实验6.数字基带信号的眼图实验

合集下载

数字基带传输系统 通信原理实验报告

数字基带传输系统  通信原理实验报告

实验3 数字基带传输系统一、实验目的1、掌握数字基带传输系统的误码率计算;2、熟悉升余弦传输特性的时域响应特征,观察不同信噪比下的眼图。

二、实验内容1、误码率的计算:画出A/σ和误码率之间的性能曲线;2、眼图的生成①基带信号采用矩形脉冲波形(选做)②基带信号采用滚降频谱特性的波形(必做)3、仿真码间干扰对误码率的影响(选做)三、实验步骤及结果1、误码率的计算10个二进制信息数据,采用双极性码,映射为±A。

随机产生高斯噪声(要求A/σ为0~12dB),随机产生6叠加在发送信号上,直接按判决规则进行判决,然后与原始数据进行比较,统计出错的数据量,与发送数据量相除得到误码率。

画出A/σ和误码率之间的性能曲线,并与理论误码率曲线相比较。

(保存为图3-1) 注意:信噪比单位为dB,计算噪声功率时需要换算。

Snr_A_sigma = 10.^(Snr_A_sigma_dB/20);1代码:clear all; clc;close all;A = 1;%定义信号幅度N = 10 ^ 6;%数据点数;a=A*sign(randn(1,N));Snr_A_sigma_dB = 0:12;Snr_A_sigma = 10 .^ (Snr_A_sigma_dB/20);sigma = A./Snr_A_sigma;ber = zeros(size(sigma));for n = 1 : length(sigma)rk = a + sigma(n) * randn(1, N);dec_a = sign(rk);ber(n) = length(find(dec_a~=a)) / N;endber_Theory = 1/2* erfc(sqrt(Snr_A_sigma.^2/2));semilogy(Snr_A_sigma_dB, ber, 'b-', Snr_A_sigma_dB, ber_Theory, 'k-*'); grid on;xlabel('A/\sigma'); ylabel('ber');legend('ber', 'ber\_Theory');title(' A/σ和误码率之间的性能曲线');2.绘制的图2、绘制眼图①设二进制数字基带信号{}1,1n a ∈-,波形()1,00,s t T g t ≤<⎧=⎨⎩其他,分别通过带宽为()15/4s B T =和()11/2s B T =两个低通滤波器,画出输出信号的眼图(保存为图3-2),并画出两个滤波器的频率响应。

(完整word版)数字信号的基带传输

(完整word版)数字信号的基带传输

实验五数字信号的基带传输、眼图、奈奎斯特准则一、实验目的1.熟悉使用simulink模块库,了解各功能模块的操作和使用方法。

2.通过实验进一步掌握、了解数字基带传输系统的构成及其工作原理。

3.观察数字基带传输系统接收端的眼图,掌握眼图的主要性能指标。

二、实验内容用simulink建立一个数字基带传输系统仿真系统,信道中加入高斯白噪声(均值为0,均方差可调),分析理解系统各个模块的功能,并通过观察眼图,判断系统信道中的噪声情况。

三、实验原理(一)数字信号基带传输系统原理基带信号传输系统的典型模型,如图所示。

在发送端,数字基带信号X(t)经发送滤波器输入到信道,发送滤波器的作用是限制发送频带,阻止不必要的频率成分干扰相邻信道。

传输信道在这里是广义的,它可以是传输介质(电缆、双绞线等等),也可以是带调制解调器的调制信道。

基带信号在信道中传输时常混入噪声n(t),同时由于信道一般不满足不失真传输条件,因此要引起传输波形的失真。

所以在接收端输入的波形与原始的基带信号X(t)差别较大,若直接进行抽样判决可能产生较大的误判。

因此在抽样判决之前先经过一个接收滤波器,它一方面滤除带外噪声,另一方面对失真波形进行均衡。

抽样和判决电路使数字信号得到再生,并改善输出信号的质量。

根据频谱分析的基本原理,任何信号的频域受限和时域受限不可能同时成立。

因此基带信号要满足在频域上的无失真传输,信号其波形在时域上必定是无限延伸的,这就带来了各码元间相互串扰问题。

造成判决错误的主要原因是噪声和由于传输特性(包括发、收滤波器和信道特性)不良引起的码间串扰。

基带脉冲序列通过系统时,系统的滤波作用使脉冲拖宽,在时间上,它们重叠到邻近时隙中去。

接收端在按约定的时隙对各点进行抽样,并以抽样时刻测定的信号幅度为依据进行判决,来导出原脉冲的消息。

若重叠到邻接时隙内的信号太强,就可能发生错误判决。

若相邻脉冲的拖尾相加超过判决门限,则会使发送的“0”判为“1”。

基带信眼图实验m精编b仿真

基带信眼图实验m精编b仿真

基带信眼图实验m精编b仿真文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]数字基带信号的眼图实验——m a t l a b 仿真一、实验目的1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法;2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度;3、熟悉MATLAB 语言编程。

二、实验预习要求1、复习《数字通信原理》第七章节——奈奎斯特第一准则内容;2、复习《数字通信原理》第七章节——数字基带信号码型内容;3、认真阅读本实验内容,熟悉实验步骤。

三、实验原理和电路说明 1、基带传输特性基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该图3-1 基带系统的分析模型抑制码间干扰。

设输入的基带信号为()n s na t nT δ-∑,s T 为基带信号的码元周期,则经过基带传输系统后的输出码元为()n s na h t nT -∑。

其中1()()2j th t H ed ωωωπ+∞-∞=⎰(3-1)理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足:10()0,s k h kT k =⎧=⎨⎩,为其他整数 (3-2)频域应满足:()0,ss T T H πωωω⎧≤⎪=⎨⎪⎩,其他 (3-3)图3-2 理想基带传输特性此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。

