研究生课程数值分析

合集下载

《数值分析》课程教学大纲

《数值分析》课程教学大纲

《数值分析》课程教学大纲课程编号:07054352课程名称:数值分析英文名称:Numerical Analysis课程类型:学科基础课程要求:必修学时/学分:48/3 (讲课学时:40 上机学时:8)适用专业:计算机科学与技术;软件工程一、课程性质与任务“数值分析”是计算机科学与技术、软件工程等相关专业学生的学科基础课,也是其它理、工科专业本科生及研究生的必修或选修课。

数值分析是研究各种数学问题在计算机上通过数值运算,得到数值解答的方法和理论。

随着计算机系统能力的提高和新型数值软件的不断开发,无论在高科技领域还是在传统学科领域,数值分析的理论和方法的作用和影响巨大,是科学工作者和工程技术人员必备的基础知识和工具。

课程的任务是使学生能了解数值分析的基本概念,熟悉常用数值方法的构造原理,了解数值算法复杂性、误差与收敛性分析的基本方法,了解重要数值算法的软件实现过程,使学生系统掌握数值分析的基本概念和分析问题、解决问题的基本方法,为掌握更复杂的现代计算方法打好基础。

内容包括数值计算的基本方法、线性和非线性方程组解法、插值法、数值积分法及微分方程的数值解法。

二、课程与其他课程的联系先修课程:高等数学,线性代数,C语言程序设计,计算基础。

后续课程:人工智能,数字图像处理技术,大数据分析及应用。

三、课程教学目标1.学习使用计算机进行数值计算的基础知识和基本理论知识,能够分辨、选用合适的数值方法解决工程问题。

(支撑毕业能力要求1和2)2. 能掌握常用数值计算方法的构造原理,根据问题设计和综合运用算法设计问题解决方案。

(支撑毕业能力要求1和2)3. 能运用数值算法复杂性、误差与收敛性分析的基本方法初步进行算法分析。

4. 能用计算机语言实现典型的数值计算算法,得到实验技能的基本训练,并具有利用计算机解决常见数学问题的能力;(支撑毕业能力要求4)5.能通过查询阅读文献资料,了解数值分析的前沿和新发展动向,了解数值分析算法原理应用的典型工程领域。

研究生数学数值分析2-3

研究生数学数值分析2-3
并且这两种运算满足以 下八条运算规律 y ( x, ,z ∈ X ; λ , µ ∈ K ) :
1
(1) x + y = y + x; ( 2) ( x + y ) + z = x + ( y + z ); ( 3) 在 X 中存在零元素 0 ∀ x ∈ X,都有 x + 0 = x; ,
(4) ∀ x ∈ X,都有 x 的负元素 − x ∈ X,使 x + ( − x ) = 0 ; (5) 1 x = x; (6) λ ( µ x ) = (λµ ) x; ( 7 ) ( λ + µ ) x = λ x + µ x; (8) λ ( x + y ) = λ x + λ y ,
λ x =| λ | x ;
( 3 ) 三角不等式
x+ y ≤ x + y .
则称 X 为赋范线性空间 , x 称为 X 中向量 x 的范数 .
11
利用三角不等式易推出 x − y ≤ x− y
x = ( x1, x2 ,L, xn )T ,
( 2 .3 .8 )
, 例2.3.3 在线性空间Rn 中 对任意的 可以证明
7
例 2 .3 .2 在 C [ a , b ] 上 , 对任意 f ( x ), g ( x ) ∈ C [ a , b ], 定义 ( f ( x ), g ( x ) ) =

b
a
ρ ( x ) f ( x ) g ( x )dx ,
( 2 .3 .3 )
其中 ρ ( x ) 称为权函数 , 它满足 : (1) ρ ( x ) ≥ 0 , ∀ x ∈ [ a , b ]; ( 2)

