图1所示的摩纳哥发行的小型张中的图案,以敞开的紫禁城大门和大门内的石狮和太和殿作为邮票和小型张的边饰,如果标记出图1中大门的门框并画出相关的几何图形(图2),我们发现设计师巧妙地使用了数学元素(忽略误差),图2中的四边形ABCD 与四边形A B C D ¢¢¢¢是位似图形,点O 是位似中心,点A ¢是线段OA 的中点,那么以下结论正确的是( )A .四边形ABCD 与四边形ABCD ¢¢¢¢的相似比为1:1B .四边形ABCD 与四边形A BCD ¢¢¢¢的相似比为1:2C .四边形ABCD 与四边形A B C D ¢¢¢¢的周长比为3:1D .四边形ABCD 与四边形A B C D ¢¢¢¢的面积比为4:1【答案】D【分析】根据题意可判断OA ¢:1OA =:2,即得出A B ¢¢:1AB =:2,从而可判断四边形ABCD 与四边形A B C D ¢¢¢¢的相似比为2:1,由相似比即可求出其周长比和面积比,即可选择.【详解】Q 四边形ABCD 与四边形A B C D ¢¢¢¢是位似图形,点O 是位似中心,点A ¢是线段OA 的中点,∴OA ¢:1OA =:2,∴A B ¢¢:1AB =:2,\四边形ABCD 与四边形A B C D ¢¢¢¢的相似比为2:1,周长的比为2:1,面积比为4:1.故选D .【点睛】本题考查由位似图形求相似比,周长比和面积比.掌握位似图形的定义和性质是解题关键.3.(2022·重庆实验外国语学校八年级阶段练习)如图,在平面点角坐标系中V AOB 与V COD 是位似图形,以原点O 为位似中心,若2AC OA =,B 点坐标为(4,2),则点D 的坐标为( )A .( 8,4)B .(8,6)C .(12,4)D .(12,6)4.(2022·全国·九年级专题练习)如图,图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3,点A ,B 的对应点分别为点A ′,B ′.若AB =6,则A ′B ′的长为( )A .8B .9C .10D .156AB =Q ,9A B ¢¢\=,故选:B .【点睛】本题考查的是位似图形,解题的关键是掌握位似图形的位似比是对应边的比.5.(2022·全国·九年级课时练习)如图,△ABC 与△DEF 是位似图形,且顶点都在格点上,则位似中心的坐标是( )A .(8,2)B .(9,1)C .(9,0)D .(10,0)【答案】C 【分析】延长EB 、DA 交于点P ,根据位似图形的对应点的连线相交于一点解答即可.【详解】解:延长EB 、DA 交于点P ,则点P 即为位似中心,位似中心的坐标为(9,0),故选:C .【点睛】本题考查的是位似变换的定义,如果两个图形不仅是相似图形,而且对应点的连线相交于一点,对应边互相平行(或共线),那么这样的两个图形叫做位似图形,这个点叫做位似中心.6.(2022·山东威海·八年级期末)如图,矩形OABC 与矩形ODEF 是位似图形,点P 是位似中心.若点B 的坐标为(2,3),点E 的横坐标为1-,则点P 的坐标为( )A .(2,0)-B .(0,2)-C .3,02æö-ç÷D .30,2æö-ç÷二、填空题7.(2022·广东·佛山市三水区三水中学附属初中九年级开学考试)如图,在平面直角坐标系中,以原点O 为位似中心,将ABO V 扩大到原来的2倍,得到A B O ¢¢△,若点A 的坐标是()1,2,则点A ¢的坐标是______.【答案】()2,4--【分析】根据以原点O 为位似中心,将ABO V 扩大到原来的2倍,结合图形,可知将对应点的坐标应乘以2-,即可得出点A ¢的坐标.【详解】解:根据以原点O 为位似中心扩大到原来的2倍 ,A B O ¢¢△在第三象限,即对应点的坐标应乘以2-,∵点A 的坐标是()1,2,∴点A ¢的坐标是()2,4--,故答案为:()2,4--.【点睛】此题主要考查了关于原点对称的位似图形的性质,得出对应点的坐标乘以k 或k -是解题关键.8.(2022·浙江·九年级单元测试)如图,ABC V 与△A B C ¢¢¢是位似图形,且顶点都在格点上,则位似中心的坐标是________.【答案】(9,0)【分析】根据位似中心的概念解答即可.【详解】解:连接A A ¢和B B ¢并延长相交于点D ,则点D 即为位似中心,作图如下:点D 的坐标为(9,0),即位似中心的坐标为(9,0),故答案为:(9,0).【点睛】本题考查的是位似变换的概念,解题的关键是掌握各对应点所在直线的交点即为位似中心.9.(2022·甘肃·平凉市第十中学九年级阶段练习)如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形'''A B CD E ,已知10cm OA =,'20cm OA =,则五边形ABCDE 的周长与五边形''''A B CD E 的周长比是______.