由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。

在一般情况下,只要满足:222(),s i s s s si H H H H T T T T T ππππωωωωω⎛⎫⎛⎫⎛⎫+=-+++=≤⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑ (3-4)基带信号就可实现无码间干扰传输。

这种滤波器克服了拖尾太慢的问题。

(完整word版)使用matlab绘制眼图.docx

(完整word版)使用matlab绘制眼图.docx

使用 matlab 绘制数字基带信号的眼图实验一、实验目的1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法;2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度;3、熟悉 MATLAB语言编程。

二、实验原理和电路说明1、基带传输特性基带系统的分析模型如图3-1 所示,要获得良好的基带传输系统,就应该a n t nT s基带传输a n h t nT sn n抽样判决H ( )图 3-1基带系统的分析模型抑制码间干扰。

设输入的基带信号为a n t nT s, T s为基带信号的码元周期,则经过n基带传输系统后的输出码元为a n h t nT s。

其中nh(t )1H ()e j t d(3-1 )2理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足:,k 0h( kT s)(3-2)0,k为其他整数频域应满足:T s,T s(3-3)H ( )0,其他H ( )T sT sT s图 3-2 理想基带传输特性此时频带利用率为2Baud / Hz , 这是在抽样值无失真条件下,所能达到的最高频率利用率。

由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。

在一般情况下,只要满足:2 i H2 2 ,(3-4)HH ( ) HT s iT sT sT sT s基带信号就可实现无码间干扰传输。

这种滤波器克服了拖尾太慢的问题。

从实际的滤波器的实现来考虑,采用具有升余弦频谱特性H ( ) 时是适宜的。

1 sinT s ( ) , (1 ) (1 )2T sT sT sH ( )1, (1 ) 0(3-5)T s0,(1 )T s这里称为滚降系数,1。

所对应的其冲激响应为:sin tcos( t T s )h(t )T s (3-6)t 1 4 2t 2 T s 2T s此时频带利用率降为 2 / (1 ) Baud/ Hz ,这同样是在抽样值无失真条件下,所能达到的最高频率利用率。

通信实验(数字基带信号实验)

通信实验(数字基带信号实验)

实验一数字基带信号一、 实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握AMI、HDB3码的编码规则。

3、掌握从HDB3码信号中提取位同步信号的方法。

4、掌握集中插入帧同步码时分复用信号的帧结构特点。

5、了解HDB3(AMI)编译码集成电路CD22103。

二、 实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。

2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB3、AMI译码输出波形。

三、 基本原理1.简述AMI码的编码规律。

2.简述HDB3码的编码规律。

3.设信息码为0000 0110 0001 0000 0011,绘制NRZ码、AMI码、HDB3码波形。

4.分析AMI码和HDB3码的功率谱,说明如何得到位同步信号。

四、 实验说明本实验使用数字信源模块和HDB3编译码模块。

1、数字信源本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如图1-1所示,电原理图如图1-3所示(见附录)。

本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。

帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。

此NRZ信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。

发光二极管亮状态表示1码,熄状态表示0码。

本模块有以下测试点及输入输出点:• CLK 晶振信号测试点•BS-OUT 信源位同步信号输出点/测试点(2个)• FS 信源帧同步信号输出点/测试点NRZ信号(绝对码)输出点/测试点(4个)•NRZ-OUT(AK)图1-1中各单元与电路板上元器件对应关系如下:•晶振CRY:晶体;U1:反相器7404•分频器U2:计数器74161;U3:计数器74193;U4:计数器40160•并行码产生器 K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管:左起分别与一帧中的24位代码相对应•八选一U5、U6、U7:8位数据选择器4512•三选一U8:8位数据选择器4512•倒相器U20:非门74HC04•抽样U9:D触发器74HC74图1-1 数字信源方框图图1-2 帧结构下面对分频器,八选一及三选一等单元作进一步说明。

图眼观察测量实验(通信基础实验)

图眼观察测量实验(通信基础实验)

实验报告单实验名称:图眼观察测量实验实验项目:实验目的:1. 学会观察眼图及其分析方法,调整传输滤波器特性。

实验器材:1. 眼图观察电路(底板右下侧)2.时钟与基带数据发生模块,位号:G3. 噪声模块,位号E4.100M双踪示波器1台实验原理:在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。

我们知道,在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间串扰。

在码间串扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。

为了便于评价实际系统的性能,常用观察眼图进行分析。

眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。

什么是眼图?所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。

干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很像人的眼睛故称眼图。

在图12-1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。

图12-1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。

眼图中央的垂直线表示取样时刻。

当波形没有失真时,眼图是一只“完全张开”的眼睛。

在取样时刻,所有可能的取样值仅有两个:+1或-1。

当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。

这样,保证正确判决所容许的噪声电平就减小了。

换言之,在随机噪声的功率给定时,将使误码率增加。

“眼睛”张开的大小就表明失真的严重程度。

为便于说明眼图和系统性能的关系,我们将它简化成图12-2的形状。

由此图可以看出:(1)最佳取样时刻应选择在眼睛张开最大的时刻;(2)眼睛闭合的速率,即眼图斜边的斜率,表示系统对定时误差灵敏的程度,斜边愈陡,对定位误差愈敏感;(3)在取样时刻上,阴影区的垂直宽度表示最大信号失真量;(4)在取样时刻上,上下两阴影区的间隔垂直距离之半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5) 阴影区与横轴相交的区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息的解调器有重要影响。