河海大学研究生数值分析课件

河海大学研究生数值分析课件
插值节点。其他点 x [a, b]称为插值点。 [a, b称为 ] 插值区间。
若 P(x) 是次数不超过n的多项式,即
P( x) a0 a1 x an x n
则称 P(x)为插值多项式。相应的方法称为多项式插值。 若 P(x) 是分段多项式,则称分段多项式插值。 常用的有拉格朗日插值、牛顿插值、埃尔米特插 值、埃特金插值、三次样条插值等。
定义2 称
f ( x1 ) f ( x0 ) f [ x0 , x1 ] x1 x0
为 f (x)关于点
x0 , x1 的一阶均差;称
f [ x0 , x2 ] f [ x0 , x1 ] f [ x0 , x1 , x2 ] x2 x1
为 f (x)的二阶均差;一般的,称
f ( f ( x ,, x )) | ( ) | ( xk ) xk k 1
1 n n
例3 测量得某场地长 l 的值为 110 0.2 ,宽d m 的值为 80 0.1m ,试求面积 s = ld 的绝对误差限与 相对误差限。 (见黑板)
1.3 误差定性分析与避免误差危害
1 ( n1)
若 x 具有n位有效数字,则相对误差限
r
x 10 (a1 a2 10 an 10
) , a1 0
1 ( n 1) 10 2a1 1 ( n 1) 10 ,则 反之,若 x 的相对误差限 r 2a1
至少具有n位有效数字。 (证明见黑板)
其中数值计算方法是数值分析研究的对象。
主要包括:
(1)函数的数值逼近(包括插值法);
(2)数值微分和数值积分;
(3)非线性方程(组)数值解; (4)数值线性代数(如线性方程组数值解、矩阵 特征值特征向量的计算); (5)(偏)微分方程数值解。

研究生数值分析(5)牛顿(Newton)迭代法

研究生数值分析(5)牛顿(Newton)迭代法

z
0.612547 0.641384 0.641186
6 求方程 m重根的Newton法 设 s 是方程 f(x)=0 的 m 重根(m≥2), f(x)
在 s 的某邻域内有m阶连续导数 ,这时
f (s) f (s) f (m1) (s) 0, f (m) (s) 0
由Taylor公式,得
设 f '(x) 0 ,上式解为
x

xk

f (xk ) f ' (xk )
于是方程 f(x)=0的新的近似根xk+1,可由牛顿
迭代公式
xk 1

xk

f (xk ) f ' (xk )
k 0,1, 2,
求出
牛顿迭代公式具有明显的几何意义。 方程 y f (xk ) f '(xk )(x xk ) 是曲线 y=f(x)在点 (xk , f (xk )) 处的切线方程,迭代公式就是切线与x轴 交点的横坐标。因此,牛顿迭代法又称为切线法。
这表明牛顿迭代法用于求单根时至少是二阶收敛的。
(2)若 x* 是方程 f (x) 0 的 m(m 2) 重根,

f (x) (x x*)m q(x)
(q(x*) 0)
此时有
g ' (x*) lim g ' (x) lim
x x*
x x*
f (x) f '' (x) [ f ' (x)]2
k
xk
k
xk
4 0.635498 8 0.640964
5 0.643719 9 0.641285
6 0.640061 10 0.641142

工科研究生“数值分析”课程教学大纲及教学日历

工科研究生“数值分析”课程教学大纲及教学日历

工科研究生“数值分析”课程的教学大纲序号:课程编号:课程名称:数值分析/ Numerical Analysis学时:40 学分: 2.5责任教师:王开荣,何光辉,董海云,李东,温罗生适用专业:工科研究生各专业先修课程:高等数学、线性代数课程教材:《应用数值分析》,王开荣,杨大地,高等教育出版社,2010年7月参考教材:1. 关治, 陆金甫,《数值方法》清华大学出版社,2006.2.2. Numerical Analysis Using MATLAB,Fourth Edition,电子工业出版社(影印版),2005年7月。