【答案】1:2【分析】根据已知可得五边形ABCDE 的周长与五边形'''A B CD E 的位似比,然后由相似多边形的性质可证得:五边形ABCDE 的周长与五边形'''A B CD E 的周长比.【详解】Q 以点O 为位似中心,将五边形ABCDE 放大后得到五边形'''''A B C D E ,10OA cm =,'20OA cm =,\五边形ABCDE 的周长与五边形'''''A B C D E 的位似比为:10:201=:2,\五边形ABCDE 的周长与五边形'''''A B C D E 的周长比是:1:2.故答案为1:2.【点睛】此题考查了位似图形的性质,掌握相似多边形的周长比等于相似比是解题关键.10.(2022·吉林省第二实验学校九年级阶段练习)如图,ABC V 与111A B C △位似,位似中心是点O ,则1:1:2OA OA =,ABC V 的面积为3,则111A B C △的面积是___________.三、解答题11.(2022·全国·九年级专题练习)如图所示的平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣3,2),B (﹣1,3),C (﹣1,1),请按如下要求画图:(1)以坐标原点O 为旋转中心,将△ABC 顺时针旋转90°,得到111A B C △,请画出111A B C △;(2)以坐标原点O 为位似中心,在x 轴下方,画出△ABC 的位似图形222A B C △,使它与△ABC 的位似比为2:1.【答案】(1)见解析(2)见解析【分析】(1)直接利用旋转的性质得出对应点的位置,画出图形即可;(2)直接利用位似图形的性质得出对应点的位置,画出图形即可.(1)解:如图,111A B C △即为所求.;(2)解:如图,222A B C △即为所求.【点睛】本题考查了位似变换与旋转变换,正确得出对应点的位置是解题的关键.12.(2022·山东烟台·八年级期末)如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (1,1),B (2,2),C (3,0).(1)以原点O 为位似中心,在y 轴的右侧画出将△ABC 放大为原来的2倍得到的△A 1B 1C 1,请写出点B 的对应点B 1的坐标;(2)画出将△ABC 向左平移1个单位,再向上平移2个单位后得到的△A 2B 2C 2,写出点C 的对应点C 2的坐标;(3)请在图中标出△A 1B 1C 1与△A 2B 2C 2的位似中心M ,并写出点M 的坐标.【答案】(1)图见解析,(4,4)(2)图见解析,(2,2)(3)图见解析,(﹣2,4)【分析】(1)把A ,B ,C 的横纵坐标都乘以2得到111,,A B C 的坐标,然后描点即可.(2)利用,点平移的坐标特征写出222,,A B C 的坐标,然后描点即可.(3)对应点连线的交点M 即为所求作.(1)如图△A 1B 1C 1即为所求作的三角形,点B 1的坐标(4,4).(2)如图,△A 2B 2C 2即为所求作的三角形点C 2的坐标(2,2).(3)如图所示:点M 即为所求作.M (﹣2,4).【点睛】本题考查了作图一位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -,也考查了平移变换.一、填空题1.(2022·全国·九年级课时练习)如图,在平面直角坐标系中,以原点O 为位似中心,将△AOB 缩小为原来的12,得到△COD ,若点A 的坐标为(4,2),则AC 的中点E 的坐标是 _____.2.(2022·全国·九年级单元测试)如图所示,在平面直角坐标系中,已知点A (-4,2),B (-2,-2).以坐标原点O 为位似中心把△AOB 缩小得到△A 1OB 1,△A 1OB 1与△AOB 的位似比为12,则点A 的对应点A 1的坐标为_______.3.(2021·湖北·武汉二中广雅中学九年级阶段练习)在平面直角坐标系中,已知点()2,1A -,()3,2B --,以原点O 为位似中心,相似比为12,把ABO V 缩小,则点A 的对应点A ¢的坐标是______.【答案】11,2æö-ç÷或1(1,2-##1(1,)2-或1(1,2-4.(2022·全国·九年级专题练习)如图,在平面直角坐标系中,等边ABC V 与等边BDE V 是以原点为位似中心的位似图形,且相似比为13,点A 、B 、D 在x 轴上,若等边BDE V 的边长为12,则点C 的坐标为_________.∵等边△ABC 与等边△BDE 是以原点为位似中心的位似图形,∴BC ∥DE ,∴△OBC ∽△ODE ,∴BC OB DE OD=,∵△ABC 与△BDE 的相似比为13,等边△BDE 5.(2022·全国·九年级课时练习)如图,已知ABCD Y 的面积为24,以B 为位似中心,作ABCD Y 的位似图形EBFG Y ,位似图形与原图形的位似比为23,连接AG 、DG .