实验二 信道与眼图实验

实验二      信道与眼图实验

实验二信道与眼图实验一、实验目的1、掌握用眼图来定性评价基带传输系统性能。

2、掌握信道与眼图模块的使用方法。

二、实验内容1、信号送入高斯白噪信道,调节噪声功率大小,观测信道输出。

2、数字基带传输信道观测眼图。

三、实验仪器1、信号源模块一块2、信道与眼图模块一块3、20M双踪示波器一台4、虚拟仪器(选配)一块5、频谱分析仪一台四、实验原理1、高斯白噪本实验中我们用伪随机序列模拟高斯白噪声。

伪随机噪声具有类似于随机噪声的一些统计特性,同时又便于重复产生和处理。

由于它具有随机噪声的优点,又避免了它的缺点,因此获得了日益广泛的实际应用。

目前广泛应用的伪随机噪声都是由数字电路产生的周期序列(经滤波等处理后)得到的。

我们把这种周期序列称为伪随机序列。

通常产生伪随机序列的电路为一反馈移存器。

它又可分为线性反馈移存器和非线性反馈移存器两类。

由线性反馈移存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移存器序列,通常简称为m序列。

由于m序列的均衡性、游程分布、自相关特性和功率谱与上述随机序列的基本性质很相似,所以通常认为m序列属于伪噪声序列或伪随机序列。

用m序列的这一部分频谱作为噪声产生器的噪声输出,虽然这种输出是伪噪声,但是多次进行某一测量,都有较好的重复性。

将m序列进行滤波,就可取得上述功率谱均匀的部分作为输出。

实验中,“噪声功率调节”旋转电位器用来控制叠加在信号上的噪声功率的大小。

2、传输畸变和眼图一个实际的基带传输系统,尽管经过了精心的设计,但要使其传输特性完全符合理想情况是困难的,甚至是不可能的。

因此,码间干扰也就不可能避免。

我们知道,码间干扰问题与发送滤波器特性、信道特性、接收滤波器特性等因素有关,因而计算由于这些因素所引起的误码率就非常困难,尤其在信道特性不能完全确知的情况下,甚至得不到一种合适的定量分析方法。

眼图就是一种能够方便地估计系统性能的实验手段。

这种方法的具体做法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器水平扫描周期,使其与接收码元的周期同步。

现代通信原理实验报告

现代通信原理实验报告

太原理工大学现代科技学院现代通信原理课程实验报告专业班级通信17-3 学号 2017101086 姓名丁一帆指导教师李化实验名称 2ASK 调制与解调Matlab Simulink 仿真 同组人专业班级 通信17-3 学号 2017101086 姓名 丁一帆 成绩一、实验目的1.掌握 2ASK 的调制原理和 Matlab Simulink 仿真方法 2.掌握 2ASK 的解调原理和 Matlab Simulink 仿真方法 二、实验原理2ASK 二进制振幅调制就是用二进制数字基带信号控制正弦载波的幅度,使载波振幅随着二进制数字基带信号而变化,而其频率和初始相位保持不变。

信息比特是通过载波的幅度来传递的。

其信号表达式为:0()()cos c e t S t t ω=⋅,S(t)为单极性数字基带信号。

由于调制信号只有0或1两个电平,相乘的结果相当于将载频或者关断,或者接通,它的实际意义是当调制的数字信号“1”时,传输载波;当调制的数字信号为“0”时,不传输载波。

2ASK 信号的时间波形e2ASK(t)随二进制基带信号S(t)通断变化。

所以又被称为通断键控信号 三、实验内容、步骤1 Simulink 模型的建立通过Simulink 的工作模块建立2ASK 二级调制系统,用频谱分析仪观察调制前后的频谱,用示波器观察调制信号前后的波形……………………………………装………………………………………订…………………………………………线………………………………………正弦波源,这里使用的是Signal Processing Blockset\DSP Sources\Sine Wave,设定其幅度为2V,频率为2Hz。

基带信号源,使用的是Communications Blockset\Comm Sources\Random Data Sources\Bernoulli Binary Generator,可以产生随机数字波形。

眼图观测实验报告

眼图观测实验报告

眼图观测实验报告一、实验目的1、了解和掌握眼图的形成过程和意义。

2、掌握光纤通信系统中的眼图观测方法。

二、实验器材主控&信号源模块25号光收发模块示波器三、实验原理1、实验原理框图2、实验框图说明本实验是以数字信号光纤传输为例,进行光纤通信测量中的眼图观测实验;为方便模拟真实环境中的系统传输衰减等干扰现象,我们加入了可调节的带限信道,用于观测眼图的张开和闭合等现象。

如眼图测试实验系统框图所示,系统主要由信号源、光发射机、光接收机以及带限信道组成;信号源提供的数字信号经过光发射机和接收机传输后,再送入用于模拟真实衰减环境的带限信道;通过示波器测试设备,以数字信号的同步位时钟为触发源,观测TP1测试点的波形,即眼图。

3、眼图基本概念及实验观察方法所谓眼图,它是一系列数字信号在示波器上累积而显示的图形。

眼图包含了丰富的信息,反映的是系统链路上传输的所有数字信号的整体特征。

利用眼图可以观察出码间串扰和噪声的影响,分析眼图是衡量数字通信系统传输特性的简单且有效的方法。

被测系统的眼图观测方法:通常观测眼图的方法是,如下图所示,以数字序列的同步时钟为触发源,用示波器YT模式测量系统输出端,调节示波器水平扫描周期与接收码元的周期同步,则屏幕中显示的即为眼图。