一、课程的性质、目的和任务学习数值分析课程能培养学生运用数学的方法和借助计算机解决工程计算问题的能力。

其任务是通过近似计算,使得许多难以求解的数学问题得以简化、可行。

并得到满足误差要求的近似解。

本课程的目的和任务是使工科研究生掌握工程应用中的数值计算方法,为具有不同工程背景的学生能运用这些近似计算方法处理在工程技术及其科学研究中出现的计算问题奠定坚实的基础。

通过学习要求学生能正确理解数值分析的所有的概念和算法,掌握算法的构造思想及其基本算法的步骤。

能应用工具软件Matlab独立完成常用的算法的编程及数值计算。

通过典型的数值算例验证所编程序的正确性,并且应用到实际问题中。

二、课程的教学内容和基本要求1.误差(4学时)(1)了解误差的来源和误差的概念;(2)理解误差的传播和算法中应避免的问题;2.线性方程组的直接解法(6学时)(1)掌握Guass消去法,理解范数的概念;(2)熟练运用Gauss列主元素法,三角分解法,追赶法;3.线性方程组的迭代法(4学时)(1)理解迭代法的收敛条件,掌握Jacobi迭代法;(2)熟练运用Seidel,SOR迭代法;4.方阵的特征值与特征向量的计算(2学时)(1)了解QR方法;(2)熟练运用乘幂法和反幂法,Jacobi方法;5.非线性方程求根(4学时)(1)掌握二分法;(2)熟练使用Newton法;6.插值法(6时)(1)掌握Lagrange插值,Newton插值,Hermite插值;(2)熟练运用分段插值,样条插值;7.函数逼近与数据拟合(2时)(1)掌握多项式逼近,拟合;(2)熟练运用正交多项式逼近,拟合;8.数值积分(6时)(1)掌握Newton-Cotes公式,Gauss求积公式;(2) 熟练运用Romberg积分公式,复化Gauss型公式;9.常微分方程初值问题的数值解法(4时)(1)掌握Euler方法,Runge-kutta方法,Admas预测-校正法;(2)了解稳定性、收敛性和计算误差估计,高阶方程及方程组.10.总复习(2时)四、考试方式考试以笔试、闭卷的方式进行。

研究生“数值分析”课程教学初探

研究生“数值分析”课程教学初探
数值分析的方法和原理 ,并在书末给出了描写书中各数值实验算法 的 M tb a a 程序 _ 】 l 8 。这些教材 . 9 为提高数值分析课程的教学质量创造了良好的条件。笔者认为这些教材具有现代化 的气息 ,可考 虑选作参 考 教材 。 当然 ,研究生 的教学不 同于本科生 ,教学内容不必完全拘泥于书本 ,完全照本宣科 ,教学 内 容要 具有 时代 性 、先进 性 ,要及 时反 映本 学科 领 域 的最新 成果 。我们需 要 根据 学生 的专 业 和学 生 的层次 ,把几个参考教材的内容糅和在一起 ,有选择性的讲解 。比如我校研究生所用的主要教材 是李庆扬 、王能超 、易大义编的 《 数值分析》 。。这本书的内容有些太浅 ,太浅的内容可以让学 。 生 自学 ,而在教学 内容 中增加非线性方程组求解 、共轭梯度法 、有理插值、定积分外推法以及线 性多步法等。研究生的培养 目标是能够解决实际问题 ,对于数值分析课程来说 ,就是能够使用各 种算法 。在教学 内容里应该加上各种算法 的最新成果 ( 譬如最新 的科研论文) 以及每种算法在
便 更好 的发挥 我校 的 资源 ,创 造更 好 的教学 效果 。
二 、教 材 的选 择
数值分析课程教学改革的第一步就是要选择好教材 ,或者说选择好该课程的教学内容是开好 这门课的关键 。数值分析教学内容的创 新实践研究一 直是从事数值分析教学的同仁们的主攻方
向。至今 ,据笔者 所 知还没 有专 门针 对研究 生 的较为完 善 的数值 分析 教材 。 自研 究生 开设这 门课
自 从美国 M t o 公司于 16 a wr h k 97年推出了适用于不同规格计算机和各种操作 系统 的数学软件 包— —MaI tb以来 ,数值 分析 得到 了很 大 的发 展 。从 2 a 0世 纪 9 0年代 中期开 始 ,国 内出现 了一 些 基于数学软件 M tb的数值分析教材或参考书- J aa l 3 ,但遗憾的是这类教材大多只用一个附录介绍

