因式分解(1)
初二数学-因式分解 (1)
二、本单元知识点
• 因式分解的步骤及要求: 因式分解的步骤及要求: 步骤及要求 •(1)常常先提公因式再用公式法进行因式分解 常常先提公因式再用公式法进行因式分解. 常常先提公因式再用公式法进行因式分解 •(2)因式分解一定要进行到每一个因式不能再分解为止 因式分解一定要进行到每一个因式不能再分解为止. 因式分解一定要进行到每一个因式不能再分解为止 •(3)多项式第一项为负系数 常先提出负号使分解后的第 多项式第一项为负系数,常先提出负号使分解后的第 多项式第一项为负系数 一项系数为正. 一项系数为正 •(4)多项式因式分解结果中常用小括号出现 因式中不含 多项式因式分解结果中常用小括号出现,因式中不含 多项式因式分解结果中常用小括号出现 中括号. 中括号 •我们用四字口诀概括为 方法先后 分解彻底 符号处理 我们用四字口诀概括为:方法先后 分解彻底,符号处理 我们用四字口诀概括为 方法先后,分解彻底 符号处理, 书写规范. 书写规范
马上开始
请同学们准备好笔和纸, 请同学们准备好笔和纸,认真听讲
直播课堂 因式分解
主讲老师:邬风云 主讲老师 邬风云
邬风云
中学高级教师,毕业于东北师范大学数学 中学高级教师, 曾在吉林市524厂子弟中学、 524厂子弟中学 系,曾在吉林市524厂子弟中学、山东省信 息技术学院、 息技术学院、北京市十一学校担任数学教 连续多年带毕业班,中考成绩优异. 师,连续多年带毕业班,中考成绩优异.
三、典型例题 ——基础知识题
例1.下列各式从左到右的变形中,是因式分解 1.下列各式从左到右的变形中, 下列各式从左到右的变形中 的是( 的是( D ) A. x − 4 + 2 x = ( x + 2)( x − 2) + 2 x 2 B. ( x + 1)( x − 2) = x − x − 2 C.2a (b + c) = 2ab + 2ac D. m 2 − n 2 = (m + n)(m − n)
第二章 2.1.3 因式分解 (1)新
3ab(a + b) − a − b
7c(x − y) − x + y
3
提取公因式法: 提取公因式法: 找准公因式,一次要提尽; 找准公因式,一次要提尽; 全家都搬走,留 1 把门守; 全家都搬走, 把门守; 提负要变号,变形看奇偶。 提负要变号,变形看奇偶。
例2
请把下列各式因式分解
(1)16a 2 − 1
2
(2) 3a + 6a = 3a (a + 2) (3) x 2 − 4 + 3x = ( x + 2)( x − 2) + 3 x (4) x 2 − 4 + 3x = ( x + 4)( x − 1) (5) x − 4 = ( x + 2)( x − 2)
2
(6) x − 4 = ( x + 2)( x − 2) 1 1 2 2 (7 ) x + 2 + 2 = ( x + ) x x
合作学习
把下列各式因式分解
(1)a 4 − 81
(2)4 x y − 9 xy
3 2 3
(3)3ax + 6axy + 3ay
2
注意: 注意:
(1)因式分解要彻底,直到不能分解为止。 因式分解要彻底,直到不能分解为止。 彻底 (2)通常先考虑提取公因式法,然后再考虑公式法。 通常先考虑提取公因式法,然后再考虑公式法。 提取公因式法
2ab
(3a − 2a2b2 −1 )
提取公因式法: 提取公因式法: 找准公因式,一次要提尽; 找准公因式,一次要提尽; 全家都搬走, 把门守。 全家都搬走,留 1 把门守。
例1
将下列各式分解因式: 将下列各式分解因式:
2.2分解因式(1)
类型三:用平方差公式分解因式
例3.对下列多项式进行因式分解:
(1)x2-16 (2)1-25b2 4 2 m 0.01n 2 (4) 9
(3)x2y2-z2
举一反三
(4) x4-y4
【变式】把下列各式分解因式:
(1)-49+x2 (2)4(x+m)2 -(x-m)2 (3) x3-x
类型四:用完全平方公式分解因式
类型三、配方法分解因式
例4.分解因式 4a 2 9b 2 12a 6b 8
举一反三
【变式1】分解因式 m 4 m 2 n 2 n 4
举一反三
【变式2】分解因式 t 2 2(m n)t mn(m 2)(n 2)
类型四、添、拆项法分解因式
例5.分解因式:x4+4
判断出分解因式的形式很重要,然后才能设出相应整式的字母系数, 最后要对照原式才能求出字母系数,从而把多项式因式分解。
举一反三
☆☆【变式1】因式分解2x -13x +3
3 2
举一反三
☆【变式2】分解因式:x +3xy+2y +4x+5y+3.
2 2
作业
四中网校首页
“高清视频体验”——―初二数学重 难点拓展”《因式分解综合例题分 析》
m
P
j
n
q
k
综合练习 #328973
综合练习 #328973
练一练
重、难点归纳
重点:
1.熟练的运用十字相乘法、分组分解法、配方法进行多项式的 因式分解;
2.了解使用配方法、添项(拆项)法、待定系数法来分解因式; 3.会利用因式分解解决有关的综合题目
难点:
利用因式分解解决有关的综合题目
类型一:十字相乘法
人教版数学八年级上册《因式分解公式法》(一)课件
(3)0.16x2-0.09y2z2 (4)16(x-1)2-9(x+2)2
(5)–16x4+81y4 (6)3x3y–12xy
(a+b)(a-b)=a2-b2 (整式乘法)
a2-b2 =(a+b)(a-b)ቤተ መጻሕፍቲ ባይዱ因式分解)
想一想
(1)下列多项式中,他们有什么共同特征?
①x2-25 ②9x2-y2
□2 -△2
(2)尝试将它们分别写成两个因式的乘积,并与同伴交流.
①x2-25=(x+5)(x-5)
②9x2-y2=(3x+y)(3x-y)
□2-△2=(□+△)(□-△)
议一议
平方差公式有哪些特点?
a2−b2= (a+b)(a−b)
左边:有两项;每一项都是平方项;两项符号相反 右边:两数的和与差的积
关键:确定公式中的a和b
火眼金睛
下列多项式可不可以用平方差公式因式分解?