眼图的形成示意图一个完整的眼图应该包含从“000”到“111”的所有状态组,且每个状态组发送的此时要尽量一致,否则有些信息将无法呈现在示波器屏幕上。

八种状态如下所示:眼图参数及系统性能眼图的垂直张开度表示系统的抗噪声能力,水平张开度反映过门限失真量的大小。

眼图的张开度受噪声和码间干扰的影响,当光收端机输出端信噪比很大时眼图的张开度主要受码间干扰的影响,因此观察眼图的张开度就可以估算出光收端机码间干扰的大小。

其中,垂直张开度水平张开度从眼图中我们可以得到以下信息:(1)最佳抽样时刻是“眼睛”张开最大的时刻。

(2)眼图斜边的斜率表示了定时误差灵敏度。

斜率越大,对位定时误差越敏感。

数字基带信号实验报告.doc

数字基带信号实验报告.doc

数字基带信号实验报告专业班级:指导老师:李敏姓名:学号:实验一数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握AMI、HDB3码的编码规则。

3、掌握从HDB3码信号中提取位同步信号的方法。

4、掌握集中插入帧同步码时分复用信号的帧结构特点。

5、了解HDB3(AMI)编译码集成电路CD22103。

二、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。

2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB3、AMI译码输出波形。

三、实验步骤本实验使用数字信源单元和HDB3编译码单元。

1、熟悉数字信源单元和HDB3编译码单元的工作原理。

接好电源线,打开电源开关。

2、用示波器观察数字信源单元上的各种信号波形。

用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:(1)示波器的两个通道探头分别接信源单元的NRZ-OUT 和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。

3、用示波器观察HDB3编译单元的各种波形。

仍用信源单元的FS信号作为示波器的外同步信号。

(1)示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码(开关K4置于左方AMI端)波形和HDB3码(开关K4置于右方HDB3端)波形。

再将K1、K2、K3置为全0,观察全0码对应的AMI码和HDB3码。

通信原理实验报告

通信原理实验报告

通信原理实验报告七实验十六:眼图实验——2014xxxxxx 许子涵一、实验目的1、了解眼图与信噪比、码间干扰之间的关系及其实际意义;2、掌握眼图观测的方法并记录研究二、实验内容1、观测眼图并记录分析。

三、实验器材1、信号源模块一块2、③号模块一块3、④号模块一块4、 20M 双踪示波器一台四、实验数据1、ASK调制解调眼图ASK-DOUT TH2FSK眼图PSK/DPSK眼图五、分析眼图是通过用示波器观察接收端的基带信号波形,从而估计和调整系统性能的一种方法。

具体做法是:用一个示波器跨接在抽样判决器的输入端,然后调整示波器水平扫描周期,使其与接收码元的周期同步。

这样就可以从示波器上显示的波形来观察码间串扰和信道噪声等因素影响的情况,从而估计系统系能的优劣。

如果存在码间串扰,示波器的扫描迹线就不完全重合,“眼睛”的线迹会显得杂乱,而且张开的较小;如果码间串扰小到可以忽略,则眼图将会是标准的“大眼睛”。

当存在噪声时,眼图的线迹就变成比较模糊的带状的线,噪声越大,线条越粗越模糊,“眼睛”张开得越小。

同时我们还可以利用眼图来找到最佳判决门限,求出噪声容限,改善系统性能。

接收二进制双极性波形时,在一个码元周期内只能看到一只眼睛;若是M进制的双极性波形,则在一个码元周期内可以看到纵向显示的(M-1)只眼睛。

若接收的是经过码型变换后得到的AMI码或HDB3码,眼图中间将会出现一根代表0的水平线,因为它们的波形都具有三电平。

六、思考题思考信噪比、码间干扰是如何在眼图中体现的?答:眼图的“眼睛”张开的大小反映着码间串扰的强弱。

“眼睛”张的越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越大。

当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变得模糊不清。

若同时存在码间串扰,“眼睛”将张开得更小。

与无码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的带状线,而且不很端正。

噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正。

通原实验 基带传输及眼图观测

通原实验 基带传输及眼图观测

实验17 基带传输及眼图观测一、实验目的1.掌握眼图观测方法;2.学会用眼图分析通信系统性能;二、实验原理1.什么是眼图?所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。

干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很像人的眼睛故称眼图。

在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。

我们知道,在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间串扰。

在码间串扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。

为了便于评价实际系统的性能,常用观察眼图进行分析。

眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。

在下图眼图示意图中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。

在图中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。

眼图中央的垂直线表示取样时刻。

当波形没有失真时,眼图是一只“完全张开”的眼睛。

在取样时刻,所有可能的取样值仅有两个:+1或-1。

当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。

这样,保证正确判决所容许的噪声电平就减小了。

换言之,在随机噪声的功率给定时,将使误码率增加。

“眼睛”张开的大小就表明失真的严重程度。

图17-1 无失真及有失真时的波形及眼图(a) 无码间串扰时波形;无码间串扰眼图(b) 有码间串扰时波形;有码间串扰眼图2.眼图参数及系统性能眼图的垂直张开度表示系统的抗噪声能力,水平张开度反映过门限失真量的大小。

眼图的张开度受噪声和码间干扰的影响,当信道信噪比很大时眼图的张开度主要受码间干扰的影响,因此观察眼图的张开度就可以评估系统干扰的大小。

基带信号眼图

基带信号眼图

计算机与信息技术学院综合性、设计性实验报告专业:通信工程 年级/班级:09级 2011—2012学年第二学期 课程名称 通信原理 指导教师 本组成员学号姓名实验地点 实验时间 第六周 项目名称 基带信号眼图 实验类型 软件一、实验目的1.了解数字基带传输系统的组成和实时工作过程;2.加深理解时域均衡系统的工作原理,基本特点及均衡器的主要作用; 3.学会按给定的均衡准则调整,观测均衡器的方法。