研究生数值分析(12)高斯-赛德尔(Gauss-Seidel)迭代法

研究生数值分析(12)高斯-赛德尔(Gauss-Seidel)迭代法


X (k1) (D L)1UX (k ) (D L)1b

BG (D L)1U
(称为高斯-赛德尔(Gauss-Seidel)迭代矩阵),
fG (D L)1b
则得 X (k 1) BG X (k ) fG 为高斯-赛德尔迭代法的矩阵表示形式。
我们用定理2来判断高斯-赛德尔迭代公式是否
x (k) n

b1)

x2(k
1)


1 a11
(a21 x1( k 1)

a23 x3( k )

a2n xn(k) b2 )



xi
(
k
1)


1 aii
(ai1 x1( k 1)

a x (k1) i2 2


a x (k1) i,i1 i1

a x (k) i,i1 i1
如在例8例9中,由于系数矩阵A是严格对角 占优,由定理4立即可断定用雅可比迭代法与高斯 -赛德尔迭代法求解时,迭代过程都收敛。
4 2 2
又如矩阵
A


2
2 3
2 3 14
是对称正定阵(实对称阵是正定阵的,如果实二次型
f (x1, x2 , , xn ) X T AX
我们先引入一个叫矩阵谱半径的概念的模的最大值称为矩阵a的谱半径记作前面我们在应用雅可比迭代法与高斯赛德尔迭代法解一阶线性方程组时判断各迭代公式是收敛还是发散都要计算雅可比迭代矩阵bj与高斯赛德尔迭代矩阵bg的特征值
2 高斯-赛德尔(Gauss-Seidel)迭代法
研究雅可比迭代法,我们发现在逐个求 X (k1)

研究生数值分析 样条插值

研究生数值分析 样条插值

x
-0.46 -0.40 -0.36 -0.30 -0.26 -0.20 -0.16 -0.10 -0.06 -0.00
1 1 25x2
L10 (x)
0.15898 0.24145 0.20000 0.19999 0.23585 0.18878 0.30769 0.23535
0.37175 0.31650
f (x)
L1(x)
yi 1
x xi xi1 xi
yi
x xi1 xi xi1
这种分段低次插值称为分段线性插值。
在几何上就是用折线代替曲线,故分段线 性插值又称为折线插值。
类似地,为求f(x)的近似值,也可选取距点x
最近的3个节点 xi1, xi , xi1 进行二次插值,即取
f
(x)
L2 (x)
i 1
[ yk
k i1
i 1
(
j i 1
x xj xk x j
)]
jk
这种分段低次插值叫分段二次插值。
在几何上就是用分段抛物线代替曲线,故分 段二次插值又称为抛物线插值。
3、三次样条插值 对于给定的n+1个节点,求函数的近似值,可以
作 n次插值多项式,当n较大时,高次插值不仅计算 复杂,而且还可能出现高阶导数不一致收敛的现象;
若采用分段插值,虽计算简单,也具有一致收 敛性,但光滑性比较差.
有些实际问题,比如:船体放样,飞机的机翼 设计等要求二阶光滑度(有二阶的连续导数)。过去, 工程师制图时,往往用一根富有弹性的木条(称为 样条),把它用压铁固定在样点上,其他地方让它 自由弯曲,然后画一条曲线,称为样条曲线。
它实际上是由分段三次曲线连接而成,在连接 点处有二阶连续导数。我们对工程师描绘的样条曲 线,抽象成数学模型,得出的函数称为样条函数, 它实质上是分段多项式的光滑连接。