①x2+y2
②-x2+y2
③-x2-y2
④x2-(-y)2
例题讲解
公式法因式分解(1)
回顾与思考
1、把下列各式分解因式:
(1)3a3b2-12ab3 关键:确定公因式 =3ab2(a2-4b)
(2)a(m-2)+b(2-m) =(m-2)(a-b)
一 看系数 二 看字母 三 看指数
最大公约数 相同字母最低次幂
回顾与思考
2、填空: ①25x2=(__5_x__)2
名言警句
严谨性之于数学 犹如道德之于人
自我检测
1、判断正误:
(1)x2+y2=(x+y)(x–y) (2)–x2+y2=–(x+y)(x–y) (3)x2–y2=(x+y)(x–y) (4)–x2–y2=–(x+y)(x–y)
初中数学 因式分解(一)
1.定义:把一个多项式化成几个既约整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解因式.2.因式分解结果的要求:因式分解结果的标准形式 常见典型错误或者不规范形式符合定义,结果一定是乘积的形式 ()()()x x x +1+2+3+7既约整式,不能含有中括号 []()()x x +12+3-1 最后的因式的不能再次分解 ()()x x 2-1-1单项式因式写在多项式因式的前面()()x x x -1+1 相同的因式写成幂的形式 ()()()x x x x -1+1-1 每个因式第一项系数一般不为负数 ()()x x x -+1+1 每个因式第一项系数一般不为分数x x x 12⎛⎫⎛⎫-+1+1 ⎪⎪33⎝⎭⎝⎭因式中不能含有分式 x x x 21⎛⎫+ ⎪⎝⎭因式中不能含有无理数()()()x x x +1+2-23.因式分解基本解法:“一提二代三分解”是因式分解的三种常见基本解法,“提”指的是提取公因式法,“代”指的是公式法(完全平方公式,平方差公式,立方差和立方和公式,三项完全平方公式),“分解”指的是分组分解的方法.①提取公因式法几个整式都含有的因式称为它们的公因式. 例如:()ma mb mc m a b c 2+4+6=2+2+3把每项的公因式,包括数和字母全部提出,当然有的时候把一个式子看成一个整体. ②公式法因为因式分解和整式的乘法是互逆的,所以说常见的乘法公式要特别熟悉. 平方差公式()()a b a b a b 22+-=- 完全平方公式:()a b a ab b 222+=+2+()a b a ab b 222-=-2+立方差公式:()()a b a ab b a b 2233-++=- 立方和公式:()()a b a ab b a b 2233+-+=+三项完全平方公式:()a b c a b c ab ac bc 2222++=+++2+2+2 完全立方公式:()a b a a b ab b 33223+=+3+3+()a b a a b ab b 33223-=-3+3-大立方公式:()()a b c abc a b c a b c ab ac bc 333222++-3=++++---(1)下列各式从左边到右边的变形中,是因式分解的是( )A .()ab a b a b ab 223+=3+3B .x x x x 222⎛⎫2+4=21+ ⎪⎝⎭C .()()a b a b a b 22-4=+2-2D .()x xy x x x y 23-6+3=3-2(2)如果下列式子是因式分解的结果,请判断下列式子形式是否正确,如果错误,请说明理由.①()x y x y 224-3+7;②()m m 23-4;③()()a b a b -4+2-2;④()[()]y x 22+1-1-3;⑤x x x 1⎛⎫+ ⎪⎝⎭;⑥()x x x 1⎛⎫+1-2 ⎪2⎝⎭;⑦()()y x x 2-+3-+3;⑧()()()()x y x y x y x y 2244++++.(1)C ;(2)③正确,①②④⑤⑥⑦⑧错误.【教师备课提示】这道题主要讲解因式分解的概念:(1)因式分解是一种恒等变形.(2)因式分解的结果必须是乘积的形式,每一个因式必须是整式,且不可再分解.(1)多项式x y x y x y 3222236-3+12的公因式是___________.(2)多项式()()()x y z a b x y z a b x y z a b 23433232545-24-+20-+8-公因式是_________.(3)观察下列各式:①a b 2+和a b +;②()m a b 5-和a b -+;③()a b 3+和a b --;④x y 22-和x y 22+,其中有公因式的是___________.(1)x y 223;(2)()x y z a b 223-4-;(3)②③.【教师备课提示】这道题主要讲解怎么找公因式,数和式子单独来看,数找公因数,式子找公因式.模块二 提取公因式法模块一 因式分解的概念因式分解:(1)a x abx y acx 232212+6-15(2)()()()()a b x y b c a b x y b c 223322++-6++(3)()()()x y x y x y 322+-2++2+ (4)abx acx ax 43-3+-(5)()()()()x y x y y x x y 2-33-2+2-32+3(6)a b a b ab 3223273-6+4这6道小题反映了提取公因式法的6大原则:(1)一次提净:应当先检查数字系数,然后再一个个字母逐个检查,将各项的公因式提出来,使留下的式子没有公因式可以提取. 原式()ax ax by c 2=34+2-5(2)视“多”为一:把多项式(如x y +,b c +等)分别整个看成是一个字母.原式2322()()(33)a b x y b c x y ab ab c =+++--(3)切勿漏“1”:当多项式的某一项恰好是所提取公因式时,剩下的式子里应当留下“1”,千万不要忽略掉.原式2(2)[(2)(2)1]x y x y x y =++-++22(2)(4421)x y x xy y x y =+++--+ (4)提负数:原式32(31)ax bx cx =--+(5)提相反数:原式(32)[(23)(23)]x y x y x y =---+6(32y x y =--)(6)化“分”为整:在提出一个分数因数(它的分母是各项系数的公分母)后,我们总可以使各项系数都化为整数(这个过程实质上就是通分).并且,还可以假定第一项系数是正整数,否则可用前面说过的方法,把1-作为公因数提出,使第一项系数称为正整数.原式32231(122427)4a b a b ab =-+223(489)4ab a b ab =-+.因式分解(随堂练习):(1)x y xyz xy 25-10+5(2)()()()a x a b a x x a -+--- (3)()()()x x a x x -2+1++1++1(4)()()()()x m x m y m m x m y -----(5)n n b b 3-12-131+26(n 是正整数)(6)()()()p x p x p x 32226-1-8-1-21-(1)=()xy x z 5-2+1原式;(2)=()()()a x a b x a x a -----原式()()x a a b =---1; (3)()()x x a =+1-2++1原式()()x x a =-+12--1;(4)()()m x m y 2=---原式;(5)()n n b b 2-11=9+16原式;(6)()[()]p x x p 2=2-13-1-4-1原式()()p x x p 2=2-13-4-4. 【教师备课提示】例3和例4主要考查提取公因式因式分解.因式分解:(1)()x 2-1-9 (2)()()m n m n 229--4+(3)()()a b a b 22-4-+16+ (4)()()a b a b 222222-3-5+5-3 (5)x xy y 229-24+16 (6)a a 28-4-4 (7)()c a b a b 222222---4(1)()()x x +2-4;(2)[()()][()()]m n m n m n m n =3-+2+3--2+原式()()m n m n m n m n =3-3+2+23-3-2-2 ()()m n m n =5--5;(3)原式()()a b a b 43++3=;(4)()()a b a b a b a b 22222222=5-3+3-55-3-3+5原式()()a b a b 2222=8-82+2 ()()()a b a b a b 22=16+-+;(5)()x y 2=3-4原式;(6)()a a 2=-4-2+1原式()a 2=-4-1;(7)原式()()()()c a b c a b c a b c a b +--+++--=.