高一数学三角函数经典题目(含答案)
高一数学三角函数试题答案及解析
高一数学三角函数试题答案及解析1.化简 = ;【答案】【解析】【考点】本题主要考查两角和与差的正切公式。
点评:在三角函数的化简与求值时,通常将常数写成角的一个三角函数,再根据有关公式进行变形。
2.若x∈(0,2π),函数的定义域是A.( ,π]B.( ,π)C.(0,π)D.( ,2π)【答案】A【解析】为使函数有意义须,即,又x∈(0,2π),所以x∈( ,π],故选A。
【考点】本题主要考查三角函数的图象和性质。
点评:求三角函数的定义域,应特别注意正切函数本身的定义域。
3.若,试求y=f(x)的解析式.【答案】y=【解析】由x=sinθ+cosθx2=1+2sinθcosθsinθcosθ=∴y=f(x)=sinθcosθ=【考点】本题主要考查任意角的三角函数、同角公式的应用。
点评:的互求,常常通过平方(开方)实现,这类题属于常考题型。
4.将角α的终边顺时针旋转,则它与单位圆的交点坐标是A.(cosα,sinα)B.(cosα,-sinα)C.(sinα,-cosα)D.(sinα,cosα)【答案】C【解析】α的终边与单位圆的交点坐标为,将角α的终边顺时针旋转,对应角为-,所以它与单位圆的交点坐标是,即(sinα,-cosα),故选C。
【考点】本题主要考查任意角的三角函数、单位圆、诱导公式的应用。
点评:属于常考题型,应用诱导公式转化。
5.使tanx-有意义的x的集合为 .【答案】{x|x∈R且x≠,k∈Z}【解析】为使tanx-有意义,须,即角x终边不能落在坐标轴上,所以x≠,故使tanx-有意义的x的集合为{x|x∈R且x≠,k∈Z}。
【考点】本题主要考查任意角的三角函数定义。
点评:求三角函数的定义域,应特别注意正切函数本身的定义域。
6.已知0°≤θ<360°,θ角的7倍的终边和θ角重合,试求θ角【答案】θ=0°,θ=60°,θ=120°θ=180°,θ=240°,θ=300°【解析】根据终边相同角的关系式7θ=θ+k·360,k∈Z,则θ=k·60°。
高一数学三角函数试题答案及解析
高一数学三角函数试题答案及解析1.在中,求证:.【答案】见解析【解析】证明:,同理可得,,.【考点】本题主要考查余弦定理、半角公式。
点评:涉及三角不等式的证明问题,往往要考虑三角函数的单调性、有界性,本题利用“放缩”思想,达到证明目的。
2.在中,求证:.【答案】见解析【解析】证明:,同理可得,,.【考点】本题主要考查余弦定理、半角公式。
点评:涉及三角不等式的证明问题,往往要考虑三角函数的单调性、有界性,本题利用“放缩”思想,达到证明目的。
3.函数y=tan x是A.周期为π的偶函数B.周期为π的奇函数C.周期为π的偶函数D.周期为π的奇函数【答案】B【解析】函数定义域关于原点对称,且,所以函数为奇函数;又因为=tan x,所以周期为π,故选B。
【考点】本题主要考查三角函数的性质。
点评:简单题,利用周期函数、奇偶函数的定义判断。
4.已知θ角终边上一点M(x,-2),,则sinθ=____________;tanθ=____________.【答案】【解析】由三角函数定义,所以=3,,故sinθ=,tanθ=。
【考点】本题主要考查任意角的三角函数定义、同角公式。
点评:待定系数法的应用,分类讨论思想的应用,常考题型5.设(m>n>0),求θ的其他三角函数值.【答案】见解析。
【解析】∵m>n>0,∴>0∴θ是第一象限角或第四象限角.当θ是第一象限角时:sinθ==tanθ=当θ是第四象限角时:sinθ=-tanθ=【考点】本题主要考查任意角的三角函数同角公式。
点评:运用了平方关系求值时,要特别注意讨论开方运算中正负号的选取。
6.化简:2-sin221°-cos 221°+sin417°+sin217°·cos 217°+cos 217°【答案】2【解析】原式=2-(sin221°+cos 221°)+sin217°(sin217°+cos 217°)+cos 217°=2-1+sin217°+cos 217°=1+1=2【考点】本题主要考查任意角的三角函数同角公式。
高一数学知识点三角函数与恒等公式经典题常考题50道含答案与解析
高一数学三角函数及恒等公式经典题常考题50道一、单选题1.函数y=cosx|tanx|(0≤x<且x≠ )的图象是下图中的()A. B. C. D.【答案】C【考点】同角三角函数基本关系的运用,正弦函数的图象【解析】【解答】解:当0 时,y=cosxtanx≥0,排除B,D.当时,y=﹣cosxtanx<0,排除A.故选:C.【分析】根据x的围判断函数的值域,使用排除法得出答案.==========================================================================2.若α,β都是锐角,且,则cosβ=()A. B. C. 或 D. 或【答案】A【考点】两角和与差的余弦函数【解析】【解答】解:∵α,β都是锐角,且,∴cosα= = ,cos(α﹣β)= = ,则cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)= + = ,故选:A.【分析】由条件利用同角三角函数的基本关系,两角差的三角公式,求得cosβ=cos[α﹣(α﹣β)]的值.==========================================================================3.设为锐角,若cos = ,则sin 的值为()A. B. C. D.【答案】B【考点】二倍角的正弦【解析】【解答】∵为锐角,cos = ,∴∈,∴ = = .则sin =2 . 故答案为:B【分析】根据题意利用同角三角函数的关系式求出正弦的值,再由二倍角的正弦公式代入数值求出结果即可。
==========================================================================4.sin15°sin105°的值是()A. B. C. D.【答案】A【考点】运用诱导公式化简求值【解析】【解答】sin15°sin105°=sin15°cos15°= sin30°= ,故答案为:A.【分析】利用诱导公式转化已知的三角函数关系式求出结果即可。
高一数学三角函数试题答案及解析
高一数学三角函数试题答案及解析1.已知角为第二象限角,则点位于哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为角为第二象限角,所以,,即点位于第四象限,故选D.2.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A. B. C. D. A=B=C【答案】B【解析】锐角必小于 ,故选B.3.已知角的终边过点,且,则的值为A.B.C.D.【答案】C【解析】因为,所以角的终边在第二,三象限,,从而,即,解得,故选C。
4.若,,则角的终边在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】本题考查三角函数的性质。
由知角可能在第一、四象限;由知角可能在第三、四象限;综上得角的终边在箱四象限故正确答案为5.已知函数相邻两对称轴间的距离为,若将的图像先向左平移个单位,再向下平移1个单位,所得的函数为奇函数.(1)求的解析式,并求的对称中心;(2)若关于的方程在区间上有两个不相等的实根,求实数的取值范围.【答案】(1),对称中心为:,(2)或.【解析】(1)相邻两对称轴间的距离为半周期,由,可得,按三角函数的平移变换,得表达式,函数为奇函数,得值,且过点得值,求出表达式后由性质可得对称中心;(2)由得的范围,将利用换元法换元,将问题转化为一个一元二次方程根的分布问题,利用判别式得不等式解得取值范围.试题解析:(1)由条件得:,即,则,又为奇函数,令,,,,由,得对称中心为:(2),又有(1)知:,则,的函数值从0递增到1,又从1递减回0.令则由原命题得:在上仅有一个实根.令,则需或,解得:或.【考点】1. 性质;2.一元二次方程;3.换元法.6.设函数的最小正周期为,且,则()A.在单调递减B.在单调递减C.在单调递增D.在单调递增【答案】A【解析】由得,,又,则,即.当时,,递减,故选A.【考点】函数的解析式,函数的奇偶性,单调性.7.若,且,则是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】C【解析】根据且,可得角为第三象限角,故选择C.【考点】三角函数定义.8.已知函数 .(1)求函数的单调递减区间;(2)求函数在区间上的最大值及最小值.【答案】(Ⅰ),;(Ⅱ)取得最大值,取得最小值.【解析】(Ⅰ)先根据两角和余弦公式、二倍角公式、配角公式将函数化为基本三角函数:,再根据正弦函数性质求单调区间:由解得,最后写出区间形式(Ⅱ)先根据自变量范围确定基本三角函数定义区间:,再根据正弦函数在此区间图像确定最值:当时,取得最小值;当时,取得最大值1.试题解析:(Ⅰ). ……………………………………3分由,,得,.即的单调递减区间为,.……………………6分(Ⅱ)由得,………………………………8分所以. …………………………………………10分所以当时,取得最小值;当时,取得最大值1. ………………………………13分【考点】三角函数性质【思路点睛】应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”。
高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析
高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。
【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。
属于基础题型。
================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。
【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。