[考研类试卷]2007年工程硕士研究生学位课程(数值分析)真题试卷.doc

[考研类试卷]2007年工程硕士研究生学位课程(数值分析)真题试卷.doc

[考研类试卷]2007年工程硕士研究生学位课程(数值分析)真题试卷
1 给定非线性方程e-x-2x=0. 1)判断该方程存在几个实根; 2)用适当的迭代法求出上述方程的根,精确至3位有效数字; 3)验证所用迭代法满足的收敛性条件,说明所用迭代格式是收敛的.
2 用列主元Gauss 消去法解线性方程组
3 给定线性方程组 1)写出Gauss-Seidel迭代格式;2)分析此迭代格式的收敛性
4 设f(x)=x4—3x3+x2-10,x0=1,x1=3,x2=-2,x3=0. 1)求f(x)以x0,x1,x2,x3为节点的3次Lagrange插值多项式L3(x); 2)求f(x)以x0,x1,x2,x3为节点的3次Newton插值多项式N3(x); 3)给出以上插值多项式的插值余项表达式.
5 求方程组的最小二乘解.
6 考虑积分I(f)= 1)写出计算I(f)的Simpson公式S(f); 2)用多项式插值的思想推导出S(f). 3)写出复化梯形公式和复化Simpson公式之间的关系式.
7 给定常微分方程初值问题取正整数n,并记h=(b—a)/
n,x i=a+ih,f i=f(x i,y i),0≤i≤n.证明求解公式y i+1=y i +(55f i-59f i-1+37f i-2-9f i-3)是一个4阶公式,并给出局部截断误差的表达式.
答案见麦多课文库。

研究生数值分析课件ch

研究生数值分析课件ch
详细描述
数值分析是数学的一个重要分支,主要研究如何利用数值方法求解数学问题和近似计算 实际问题的数值解。它为科学研究、工程技术和实际应用等领域提供了重要的数学工具。 数值分析的重要性在于它能够将许多抽象的数学概念和理论转化为具体的数值计算方法,
使得我们能够更加方便地解决各种复杂的实际问题。
数值分析的应用领域
在金融领域,数值分析也被 广泛应用于风险评估、投资 组合优化、期权定价等方面 。通过数值分析的方法,我 们可以更加准确地评估投资 风险和收益,从而做出更加 明智的决策。
数值分析的发展历程
总结词
数值分析的发展历程可以追溯到上世纪初,随着计算 机技术的不断发展,数值分析的理论和方法也在不断 更新和完善。
05
数值积分与微分
牛顿-莱布尼兹公式与复化求积法
牛顿-莱布尼兹公式
该公式是微积分中的一个基本定理,用于计算定积分。 通过将积分区间分成若干小区间,并在每个小区间上应 用微积分基本定理,再利用定积分的线性性质进行求和 ,最后取极限得到定积分的值。
复化求积法
当被积函数是复杂函数或者积分区间是复杂形状时,直 接应用牛顿-莱布尼兹公式可能会遇到困难。此时,可以 采用复化求积法,即将积分区间分成若干个小区间,然 后在每个小区间上应用牛顿-莱布尼兹公式,最后将所有 的结果相加得到定积分的近似值。
改进欧拉法
为了提高欧拉方法的精度,可以对欧拉方法进行改进。一种常见的改进方法是使用二阶 欧拉方法,它考虑了更多的函数值,从而提高了逼近的精度。
龙格-库塔方法
龙格-库塔方法是一种高阶数值方法,用于求解常微分方程。它基于泰勒级数的思想,通过迭代的方式逐步逼近方程的精确解 。与欧拉方法相比,龙格-库塔方法具有更高的精度和更好的稳定性。