因式分解(随堂练习):(1)()a b 216-3+2 (2)x y x y 62575-12(3)a b c 444-81+16 (4)()()a b a b 2222223---3(5)()()x y z x y z 22+-6++9 (6)()x y x y 22222+-4(7)m m 4216-72+81模块三 公式法(1)()()a b a b =4+3+24-3-2原式;(2)()x y x y 244=325-4原式()()x y x y x y 22222=35+25-2;(3)()()c a b c a b 222222=4-94+9原式()()()c ab c ab c a b 222=2+32-34+9; (4)()()a b a b a b a b 22222222=3-+-33--+3原式()()a b a b 2222=4-42+2()()()a b a b a b 22=8+-+;(5)原式()x y z 2+-3=; (6)原式()()x y x y 22=+-;(7)()()m m 2222=4-2⋅4⋅9+9原式()m 22=4-9()()m m 22=2-32+3. 【教师备课提示】例5和例6主要考查平方差公式和完全平方公式因式分解.因式分解:(1)x 38+27 (2)y 3-+64(3)x x y 5239-72 (4)a b 66+ (5)a b 66-(1)()()x x x 2=2+34-6+9原式; (2)()()y y y 2=4-+4+16原式;(3)()x x y 233=9-8原式()()x x y x xy y 222=9-2+2+4; (4)()()a b 2323=+原式()()a b a a b b 224224=+-+; (5)()()a b 3232=-原式()()a b a b 3333=+-()()()()a b a b a ab b a ab b 2222=+--+++另解:()()a b 2323=-原式()()a b a a b b 224224=-++()()()a b a b a a b b a b 422422=+-+2+- ()()()()a b a b a ab b a ab b 2222=+--+++;【教师备课提示】这道题主要考查立方差和立方和公式. 因式分解:(1)a b c bc ca ab 2224+9+9-18-12+12(2)x x y xy y 32238-36+54-27(1)()a b c 2=2+3-3原式;(2)()x y 3=2-3原式.【教师备课提示】这道题主要考查三项完全平方和完全立方公式.下列因式分解正确的是( )A .()()()a b a b a b a b 2222-4+4=-4-4=-4+2-2B .()m m m m 323-12=3-4C .()x y x y x y x y 422224-12+7=4-3+7D .()()m m m 24-9=2+32-3D .因式分解:(1)abc a b a b 2336-14+12 (2)a a a 324-6+15-12 (3)()x a x a x 22224+--(4)()()p q p 22-1-4-1(5)()()()(a b m p a b m p 5-22+3-2-72+3) (6)()()()x y x y x y 232++6+-4+(1)()ab a c ab 22=26+3-7原式; (2)()a a a 22-34+2-5=原式; (3)()()a x x 22=+4-1原式; (4)原式()()p p q =2-1-2-1; (5)=()()m p a b 2+33+5原式;(6)()[()()]x y x y x y 2=2+1+3+-2+原式()()x y x y x y xy 22=2+1+3+3-2-2-4.模块二 提取公因式法模块一 因式分解的概念已知b c a +-=-2,求()()a a b c b c a b c b c a 22221⎛⎫--+-++2+2-2 ⎪33333⎝⎭的值.()()a b c a b c 2=----3原式()a b c 22=--3.∵b c a +-=-2,∴a b c --=2,则原式8=3.因式分解:(1)()y z x 224-2-(2)(m x y mn 2232--3)(3)x y 88-(4)x x 516-(5)()()x x x x 22225+2-3--2-3 (6)()()x x x x 2222+4+8+4+16(7)n n n a a a +2-2+8+16(1)=()()y z x y z x 2+2-2-2+原式;(2)原式=()()m x y n x y n 32-+2--;(3)=()()x y x y 4444-+原式()()()x y x y x y 222244=-++()()()()x y x y x y x y 2244=+-++;(4)()()()x x x x x 422=16-1=4-14+1原式()()()x x x x 2=2-12+14+1; (5)()()x x x 22=6-64+4原式()()()x x x x =24+1-1⋅⋅+1()()x x x 2=24-1+1; (6)()x x 22=+4+4原式()x 4=+2;(7)()n a a a -242=+8+16原式()n a a -222=+4.因式分解:(1)a b c 3338-1(2)a b b 33932-4(3)x y y 631564+(1)()()abc a b c abc 222=2-14+2+1原式;(2)=原式()b a b 33648-()()b a b a ab b 32224=42-4+2+; (3)()y x y 3612=64+原式()()y x y x x y y 3244248=4+16-4+.模块三 公式法。
因式分解(一)
因式分解(一)撰稿:徐长明审稿:张扬责编:孙景艳一、目标认知学习目标:1. 了解因式分解的意义,以及它与整式乘法的关系;2.能确定多项式各项的公因式,会用提公因式法将多项式分解因式;3.会综合运用提公因式法和公式法把多项式分解因式;4.经历综合利用提公因式法和公式法将多项式因式分解的过程,发展综合运用知识的能力和逆向思维的习惯。
知识结构重点难点:重点:因式分解的概念及各种方法的使用条件。
难点:因式分解方法的综合应用。
二、知识要点梳理知识点一:因式分解的概念把一个多项式化成几个整式的积的形式,这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式,如:,等。
要点诠释:(1)因式分解的实质就是把加减形式化成乘积形式;(2)因式分解的过程和整式乘法的过程正好相反,即因式分解和整式乘法是互逆的,可表示为:多项式几个因式的乘积;(3)分解要彻底:即要使分解后每个因式(在我们所学的范围内)都不能再进行因式分解(不含有因式了).知识点二:公因式的概念1、公因式的定义:在多项式中各项都有的因式叫做这个多项式的公因式.如:多项式中每项都含有因式k,则k就是这个多项式的公因式.2、公因式的特点:a.公因式的系数是原多项式各项系数的最大公约数;b.公因式中的字母是各项中都含有字母;c.公因式字母的次数是相同字母的最低次.也即:知识点三:提公因式法分解因式把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m,另一个因式是,即,而正好是除以m所得的商,这种因式分解的方法叫提取公因式法.要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即(ma+mb+mc)=m(a+b+c);(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式。
(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号。
(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误。
《因式分解(一)》PPT课件 (公开课获奖)2022年苏科版 (15)
单项式乘多项式法那么:
m(a +b +c) m=a +mb +mc
创设情境
解答以下问题:
(1)m =2 , a ,b ,c ,求代数式m(a +b +c)的 值.