二、实验仪器或设备通信实验箱和数字示波器各一台 三、实验原理K可变 手调图1 数字基带传输系统的组成框图数字基带传输系统的组成框图如图1所示,它是一个较完整的数字基带传输系统。

信号源产生19.2 KHz 的基带信号时钟,经过乘4之后,提供均衡器所需的两个互补驱动时钟76.8 KHz 。

显然本实验系统的基带速率为19.2 Kbit/s 。

测试信号和信码发生器按19.2KHz 的时钟节拍,分别产生测试单脉冲波形及63位M 序列,两种码分别作为均衡的对象,通过开关K 予以选择。

可变信道滤波器是在实验室条件下用来模拟传输信道特性的,改变电位器即可改变滤波器的传输函数特性,进而模拟信道特性的变化。

均衡器是借助横向滤波器实现时域均衡的,它由延迟单元,可变系数电路和相加器三部分组成,如图2所示。

信号源时 钟 测试信号信 码信 道 均衡器 接收滤波器 取样判决4图2 横向滤波器图2中,横向排列的延迟单元是由电荷转移器件完成的。

本实验所采用的是国产斗链器件BBD (Bucret Brrgades Device ),它有32个延迟抽头输出端,因为我们抽样频率为76.8KHz 是基带信号19.2 Kbit/s 的4倍,故取6,10,14,18,22,26,30等七个抽头输出端。

理论上讲,抽头数目越多就越能消除码间串扰的影响,但势必会增加调整的难度。

且若变系数电路的准确度得不到保证,增加抽头数所获得的效益也不会显示出来。

实现Ci 调整的电路,称为变系数电路。

单极性数字基带信号功率谱及眼图的Matlab实现

单极性数字基带信号功率谱及眼图的Matlab实现

单极性数字基带信号功率谱及眼图的Matlab实现1、实验目的通过Matlab实现单极性数字基带信号功率谱,并画出相应的眼图,以理解基带数据传输相关基本概念。

2、实验内容输入的单极性数字基带信号参数自定义。

输出结果包括:1)输入的单极性数字基带信号;2)眼图。

3、原理描述我仿真用的是最简单、最常用的基带信号形式:单极性不归零码。

这种信号脉冲的零电平和正电平分别对应着二进制代码0和1,仿真中是随机产生的。

单极性不归零码的功率谱如下:P(f)=Ts4(sinπfTsπfTs)2+14δ(f)我就只画了连续谱。

眼图是指通过用示波器观察接收端的基带信号波形,从而估计和调整系统性能。

用drawnow能不断地将各个码元周期的波形叠在一起,从而画出眼图的效果。

4、matlab程序及注释function [] = danjixing()Ts = 1; %码元周期1s,1HzN = 20;dt = Ts/N; %画点间隔50msx = randint(1,1000,[0 1]); %随机产生1000个0或1的数x = sigexpand(x,N); %补零满足卷积要求,因为抽样,一个码元只传一个点figure;t = dt:dt:1000;plot(t,x);axis([0 20 -0.2 1.2]); %展示前20个码元%算功率谱n = 1:400;f = 2*n/400; %码元采样率4Hzy = (Ts/4)*sinc(pi*Ts.*f).^2;figure;plot(f,y);%假设传输信道是升余弦滚降,a是滚降系数a = 0.9999; %理想设成1为什么会有毛刺。

t = -3*Ts:dt:3*Ts;h = sinc(t/Ts).*(cos(a*pi*t/Ts))./(1-4*a^2*t.^2/Ts^2+eps);y = conv(x,h); %卷积t=-3*Ts:dt:(1000+3)*N*dt-dt;figure;plot(t,y);axis([0 20 -0.2 1.2]); %经过升余弦滚降系统后的码型t = 0:dt:7*N*dt-dt; %展示7个眼figure;for i = 2:49eye = y(i*N+1:(i+7)*N);drawnow; %重复画,关键函数plot(t,eye);hold on;end5、实验结果随机20个码:10101100000101110101的抽样值(横坐标0~19)单极性不归零码功率谱:经过滚降系统后的码型:眼图(展示7个),滚降系数等于1:滚降系数为0.5的眼图:滚降系数为0.25的眼图:可以发现,“眼镜”的闭合程度能体现信道的传输特性。