则ADG V 的面积为________.故答案为:4.【点睛】本题考查了位似图形的性质,平行四边形的性质与判定,掌握这些性质是解题的关键.二、解答题6.(2022·全国·九年级专题练习)如图,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0),以原点O为位似中心,画出一个三角形,使它与△ABO的位似比为1.2【点睛】本题考查了位似的概念.位似比为对应点到位似中心的距离比.解题关键是根据位似比找到对应7.(2022·山东·聊城江北水城旅游度假区北大培文学校九年级阶段练习)已知:如图,△ABC三个顶点的坐标分别为A(0,-3)、B(3,-2)、C(2,-4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC 向上平移6个单位得到的111A B C △;(2)以点C 为位似中心,在网格中画出222A B C △,使222A B C △与△ABC 位似,且222A B C △与△ABC 的位似比为2:1,并直接写出点2C 的坐标.【答案】(1)见解析(2)图见解析,2C 坐标为(2,-4)【分析】(1)直接利用平移的性质得出对应点位置即可得出答案;(2)直接利用位似图形的性质以C 为位似中心,将边长扩大为原来的2倍即可.(1)如图所示:111A B C △即为所求;(2)如图所示:222A B C △即为所求,2C 坐标为:(2,-4).【点睛】本题考查了平移的性质,位似的性质,能根据性质的特点进行画图是解此题的关键.8.(2021·黑龙江绥化·期末)按要求完成下面各题:(1)三角形AOB 顶点B 的位置用数对表示是 .(2)画出三角形AOB 绕点O 逆时针旋转90°后的图形.(3)按2∶1的比画出三角形AOB 放大后的图形.【答案】(1)(2,4)(2)见详解(3)见详解【分析】(1)根据网格即可得三角形AOB 顶点B 的位置;(2)根据旋转的性质即可画出三角形AOB 绕点O 逆时针旋转90°后的图形;(3)根据2:1的比即可画出三角形AOB 放大后的图形.(1)解:三角形AOB 顶点B 的位置用数对表示是(2,4);故答案为:(2,4);(2)如图三角形A OB ¢¢即为所求;(3)²²²即为所求.如图,三角形A O B【点睛】本题考查了作图﹣旋转变换,解决本题的关键是掌握旋转的性质.。
初中数学例题:坐标系中的位似图形
初中数学例题:坐标系中的位似图形3.(2015•漳州)如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是三角形.【思路点拨】(1)延长AB到B′,使AB′=2AB,得到B的对应点B′,同样得到C、D的对应点C′,D′,再顺次连接即可;(2)利用勾股定理求出AC′2=42+82=80,AD′2=62+22=40,C′D′2=62+22=40,那么AD′=C′D′,AD′2+C′D′2=AC′2,即可判定△AC′D′是等腰直角三角形.【答案与解析】解:(1)如图所示:(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.【总结升华】本题考查了作图﹣位似变换.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.同时考查了勾股定理及其逆定理等知识.熟练掌握网格结构以及位似变换的定义是解题的关键.4.(2016春•威海期末)如图△ABC的顶点坐标分别为A(1,1),B(2,3),C(3,0).(1)以点O为位似中心画△DEF,使它与△ABC位似,且相似比为2.(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,则△DEF的边上与点M对应的点M′的坐标为.【思路点拨】(1)把点A、B、C的横、纵坐标都乘以2可得到对应点D、E、F 的坐标,再描点可得△DEF;把点A、B、C的横、纵坐标都乘以﹣2可得到对应点D′、E′、F′的坐标,然后描点可得△D′E′F′;(2)利用以原点为位似中心的位似变换的对应点的坐标特征求解.【答案与解析】解:(1)如图,△DEF和△D′E′F′为所作;(2)点M对应的点M′的坐标为(2a,2b)或(﹣2a,﹣2b).故答案为(2a,2b)或(﹣2a,﹣2b).【总结升华】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.举一反三:【变式】如图,将△AOB中各顶点的纵坐标,横坐标分别乘-1,•得到的图形与原图形相比有什么变化?作出所得的图形,这个过程可以看作是一个什么图形变换?【答案】解:图形的形状和大小都没有变化;可以看作是△AOB绕O•点按逆时针方向旋转180°得到的.。
专题04图形的位似(五大类型)(题型专练)(原卷版)