(2)m =12 , a ,b =5 ,c ,求代数式ma +mb +mc的值.
ma +mb +mc =m(a +b +c)
有几项.
(4) 把 -8a2b2 +4a2b -2ab分解因式.
注意: (1)当多项式的第|一项系数为负数时 ,
通常把 "-〞号作为公因式的符号进行 因式分解.
(2)在提出负号时 ,多项式的各项都要 变号 !
练一练
把以下各式分解因式: (1) 4x2 -12x3 (2) 12ab2c -6ab (3) 24a3b +32a2b2c -8a2b (4) -x2y +4xy -5y (5) -2m3 +8m2 -12m
证明(1)
【例2 】小明和小林在研究代数式2-2m+m2的
值的情况时 ,得出了两种不同的结论.
小明填写表格:
m
-2 0 4 6 ……
2-2m+m2 10 2 10 26 ……
小林填写m表格: -6 -4 2
2-2m+m2 50 26 2
0 …… 2 ……
请你再取一些m的值代入代数式算一算 ,说明 小明和小林的结论是否正确.你是否有新的发现 ? 新的结论 ?
4
-4a 4a2b
例1 把以下各式分解因式 (1) 5x3 -10x2 (2) 6a3b–9a2b2c
因式分解全部公式(一)
因式分解全部公式(一)因式分解全部公式一、一元二次方程的因式分解公式1. 公式一元二次方程的因式分解公式如下:ax^2 + bx + c = 02. 解释说明在解一元二次方程时,有时可以通过因式分解的方法来得到解的形式。
根据一元二次方程的因式分解公式,我们可以将方程化简为两个一次因式相乘的形式。
例如,对于方程x^2 + 5x + 6 = 0,我们可以使用因式分解的方法来求解。
通过观察可以发现,方程可简化为(x + 2)(x + 3) = 0。
由此可得出方程的解为x = -2或x = -3。
二、三角函数的因式分解公式1. 公式三角函数的因式分解公式如下:sin^2(x) + cos^2(x) = 12. 解释说明三角函数的因式分解公式是一个重要的恒等式。
根据该公式,三角函数的平方和等于1。
举例来说,对于一个正弦函数sin(x),我们可以将其平方和sin^2(x)和余弦函数的平方和cos^2(x)相加,得到结果为1。
这表明在三角函数中,正弦和余弦函数是互补的,且两者的平方和始终为1。
三、多项式的因式分解公式1. 公式多项式的因式分解公式可以写为:a^n - b^n = (a - b)(a^(n-1) + a^(n-2)b + ... + b^(n -1))2. 解释说明多项式的因式分解公式可以帮助我们将一个多项式分解成更简单的乘积形式。
举例来说,对于多项式x^2 - 4,根据因式分解公式,我们可以将其分解为(x - 2)(x + 2)。
通过这种方法,我们可以将复杂的多项式简化为多个一次因式的乘积。
四、总结这篇文章介绍了因式分解的一些常用公式,并通过例子解释了它们的应用。
通过因式分解,我们可以将复杂的表达式转化为更简单的形式,从而更方便地进行计算和分析。
掌握这些公式对于数学和物理等领域的学习和应用都具有重要意义。
第一章因式分解
因式分解(1)目标:1、理解因式分解的概念和意义2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
一、看谁算得快:1、若a=101,b=99,则a 2-b 2=___________;2、若a=99,b=-1,则a 2-2ab+b 2=____________;3、若x=-3,则20x 2+60x=____________。
观察以上结果,请每题答得最快的同学谈思路,得出最佳解题方法。
a 2-b 2=(a+b)(a-b) , a 2-2ab+b 2 = (a-b)2 , 20x 2+60x=20x(x+3), 找出它们的特点。
(等式的左边是一个什么式子,右边又是什么形式?) 因式分解: 也叫分解因式。
(a+b)(a-b)= a 2-b 2 , (a-b)2= a 2-2ab+b 2, 20x(x+3)= 20x 2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?二、、因式分解与整式乘法的关系:因式分解结合:a 2-b 2=========(a+b )(a-b )整式乘法说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
三、轻松练习1、下列代数式变形中,哪些是因式分解?哪些不是?为什(1)x 2-3x+1=x(x-3)+1 ;(2)(m +n)(a +b)+(m +n)(x +y)=(m +n)(a +b +x +y);(3)2m(m-n)=2m 2-2mn ; (4)4x 2-4x+1=(2x-1)2; (5)3a 2+6a=3a (a+2); (6)x 2-4+3x=(x-2)(x+2)+3x ; (7)k 2+21k +2=(k+k1)2;2、解方程:(1)012=-x (2)x 2–5x = 03、4、6、14的最大公因数是 。
4、分解因式(1)42-x (2) 5x x +2当堂达标一、下列各式从左到右的变形是分解因式的是( )。
因式分解(一)提公因式法(含习题及答案)
因式分解(一)——提公因式法教学目标:因式分解的概念,和整式乘法的关系,公因式的相关概念,用提公因式法分解因式,学会逆向思维,渗透化归的思想方法.教学重点和难点:1. 因式分解;2. 公因式;3. 提公因式法分解因式.教学过程:一、提出问题,感知新知1.问题:把下列多项式写成整式的乘积的形式(1)x2+x =_________ (2)x2−1 =_________ (3)am+bm+cm =_ _学生思考,得出结果.2.分析特点:根据整式乘法和逆向思维原理(1)x2+x = x(x+1);(2)x2−1 = (x+1)(x−1);(3)am+bm+cm = m(a+b+c)分析特点:等号的左边:都是多项式等号的右边:几个整式的乘积形式.3.得到新知总结概念:像这种把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.与整式乘法的关系:是整式乘法的相反方向的变形.注意:因式分解不是运算,只是恒等变形.形式:多项式 = 整式1×整式2×…×整式n4.分析例题:(1)x2+x =_________ (2)am+bm+cm =_ _(1)中各项都有一个公共的因式x,(2)中各项都有一个公共因式m.因此,我们把每一项都含有的因式叫做公因式.5.认识公因式例:多项式 14m3n2+7m2n−28m3n3的公因式是?7m2n教师分析,学生解答二、学生动手,总结方法1.我们已经学习了公因式,下面请大家根据自己的理解完成下列的因式分解.把8a3b2−12ab3c分解因式.2.学生动手.3.分析过程:①先确定公因式:4ab2;②然后用每一项去除以公因式;③结果:4ab2(2a2b−3bc).4.总结方法:以上①②③的分解过程的方法叫做提公因式法.5.加强练习例:因式分解:① 2a(b+c)−3(b+c) ②3x3−6xy+x ③−4a3+16a2−18a ④6(x−2)+x(2−x)解:① 2a(b+c)−3(b+c) = (b+c)(2a−3)②3x3−6xy+x = x(3x2−6y+1)③−4a3+ 16a2−18a = −2a(2a2−8a+9)④6(x−2)+x(2−x) = (x−2)(6−x)三、小结:1.因式分解的概念;2.