================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。
高一数学三角函数试题
高一数学三角函数试题1.不等式sin()>0成立的x的取值范围为( )A.B.C.D.【答案】D【解析】,即,可得,故选D.【考点】解三角不等式2.已知函数(Ⅰ)若求函数的值;(Ⅱ)求函数的值域。
【答案】(1)(2)[ 1 , 2 ]【解析】解:(Ⅰ) 2分6分(Ⅱ) 8分函数的值域为[ 1 , 2 ] 12分【考点】三角函数的性质点评:主要是考查了三角函数的化简和性质的运用,属于基础题。
3.若cosθ>0且tanθ<0,则θ所在的象限为 .【答案】四【解析】若cosθ>0,则为第一或四象限角;若tanθ<0,则θ为第二或四象限角,所以θ所在的象限为四。
【考点】象限角点评:当θ为第一、二象限角时,,当θ为第三、四象限角时,;当θ为第一、四象限角时,,当θ为第二、三象限角时,;当θ为第一、三象限角时,,当θ为第二、四象限角时,。
4.如果角θ的终边经过点那么tanθ的值是()A.B.C.D.【答案】D【解析】直接根据三角函数的定义,求出tanθ的值.根据角的终边经过点,那么可知=,选D.【考点】正切函数的定义点评:本题是基础题,考查正切函数的定义,是送分题5.设函数图像的一条对称轴是直线.(1)求;(2)画出函数在区间上的图像(在答题纸上完成列表并作图).【答案】(1)(2)如图。
【解析】解:(1)的图像的对称轴,(2) 由故函数【考点】正弦函数的图像和性质点评:画三角函数的图像时,常用到五点法。
6.已知tanα=2,则3sin2α+5sinαcosα-2cos2α=.【答案】4【解析】∵tanα=2,∴3sin2α+5sinαcosα-2cos2α=【考点】本题考查了三角公式的化简点评:此类问题应首先将所给式子变形,即将其转化成所求函数式能使用的条件,或者将所求函数式经过变形后再用条件7.(本小题满分12分)已知函数(1)写出函数的最小正周期和对称轴;(2)设,的最小值是,最大值是,求实数的值.【答案】(1)最小正周期,对称轴,;(2)。
高一数学三角函数测试题及答案
高一数学三角函数测试题及答案一、选择题:1.函数y=sin(2x+π6)的图象可看成是把函数y=sin2x 的图象做以下平移得到( )A. 向右平移π6B. 向左平移 π12C. 向右平移 π12D. 向左平移π6 2.函数y=sin(π4-2x)的单调增区间是( ) A. [kπ-3π8 , kπ+3π8 ] (k ∈Z) B. [kπ+π8 , kπ+5π8] (k ∈Z) C. [kπ-π8 , kπ+3π8 ] (k ∈Z) D. [kπ+3π8 , kπ+7π8] (k ∈Z) 3.函数y=sin(x+3π2)的图象是( ) A. 关于x 轴对称 B. 关于y 轴对称C.关于原点对称D. 关于x=-32π对称 4.函数f (x )=cos (3x+φ)的图像关于原点中心对称的充要条件是( )A. φ=π2B.φ= kπ(k ∈Z)C. φ= kπ+π2 (k ∈Z)D. φ= 2kπ-π2(k ∈Z) 5.函数 图象的一条对称轴是( )A.x= - π2B. x= - π4C. x = π8D. x= - 5π4二、填空题:6.函数 y=15 sin(3x-π3) 的定义域是__________,值域是________,周期是________,振幅是________,频率是________,初相是_________.7.如果函数 y=sin2x+acos2x 的图象关于直线x=-π8对称,那么a=_________.8.函数y=sin2x的图象向左平移π6,所得的曲线对应的函数解析式是__________.9.要得到y=sin2x-cos2x 的图象,只需将函数y=sin2x+cos2x 的图象沿x轴向____移___________个单位.10.关于函数f(x)=4sin(2x+π3) (x∈R),有下列命题:(1)y=f(x )的表达式可改写为y=4cos(2x-π6 );(2)y=f(x )是以2π为最小正周期的周期函数;(3)y=f(x ) 的图象关于点(-π6,0)对称;(4)y=f(x ) 的图象关于直线x=-π6对称;其中正确的命题序号是___________.三、解答题:11.函数y=sin(2x+π3) 的图象,可由函数y=sinx 的图象怎样变换得到?12.已知函数f(x)=log a cos(2x-π3)(其中a>0,且a≠1).(1)求它的定义域;(2)求它的单调区间;(3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求它的最小正周期.一、选择题:1.B2.D3.B4.C5.A二、填空题:6.(-∞,+ ∞),(-15 ,15 ), 2π3 ,15 ,15 ,32π ,-π3 ;7.a=-1;8.y=sin2(x+π6); 9.右,π2;10.(1)(3) 三、解答题:11.y=sin(2x+π3 )=sin[2(x+π6)] 先向左平移π6个单位,横坐标再缩小到原来的一半而得到. 12.(1)要使f(x)有意义,需满足cos(2x-π3)>0 ∴ 2k π-π2 <2x-π3 <2k π+π2∴ k π-π12 <x<2k π+5π12∴ f(x)的定义域为{x|k π-π12 <x<2k π+5π12,k ∈Z } (2)当a>1时,f(x)的单调增区间是(k π+2π3 , k π+7π6) 单调减区间是(k π, k π+2π3) (k ∈Z) 当0<a<1时,f(x)的单调增区间是(k π,k π+2π3) (k ∈Z) 单调减区间是(k π+2π3 , k π+7π6) (k ∈Z) (3) f(-x)=log a cos[-2x-π3 ]=log a (2x+π3) ∵ f(-x)≠f(x) 且f(-x)≠-f(x)∴f(x) 不具有奇偶性。
高一数学(人教版)必修四单元测试:三角函数(word版,有答案)
高一数学三角函数部分单元试卷班级________ 姓名__________学号________一、 选择题(每题5分)1. 集合|,24k M x x k Z ππ⎧⎫==+∈⎨⎬⎩⎭,|,42k N x x k Z ππ⎧⎫==+∈⎨⎬⎩⎭( ) (A)M N = (B)M N ≠⊂ (C) N M ≠⊂ (D)M N φ=2.下列函数中,周期为π,且在[,]42ππ上为减函数的是 ( )(A )sin ||y x =-(B )cos ||y x =(C )sin(2)2y x π=+ (D )cos(2)2y x π=+ 3.如果1cos()2A π+=-,那么sin()2A π+的值是 ( )(A ).12-(B )12(C )4.已知1sin 1a a θ-=+,31cos 1a aθ-=+,若θ为第二象限角,则下列结论正确的是( ) (A ).1(1,)3a ∈- (B ). 1a = (C). 119a a ==或 (D). 19a = 5. 方程cos x x =在(,)-∞+∞内 ( )(A).没有根 (B).有且只有一个根 (C).有且仅有两个根 (D).有无穷多个根 6. 设将函数()cos (0)f x x ωω=>的图像向右平移3π个单位后与原图像重合,则ω的最小值是 (A )13(B ) 3 (C ) 6 (D ) 9 7.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像 ( )(A )向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位8.已知函数()sin(2),f x x ϕ=+其中ϕ为实数. 若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是 ( )A . ,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B. ,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C . 2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D . ,()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦二、填空题(每题4分)9.函数sin y x ω=和函数tan (0)y x ωω=>的最小正周期之和为π,则ω=________ 10.已知α、β∈[-π2,π2]且α+β<0,若sin α=1-m ,sin β=1-m 2,则实数m 的取值范围是_________________11.令tan a θ=,sin b θ=,cos c θ=,若在集合π3π,44θθθ⎧-<<≠⎨⎩ππ0,,42⎫⎬⎭中,给θ取一个值,,,a b c三数中最大的数是b ,则θ的值所在范围是____________ 12.若函数()2sin (01)f x x ωω=<<在闭区间0,3π⎡⎤⎢⎥⎣⎦2,则ω的值为______ 13.22sin120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒=_______三、解答题(每题10分)14. 已知tan 2α=,计算①2cos()cos()2sin()3sin()2παπαπαπα+----+ ②33sin cos sin 2cos αααα-+15. 已知函数3)62sin(3)(++=πx x f(1(2)指出)(x f16.已知在ABC ∆中,17sin cos 25A A += ①求sin cos A A②判断ABC ∆是锐角三角形还是钝角三角形 ③求tan A 的值17.已知函数lg cos(2)y x ,(1)求函数的定义域、值域; (2)讨论函数的奇偶性;(3)讨论函数的周期性 (4)讨论函数的单调性高一数学三角函数部分试卷参考答案一、 选择题(每小题3分,共40分)二、 填空题(每小题4分,共20分)9. 3 10.11. 3(,)24ππ 12. 3413. 1三.解答题:(本大题共4小题,共40分,解答应写出文字说明,证明过程或演算步骤) 14.解 (1)tan 2α=2sin cos 2tan 13cos 3sin 13tan 7αααααα-+-+∴==-++原式=(5分)(2)322322sin cos (sin cos )sin 2cos sin cos αααααααα-+=++原式()3232tan tan 11tan 2tan 26αααα--==++ (10分) 15解:(1)图略 (5分) (2)04,3,6T A ππϕ===,22()3x k k Z ππ=+∈对称轴 3ππ对称中心(-+2k ,3), (10分)16解:(1)17sin cos 25A A +=两边平方得 21712sin cos 25A A ⎛⎫+= ⎪⎝⎭336sin cos 625A A =-.......(3分)(2)17sin cos 125A A +=< 2A π∴>,ABC ∆为钝角三角形 ..................(6分)(3)2217sin cos 25sin cos 1A A A A ⎧+=⎪⎨⎪+=⎩ 得24sin 257cos 25A A ⎧=⎪⎪⎨-⎪=⎪⎩24tan 7∴=- ....(10分)17. 解(1)定义域(,)()44k k k Z ππππ-++∈ 值域(,0]-∞ ....(3分)(2) 偶函数 ........(5分) (3)T π= ........(8分) (4)增区间(,)()4k k k Z πππ-+∈减区间(,)()4k k k Z πππ+∈ ........(10分)。