专题04 图形的位似(五大类型)【题型1位似图形性质】【题型2 位似图形的点坐标】【题型3 判定位似中心】【题型4 位似图形作图】【题型5 平移、轴对称、旋转和位似综合】【题型1位似图形性质】1.(2023春•乳山市期末)如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=3,AC=5,则=()A.B.C.D.2.(2023•开州区校级模拟)如图,△ABC与△DEF位似,点O是位似中心,且OD=2AD,则S△ABC :S△DEF=()A.3:2B.9:4C.9:1D.4:1 3.(2023•衡南县三模)如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且,则()A.B.C.D.4.(2023•宿豫区三模)如图,△ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,S△ABC=9,则△DEF的面积为()A.12B.16C.21D.49 5.(2023•大理州模拟)如图,△ABC与△DEF位似,点O为位似中心,位似比为2:3,若△ABC的面积为4,则△DEF的面积是()A.6B.9C.12D.16 6.(2023春•石景山区期中)如图,四边形ABCD与四边形EFGH是位似图形,点O是位似中心.若,四边形ABCD的面积是100,则四边形EFGH 的面积是()A.4B.16C.36D.7.(2023•汇川区模拟)如图,△ABC和△DEF是位似三角形,点O是位似中心,且AC=9,DF=3,OA=6,则OD=()A.2B.4C.6D.8 8.(2023春•太仓市期末)如图,在平面直角坐标系中,将△OAB以原点O为位似中心放大后得到△OCD,若A(1,0),C(3,0),则△OAB与△OCD 的面积比是()A.1:2B.1:3C.1:4D.1:9 9.(2023•岳麓区校级模拟)如图所示,△ABC与△DEF是位似图形,点O为位似中心.若AD=3OA,△ABC的周长为5,则△DEF的周长为()A.10B.15C.25D.125【题型2 位似图形的点坐标】9.(2022秋•江北区校级期末)如图,在平面直角坐标系中△ABC与△A'B'C'位似,且原点O为位似中心,其位似比1:2,若点B(﹣2,﹣1),则其对应点B'的坐标为()A.(2,4)B.(4,2)C.(2,1)D.(1,2)10.(2023•舟山三模)在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(2,﹣1)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)11.(2023•市南区校级二模)如图,在平面直角坐标系中,等边三角形OAB的顶点O(0,0),B(2,0),已知△OA'B′与△OAB位似,位似中心是原点O,且△OA'B′的面积是△OAB面积的4倍,则点A对应点A′的坐标为()A.B.或C.D.或12.(2023春•岱岳区期末)如图,△OAB和△OCD是以点O为位似中心的位似图形,已知A(﹣4,2),△OAB与△OCD的相似比为2:1,则点C的坐标为()A.(2,﹣1)B.(﹣2,1)C.(1,﹣2)D.(﹣1,2)13.(2023春•肥城市期末)如图,矩形OABC与矩形ODEF是位似图形,点P 是位似中心.若点B的坐标为(2,3),点E的横坐标为﹣1,则点P的坐标为()A.(﹣2,0)B.(0,﹣2)C.D.14.(2023春•长寿区校级期中)如图,线段AB两个端点坐标分别为A(6,9),B(9,3),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后,得到线段CD,则点C的坐标为()A.(﹣2,﹣3)B.(﹣3,﹣2)C.(﹣3,﹣1 )D.(﹣2,﹣1)15.(2023•杜集区校级模拟)如图,在平面直角坐标系中,△A'B'C'与△ABC 位似,位似中心为原点O,已知点A(﹣1,﹣1),C(﹣4,﹣1),A'C'=6,则点C'的坐标为()A.(2,2)B.(4,2)C.(6,2)D.(8,2)【题型3 判定位似中心】16.(2022秋•泉州期末)如图,在8×8网格中,△ABC和△A'B'C'位似,则位似中心为()A.点O B.点P C.点Q D.点R 17.(2023•长安区模拟)图中的两个三角板是位似图形,则位似中心可能是()A.点A B.点B C.点C D.点D 18.(2022秋•青县期末)如图中的两个三角形是位似图形,点M的坐标为(3,2),则它们位似中心的坐标是()A.(0,2)B.(0,3)C.(2,﹣1)D.(2,3 )19.(2023春•烟台期末)如图,点A的坐标为(﹣3,1),点B的坐标为(﹣1,1),点C的坐标为(0,﹣1).(1)求出△ABC的面积;(2)请以点O为位似中心作一个与△ABC位似的△A1B1C1,使得△A1B1C1的面积为18.20.