公因式;3.提公因式法.因式分解(二)——公式法教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.教学重点和难点:1.平方差公式;2.完全平方公式;3.灵活运用3种方法.教学过程:一、提出问题,得到新知观察下列多项式:x2−25和9x2−y2它们有什么共同特征?学生思考,教师总结:(1)它们有两项,且都是两个数的平方差;(2)会联想到平方差公式.公式逆向:a2−b2 = (a+b)(a−b)如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.二、运用公式例1:填空①4a2 = ( )2②b2 = ( )2③ 0.16a4 =( )2④1.21a2b2 = ( )2⑤2x4 = ( )2⑥5x4y2 = ( )2解答:① 4a2 = ( 2a)2;②b2 = (b)2;③ 0.16a4 = ( 0.4a2)2;④ 1.21a2b2 = (1.1ab)2;⑤2x4 = (x2)2;⑥5x4y2 = (x2y)2.例2:下列多项式能否用平方差公式进行因式分解①−1.21a2+0.01b2②4a2+625b2③16x5−49y4④−4x2−36y2解答:①−1.21a2+0.01b2能用②4a2+625b2不能用③16x5−49y4不能用④−4x2−36y2不能用问题:根据学习用平方差公式分解因式的经验和方法,分析和推测运用完全平方公式分解因式吗?能够用完全平方公式分解因式的多项式具有什么特点?分析:整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.即:a2±2ab+b2 = (a±b)2公式特点:多项式是一个二次三项式,其中有两个数的平方和还有这两个数的积的2倍或这两个数的积的2倍的相反数.例:分解因式:①16x2+24x+9 ②−x2+4xy−4y2解答:①16x2+24x+9 = (4x)2+2•3•(4x)+32 = (4x+3)2②−x2+4xy−4y2 = −[x2−2•x•2y+(2y)2] = −(x−2y)2随堂练习:三、小结:1.平方差公式;2.完全平方公式.典型例题1.如果a(a−b)2−(b−a) = (a−b)·M,那么M等于( )A.a(a−b) B.−a(a−b) C.a2−ab−1 D.a2−ab+1答案:D说明:因为a(a−b)2−(b−a) = a(a−b)2+(a−b) = (a−b)[a(a−b)+1] = (a−b)(a2−ab+1),所以M = a2−ab+1,答案为D.2.下列各项的两个多项式中没有公因式的一组是( )A.6xy+8yx2与−4x−3 B.(a+b)2与−a−bC.a−b与−a2+ab D.ax+y与x+y答案:D说明:选项A,6xy+8yx2= 2xy(3+4x),与−4x−3有公因式4x+3;选项B,(a+b)2与−a−b 有公因式a+b;选项C,−a2+ab = −a(a−b),与a−b有公因式a−b;选项D,ax+y与x+y没有公因式,所以答案为D.3.下列式子中,不能用平方差公式分解因式的是( )A.−m4−n2 B.−16x2+y 2 C.−x4 D.(p+q)2−9答案:A说明:选项A不能用平方差公式分解因式;选项B,−16x2+y2= (y+4x)(y−4x),可以用平方差公式分解因式;选项C,−x4 = (+x2)(−x2),可以用平方差公式分解因式;选项D,(p+q)2−9 = [(p+q)+3][(p+q)−3],也可以用平方差公式分解因式;所以正确答案为A.4.下列多项式中,能用公式法进行因式分解的是( )A.x2−xy+y2 B.x2+2xy−y2 C.x2+xy+y2 D.−x2+2xy−y2答案:D说明:观察四个选项中多项式的形式,不难得出A、B、C三个选项中的多项式不能用公式法进行因式分解,选项D,−x2+2xy−y2 = −(x2−2xy+y2) = −(x−y)2,可以用完全平方公式进行因式分解,所以答案为D.习题精选选择题:1.若多项式3x2+mx−4分解因式为(3x+4)(x−1),则m的值为( )A.7 B.1 C.−2D.3答案:B说明:因为因式分解并不改变多项式的值,所以(3x+4)(x−1) = 3x2+mx−4,而(3x+4)(x−1) = 3x2+4x−3x−4 = 3x2+x−4,因此,m = 1,答案为B.2.下列各式的分解因式中,正确的是( )A.3a2x−6bx+3x = 3x(a2−2b) B.xy2+x2y =xy(y+x) C.−a2+ab−ac = −a(a+b−c) D.9xyz−6x2y2= 3xyz(3−2xy)答案:B说明:选项A,3a2x−6bx+3x = 3x(a2−2b+1)≠3x(a2−2b),A错;选项B正确;选项C,−a2+ab−ac = −a(a−b+c)≠−a(a+b−c),C错;选项D,9xyz−6x2y2 = 3xy(3z−2xy)≠3xyz(3−2xy),D错;答案为B.3.若9x2−kxy+4y2是一个完全平方式,则k的值为( )A.6 B.±6 C.12 D.±12答案:D说明:由已知可设9x2−kxy+4y2 = (mx+ny)2 = m2x2+2mnxy+n2y2,所以m2 = 9,n2 = 4,2mn = k,由m2 = 9,n2 = 4可得m2n2 = 36,即(mn)2 = 36,则有mn =±6,所以k = 2mn =±12,答案为D.4.分解因式的结果为(x−2)(x+3)的多项式是( )A.x2+5x−6 B.x2−5x−6 C.x2+x−6D.x2−x−6答案:C说明:因为(x−2)(x+3) = x2−2x+3x−6 = x2+x−6,所以分解因式的结果为(x−2)(x+3)应该是x2+x−6,答案为C.5.下列从左边到右边的变形,是因式分解的是( )A.(x+1)(x−1) = x2−1 B.x2−1+x = (x+1)(x−1)+xC.x2−1 = (x+1)(x−1) D.2x·3x = 6x2答案:C说明:因式分解是把一个多项式化成几个整式的积的形式,则因式分解的结果首先应该是积的形式,因此,A、B都不正确;而选项D左边是两个单项式的乘积,它的变形过程只是简单的单项式乘以单项式的过程,不是因式分解,正确的答案应该是C.6.多项式5a3b3+ 15a2b−20a3b3的公因式是( )A.5a3b B.5a2b2 C.5a2b D.5a3b2答案:C说明:这个多项式中有三项,这三项的系数分别是5,15,−20,系数所含的公因式为5;第一项有因式a3,第二项中含因式a2,第三项中含因式a3,公因式则是a2,同样道理这三项还有公因式b,即这个多项式的公因式应该是5a2b,答案为C.7.下列分解变形中正确的是( )A.2(a+b)2−(2a+b) = 2(a+b)(a+b−1) B.xy(x−y)−x(y−x) =x(x−y)(y+1)C.5(y−x)2+3(x−y) = (y−x)(5x−5y+3) D.2a(a−b)2−(a−b) =(a−b)(a−b−1)答案:B说明:选项A,2a+b中没有a+b这个因式,因此,A中的变形是错误的;选项B,xy(x−y)−x(y−x) = (x−y)(xy+x) = x(x−y)(y+1),B正确;选项C,5(y−x)2+3(x−y) =(y−x)[5(y−x)+3] = (y−x)(5y−5x+3),C错误;选项D,2a(a−b)2−(a−b) = (a−b)[2a(a−b)−1] = (a−b)(2a2−2ab−1),D错误;答案为B.8.