高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版
高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.点P 从(2,0)出发,逆时针方向旋转43π到达Q 点,则Q 点的坐标为( )A .1,2⎛- ⎝⎭B .(1)-C .(1,-D .21⎛⎫ ⎪ ⎪⎝⎭2.角α的终边过点()3,4P -,则sin 22πα⎛⎫+= ⎪⎝⎭( )A .2425- B .725- C .725D .24253.已知函数1log a y x =和()22y k x =-的图象如图所示,则不等式120y y ≥的解集是( )A .(]1,2B .[)1,2C .()1,2D .[]1,24.已知(0,2)απ∈,sin 0α<和cos 0α>,则角α的取值范围是( ) A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭5.已知α是第二象限角,则( ) A .2α是第一象限角 B .sin02α>C .sin 20α<D .2α是第三或第四象限角6.已知直线l 1的斜率为2,直线l 2经过点(1,2),(,6)A B x --,且l 1∥l 2,则19log x =( ) A .3B .12C .2D .12-7.已知()1cos 3αβ-=,3cos 4β=与0,2παβ⎛⎫-∈ ⎪⎝⎭和0,2πβ⎛⎫∈ ⎪⎝⎭,则( ).A .0,2πα⎛⎫∈ ⎪⎝⎭B .,2παπ⎛⎫∈ ⎪⎝⎭C .()0,απ∈D .0,2πα⎡⎫∈⎪⎢⎣⎭8.已知点()tan ,sin P αα在第四象限,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角二、解答题9.设α是第一象限角,作α的正弦线、余弦线和正切线,由图证明下列各等式. (1)22sin cos 1αα+=; (2)sin tan cos ααα=. 如果α是第二、三、四象限角,以上等式仍然成立吗? 10.已知()()()()3sin cos 2cos 2cos sin 2f ππαπαααπαπα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭.(1)化简()f α;(2)若α是第三象限角,且()1sin 5απ-=,求()f α的值.11.已知|cosθ|=-cosθ,且tanθ<0,试判断()()sin cos θcos sin θ的符号.12.不通过求值,比较下列各组数的大小: (1)37sin 6π⎛⎫- ⎪⎝⎭与49sin 3π⎛⎫ ⎪⎝⎭;(2)sin194︒与()cos 160︒.13.(1)已知角α的终边经过点43,55P ⎛⎫- ⎪⎝⎭,求()()()πsin tan π2sin πcos 3παααα⎛⎫-⋅- ⎪⎝⎭+⋅-的值; (2)已知0πx <<,1sin cos 5x x +=求tan x 的值. 14.已知角θ的终边与单位圆在第四象限交于点1,2P ⎛ ⎝⎭. (1)求tan θ的值;(2)求()()cos cos 22sin cos πθθπθπθ⎛⎫-+- ⎪⎝⎭++的值.15.在平面直角坐标系xOy 中角θ的始边为x 轴的正半轴,终边在第二象限与单位圆交于点P ,点P 的横坐标为35. (1)求cos 3sin 3sin cos θθθθ+-的值;(2)若将射线OP 绕点O 逆时针旋转2π,得到角α,求22sin sin cos cos αααα--的值.三、多选题16.给出下列各三角函数值:①()sin 100-;②()cos 220-;③tan 2;④cos1.其中符号为负的是( ) A .①B .②C .③D .④四、双空题17.已知55sin ,cos 66P ππ⎛⎫⎪⎝⎭是角α的终边上一点,则cos α=______,角α的最小正值是______. 参考答案与解析1.C【分析】结合已知点坐标,根据终边旋转的角度和方向,求Q 点坐标即可.【详解】由题意知,442cos ,2sin 33Q ππ⎛⎫ ⎪⎝⎭,即(1,Q -. 故选:C. 2.B【分析】化简得2sin 22cos 12παα⎛⎫+=- ⎪⎝⎭,再利用三角函数的坐标定义求出cos α即得解.【详解】解:2sin 2cos 22cos 12πααα⎛⎫+==- ⎪⎝⎭由题得3cos 5α==-,所以237sin 22()12525πα⎛⎫+=⨯--=- ⎪⎝⎭. 故选:B 3.B【分析】可将12,y y 图象合并至一个图,由12,y y 同号或10y =结合图象可直接求解.【详解】将12,y y 图象合并至一个图,如图:若满足120y y ≥,则等价于120y y ⋅>或10y =,当()1,2x ∈时,则120y y ⋅>,当1x =时,则10y =,故120y y ≥的解集是[)1,2故选:B 4.D【分析】根据三角函数值的符号确定角的终边的位置,从而可得α的取值范围.【详解】因为sin 0α<,cos 0α>故α为第四象限角,故3,22παπ⎛⎫∈⎪⎝⎭故选:D. 5.C∴2α是第三象限,第四象限角或终边在y 轴非正半轴,sin20α<,故C 正确,D 错误. 故选:C . 6.D【分析】由已知结合直线平行的斜率关系可求出x ,然后结合对数的运算性质可求.【详解】解:因为直线l 1的斜率为2,直线l 2经过点(1,2),(,6)A B x --,且l 1∥l 2 所以6221x +=+,解得3x =所以2113991log log 3log 32x -===-故选:D . 7.B【分析】由已知得()0,απ∈,再利用同角之间的关系及两角差的余弦公式计算cos 0α<,即可得解.()0,απ∴∈又cos cos()cos()cos sin()sin ααββαββαββ=-+=---13034=⨯=< ,2παπ⎛⎫∴∈ ⎪⎝⎭故选:B 8.C【分析】由点的位置可确定tan ,sin αα的符号,根据符号可确定角α终边的位置.【详解】()tan ,sin P αα在第四象限tan 0sin 0αα>⎧∴⎨<⎩,α位于第三象限.故选:C. 9.见解析【解析】作出α的正弦线、余弦线和正切线 (1)由勾股定理证明;(2)由三角形相似PMO TAO ∆∆∽证明.若α是第二、三、四象限角,以上等式仍成立.【点睛】本题考查三角函数线的应用,考查用几何方法证明同角间的三角函数关系.掌握三角函数线定义是解题基础.10.(1)()cos f αα=-.【分析】(1)根据诱导公式直接化简即可;(2)由()1sin 5απ-=,可以利用诱导公式计算出sin α,再根据角所在象限确定cos α,进而得出结论.【详解】(1)根据诱导公式()()()()3sin cos 2cos 2cos sin 2f ππαπαααπαπα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭()sin cos sin sin sin ααααα⋅⋅-=⋅cos α=-所以()cos f αα=-;(2)由诱导公式可知()sin sin απα-=-,即1sin 5α=-又α是第三象限角 所以cos α==所以()=cos f αα-=【点睛】本题主要考查诱导公式的运用,属于基础题.使用诱导公式时,常利用口诀“奇变偶不变,符号看象限”进行记忆. 11.符号为负.【分析】由|cosθ|=﹣cosθ,且tanθ<0,可得θ在第二象限,即可判断出.【详解】由|cosθ|=-cosθ可得cosθ≤0,所以角θ的终边在第二、三象限或y 轴上或x 轴的负半轴上;又tanθ<0,所以角θ的终边在第二、四象限,从而可知角θ的终边在第二象限.易知-1<cosθ<0,0<sinθ<1,视cosθ、sinθ为弧度数,显然cosθ是第四象限的角,sinθ为第一象限的角,所以cos(sinθ)>0,sin(cosθ)<0,故()()sin cos θcos sin θ<0故答案为符号为负.【点睛】本题考查了三角函数值与所在象限的符号问题,考查了推理能力,属于基础题. 12.(1)3749sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭(2)sin194cos160︒>︒【分析】根据诱导公式及函数的单调性比较大小. (1)由37sin sin 6sin 666ππππ⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭49sin sin 16sin 333ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又函数sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增所以sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭即3749sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭;(2)由()sin194sin 18014sin14︒=︒+︒=-︒()cos160cos 9070sin70︒=︒+︒=-︒又0147090︒<︒<︒<︒所以sin14sin70︒<︒,即sin14sin70-︒>-︒ 所以sin194cos160︒>︒.13.