(2022秋•未央区期末)如图,在平面直角坐标系中,△ABO的顶点都在正方形网格顶点上.以原点O为位似中心,相似比为1:2,在y轴的右侧,画出将△ABO放大后得到的△A1B1O.【题型4 位似图形作图】21.(2023春•福山区期末)已知,△ABC在平面直角坐标系的位置如图所示,点A,B,C的坐标分别为(1,0),(4,﹣1),(3,2).△A1B1C1与△ABC是以点P为位似中心的位似图形.(1)请画出点P的位置,并写出点P的坐标;(2)以点O为位似中心,在y轴左侧画出△ABC的位似图形△A2B2C2,使相似比为1:1,若点M(a,b)为△ABC内一点,则点M在△A2B2C2内的对应点的坐标为.【题型5 平移、轴对称、旋转和位似综合】22.(2023•碑林区校级模拟)如图,在平面直角坐标系中,△AOB的顶点均在网格格点上,且点A、B的坐标分别为A(3,1),B(2,﹣1).(1)在y轴的左侧以原点O为位似中心作△OAB的位似图形△OA1B1(点A、B的对应点分别为A1,B1)使△OA1B1与△OAB的相似比为2:1;(2)在(1)的条件下,计算△OA1B1的面积为.23.(2023•南山区校级一模)在平面直角坐标系内,△ABC的位置如图所示.(1)将△ABC绕点O顺时针旋转90°得到△A1B1C1,作出△A1B1C1.(2)以原点O为位似中心,在第四象限内作出△ABC的位似图形△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.24.(2023春•荣成市期末)如图,在边长为1的小正方形组成的网格中,△ABC 的顶点在格点(网格线的交点)上,以点O为原点建立平面直角坐标系,点B的坐标为(1,0).(1)将△ABC向左平移5个单位长度,得到△A1B1C1,画出△A1B1C1;(2)以点O为位似中心,将△A1B1C1放大到两倍(即新图与原图的相似比为2),得到△A2B2C2,在所给的方格纸中画出△A2B2C2;(3)若点M是AB的中点,经过(1)、(2)两次变换,M的对应点M2的坐标是.25.(2023•碑林区校级模拟)如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)请在网格中画出△ABC关于x轴对称的△A1B1C1.(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)①点B1的坐标为;②求△A2B2C2的面积.26.(2022秋•青羊区期中)已知O是坐标原点,A、B的坐标分别为(3,1)、(2,﹣1).(1)画出△OAB绕点O顺时针旋转90°后得到的△OA1B1;(2)在y轴的左侧以O为位似中心作△OAB的位似图形△OA2B2,使新图与原图相似比为2:1;(3)求出△OA2B2的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的位似作图练习
姓名:
1、如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.
(1)点A的坐标为_________,点C的坐标为_________.
(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1.若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M1的坐标为_________.
(3)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC对应边的比为1:2.请在网格内画出△A2B2C2,并写出点A2的坐标:_________.
2、如图1,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是。
3、如图,△ABC三个顶点的坐标分别为A (2,7),B (6,8),C (8,2),请你分别完成下面的作图并标出所有顶点的坐标。
(不要求写出作法)(1)以O为位似中心,在第三象限内作
出△A
1B
1
C
1
,使△A
1
B
1
C
1
与△ABC的位似比为1∶2;(2)以O为旋转中心,将△ABC沿顺时
针方向旋转90°得到△A
2B
2
C
2。
4、如图,平面直角坐标系xOy 中,点A 、B 的坐标分别为(3,0)、(2,﹣3),△AB ′O ′是△ABO 关于的A 的位似图形,且O ′的坐标为(﹣1,0),则点B ′的坐标为 .
5、如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A (﹣1,2),B (﹣3,
4)C (﹣2,6)(1)画出△ABC 绕点A 顺时针旋转90°后得到的△A 1B 1C 1
(2)以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2.
y B C A O x。