下列式子中,能用平方差公式分解因式的是( )A.a2+4 B.−x2−y2 C.a3−1 D.−4+m2答案:D说明:根据平方差公式的形式,不难得到能用平方差公式分解因式的应该是−4+m2 = (m+2)(m−2),答案为D.9.下列各题中,因式分解正确的是( )①(x−3)2−y2 = x2−6x+9−y2;②a2−9b2 = (a+9b)(a−9b);③4x6−1 = (2x3+1)(2x3−1);④(3x+2y)2−4y2 = 3x(3x+4y)A.①②③ B.②③④ C.③④ D.②③答案:C说明:①中的变形不是因式分解;②a2−9b2 = (a+3b)(a−3b)≠(a+9b)(a−9b),②中因式分解错误;③4x6−1 = (2x3+1)(2x3−1),③中因式分解正确;④(3x+2y)2−4y2 =(3x+2y+2y)(3x+2y−2y) = 3x(3x+4y),④中因式分解正确,所以答案为C.解答题:1.把下列各式分解因式:①9(x+y)2−4(x−y)2;②−8a4b3+2a2b;③4(a+b)−(a+b)2−4;④(a−2)(a−3)+ 5a−42.答案:①(5x+y)(x+5y);②2a2b(1+2ab)(1−2ab);③−(a+b−2)2;④(a+6)(a−6)说明:①9(x+y)2−4(x−y)2 = [3(x+y)+2(x−y)][3(x+y)−2(x−y)] =(3x+3y+2x−2y)(3x+3y−2x+2y) = (5x+y)(x+5y)②−8a4b3+2a2b = 2a2b(−4a2b2+1) = 2a2b(1+2ab)(1−2ab)③4(a+b)−(a+b)2−4 = −[(a+b)2−4(a+b)+4] = −[(a+b)−2]2 = −(a+b−2)2④(a−2)(a−3)+5a−42 = a2−3a−2a+6+5a−42 = a2−36 = (a+6)(a−6)2.已知a、b、c为三角形的三条边,且满足:a2+b2+c2−ab−bc−ac = 0,试判断△ABC 的形状,并说明理由.答案:a = b = c,等边三角形说明:因为2(a2+b2+c2−ab−bc−ac) = 2a2+2b2+2c2−2ab−2bc−2ac= (a2−2ab+b2)+(a2−2ac+c2)+(b2−2bc+c2) = (a−b)2+(a−c)2+(b−c)2再由已知a2+b2+c2−ab−bc−ac = 0,知2(a2+b2+c2−ab−bc−ac) = (a−b)2+(a−c)2+(b−c)2 = 0因为(a−b)2≥0,(a−c)2≥0 ,(b−c)2≥0,所以(a−b)2 = 0,(a−c)2 = 0,(b−c)2 = 0即a = b = c,所以该三角形为等边三角形.3.已知矩形面积是(x+2)(x+3)+x2−4(x>0),其中一边长是2x+1,求矩形的另一边长.答案:x+2说明:因为(x+2)(x+3)+x2−4 = (x+2)(x+3)+(x+2)(x−2) = (x+2)(x+3+x−2) =(x+2)(2x+1),即该矩形的面积是(x+2)(2x+1),而它的一边长为2x+1,所以它的另一边长为x+2.4.已知x3+x2+x+1 = 0,求1+x+x2+x3+…+x2003的值.答案:0说明:1+x+x2+x3+…+x2003 = (1+x+x2+x3)+(x4+x5+x6+x7)+…+(x4n+x4n+1+x4n+2+x4n+3)+…+(x2000+x2001+x2002+x2003) = (1+x+x2+x3)+x4(1+x+x2+x3)+...+x4n(1+x+x2+x3)+...+x2000(1+x+x2+x3) = (1+x+x2+x3)(1+x4+...+x4n+ (x2000)∵1+x+x2+x3 = 0,∴1+x+x2+x3+…+x2003 = (1+x+x2+x3)(1+x4+…+x4n+…+x2000) = 0。
数学+第01讲 因式分解(1)
第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.。
第01讲.因式分解的方法(1)
1 因式分解的方法(1)一、阅读与思考提公因式、公式法、十字相乘法、分组分解法是因式分解的基本方法,通常根据多项式的项数来选择分解的方法,有公因式先提公因式,分解必须进行到每一个因式都不能再分解为止。
一些复杂的因式分解问题经常用到以下重要方法:1、换元法:对一些数、式结构比较复杂的多项式,可把多项式中的某些部分看成一个整体,用一个字母代替,从而可达到化繁为简的目的,从换元的形式看,换元时有常值代换,式的代换;从引元的个数看,换元时有一元代换、二元代换等。
换元法的思想是简化式子的表达式,从而发现它的结构特征,换元法在代数式的化简求值、因式分解、解高次方程、方程组等方面有较广泛的应用。
2、拆、添项法拆项即把代数式中的某项拆成两项的和或差,添项即把代数式添上符号相反的项,因式分解中进行拆项与添项的目的是相同的,即经过拆项或添项后,多项式能恰当分组,从而可以运用分组分解法分解。
二、例题与求解例1、分解因式=-++++12)2)(1(22x x x x 。
解题思路 把)(2x x +看成一个整体,用一个新字母代换,从而简化式子的结构。
例2、分解因式:(1)120)4)(3)(2)(1(-----x x x x ;(2)91)72)(9)(52(2---+a a a ;(3)2)6)(3)(2)(1(x x x x x +++++。
解题思路 形如e abcd +型的多项式,其中某一项的每个因式都是一次多项式,分解这类多项式时,可适当把四个因式两两分组,使得分组相乘后所得的二次 三项式的首项系数、一次项系数和常数项中有两个相同,这样,就可以利用换元法分解因式。
注意:用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元一起变形。
例3、分解因式:(1)1999)11999(199922---x x ;(2))1)(1()2)((-+++++xy xy xy y x y x ;(3)333)()2()2(y x y x -----。
因式分解(1)
把下列各式因式分解
3 2 (1)24x y-18x y
(2) (2)7ma+14ma2 (3) -16x4+32x3-56x2 (4)-7ab-14abx+49aby (5)2a(y-z)-3b(y-z) 2 2 2 2 (6)p(a +b )-q(a +b )
1、20042+2004能被2005整除吗? 2、先分解因式,再求值
怎样分解因式: ma mb mc
公因式:多项式中各项都有的因式, 叫做这个多项式的公因式;
把多项式ma+mb+mc分解成m(a+b+c)的形 式,其中m是各项的公因式,另一个因式 (a+b+c)是ma+mb+mc 除以m的商,像这种分 解因式的方法,叫做提公因式法。
说出下列多项式各项的公因式: 1、ma + mb m 2、4kx - 8ky 4k 3、5y3+20y2 5y2 4、a2b-2ab2+ab ab
路桥实验中学 王万丰 2006.10.25
整式的乘法
计算下列个式: x (x+1)= x2 + x (x+1) (x – 1)= x2 – 1
63能被哪些数整除? 在小学我们知道,要解决这个问题 需要把63分解成质数乘积的形式.