(1)54;(2)4tan 3x =- .【分析】(1)由三角函数定义易得4cos 5α=,再利用诱导公式和基本关系式化简为()()()πsin tan π12sin πcos 3πcos ααααα⎛⎫- ⎪-⎝⎭⋅=+-求解; (2)将1sin cos 5x x +=两边平方得到242sin cos 025x x =-<,进而求得7sin cos 5x x -=,与1sin cos 5x x +=联立求解.【详解】解:(1)P 点到原点O的距离1r =由三角函数定义有4cos 5x r α== ()()()πsin tan πcos tan 152sin πcos 3πsin cos cos 4ααααααααα⎛⎫- ⎪-⎝⎭⋅=⨯==+---; (2)∵0πx <<,将1sin cos 5x x +=两边平方得112sin cos 25x x +=∴242sin cos 025x x =-<,可得ππ2x << ∴sin 0x > cos 0x < ∴sin cos 0x x ->∵()()22sin cos sin cos 2x x x x -++= ∴7sin cos 5x x -=,联立1sin cos 5x x +=∴4sin 5x = 3cos 5x =-∴4tan 3x =-. 14.(1)(2)2.【分析】(1)根据三角函数的定义tan yxθ=,代值计算即可; (2)利用诱导公式化简原式为齐次式,再结合同角三角函数关系和(1)中所求,代值计算即可. (1)因为角θ的终边与单位圆在第四象限交于点1,2P ⎛ ⎝⎭故可得tan yxθ==(2)原式=()()cos cos 22sin cos πθθπθπθ⎛⎫-+- ⎪⎝⎭++ sin cos sin cos θθθθ+=-tan 1tan 1θθ+=-由(1)可得:tan θ=tan 12tan 1θθ+==-. 15.(1)35(2)1925-【分析】(1)由题意利用任意角的三角函数的定义,求得tan α的值,再利用同角三角函数的基本关系,计算求得所给式子的值.(2)由题意利用诱导公式求得3tan 4α=,再将22sin sin cos cos αααα--化为22tan tan 1tan 1ααα--+,即可求得答案. (1)P 在单位圆上,且点P 在第二象限,P 的横坐标为35,可求得纵坐标为45所以434sin ,cos ,tan 553θθθ==-=-,则cos 3sin 13tan 33sin cos 3tan 15θθθθθθ++==--. (2)由题知2παθ=+,则3sin()cos 5sin 2παθθ=+==-,24cos cos()sin 5παθθ=+=-=-则sin 3tan cos 4ααα== 故22222222sin sin cos cos tan 1sin sin cos cos sin cos tan tan 1ααααααααααααα------==++ 2233()443()1241951--==-+.16.ABC【分析】首先判断角所在象限,然后根据三角函数在各个象限函数值的符号即可求解. 【详解】解:对①:因为100-为第三象限角,所以()sin 1000-<; 对②:因为220-为第二象限角,所以()cos 2200-<; 对③:因为2弧度角为第二象限角,所以tan20<; 对④:因为1弧度角为第一象限角,所以cos10>; 故选:ABC. 17.125π3【解析】根据三角函数的定义,求得cos α的值,进而确定角α的最小正值. 【详解】由于55sin ,cos 66P ππ⎛⎫ ⎪⎝⎭是角α的终边上一点,所以cos α=5πsin 5π1sin62==.由于5π15πsin0,cos 0626=>=<,所以P 在第四象限,也即α是第四象限角,所以π2π3k α=-,当1k =时,则α取得最小正值为5π3.故答案为:(1)12;(2)5π3【点睛】本小题主要考查三角函数的定义,考查特殊角的三角函数值,考查终边相同的角,属于基础题.。
2024年高一数学真题分类汇编(沪教版2020必修第二册,上海专用)三角函数(解析版)
专题02三角函数一、填空题高三校考期中)函数的最小正周期为【答案】由题意可得:函数的最小正周期.故答案为:.高三同济大学第一附属中学校考期中)已知函数,则函数的【答案】因为,所以的最小正周期为.故答案为:.高三上海市回民中学校考期中)函数的定义域为【答案】【分析】定义域满足.【解析】的定义域满足,即.故答案为:.高一校考期中)是由解析式得的定义域为,关于原点对称,且,故为奇函数,高一格致中学校考期中)函数的一个对称中心是(....【分析】求解出对称中心为,对赋值则可判断令,解得,所以函数图象的对称中心是,令,得函数图像的一个对称中心是,高一闵行中学校考期中)函数的值域是【答案】【解析】,因为所以函数的值域为.故答案为:.若,则的取值范围是【答案】【分析】通过讨论的取值范围,即可得出,进而求出的取值范围由题意,,而,则,当时,解得或;当时,解得,综上:.故答案为:.高一上海市进才中学校考期中)函数的严格增区间是【答案】【分析】根据正切型函数的图象与性质,得到,即可求解由题意,函数,令,解得,即函数的递增区间为.故答案为:.高一上海市大同中学校考期中)函数(,)的,最小正周期是,初相是【答案】【分析】根据函数的性质求出,即得函数的解析式因为函数(,)的振幅是因为函数的最小正周期是,所以.,所以.所以函数的解析式为.故答案为高一华东政法大学附属中学校考期中)函数,的最小正周期为,则实数【答案】/0.5【分析】由周期公式求出的值由题可知,,∴.故答案为:.高一上海市青浦高级中学校考期中)已知函数是偶函数,则的取值是【答案】【分析】根据余弦函数的性质求得的值令,则,所以的值为.故答案为:.高一上海市嘉定区第一中学校考期中)已知函数的最,则正整数的取值是解:因为函数的最小正周期不小于所以(),得,所以正整数的取值为高一上海市进才中学校考期中)若函数的图像关于直线对称,则【分析】根据三角函数的对称性,得到,即可求出结果因为函数的图像关于直线对称,所以,即.故答案为:.高一校考期中)若函数的最小正周期是,则【答案】【分析】根据三角函数的最小正周期公式列方程,解方程求得的值由于,依题意可知.故答案为:高一校考期中)若函数的最大值为,则的值为【答案】【分析】由三角函数辅助角公式可得,由三角函数的有界性可得函数的最大值为,再结合已知条件运算即可得解解:因为,即函数的最大值为,由已知有,即,故答案为.高一校考期中)函数(其中)为奇函数,则【答案】/函数是奇函数,则,而,所以.故答案为:高三校考期中)若将函数向右平移个单位后其图像关于轴对称,则【答案】易知函数向右平移个单位后得函数,此时函数关于轴对称,则,又,所以时,.故答案为:.函数图像上一个最高点为,相邻的一个最低点为,则【答案】【分析】由题知,,即,从而利用周期公式求出.由三角函数的图象与性质可知,,则,又,所以,.故答案为:.高三上海市建平中学校考期中)关于的不等式对任意恒成立,则实数的最大值为【答案】/令,,将不等式转化成关于的一元二次不等式,因为,所以,即,令,,有令,,要使不等式对于任意恒成立,只需满足,,函数在上单调递减,在上单调递增,所以时,即,得或,有最小值,,得,所以实数的最大值为.故答案为:.高一校考期中)若、是函数两个不同的零点,则的最【答案】【解析】、是函数的零点满足,所以,由于所以的最小值为.故答案为:.的部分图像,【答案】【分析】由图象,首先得出的值,然后根据的值运用周期公式求出值,再将最高点的坐标代入函数式中求解的值即可得出表达式【解析】由图象可知,,,,,将,又故答案为:.图像如图,则函数的解析式为【答案】【分析】根据函数图象得到,根据周期求出,再根据函数过点,代入求出,即可得解;【解析】解:由图可知,,所以,解得,所以,又函数过点,所以,所以,,解得,,又,所以,所以;故答案为:23.(2023下·上海长宁·高一上海市第三女子中学校考期中)函数的部分图像如图所示,则的单调减区间为(A.B.【答案】B【分析】由图象得出函数的周期,从而可得减区间.【解析】由题意周期是,,,所以减区间是,故选:B.24.(2023下·上海黄浦·高一上海市大同中学校考期中)设是某地区平均气温(摄氏度)关于时间(月份)的函数.下图显示的是该地区1月份至12月份的平均气温数据,函数近似满足.下列函数中,最能近似表示图中曲线的函数是()A.B.【答案】A【分析】结合题意和函数图象,结合三角函数的性质求解即可.【解析】由题意,,即.由图可知,,解得,,此时,将点代入解析式,可得,即,所以,,即,取,,所以.故选:A.25.(2021下·上海浦东新·高一华师大二附中校考期中)函数的部分图象如图,轴,当时,若不等式恒成立,则m的取值范围是()A.B.C.D.【答案】A【分析】利用函数的图象,求出对称轴方程,从而求出函数的周期,由此求得的值,再利用特殊点求出的值,得到函数的解析式,然后利用参变量分离以及正弦函数的性质,即可求出的取值范围.因为轴,所以图象的一条对称轴方程为,所以,则,所以,又,,且,所以,故,因为当时,不等式恒成立,所以,令,因为,则,所以所以的最小值为,所以,即.故选:.把函数按进行平移,得到函数,且满足,则使得最小时,【答案】【分析】根据三角函数的变换规则得到的解析式,依题意为奇函数,解得的取值,再求出的最小值,即可得解;解:把函数按进行平移得到,即,又,即为奇函数,所以,解得,又,要使最小,即取得最小,所以;故答案为:高一上海市南洋模范中学校考期中)函数的最小,则实数的最小值为【答案】由题意利用正弦函数的周期性,结合题意即可求得实数的最小值.解:函数的最小正周期不大于所有,,则实数的最小值为,故答案为:.