通信原理实验:数字解调与眼图

通信原理实验:数字解调与眼图

实验名称数字解调与眼图学院信息科学与工程学院专业班级姓名学号数字解调与眼图一、实验目的1. 掌握2DPSK相干解调原理。

2. 掌握2FSK过零检测解调原理。

二、实验内容1. 用示波器观察2DPSK相干解调器各点波形。

2. 用示波器观察2FSK过零检测解调器各点波形。

3.用示波器观察眼图。

三、基本原理可用相干解调或差分相干解调法(相位比较法)解调2DPSK信号。

在相位比较法中,要求载波频率为码速率的整数倍,当此关系不能满足时只能用相干解调法。

本实验系统中,2DPSK载波频率等码速率的13倍,两种解调方法都可用。

实际工程中相干解调法用得最多。

2FSK信号的解调方法有:包络括检波法、相干解调法、鉴频法、过零检测法等。

图4-1 数字解调方框图(a)2DPSK相干解调(b)2FSK过零检测解调本实验采用相干解调法解调2DPSK信号、采用过零检测法解调2FSK信号。

2DPSK模块内部使用+5V、+12V和-12V电压,2FSK模块内部仅使用+5V电压。

图4-1为两个解调器的原理方框图,其电原理图如图4-2所示(见附录)。

2DPSK解调模块上有以下测试点及输入输出点:• MU 相乘器输出信号测试点• LPF 低通、运放输出信号测试点• Vc 比较器比较电压测试点• CM 比较器输出信号的输出点/测试点• BK 解调输出相对码测试点• AK-OUT 解调输出绝对码的输出点/测试点(3个)• BS-IN 位同步信号输入点2FSK解调模块上有以下测试点及输入输出点:• FD 2FSK过零检测输出信号测试点• LPF 低通滤波器输出点/测试点• CM 整形输出输出点/测试点• BS-IN 位同步信号输入点• AK-OUT 解调输出信号的输出点/测试点(3个)2DPSK解调器方框图中各单元与电路板上元器件的对应关系如下:•相乘器U29:模拟乘法器MC1496•低通滤波器R31;C2•运放U30:运算放大器UA741•比较器U31:比较器LM710•抽样器U32:A:双D触发器7474•码反变换器U32:B:双D触发器7474;U33:A:异或门74862FSK解调器方框图中各单元与电路板上元器件对应关系如下:•整形1 U34:A:反相器74HC04•单稳1、单稳2 U35:单稳态触发器74123•相加器U36:或门7432•低通滤波器U37:运算放大器LM318;若干电阻、电容•整形2 U34:B:反相器74HC04•抽样器U38:A:双D触发器7474在实际应用的通信系统中,解调器的输入端都有一个带通滤波器用来滤除带外的信道白噪声并确保系统的频率特性符合无码间串扰条件。

数字基带信号实验报告_实验报告_

数字基带信号实验报告_实验报告_

数字基带信号实验报告专业班级:指导老师:李敏姓名:学号:实验一数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握AMI、HDB3码的编码规则。

3、掌握从HDB3码信号中提取位同步信号的方法。

4、掌握集中插入帧同步码时分复用信号的帧结构特点。

5、了解HDB3(AMI)编译码集成电路CD22103。

二、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。

2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB3、AMI译码输出波形。

三、实验步骤本实验使用数字信源单元和HDB3编译码单元。

1、熟悉数字信源单元和HDB3编译码单元的工作原理。

接好电源线,打开电源开关。

2、用示波器观察数字信源单元上的各种信号波形。

用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。

3、用示波器观察HDB3编译单元的各种波形。

仍用信源单元的FS信号作为示波器的外同步信号。

(1)示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码(开关K4置于左方AMI端)波形和HDB3码(开关K4置于右方HDB3端)波形。

再将K1、K2、K3置为全0,观察全0码对应的AMI码和HDB3码。

通信数字基带系统仿真 实验报告

通信数字基带系统仿真 实验报告
到“眼图”。
方法原理:把部分码元搬移到同一码元处叠加,观察其波形重叠情况
特点:二进制信号结果很像眼睛
作用:观察码间干扰和噪声影响、估计系统性能优劣程度
电子工程学院通信原理课程实验报告
3、实验仪器与设备(包括实验平台、实验材料等)
PC、MATLAB
4、实验内容(包括实验电路、实验步骤与流程、源程序代码、调试过程记录等,可另附页)
NRZ = 2* randint(1,Num,M)-M+1;
figure(1);Fra bibliotekstem(NRZ);
title('双极性NRZ');
Samp_data = zeros( 1, Samp_rate * Num);
for r = 1:Num*Samp_rate
if rem( r, Samp_rate) == 0
if yh(k)==sign %如果当前V符号与前一个V符号的极性相同
yh(k)=-1*yh(k); %则让当前V符号极性反转,以满足V符号间相互极性反转要
yh(k-3)=yh(k); %添加B符号,与v符号同极性
yh(k+1:length(yn))=-1*yh(k+1:length(yn)); %并让后面的非零符号从V符号开始再交替
Samp_data(r) = NRZ( r /Samp_rate);
end
end
[ht,a] = rcosine(1/Ts,Fs,'fir',alpha); % Design raised cosine filter.滤波器
figure(2);
subplot(2,1,1);
plot(ht);
ylabel('冲激响应');

基带信号眼图实验 (2)

基带信号眼图实验 (2)

实验三 数字基带信号的眼图实验一、实验目的1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法;2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度;3、熟悉MATLAB 语言编程。

二、实验预习要求1、复习《数字通信原理》第七章7.1节——奈奎斯特第一准则内容;2、复习《数字通信原理》第七章7.2节——数字基带信号码型内容;3、认真阅读本实验内容,熟悉实验步骤。

三、实验原理和电路说明1、基带传输特性基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该图3-1基带系统的分析模型抑制码间干扰。

设输入的基带信号为()nsna t nT δ-∑,sT 为基带信号的码元周期,则经过基带传输系统后的输出码元为()nsna h t nT -∑。

其中1()()2j th t H ed ωωωπ+∞-∞=⎰(3-1)理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足:10()0,s k h kT k =⎧=⎨⎩,为其他整数 (3-2)频域应满足:()0,ss T T H πωωω⎧≤⎪=⎨⎪⎩,其他 (3-3)图3-2 理想基带传输特性此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。

由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。

在一般情况下,只要满足:222(),s i s s s si H H H H T T T T T ππππωωωωω⎛⎫⎛⎫⎛⎫+=-+++=≤⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑ (3-4)基带信号就可实现无码间干扰传输。

这种滤波器克服了拖尾太慢的问题。

从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。

(1)(1)1sin (),2(1)()1,0(1)0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω⎧⎡⎤-+--≤≤⎪⎢⎥⎣⎦⎪⎪-⎪=≤≤⎨⎪⎪+>⎪⎪⎩(3-5)这里α称为滚降系数,01α≤≤。