研究生数值分析(15)插商与牛顿(Newton)插值多项式

研究生数值分析(15)插商与牛顿(Newton)插值多项式
插商与牛顿(Newton)插值多项式 构造拉格朗日插值多项式
( x x0 ) ( x xk 1 )( x xk 1 ) ( x xn ) Ln ( x) yk lk ( x) yk ( xk x0 ) ( xk xk 1 )( xk xk 1 ) ( xk xn ) k 0

f [ xi , x j , xk ]
f [ x j , xk ] f [ xi , x j ] xk xi
一般地,称 m-1 阶差商的差商
f [ x1 , x2 , , xm ] f [ x0 , x1,, xm1 ] f [ x0 , x1 , , xm ] xm x0
用牛顿二次、三次插值多项式近似计算f(1.46)
的值,并估计牛顿二次插值多项式近似计算的截断
误差,说明牛顿二次多项式近似计算结果的有效数 字。
f [ x0 , x1 , , xk ]
j 0 k
f (x j ) ( x j x0 ) ( x j x j 1 )( x j x j 1 ) ( x j xk )
性质2 差商具有对称性,即在k阶差商
f [ x0 , x1 ,, xk ] 中任意调换2个节点
xi
R2 (115) f [ x0 , x1 , x2 , x3 ]3 (115) 0.0000003138 (115 100)(115 121)(115 144) 0.00082
与实际误差
115 N 2 (115) 0.001 相当接近。
练习:给定数据如下:
x f(x) 1 1.25 1.5 2.50 0 1.00 2 5.50
例3 已知函数表
x
x
… …

数值分析 (1)

数值分析 (1)

e * − e = (e * − en ) + (en − e )
2009-09-26 zhwang@ 17
2. 误差的度量
1) 2) 3) 4)
绝对误差 相对误差 有效数字 度量间的关系
2009-09-26
zhwang@
18
1)绝对误差
绝对误差定义:
zhwang@
22
相对误差(续2)
* * e ε ( x r 相对误差限: 的上界,记为 r ) 。 相对误差限:数值
相对误差限也可以通过
ε r* = ε * / x*
来计算。
Remark: 当要求计算相对误差,是指估计一个尽 可能小的相对误差限。 相对误差与相对误差限没有量纲。
分类方法1:若算法包含 有一个进程则称其为串行算法, 否则为并行算法。 分类方法2:从算法执行所 花费的时间角度来讲,若算术运 算占绝大多数时间则称其为数值 型算法,否则为非数值型算法。 本课程介绍数值型串行算 法。(其它类型算法参阅数据结 构、并行算法等课程)
2009-09-26
zhwang@
19
绝对误差(续)
•绝对误差限:
* * 如果存在正数 ε = ε(x ) ,使得有绝对误差
e * = x * − x ≤ ε* ,
则称 ε* 为 x*近似 x 的一个绝对误差限 绝对误差限。 绝对误差限
x ∈ [x * − ε * , x * + ε * ] , x = x * ± ε * 。
Remark: 通常计算中所要求的误差,是指 估计一个尽可能小的绝对误差限。 绝对误差与绝对误差限有量纲。
2009-09-26 zhwang@ 10
算法应用状态
数值分析研究对象以及解决问题方法的 广泛适用性,著名流行软件如Maple、Matlab、 Mathematica等已将其绝大多数内容设计成函 数,简单调用之后便可以得到运行结果。 但由于实际问题的具体特征、复杂性, 以及算法自身的适用范围决定了应用中必须选 择、设计适合于自己特定问题的算法,因而掌 握数值方法的思想和内容是至关重要的。