高三校考期中)若函数在上单调递增,则的最大值【答案】【分析】由正弦函数的性质,令可得函数的单调增区间,结合题设给定递增区间求由正弦函数的性质知:在上递增,在上递减,对于,有,可得;有,可得,所以题设函数在上递增,在上递减,要使其在上单调递增,则,故的最大值为.故答案为:.已知函数,,则的最小值是【答案】的最小值等于,进而可以求出结果因为,所以,,所以,故答案为:.高三上海市七宝中学校考期中)已知函数(其中为常数,且)有且仅有个零点,则的最小值为【解析】由得,,设,则作出与的图象如图则,得,即的最小值是,故答案为:.高三校考期中)记函数的最小正周期,若,为的零点,则的最小值为【答案】【分析】首先表示出,根据求出,再根据为函数的零点,即可求出的取值,从而因为,(,)所以最小正周期,因为,又,所以,即,又为的零点,所以,解得,因为,所以当时;故答案为:高一上海市七宝中学校考期中)对于函数,有以下函数的图象是中心对称图形;任取,恒成立;函数的图象与轴有无穷多个交点,且任意两相邻交点的距离相等;函数与直线的图象有无穷多个交点,且任意两相邻交点间的距离相等:因为,:因为,所以,因此不成立,所以本结论不正确;:令,即,或,当,显然成立,当时,,显然函数的图象与轴有无穷多个交点,且任意两相邻交点④:,或,当,显然成立,当时,,,,显然任意两相邻交点间的距离相等不正确,因此本结论不正确;故答案为:①③二、解答题已知向量,,函数.求函数的单调递增区间;若,求函数的值域(1);(2).)由向量数量积的坐标表示及倍角正余弦公式、辅助角公式得,)由题设,令,则,所以函数的单调递增区间为.)由,则,故,可得,所以的值域为.34.(2023上·上海静安·高三上海市回民中学校考期中)已知函数.(1)求函数的最小正周期及最大值;(2)令,①判断函数的奇偶性,并说明理由;②若,求函数的严格增区间.【答案】(1),最大值为(2)①偶函数,理由见解析;②【分析】(1)根据二倍角公式化简的表达式,即可根据三角函数的性质求解,(2)利用奇偶性的定义即可判定奇偶性,根据整体法即可求解单调区间.【解析】(1),,当时,即时,(2),是偶函数,理由如下:由于的定义域为,关于原点对称,且,所以是偶函数;令,所以,取,则单调递增区间为,当,则单调递增区间为,由于,所以单调递增区间为的严格增区间为35.(2023上·上海黄浦·高三上海市向明中学校考期中)已知函数.(1)求函数的最小正周期和单调区间;(2)若关于的方程在上有两个不同的实数解,求实数的取值范围.【答案】(1)最小正周期;单调递增区间为;单调递减区间为.(2)【分析】(1)利用降幂公式和辅助角公式化简函数解析式,用周期公式求周期,整体代入法求函数单调区间;(2)由区间内函数的单调性和函数值的变化范围求解实数的取值范围.【解析】(1),则函数的最小正周期;令,解得,可得函数的单调递增区间为·令,解得,可得因数的单调递减区间为;(2)由(1)可知,时,在上单调递增,在上单调递减,当,,由增大到1,当,,由1减小到,若关于的方程在上有两个不同的实数解,则实数的取值范围为36.(2023下·上海青浦·高一上海市青浦高级中学校考期中)已知函数.(1)求的单调递增区间;(2)若对任意都有,求实数t的取值范围.【答案】(1)单增区间为(2)【分析】(1)利用倍角正余弦公式、辅助角公式化简函数式,由整体法求增区间;(2)由题设知,结合给定闭区间列不等式求参数范围.【解析】(1)由,令,则,所以的单调递增区间为.(2)由,则,故,又,则,所以,即.37.(2023下·上海闵行·高一校考期中)已知函数(1)当时,求函数的最大值,并求出取得最大值时所有的值;(2)若为偶函数,设,若不等式在上恒成立,求实数m 的取值范围;(3)若过点,设,若对任意的,,都有,求实数a 的取值范围.【答案】(1)1,(2)(3)【分析】(1)由题意可得,由正弦函数的性质求解即可;(2)由题意可得,,将问题转化为,且在上恒成立,结合正弦函数的性质即可求解;(3)由题意可得将问题转化为结合正弦函数的性质及二次函数性质求解.【解析】(1)当时,,所以当,即时,所以,此时;(2)因为为偶函数,所以,所以,所以,又因为在上恒成立,即在上恒成立,所以在上恒成立,所以,且在上恒成立,因为,所以,所以,解得所以m的取值范围为;(3)因为过点,所以所以,又因为,所以,所以,又因为对任意的,,都有成立,所以,因为,所以,设,则有图像是开口向下,对称轴为的抛物线,当时,在上单调递增,所以,所以,解得所以;当时,在上单调递减,所以,所以,解得所以;当时,,所以,解得所以,综上所述:所以实数a 的取值范围为【点睛】关键点点睛:关键点是把恒成立转化为结合正弦函数的性质及二次函数性质求解即可.一、填空题由上图可知:两个图象交点个数为4个,即函数()()lg 1,1sin ,0x x f x x x ⎧->⎪=⎨≤⎪⎩,则y =故答案为:4.2.(2023上·上海浦东新·高三上海市洋泾中学校考期中)已知关于6.(2023下·上海闵行·高一上海市文来中学校考期中)已知()[)[)π4sin ,0,4428,4,8x x f x x x ⎧∈⎪=⎨⎪-∈⎩,若函数(g 实数a 的取值范围为.因为[2()()()1g x f x af x a =+--=故()0g x =时,即()1f x =或()f x 则()g x 在[8,8]x ∈-上恰有八个不同的零点,即等价于同的交点,由图象可知,1y =和()f x 的图象有则(1)y a =-+和()f x 的图象需有2故95a -<<-,则实数a 的取值范围为(9,5)--,故答案为:(9,5)--【点睛】方法点睛:根据函数的周期以及解析式,可作出函数的图象,将零点问题转化为函数图象的交点问题,数形结合,列出不等式,即可求解二、单选题7.(2023上·上海松江·高三校考期中)已知函数的是()A .()f x 的最大值为2B .()f x 在[]0,π上有4个零点。
高一数学两角和与差的三角函数试题答案及解析
高一数学两角和与差的三角函数试题答案及解析1.的值为_____.【答案】【解析】【考点】1.两角和的余弦公式;2.特殊角的三角函数值.2.计算 = .【答案】【解析】.【考点】两角差的正弦公式.3.;【答案】.【解析】把原式提取即,然后利用特殊角的三角函数值及两角和的正弦函数公式化简得原式.【考点】两角和与差的正弦函数.4.已知,,分别为三个内角,,的对边, =sin cos.(1)求;(2)若=,的面积为,求,.【答案】(1) ;(2)【解析】(1) 根据正弦定理可将变形为。
因为角三角形的内角,所以,可将上式变形为。
用化一公式即两角和差公式的逆用将上式左边化简可得,根据整体角的范围可得的值,即可得角的值。
(2)由三角形面积可得。
再结合余弦定理可得的值,解方程组可得的值。
解 (1)由=sin cos及正弦定理得sin sin+cos sin-sin=0,由sin≠0,所以sin(+)=,又0<<π,+故=.(2)△ABC的面积=sin=,故=4.由余弦定理知2=2+2-2cos,得代入=,=4解得,故【考点】1正弦定理;2三角形面积公式;3余弦定理。
5.设的值等于____________.【答案】【解析】由题可知.【考点】两角差的正切公式.6.已知,为第三象限角.(1)求的值;(2)求的值.【答案】(1),; (2),.【解析】(1)由同角间的基本关系式与的范围可得;(2)由两角和的正弦和倍角的正切公式展开可得.试题解析:解:(1),为第三象限角,; 3分; 6分由(1)得, 9分. 12分【考点】同角间的基本关系,两角和的正弦,倍角公式的正切公式.7.在中,内角A,B,C所对的边分别为a,b,c,且.(1)求A;(2)设,为的面积,求+的最大值,并指出此时B的值.【答案】(1)(2)当时,+取得最大值3.【解析】(1)由结合条件,易求得可求出A的值;(2)由,由正弦定理,得出代入+化简可知时取得最大值3.试题解析:(1)由余弦定理,得,又∵,∴A=. (5分)(2)由(1)得,又由正弦定理及,得,∴+=,∴当时,+取得最大值3. (13分)【考点】主要考查正弦定理,余弦定理,两角和的余弦公式.8.已知向量,,且(1)求及(2)若-的最小值是,求的值。
高一数学任意角和弧度制和任意角的三角函数试题答案及解析
高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.如果角的终边经过点,则()A.B.C.D.【答案】A【解析】直接利用三角函数的定义,求出.因为角θ的终边经过点,由三角函数的定义可知,,故选A.【考点】任意角的三角函数的定义.2.已知扇形半径为8, 弧长为12, 则中心角为弧度, 扇形面积是【答案】.【解析】圆心角;由扇形的面积公式得.【考点】扇形的面积公式及圆心角的计算.3.若点P位于第三象限,则角是第象限的角.【答案】二【解析】点P位于第三象限,则即,所以角是第二象限的角,答案为二.【考点】三角函数的符号4.半径为,中心角为所对的弧长是().A.B.C.D.【答案】D.【解析】弧长cm,故选D.【考点】弧长公式:(其中的单位是弧度).5.已知cosθ•tanθ<0,那么角θ是().A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】,,是第二象限角或第三象限角.【考点】象限角的符号.6.已知,则的集合为()A.B.C.D.【答案】D【解析】由知,在第一或第三象限,因为,所以.【考点】简单三角方程7.与角-终边相同的角是()A.B.C.D.【答案】C【解析】与−终边相同的角为2kπ−,k∈z,当 k=-1时,此角等于,故选:C.【考点】终边相同的角的定义和表示方法.8.如图,长为4米的直竹竿AB两端分别在水平地面和墙上(地面与墙面垂直),T为AB中点,,当竹竿滑动到A1B1位置时,,竹竿在滑动时中点T也沿着某种轨迹运动到T1点,则T运动的路程是_________米.【答案】.【解析】如图可知,点运动的轨迹为一段圆弧,由题意已知:,,∴,∴点运动的路程为.【考点】弧度制有关公式的运用.9.已知角的终边上有一点(1,2),则的值为( ).A.B.C.D.–2【答案】A【解析】角的终边过,,.【考点】任意角三角函数的定义.10.若角的终边上有一点,则的值是()A.B.C.D.【答案】B.【解析】先利用诱导公式化简,根据三角函数的定义知,即,故选B.【考点】运用诱导公式化简求值;任意角的三角函数的定义.11. 60°=_________.(化成弧度)【答案】【解析】根据,可得.