数字基带传输系统眼图的产生与分析课程设计报告

数字基带传输系统眼图的产生与分析课程设计报告

数字基带传输系统眼图的产生与分析课程设计报告题目:数字基带传输系统眼图的产生与分析系别:电子信息与电气工程系专业:通信工程班级:学号:姓名:导师:2012年12 月6日目录摘要1课题意义 (1)2系统框图 (1)2.1一般的系统组成 (1)2.2本文所用的系统框图 (1)3模块设计及其实现 (2)3.1输入模块 (2)3.1.1数字基带信号的选择 (2)3.1.2 m序列的概念 (2)3.1.3 m序列的用途 (2)3.1.4 m序列产生原理 (2)3.1.5方案选择 (2)3.1.6设计实现 (3)3.2传输模块 (3)3.2.1传输系统选择 (4)3.2.2传输系统的设计 (4)3.2.3传输系统的实现 (5)3.3接收模块 (6)3.3.1示波器原理 (6)3.3.2眼图的产生原理 (6)3.3.3眼图与系统性能的关系 (6)4性能分析 (7)4.1数字基带信号波形 (7)4.2未经传输的源信号眼图 (8)4.3带基带传输模块 (8)5总结 (11)参考文献 (14)附录:系统电路图 (16)数字基带传输系统性能测试与分析摘要:本文以移位寄存器为核心,设计了一个用于分析系统传输性能好坏的电路系统。

它由数字信号发生器、伪随机信号发生器、模拟低通滤波器以及示波器组成。

数字信号和伪随机序列由移位寄存器产生,低通滤波器模拟传输信道。

经测试它能够反映出传输系统性能的好坏。

关键字:m序列加法器滤波器基带传输眼图系统性能1课题意义对于一个信号传输系统而言,最大的指标就是使信号能够无失真的传送到接收端,然而这是不可能做到的,信号在传输中必然存在失真,只有通过改良系统使失真达到可以接受的范围内才能用来传输信号,所以就必须有一个有效的的方法来判断传输系统的好坏。

通过本课题中产生的眼图来判断传输系统的好坏是一个有效的方法。

通过看到的眼图实际情况,可以了解传输系统的性能好坏,从而帮助设计人员设计出符合要求的传输系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六 数字基带信号的眼图实验一、实验目的1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法;2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信间干扰大小的影响程度;3、熟悉MATLAB 语言编程。

二、实验原理和电路说明1、基带传输特性基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该图3-1基带系统的分析模型抑制码间干扰。

设输入的基带信号为()nsna t nT δ-∑,sT 为基带信号的码元周期,则经过基带传输系统后的输出码元为()nsna h t nT -∑。

其中1()()2j t h t H e d ωωωπ+∞-∞=⎰(3-1)理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足:10()0,s k h kT k =⎧=⎨⎩,为其他整数 (3-2)频域应满足:()0,ss T T H πωωω⎧≤⎪=⎨⎪⎩,其他 (3-3)图3-2 理想基带传输特性此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。

由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。

在一般情况下,只要满足:222(),s i s s s si H H H H T T T T T ππππωωωωω⎛⎫⎛⎫⎛⎫+=-+++=≤⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑ (3-4)基带信号就可实现无码间干扰传输。

这种滤波器克服了拖尾太慢的问题。

从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。

(1)(1)1sin (),2(1)()1,0(1)0,s s s s ss T T T T H T T ππαπαωωαπαωωπαω⎧⎡⎤-+--≤≤⎪⎢⎥⎣⎦⎪⎪-⎪=≤≤⎨⎪⎪+>⎪⎪⎩(3-5)这里α称为滚降系数,01α≤≤。

所对应的其冲激响应为:()222sin cos()()14s s s stT t T h t t t T T παππα=-(3-6)此时频带利用率降为2/(1)Baud/Hz α+,这同样是在抽样值无失真条件下,所能达到的最高频率利用率。

换言之,若输入码元速率'1/s sR T,则该基带传输系统输出码元会产生码间干扰。

2、眼图所谓眼图就是将接收滤波器输出的,未经再生的信号,用位定时以及倍数作为同步信号在示波器上重复扫描所显示的波形(因传输二进制信号时,类似人的眼睛)。

干扰和失真所产生的畸变可以很清楚的从眼图中看出。

眼图反映了系统的最佳抽样时间,定时的灵敏度,噪音容限,信号幅度的畸变围以及判决门限电平,因此通常用眼图来观察基带传输系统的好坏。

图3-3 眼图示意图三、仿真程序设计1、程序框架双极性NRZ码元序列产生升余弦滚降系统NRZ码元序列抽样画眼图NRZ(n)图3-4 程序框架首先,产生M进制双极性NRZ码元序列,并根据系统设置的抽样频率对该NRZ码元序列进行抽样,再将抽样序列送到升余弦滚降系统,最后画出输出码元序列眼图。

2、参数设置该仿真程序应具备一定的通用性,即要求能调整相应参数以仿真不同的基带传输系统,并观察输出眼图情况。

因此,对于NRZ码元进制M、码元序列长度Num、码元速率Rs,采样频率Fs、升余弦滚降滤波器参考码元周期Ts、滚降系数alpha、在同一个图像窗口希望观测到的眼图个数Eye_num等均应可以进行合理设置。