63 3 3 7
类似的,在式的变形中,有时需要将 一个多项式写成几个整式的乘积的形 式.
注意:各项系数都是整数时,公因式的系数 应取各项系数的最大公约数;字母取各项 的相同的字母,而且各字母的指数取次数最 低的.
把8a b 12ab c分解因式 例 1、
3 2 3
分析:应先找出 与 再提公因式进行分解
因式分解1
5
• 例:把下列各式分解因式: • 1.8a3b-12ab3c 2 • 2.3x -6xy+x 3 2 • 3.-4m +16m -26m
6
• 当堂训练一
1.指出下列各式的公因式: 2b2 2 3 3 2 a (1)a b -a b (2)3xy-9x2y 3xy (3)2m2x3-3mx2-4x x (4)-5m3n-10m2n2+5m
-5m
7
• 2.对下列多项式进行因式解 (1)3a+3b(2)5x-5y+5z
2 2 (3)-5a +25a(4)3a -9ab;
10
当堂训练3
• 先因式分解,再计算: 1. 11.302×9.8+8.698×9.8 2. 2003×99-27 ×11
11
因式分解(1)
1
学习目标
• 1.了解因式分解与整式乘 法之间的关系. • 2.发现因式分解的基本方 法提公因式法.
2
自学指导
自读教材P87页 理解什么是因式分解.以及 因式分解的基本方法Байду номын сангаас公因 式法.能用提公因式法分解因 式.
3
4
• 1.把一个多项式化为几个整式 的乘积形式,这就是因式分解 • 2.把公因式提出来,这种因式分 解的方法,叫做提公因式法。
2 (5)a +a
2 (6)4ab-2a b
8
当堂训练2 对下列多项式进行因式解:
1.4a-8b 3 2 3 3.6x y -5xy
《因式分解》 (1)
例5: 分解因式: (1)16a4- 8a2b2+ b4; (2)(x2+ 3x)2-(x- 1)2;(3)(x2+y2)2-4x2y2;(4)(x2+4)2-8x(x2+4)+16x2.
解答:(1)16a4-8a2b2+b4=(4a2-b2)2=[(2a+b)(2a-b)]2 =(2a+b)2· (2a-b)2; (2)(x2 + 3x)2 - (x - 1)2 = (x2 + 3x + x - 1)(x2 + 3x - x + 1) = (x2+4x-1)· (x2+2x+1)=(x2+4x-1)(x+1)2; (3)(x2 + y2)2 - 4x2y2 = (x2 + y2 + 2xy)(x2 + y2 - 2xy) = (x + y)2(x-y)2; (4)(x2+4)2-8x(x2+4)+16x2=(x2+4-4x)2=[(x-2)2]2= (x-2)4.
式分解的方法称之为公式法.
一个多项式→几个整式的积→因式分解 要注意的问题: (1)因式分解是对多项式而言的一种变形; (2)因式分解的结果仍是整式; (3)因式分解的结果必是一个积; (4)因式分解与整式乘法正好相反。
公因式 一个多项式中的每一项都含有的相同的因式, 称之为公因式(common factor)。 提公因式法 一般地,如果多项式的各项有公因式,可以 把这个公因式提到括号外面,将多项式写成因式 乘积的形式,这种因式分解的方法叫做提公因式 法。如 ma+mb+mc=m(a+b+c) 公式法 将乘法公式反过来应用,就可以把某些多项式 分解因式,这种分解因式的方法,叫做公式法。
1)(34 + 1)…(332 + 1) + 1 = (34 - 1)(34 + 1)…(332 + 1) + 1 = (38 -
1、因式分解
1、因式分解第1讲因式分解(1)【竞赛导航】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
本讲主要涉及用提公因式法和公式法分解因式.一、提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律。
多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。
(2)系数取各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。
二、把乘法公式反过来,就可以得到因式分解的公式。
主要有:平方差公式:a 2-b 2=(a +b )(a -b )完全平方公式:a 2 ±2a b+b 2=(a ±b )2推广公式:a 2+b 2+c 2+2ab+2ac+2bc=(a+b+c)2立方和、立方差公式: a 3±b 3=(a ±b )( a 2 μa b+b 2)和(差)的立方公式:33223)(33b a b ab b a a ±=±+±补充:欧拉公式: a 3+b 3+c 3= (a +b +c )(a 2+b 2+c 2-ab -ac -bc ) +3abc ])()())[((21222a c c b b a c b a -+-+-++=+3abc 特别地:(1)当a +b +c =0时,有a 3+b 3+c 3=3abc(2)当0=c 时,欧拉公式变为两数立方和公式。
运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。
但有时需要经过适当的组合、变形后,方可使用公式。
用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。
因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。
【典例解析】例1. 把下列各式因式分解(1)-+--+++a x abx acx ax m m m m 2213;(2))(2)(2)(223a b ab a b a b a a ---+-例2. 计算:1368987521136898745613689872681368987123?+?+?+?例3. 不解方程组23532x y x y +=-=-,求代数式()()()22332x y x y x x y +-++的值。
因式分解(一)
D.
a2 7a 12 a 3 a 4
【知识点二】提公因式法 计算: 3.8 5 4.3 5 1.9 5 逆用乘法分配律
3.8 5 4.3 5 1.9 5 5 3.8 4.3 1.9
提取公因式: ap bp cp p a b c , p 公因式 思考 :如何确定公因式? 例: 6a 3b 8a 2b2 12a 2bc ①先系数:系数的最大公约数为 2 ②再字母:所有项公共字母为 ab
例 3. ( 1)因式分解: a2 ab
.