【考点】角度与弧度的互化.12.与终边相同的最小正角是.【答案】【解析】因为与终边相同的角是所以当时,与终边相同的最小正角是【考点】与终边相同的角13.比较的大小 .【答案】【解析】,在上为增函数,可知,,可得.【考点】正弦函数的性质,特殊角的三角函数.14.已知扇形的周长为30,当它的半径R和圆心角各取何值时,扇形的面积S最大?并求出扇形面积的最大值.【答案】当扇形半径为,圆心角为2时,扇形有最大面积.【解析】根据条件扇形的周长为30可以得到l+2R=30,从而扇形的面积S=lR=(30-2R)R=,即把S表示为R的二次函数,根据二次函数求最值的方法,可以进一步变形为S=-(R-)2+,从而得到当扇形半径为,圆心角为2时,扇形有最大面积.∵扇形的周长为30,∴l+2R=30,l=30-2R,∴S=lR=(30-2R)R==-(R-)2+.....5分∴当R=时,扇形有最大面积,此时l=30-2R=15,==2........8分答:当扇形半径为,圆心角为2时,扇形有最大面积.....10分.【考点】1、弧度制下扇形相关公式;2、二次函数求最值.15.若点P(Cos,Sin)在直线y=-2x上,则=( )A.B.C.D.【答案】B【解析】因为点在直线上,所以,则.【考点】任意角的三角函数的定义;同角三角函数间的基本关系.16.已知是第一象限的角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【答案】D【解析】∵α的取值范围(k∈Z)∴的取值范围是(k∈Z),分类讨论①当k="2n+1" (其中n∈Z)时的取值范围是即属于第三象限角.②当k=2n(其中n∈Z)时的取值范围是即属于第一象限角.故答案为:D.【考点】象限角、轴线角.17.设,,,则( )A.B.C.D.【答案】D【解析】因为,所以<;因为,所以>,<,,所以b<a<c.故答案为:D.【考点】三角函数值.18.扇形的半径是,圆心角是60°,则该扇形的面积为 .【答案】π【解析】扇形的面积公式为.【考点】扇形的弧度制面积公式.19.的值()A.小于B.大于C.等于D.不存在【答案】A【解析】因为,所以,从而,选A.【考点】任意角的三角函数.20.计算:= ;【答案】1【解析】原式=【考点】三角函数值的计算21.已知扇形的圆心角为2rad,扇形的周长为8cm,则扇形的面积为___________cm2。
2023-2024学年高一上数学必修一:三角函数的应用(附答案解析)
第1页共8页2023-2024学年高中数学必修一:三角函数的应用
一、选择题(每小题5分,共40分)
1.为了得到函数y =sin(x +1)的图象,只需把函数y =sin x 的图象上所有的点(A )
A .向左平行移动1个单位长度
B .向右平行移动1个单位长度
C .向左平行移动π个单位长度
D .向右平行移动π个单位长度解析:由图象平移的规律“左加右减”,可知选A.
2.要得到函数y =
sin x
y =sin4x 的图
象(B )A .向左平移π12
个单位长度B .向右平移π12个单位长度C .向左平移π3个单位长度D .向右平移π3
个单位长度解析:y =x
sin 4
y =sin4x 的图象
向右平移π12
个单位长度.故选B.
3.要得到函数g (x )=
tan x 只需将函数f (x )=tan2x 的图象(C )
A .向右平移π3个单位长度
B .向左平移π3
个单位长度C .向右平移π6个单位长度D .向左平移π6
个单位长度
解析:g (x )=
x
tan 2
f (x )=tan2x 的图象。
高一数学三角函数经典题目(含答案)
16、(1)若 ,求 ;(2)若,求的值.(3)若1tan 2α=,且04πα<<,求函数22cos ()cos sin sin f ααααα=-的最小值17(2006年安徽卷)已知310,tan cot 43παπαα<<+=- (Ⅰ)求tan α的值;(Ⅱ)求225sin 8sincos11cos 822222sin 2ααααπα++-⎛⎫- ⎪⎝⎭的值。
1.若ααα则且,0cos 02sin <>是 ( )A .第二象限角B .第一或第三象限角C .第三象限角D .第二或第三象限角2.已知0tan .sin >θθ,那么角θ是 ( )A .第一或第二象限B .第二或第三象限C .第三或第四象限D .第一或第四象限 3.(2002春北京、安徽,5)若角α满足条件sin2α<0,cos α-sin α<0,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限6.(2002北京,11)已知f (x )是定义在(0,3)上的函数,f (x )的图象如图4—1所示,那么不等式f (x )cos x <0的解集是( )A.(0,1)∪(2,3)B.(1,2π)∪(2π,3)C.(0,1)∪(2π,3) D.(0,1)∪(1,3)7.(2002北京理,3)下列四个函数中,以π为最小正周期,且在区间(2π,π)上为减函数的是( )A.y =cos 2xB.y =2|sin x |图4—1C.y =(31)cos xD.y =-cot x8.(2002上海,15)函数y =x +sin|x |,x ∈[-π,π]的大致图象是( )9.(2001春季北京、安徽,8)若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( )A.第一象限B.第二象限C.第三象限D.第四象限10.已知函数()sin (0)f x x ωωπ⎛⎫=+> ⎪3⎝⎭的最小正周期为π,则该函数的图象( )A .关于点0π⎛⎫ ⎪3⎝⎭,对称 B .关于直线x π=4对称C .关于点0π⎛⎫ ⎪4⎝⎭,对称 D .关于直线x π=3对称 14.函数y=2sin(2x -4π)的一个单调递减区间是 ( )A .]87,83[ππB .]83,8[ππ-C .]45,43[ππD .]4,4[ππ- 15.函数)||,0,0)(sin(πϕωϕω<>>+=A x A y 的图象如右,则函数的解析式是( ) A .)652sin(2π-=x yB .)652sin(2π+=x y C .)62sin(2π-=x yD .)62sin(2π+=x y16.函数sin()y A x ω=+∅的部分图像如图所示,则其解析式可以是 ( )A .3sin(2)3y x π=+B .3sin(2)3y x π=-+C .13sin()212y x π=+D .13sin()212y x π=-+17.函数y =sin (2x +3π)的图象可由函数y =sin2x 的图象经过平移而得到,这一平移过程可以是( )A .向左平移6π B .向右平移6π C .向左平移12πD .向右平移12π18.将函数))(6sin(R x x y ∈+=π的图象上所有的点向左平行移动4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为( ) A .))(1252sin(R x x y ∈+=πB .))(1252sin(R x x y ∈+=πC .))(122sin(R x x y ∈-=πD .))(2452sin(R x x y ∈+=π14.(蒲中)已知函数f(x)=-sin 2x+sinx+a ,(1)当f(x)=0有实数解时,求a 的取值范围;(2)若x ∈R ,有1≤f(x)≤417,求a 的取值范围。
高一数学三角函数综合试题答案及解析
高一数学三角函数综合试题答案及解析1.如图,已知角α的终边在第二象限,且与单位圆交于点P(m,).(Ⅰ)求实数m的值;(Ⅱ)求的值.【答案】(Ⅰ) m=﹣;(Ⅱ).【解析】(Ⅰ)由于该圆是单位圆,=1,又角α的终边在第二象限,所以m<0,联立,可得到结果m=﹣;(Ⅱ)由m=﹣得sinα=,cosα=﹣,对式子化简,=得将数值代入,化简可得到答案.试题解析:(Ⅰ)根据题意得:=1,且m<0,解得:m=﹣;(5分)(Ⅱ)∵sinα=,cosα=﹣,∴原式= === .(10分)【考点】三角函数化简.2.(本小题满分12分)已知.(1)若,求的取值构成的集合.(2)若,求的值.【答案】(1) ;(2)【解析】(1) 先化简函数f(x),再解即可.(2) 由,即,然后代入即可.(1)由已知可得 (3分)因为,即,有 (5分).所以取值的集合为 (6分)(2)因为, (9分)所以 (12分)【考点】解三角方程;诱导公式,三角函数式的化简.3.已知,(1)若,且∥(),求x的值;(2)若,求实数的取值范围.【答案】(1) (2) .【解析】(1)先将向量化为代数式,即,;(2)由已知先写出,的坐标,再由则有:当时等式不成立;将写成关于的函数,即,再求函数的值域即是的取值范围为(或解)用表示,即,又因为,可解得的取值范围为.试题解析:(1),,,(2),若则有:当时等式不成立;解得:的取值范围为【考点】本题考查向量的坐标运算;向量共线的;利用三角函数的有界性求参数.4.函数y=++的值域是()A.{1}B.{1,3}C.{-1}D.{-1,3}【答案】D【解析】由题意知角X的终边不在坐标轴上。
当X为第一象限角时,当X为第二象限角时,当X为第三象限角时,当X为第四象限角时。
所以或【考点】三角函数正负符号问题5.已知向量m=(sinA,cosA),n=(,-1),m·n=1,且A为锐角.(1)求角A的大小;(2)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.【答案】(1)A=.(2)函数f(x)的值域是.【解析】(1)由题意得m·n=sinA-cosA=1,2sin=1,sin=,由A为锐角得,A-=,∴A=.(2)由(1)知cosA=,所以f(x)=cos2x+2sinx=1-2sin2x+2sinx=-22+.因为x∈R,所以sinx∈[-1,1],因此,当sinx=时,f(x)有最大值,当sinx=-1时,f(x)有最小值-3,所以所求函数f(x)的值域是.【考点】平面向量的坐标运算,和差倍半的三角函数,三角函数的图象和性质,二次函数的图象和性质。
高中数学三角函数题目及答案