研究生数值分析(11)---雅可比(Jacobi)迭代法

研究生数值分析(11)---雅可比(Jacobi)迭代法
(4)
a x (k) n,n1 n1
bn )
取初始向量
X
(0)
(
x (0) 1
,
x (0) 2
,
,
x (0) n
)T
利用(4)反复迭代可以得到一个向量序列 {X (k)}
称式(4)为雅可比迭Jacobi代公式。
若记
a11
D
a22
0
a21 0
0 a12
0
L a31
a32
0
U
特征方程 I D1(L U ) 0
又可以写成 D1 D L U 0 因为 D1 0 ,所以 D L U 0 上式左端为将系数矩阵 A 的对角元同乘以 λ 后所得新矩阵的行列式。
例8 用雅可比迭代法求解方程组
10x1 2x2 x3 3 2x1 10x2 x3 15 x1 2x2 5x3 10
由迭代矩阵的特征方程
10 2 1 2 10 1 0 1 2 5
展开得到
(10 2)(50 2 10 3) 0
解得
1
1 5
, 2
1 10
7
, 3
1 10
7
于是 (J ) 1 7 0.3646 1
10
因而雅可比迭代公式是收敛的。
练习:考察用雅可比Jacobi迭代法解方程组 AX=b的收敛性,
解:相应的雅可比迭代公式为
x1(
k
1)
1 10
(2x2(k )
x (k) 3
3)
x2(k
1)
1 10
(2
x1(
k
)
x (k) 3
15)
x3(k
1)
1 5
(
x1(

研究生《数值分析》教学大纲

研究生《数值分析》教学大纲

研究生《数值分析》教学大纲研究生《数值分析》教学大纲课程名称:数值分析课程编号:S061005课程学时:64 学时课程学分: 4适用专业:工科硕士生课程性质:学位课先修课程:高等数学,线性代数,计算方法,Matlab语言及程序设计一、课程目的与要求“数值分析”课是理工科各专业硕士研究生的学位课程。

主要介绍用计算机解决数学问题的数值计算方法及其理论。

内容新颖,起点较高,并加强了数值试验和程序设计环节。

通过本课程的学习,使学生熟练掌握各种常用的数值算法的构造原理和过程分析,提高算法设计和理论分析能力,并且能够根据数学模型,提出相应的数值计算方法编制程序在计算机上算出结果。

力求使学生掌握应用数值计算方法解决实际问题的常用技巧。

二、教学内容、重点和难点及学时安排:第一章? 数值计算与误差分析( 4学时)介绍数值分析的研究对象与特点,算法分析与误差分析的主要内容。

第一节数值问题与数值方法第二节数值计算的误差分析第三节数学软件工具----MATLAB 语言简介重点:误差分析第二章? 矩阵分析基础( 10学时)建立线性空间、赋范线性空间、内积空间的概念,为学习以后各章打好基础。

矩阵分解是解决数值代数问题的常用方法,掌握矩阵的三角分解、正交分解、奇异值分解,并能够编写算法程序。

第一节? 矩阵代数基础第二节? 线性空间第三节? 赋范线性空间第四节? 内积空间和内积空间中的正交系第五节矩阵的三角分解第六节矩阵的正交分解第七节矩阵的奇异值分解难点:内积空间中的正交系。

矩阵的正交分解。

重点:范数,施密特(Schmidt) 正交化过程,正交多项式,矩阵的三角分解, 矩阵的正交分解。

第三章? 线性代数方程组的数值方法( 12学时)了解研究求解线性代数方程组的数值方法分类及直接法的应用范围。

高斯消元法是解线性代数方程组的最常用的直接法,也是其它类型直接法的基础。

在此方法基础上加以改进,可得选主元的高斯消元法、按比例增减的高斯消元法,其数值稳定性更高。

数值分析第五版_李庆扬

数值分析第五版_李庆扬

数值分析第五版_李庆扬一、课程基本信息课程中文名称:数值分析课程英文名称:Numerical Analysis课程类别:专业基础课开课学期:秋适用专业:信息与计算科学;应用数学总学时:86学时(其中理论课56学时,上机实习30学时)总学分:5(理论课3学分;上机实习2学分)预修课程(编号):数学分析,高等代数,常微分方程课程简介:本课程是大学本科信息与计算科学和应用数学专业的一门基础课,也是工科研究生的必修课。