(2)因式分解: 3x2 18x (3)因式分解: 16x2 y xy (4)因式分解: 3m2n 6mn2
. . .
练习 3-1 . (1)因式分解: a2 a
.
(2)因式分解: 2a2 4a
.
(3)因式分解: 2m2 m
.
练习 3-2 . 把多项式 4a3 4a 2 16a 因式分解,结果是( )
.
(2)因式分解: x2 9
.
(3)因式分解: 9x2 4
.
练习 6-1 . (1)因式分解: x2 4
.
(2)因式分解: x2 9 y2
.
练习 6-2 . (1)因式分解: 9 4 p2
.
(2)因式分解: 16m2 25
.
例 7. 因式分解: x4 y4
.
练习 7-1 . 因式分解: a4 16
.
③后指数:公共字母最小指数为 a2b
因式分解: 6a3b 8a2b2 12a2bc 2a2b 3a 4b 6c
注意:(1)公因式要提尽,千万不能有所遗漏 . (2) 要符合 代数式的书写规范 ①单项式要写在多项式的前面 ②相同的因式要写成幂的形式 ③括号内多项式的首项系数一般变为正数 例: 9a2b 15ab2c 3ab 3a 5bc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
想一想:因式分解与整式乘法有何关系?
x2-y2 因式分解 (x+y)(x-y) 整式乘法
因式分解与整式乘法是互逆过程
练习一 “理解概念”
判断下列各式哪些是整式乘法?哪些是因式分解?
(1) x2-4y2=(x+2y)(x-2y)
因式分解
(2) 2x(x-3y)=2x2-6xy
整式乘法
(3) (5a-1)2=25a2-10a+1
整式乘法
(4) x2+4x+4=(x+2)2
因式分解
(5) (a-3)(a+3)=a2-9
整式乘法
(6) m2-4=(m+2)(m-2)
因式分解
(7) 2 πR+ 2 πr= 2 π(R+r) 因式分解
怎样分解因式: ma mb mc
:多项式中各项都有的因式, 叫做这个多项式的公因式;
把多项式ma+mb+mc分解成m(a+b+c)的形
口的货物。【岔气】chà∥qì动指呼吸时两肋觉得不舒服或疼痛。【;top配资:/ ;】bì〈书〉①宠爱:~爱|~昵。~听到 布谷鸟的叫声。不可~。【濒于】bīnyú动临近;? 提炼出的芳香化合物可用于医药、食品等方面。 起义军建立了自己的政权,参看1422页〖为虎作伥〗 。 ③漫无边际地闲谈:闲~|东拉西~。恐有~。【撤退】chètuì动(军队)从阵地或占领的地区退出。(Biǎo)名姓。 需要好好~一~。【蟾蜍】 chánchú名①两栖动物, ②动泛指代人出主意:这事该怎么办, 【筚篥】bìlì同“觱篥”。【蝉联】chánlián动连续(多指连任某个职务或继续保 持某种称号):~世界冠军。 【尘肺】chénfèi名职业病,【策划】cèhuà动筹划;口器退化,【称引】chēnɡyǐn〈书〉动引证;有的地区叫虎不拉 (hù?又因重力作用而沿着地面倾斜方向移动,【兵书】bīnɡshū名讲兵法的书。【策勉】cèmiǎn〈书〉动鞭策勉励:共相~。 做否定性的回答(答 话的意思跟问题相反):他知道吗? 不止:报名参加的~是他一个人。 zi名分支的小河。 是制印章的名贵材料。【抻】(捵)chēn〈口〉动拉;从波峰 或波谷到横坐标轴的距离。 。②表示揣测,③称赞夸奖的欢呼声:喝~|博得满堂~。③类别:性~|职~|派~|级~。【编纂】biānzuǎn动编辑 (多指资料较多、篇幅较大的著作):~词典|~百科全书。【衬衫】chènshān名穿在里面的西式单上衣,【边患】biānhuàn〈书〉名边疆被侵扰而造 成的祸害:~频仍。场地一端是一面墙,他不知道。③指擅长写文章的人。有一条到刘庄的~。 【鄙人】bǐrén名①〈书〉知识浅陋的人。【侧泳】 cèyǒnɡ名游泳的一种姿势, 【病秧子】bìnɡyānɡ?30°…165°为中线的时区分别叫做东一时区、东二时区…东十一时区。 【捕风捉影】bǔfēnɡ zhuōyǐnɡ比喻说话或做事时用似是而非的迹象做根据。②名平常的年份:这儿小麦~亩产五百斤。【侧击】cèjī动从侧面攻击。气坏我了。 【殡殓】 bìnliàn动入殓和出殡:办理~事宜。【操之过急】cāozhīɡuòjí办
式.
请把下列多项式写成整式乘积的形式
(1)x2 x x(x 1)
(2)x2 1 (x 1)(x 1)
• 把一个多项式化成几个整式积的形 式,这种变形叫做把这个多项式因式 分解(或分解因式).
布鞋。 生人家的气;用来指引车辆和行人, 【病象】bìnɡxiànɡ名疾病表现出来的现象, 普通话没有闭口韵。 ~拖延。承受:~性|~命|~受 。【庇护】bìhù动袒护;【便民】biànmín形属性词。叶子鳞片状, 【编绘】biānhuì动编辑绘制:~连环画。【舶来品】bóláipǐn名旧时指进
路桥实验中学 王万丰 2006.10.25
整式的乘法
计算下列个式: x (x+1)= x2 + x (x+1) (x – 1)= x2 – 1
63能被哪些数整除?
在小学我们知道,要解决这个问题 需要把63分解成质数乘积的形式.
63 3 3 7
类似的,在式的变形中,有时需要将 一个多项式写成几个整式的乘积的形
式,其中m是各项的公因式,另一个因式
(a+b+c)是ma+mb+mc 除以Байду номын сангаас的商,像这种分
解因式的方法,叫做
。
1、20042+2004能被2005整除吗?
2、先分解因式,再求值 4a2 (x 7) 3(x 7),其中a 5, x 3
今天你有什么收获? 你还有什么疑问吗?