高中数学三角函数题目及答案一、填空题1.$\\sin 30° = \\underline{\\hspace{1cm}}$2.$\\cos 60° = \\underline{\\hspace{1cm}}$3.$\\tan 45° = \\underline{\\hspace{1cm}}$二、选择题1.已知直角三角形的斜边长为10,其中一个锐角的正弦值等于$\\frac{1}{2}$,则此角的度数是: A. 30° B. 45°C. 60°D. 90°2.若$\\sin \\theta = \\frac{3}{5}$,$\\theta$为锐角,则$\\cos \\theta =$ A. $\\frac{4}{5}$ B. $\\frac{3}{4}$ C. $\\frac{3}{5}$ D. $\\frac{5}{4}$3.若$\\tan \\alpha = \\sqrt{3}$,$\\alpha$为锐角,则$\\cot \\alpha =$ A. −1 B. $\\frac{\\sqrt{3}}{2}$ C. $-\\sqrt{3}$ D. $\\frac{1}{\\sqrt{3}}$三、计算题1.求解$\\sin 45° \\cdot \\cos 45° - \\sin 30° \\cdot\\cos 60°$2.求解$\\frac{\\sin^2 30° + \\cos^2 30°}{\\sin 60°\\cos 30°}$四、简答题1.说明余切的定义及其在三角函数中的关系。
2.如何利用正弦定理和余弦定理解决三角形的不全等问题?五、综合题已知直角三角形ABC中,$\\angle B = 90°$,AA=6,AA=8,求角A的大小。
六、答案1.$\\sin 30° = \\frac{1}{2}$ $\\cos 60° =\\frac{1}{2}$ $\\tan 45° = 1$1. C. 60°2. A. $\\frac{4}{5}$3. C. $-\\sqrt{3}$1.$\\sin 45° \\cdot \\cos 45° - \\sin 30° \\cdot\\cos 60° = \\frac{1}{2}$2.$\\frac{\\sin^2 30° + \\cos^2 30°}{\\sin 60° \\cos30°} = 1$1.余切的定义为正切的倒数,即$\\cot \\theta =\\frac{1}{\\tan \\theta}$。
高一数学三角函数试题答案及解析
高一数学三角函数试题答案及解析1.已知第二象限的角的终边与单位圆的交点,则__________.【答案】【解析】依题意有,故.2.若是方程的两根,则的值为()A. B.A.【答案】B【解析】由题设,所以可得,解之得,由于二次方程的判别式,所以(舍去),应选答案B。
点睛:解答本题时充分借助题设条件及同角三角函数之间的平方关系建立了关于参数的方程,即,当求得时,要运用二次方程的判别式进行检验,最终获得答案。
3.已知扇形的半径为,圆心角为弧度,则该扇形的面积为__________.【答案】4【解析】由于弧长,所以,应填答案。
4.已知,,则()A.B.C.D.【答案】D【解析】由题意可得,即,则,所以,即,也即,所以,应选答案D。
点睛:解答本题的关键是借助题设中的条件获得,进而得到,求得,从而求出使得问题获解。
5.已知,且向量,,则等于()A.B.C.D.【答案】D【解析】由题设可得,即,故,应选答案D。
6.已知一个扇形的半径为,圆心角为,求这个扇形的面积。
【答案】【解析】由试题解析:,……………4分……………8分7.已知函数.(1)当时,求函数的值域;(2)已知,函数,若函数在区间上是增函数,求的最大值.【答案】(1);(2).【解析】(1)借助题设条件运用正弦函数的有界性求解;(2)借助正弦函数的单调性建立不等式组求解.试题解析:(1).∵,∴,∴,∴函数的值域为(2),当,∵在上是增函数,且,∴,即,化简得,∵,∴,∴,解得,因此,的最大值为1【考点】正弦函数的图象和性质等有关知识的综合运用.【易错点晴】三角函数的图象和性质是高中数学中重要内容,也高考和各级各类考试的重要内容和考点.本题以三角函数的解析式为背景设置了一道综合性问题.第一问的求解过程中,先将函数进行化简为再求其值域;第二问的求解过程中,充分借助函数的单调性,建立不等式组求得的最大值为,进而使得问题获解.8.已知函数,在曲线与直线的交点中,若相邻交点距离的最小值为,则的最小正周期为()A.B.C.D.【答案】C【解析】因为原来函数即为,令,则,令,又因为若相邻交点距离的最小值为,则以正弦函数为研究对象,取符合要求的两角:,对应有,此时,所以.【考点】辅助角公式,正弦函数的图像,三角函数的周期公式.9. (08·江西)函数y=tan x+sin x-|tan x-sin x|在区间(,)内的图象大致是()【答案】D【解析】∵<x≤π时,sin x≥0,tan x≤0,∴y=tan x+sin x-(sin x-tan x)=2tan x,π<x<时,sin x<0,tan x>0,∴y=tan x+sin x-(tan x-sin x)=2sin x,故选D.10.函数y=1-sin x,x∈[0,2π]的大致图象是()【答案】B【解析】因为函数y=1-sin x,x∈[0,2π],那么当x=0时,函数值为1,排除,C,D,然后当x=2π时,则有函数值为1,排除A,选B11.函数y=cos x+|cos x|x∈[0,2π]的大致图象为()【答案】D【解析】y=cos x+|cos x|=,故选D.12.设函数的最小正周期为,且,则()A.在单调递减B.在单调递减C.在单调递增D.在单调递增【答案】A【解析】由得,,又,则,即.当时,,递减,故选A.【考点】函数的解析式,函数的奇偶性,单调性.13.已知当时,函数取最大值,则函数图象的一条对称轴为A.B.C.D.【答案】A【解析】略14.函数的部分图象如图,则、可以取的一组值是()A.B.C.D.【答案】C【解析】由图象有,,当,所以,则时符合,选C.【考点】由三角函数图象求解析式.【方法点晴】本题主要考查由三角函数的图象求解析式, 属于中档题.确定函数(,)的解析式的步骤和方法:(1)求,确定函数的最大值和最小值,则,;(2)求,确定函数的最小正周期, ;(3)求,将图象上的特殊点(一般是最高点或最低点),此时已知.本题中,先求周期,再求,将最高点坐标代入求出. 15.(2分)圆弧长度等于圆内接正三角形的边长,则其圆心角弧度数为()A.B.C.D.2【答案】C【解析】等边三角形ABC是半径为r的圆O的内接三角形,则线AB所对的圆心角∠AOB=,求出AB的长度(用r表示),就是弧长,再由弧长公式求圆心角弧度数.解:如图,等边三角形ABC是半径为r的圆O的内接三角形,则线AB所对的圆心角∠AOB=,作OM⊥AB,垂足为M,在 rt△AOM中,AO=r,∠AOM=,∴AM=r,AB=r,∴l= r,由弧长公式l=|α|r,得,α===.故选 C.点评:本题考查圆心角的弧度数的意义,以及弧长公式的应用,体现了数形结合的数学思想.16.(5分)已知θ∈且sin θ+cos θ=a,其中a∈(0,1),则关于tan θ的值,以下四个答案中,可能正确的是(填序号).①﹣3 ②3或③﹣④﹣3或﹣【答案】③【解析】在单位圆中,由三角函数线可推断出a的范围,进而判断出θ的范围,进而根据sinθ+cosθ>0,进一步推断出θ的范围,则tanθ的范围可知.解:在单位圆中,由三角函数线可知a<1,∴θ不在第一象限,θ∈,又∵a>0,∴sinθ+cosθ>0,∴θ∈,∴tanθ∈(﹣1,0).故答案为:③点评:本题主要考查了三角函数线,三角函数的值域等问题.考查了学生综合分析问题和解决问题的能力.17.有小于360°的正角,这个角的5倍角的终边与该角的终边重合,这个角的大小是()A.90°B.180°C.270°D.90°,180°或270°【答案】D【解析】利用终边相同的角,通过k的取值求出角的大小.解:设这个角为α,则5α=k•360°+α,k∈Z,α=k•90°,又∵0°<α<360°,∴α=90°,180°或270°.故选:D点评:本题考查终边相同角的表示方法以及求解,基本知识的考查.18.已知函数.(1)求的最小正周期;(2)求在区间上的最大值和最小值。
完整版)高中三角函数测试题及答案
完整版)高中三角函数测试题及答案高一数学必修4第一章三角函数单元测试班级:__________ 姓名:__________ 座号:__________评分:__________一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
(48分)1、已知$A=\{\text{第一象限角}\}$,$B=\{\text{锐角}\}$,$C=\{\text{小于90°的角}\}$,那么$A$、$B$、$C$ 关系是()A.$B=A\cap C$B.$B\cup C=C$C.$A\cap D$D.$A=B=C$2、将分针拨慢5分钟,则分钟转过的弧度数是A。
$\frac{\pi}{3}\sin\alpha-\frac{2}{3}\cos\alpha$ B。
$-\frac{\pi}{3}$C。
$\frac{\pi}{6}$D。
$-\frac{\pi}{6}$3、已知 $\tan\alpha=-5$,那么 $\tan\alpha$ 的值为A。
2B。
$\frac{1}{6164}$C。
$-\frac{1}{6164}$D。
$-\frac{2}{3}$4、已知角 $\alpha$ 的余弦线是单位长度的有向线段,那么角 $\alpha$ 的终边()A。
在 $x$ 轴上B。
在直线 $y=x$ 上C。
在 $y$ 轴上D。
在直线 $y=x$ 或 $y=-x$ 上5、若 $f(\cos x)=\cos 2x$,则 $f(\sin 15^\circ)$ 等于()A。
$-\frac{2}{3}$B。
$\frac{3}{2}$C。
$\frac{1}{2}$D。
$-\frac{1}{2}$6、要得到 $y=3\sin(2x+\frac{\pi}{4})$ 的图象只需将$y=3\sin 2x$ 的图象A。
向左平移 $\frac{\pi}{4}$ 个单位B。
向右平移 $\frac{\pi}{4}$ 个单位C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16、(1)若 ,求 ;
(2)若
,求
的值.