3、实验容根据现场实验题目容,设置仿真程序参数,编写仿真程序,仿真波形,并进行分析给出结论。

不同进制的码元序列经过不同带宽的升余弦滚降系统后的眼图通用程序(1)Rs=50 Ts=10 M=2 a=0.2close all;alpha=0.2;Ts=1e-2;Fs=1e3;Rs=50;M=2;Num=100;Samp_rate=Fs/Rs;Eye_num=2;NRZ=2*randint(1,Num,M)-M+1;figure(1);title('双极性NRZ码元序列');Samp_data=zeros(1,Samp_rate*Num);for r=1:Num*Samp_rateif rem(r,Samp_rate)==0Samp_data(r)=NRZ(r/Samp_rate);endend[ht,a]=rcosine(1/Ts,Fs,'fir',alpha);figure(2);subplot(2,1,1);plot(ht);ylabel('冲激响应');title('升余弦滚降系统冲激响应');st=conv(Samp_data,ht)/(Fs*Ts);subplot(2,1,2);plot(st);ylabel('信号幅度');title('经过升余弦滚降系统后的码元');figure(3);for k=10:floor(length(st)/Samp_rate)-10ss=st(k*Samp_rate+1:(k+Eye_num)*Samp_rate);hold on;endylabel('信号幅度'); title('基带信号眼图');从眼图开程度可以得出没有发生码间干扰,这是因为基带信号的码元速率Rs为50Baud,而升余弦滚降滤波器和FIR滤波器的等效带宽B=60Hz(Ts=10ms),Rs<2B,满足了奈奎斯特第一准则的条件。

(2) Rs=50 Ts=10 M=4 a=0.2close all;alpha=0.2;Ts=1e-2;Fs=1e3;Rs=50;M=4;Num=100;Samp_rate=Fs/Rs;Eye_num=4;NRZ=2*randint(1,Num,M)-M+1; figure(1);stem(NRZ);title('双极性NRZ码元序列');Samp_data=zeros(1,Samp_rate*Num); for r=1:Num*Samp_rateif rem(r,Samp_rate)==0Samp_data(r)=NRZ(r/Samp_rate); endend[ht,a]=rcosine(1/Ts,Fs,'fir',alpha);figure(2);subplot(2,1,1);plot(ht);ylabel('冲激响应');title('升余弦滚降系统冲激响应');st=conv(Samp_data,ht)/(Fs*Ts);subplot(2,1,2);plot(st);ylabel('信号幅度');title('经过升余弦滚降系统后的码元');figure(3);for k=10:floor(length(st)/Samp_rate)-10ss=st(k*Samp_rate+1:(k+Eye_num)*Samp_rate);plot(ss);hold on;endylabel('信号幅度');title('基带信号眼图');从眼图开程度可以得出没有发生码间干扰,这是因为基带信号的码元速率Rs为50Baud,而升余弦滚降滤波器和FIR滤波器的等效带宽B=60Hz(Ts=10ms),Rs<2B,满足了奈奎斯特第一准则的条件。

眼图是由各段码元波形叠加而成的,M=4,所以能看到3只眼睛。

(3) Rs=50 Ts=20 M=2 a=0.2close all;alpha=0.2;Ts=2*1e-2;Fs=1e3;Rs=50;M=2;Num=100;Samp_rate=Fs/Rs;Eye_num=2;NRZ=2*randint(1,Num,M)-M+1; figure(1);stem(NRZ);title('双极性NRZ码元序列');Samp_data=zeros(1,Samp_rate*Num); for r=1:Num*Samp_rateif rem(r,Samp_rate)==0Samp_data(r)=NRZ(r/Samp_rate); endend[ht,a]=rcosine(1/Ts,Fs,'fir',alpha); figure(2);subplot(2,1,1);plot(ht);ylabel('冲激响应');title('升余弦滚降系统冲激响应');st=conv(Samp_data,ht)/(Fs*Ts); subplot(2,1,2);plot(st);ylabel('信号幅度');title('经过升余弦滚降系统后的码元');figure(3);for k=10:floor(length(st)/Samp_rate)-10ss=st(k*Samp_rate+1:(k+Eye_num)*Samp_rate);plot(ss);hold on;endylabel('信号幅度');title('基带信号眼图');从眼图开程度可以得出没有发生码间干扰,这是因为基带信号的码元速率Rs为50Baud,而升余弦滚降滤波器和FIR滤波器的等效带宽B=30Hz(Ts=10ms),Rs=2B,满足了奈奎斯特第一准则的条件。

能看到一只清晰的眼睛。

(4)Rs=50 Ts=50 M=2 a=0.2close all;alpha=0.2;Ts=5*1e-2;Fs=1e3;Rs=50;M=2;Num=100;Samp_rate=Fs/Rs;Eye_num=2;NRZ=2*randint(1,Num,M)-M+1;figure(1);stem(NRZ);title('双极性NRZ码元序列');Samp_data=zeros(1,Samp_rate*Num);for r=1:Num*Samp_rateif rem(r,Samp_rate)==0Samp_data(r)=NRZ(r/Samp_rate); endend[ht,a]=rcosine(1/Ts,Fs,'fir',alpha);figure(2);subplot(2,1,1);plot(ht);ylabel('冲激响应');title('升余弦滚降系统冲激响应');st=conv(Samp_data,ht)/(Fs*Ts);subplot(2,1,2);plot(st);ylabel('信号幅度');title('经过升余弦滚降系统后的码元');figure(3);for k=10:floor(length(st)/Samp_rate)-10ss=st(k*Samp_rate+1:(k+Eye_num)*Samp_rate);plot(ss);hold on;endylabel('信号幅度');title('基带信号眼图');眼图基本闭合,存在较为严重的码间干扰,这是因为码元速率Rs虽然仍为50Baud,但滤波器等效带宽已经变为12Hz(Ts=50ms),Rs>2B不再满足奈奎斯特第一准则。

相关文档
最新文档