(3)若1tan 2α=,且04
π
α<<,求函数22cos ()cos sin sin f ααααα=-的最小值
17(2006年安徽卷)已知
310
,tan cot 43
παπαα<<+=- (Ⅰ)求tan α的值;
(Ⅱ)求
2
2
5sin 8sin
cos
11cos 8
2
2
2
2
2sin 2α
α
α
α
πα++-⎛
⎫
- ⎪
⎝
⎭的值。
1.若ααα则且,0cos 02sin <>是 ( )
A .第二象限角
B .第一或第三象限角
C .第三象限角
D .第二或第三象限角
2.已知0tan .sin >θθ,那么角θ是 ( )
A .第一或第二象限
B .第二或第三象限
C .第三或第四象限
D .第一或第四象限 3.(2002春北京、安徽,5)若角α满足条件sin2α<0,cos α-sin α<0,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.(2002北京,11)已知f (x )是定义在(0,3)上的函数,f (x )的图象如图4—1所示,那么不等式f (x )cos x <0的解集是( )
A.(0,1)∪(2,3)
B.(1,
2
π
)∪(
2
π,3)
C.(0,1)∪(
2
π,3) D.(0,1)∪(1,3)
7.(2002北京理,3)下列四个函数中,以π为最小正周期,且在区间(2
π,π)上
为减函数的是( )
A.y =cos 2
x
B.y =2|sin x |
图4—1
C.y =(
3
1)cos x
D.y =-cot x
8.(2002上海,15)函数y =x +sin|x |,x ∈[-π,π]的大致图象是( )
9.(2001春季北京、安徽,8)若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
10.已知函数()sin (0)f x x ωωπ⎛⎫
=+
> ⎪3⎝⎭
的最小正周期为π,则该函数的图象( )
A .关于点0π⎛⎫ ⎪3⎝⎭
,
对称 B .关于直线x π
=
4对称
C .关于点0π⎛⎫ ⎪4
⎝⎭
,
对称 D .关于直线x π
=
3
对称 14.函数y=2sin(2x -4
π
)的一个单调递减区间是 ( )
A .]87,83[ππ
B .]83,8[ππ-
C .]45,43[ππ
D .]4
,4[ππ- 15.函数)||,0,0)(sin(πϕωϕω<>>+=A x A y 的图象如右,则函数的解析式是( ) A .)6
52sin(2π-=x y
B .)6
52sin(2π+=x y C .)6
2sin(2π-
=x y
D .)6
2sin(2π
+
=x y
16.函数sin()y A x ω=+∅的部分图像如图所示,则其解析式可以是 ( )
A .3sin(2)3
y x π
=+
B .
3sin(2)3y x π
=-+
C .13sin()212y x π
=+
D .13sin()212
y x π
=-+
17.函数y =sin (2x +3
π
)的图象可由函数y =sin2x 的图象经过平移而得到,这一平移过程可以是
( )
A .向左平移
6π B .向右平移
6π C .向左平移12π
D .向右平移12
π
18.将函数))(6
sin(R x x y ∈+
=π
的图象上所有的点向左平行移动
4
π
个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为( ) A .))(12
52sin(R x x y ∈+=π
B .))(1252sin(R x x y ∈+
=π
C .))(12
2sin(
R x x y ∈-=π
D .))(24
52sin(R x x y ∈+=π
14.(蒲中)已知函数f(x)=-sin 2
x+sinx+a ,(1)当f(x)=0有实数解时,求a 的取值范围;(2)若x ∈R ,有1≤f(x)≤4
17
,求a 的取值范围。
1.(石庄中学)已知定义在区间[-p ,π3
2
] 上的函数y=f(x)的图象关于直线x= -6
π
对称,当x Î[-6
π
,π32]时,函数f(x)=Asin(wx+j)(A>0, w>0,-2π<j<2π),其图象如图所示。
(1)求函数y=f(x)在[-p ,π3
2
]的表达式; (2)求方程f(x)=2
2
的解。
16、(1)tan α=2; (2)
=
4
5
; (3) 4
17 解:(Ⅰ)由10tan cot 3
αα+=-
得2
3tan 10tan 30αα++=,即1tan 3tan 3
αα=-=-或,又34παπ<<,所以1
tan 3α=-为所求。
(Ⅱ)225sin 8sin cos 11cos 822222sin 2ααααπα++-⎛⎫- ⎪⎝
⎭=1-cos 1+cos 54sin 118
222cos αααα++--
=55cos 8sin 1111cos 1622cos αααα-+++--=8sin 6cos 8tan 6
22cos 22
αααα++=--=526-。
C D 3答案:B
解析:sin2α=2sin αcos α<0 ∴sin αcos α<0 即sin α与cos α异号,∴α在二、四象限, 又cos α-sin α<0 ∴cos α<sin α
由图4—5,满足题意的角α应在第二象限 6.答案:C 7.答案:B
解析:A 项:y =cos 2
x =22cos 1x +,x =π,但在区间(2
π
,π)上为增函数.
B 项:作其图象4—8,由图象可得T =π且在区间(2
π
,π)上
为减函数.
C 项:函数y =cos x 在(
2
π,π)区间上为减函数,数y =(
31)x 为减函数.因此y =(3
1)cos x
在(
2
π
,π)区间上为增函数.
图4—5
图4—8
D 项:函数y =-cot x 在区间(
2
π,π)上为增函数.
8.答案:C
解析:由奇偶性定义可知函数y =x +sin|x |,x ∈[-π,π]为非奇非偶函数. 选项A 、D 为奇函数,B 为偶函数,C 为非奇非偶函数. 9.答案:B
解析:∵A 、B 是锐角三角形的两个内角,∴A +B >90°, ∴B >90°-A ,∴cos B <sin A ,sin B >cos A ,故选B. 10 A 14A 15 D 16 B 17 A 18B
14解:(1)f(x)=0,即a=sin 2
x -sinx=(sinx -21)2-4
1
∴当sinx=21时,a min =4
1
,当sinx=-1时,a max =2, ∴a ∈[4
1
-
,2]为所求 (2)由1≤f(x)≤47得⎪⎩⎪⎨
⎧+-≥+
-≤1
sin sin 417sin sin 2
2
x x a x x a ∵ u 1=sin 2
x -sinx+
2)2
1
(sin 417-=x +4≥4 u 2=sin 2
x -sinx+1=4
3)21(sin 2+-x ≤3
∴ 3≤a ≤4
点评:本题的易错点是盲目运用“△”判别式。
解:(1)由图象知A=1,T=4(6
32π
π-)=2p ,w=12=T π 在x Î[-6π,3
2π]时 将(6
π
,1)代入f(x)得
f(
6π)=sin(6
π
+j)=1 ∵-
2π<j<2π
∴j=
3
π ∴在[-
6π,3
2π]时
f(x)=sin(x+
3
π) ∴y=f(x)关于直线x=-6
π
对称
∴在[-p ,-6
π
]时 f(x)=-sinx
综上f(x)=⎪⎩⎪⎨⎧
-+x x sin )
3sin(π
]6
,[]32,6[πππ
π--∈-∈x x (2)f(x)=
2
2
在区间[-6π,3
2π]内 可得x 1=
125x x 2= -12
π ∵y=f(x)关于x= - 6
π
对称 ∴x 3=-
4π x 4= -4
3π
∴f(x)=22的解为x Î{-43π,-4π,-12π,12
5π
}
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。