本课程的主要内容是研究各种数学问题的数值计算方法的设计、计算误差分析以及有关理论和具体实现的一门数学课程。

是应用数学的重要分支之一。

建议教材:《计算方法》(二版)(邓建中、刘之行),西安,西安交通大学出版社,2001 参考书:[1]数值分析学习指导,关治编,出版社:清华大学出版社,出版时间:2008年;[2]数值分析,何汉林,梅家斌,科学出版社,2007年;[3]《数值计算引论》白峰杉高等教育出版社 2005年[4]《数值分析》(第五版)李庆扬易大义等清华大学出版社 2008年[5]Numerical Analysis,R.Kress,世界图书出版公司20036、数值分析学习辅导习题解析,李宏、徐长发编,华中科技大学出版社,2001年。

二、理论课程教育目标通过本课程的教学使学生能了解现代科学计算中常用的数值计算方法及其基本理论,系统掌握数值分析的基本概念和分析问题、解决问题的基本方法,为运用数值分析的理论知识并为掌握更复杂的现代计算方法打好。

三、理论教学内容与要求(含学时)第一章:计算方法的一般概念(4学时)本章教学内容:理解计算方法的意义、研究内容与方法,理解并掌握误差的概念(包括误差的来源、绝对误差、相对误差),掌握有效数字及舍入误差对计算的影响。

第二章:解线性方程组的直接法(8学时)本章教学内容:1、高斯消去法;选主元的高斯消去法;2、矩阵的LR分解;解三对角方程组的追赶法;解方程组的平方根法;矩阵的求逆;3、方程组的数;病态方程组的判断。

数值分析习题答案_东南大学研究生课程

数值分析习题答案_东南大学研究生课程

f ( x) = 1 − x ,求 f ( x1 ) 的绝对误差限和相对误差限。
解: x1 = 0.937
e( x1 ) ≤
1 × 10 − 3 2
1 × 10 − 3 e( x1 ) 2 = 0.534 × 10 − 3 er ( x1 ) = ≤ 0.937 x1
f ( x ) = 1 − x , f ′( x) = e( f ) ≈ f ′( x )e( x ) = −
1 1 1 1 1 ⋅ e( x1 ) ≤ × × × 10 − 3 2 1 − x1 2 1 − 0.937 2
er ( f ( x1 )) ≈
= 0.00397 = 3.97 × 10 −3 5. 取
2.01 ≈ 1.42 ,
2.00 ≈ 1.41 试 按 A = 2.01 − 2.00 和
A = 0.01 ( 2.01 + 2.00 ) 两种算法求 A 的值,并分别求出两种算法所
1 er ( R) ≤ × 10 − 2 3
7.有一圆柱,高为 25.00 cm,半径为 20.00 ± 0.05 cm。试求按所给数据计
算这个圆柱的体积和圆柱的侧面积所产生的相对误差限。 解:1) V ( R ) = πR 2 h
er (V ) ≈ V ′( R ) ⋅ R R er ( R ) = 2πhR ⋅ 2 er ( R ) = 2er ( R ) V πR h
(3) x1 = 2.747 e( x1 ) ≤
x2 = 6.83
x1 x2 = 18.76201,
1 1 × 10 − 3 , e( x2 ) ≤ × 10 − 2 2 2
e( x1 x2 ) ≈ x2 e( x1 ) + x1e( x2 ) ≤ x2 e( x1 ) + x1 e( x2 )

研究生数值分析高斯-赛德尔(Gauss-Seidel)迭代法

研究生数值分析高斯-赛德尔(Gauss-Seidel)迭代法

迭代法的发展趋势和未来研究方向
非线性问题
将高斯-赛德尔迭代法应用于非线性问题是一个具有挑战性的方 向,也是未来研究的重要课题。
理论分析
深入分析高斯-赛德尔迭代法的收敛性和误差估计,为算法改进 提供理论支持。
应用领域拓展
将高斯-赛德尔迭代法应用于更多领域,如工程、物理、经济等, 解决实际问题。
谢谢观看
05
高斯-赛德尔迭代法的应 用
在线性方程组求解中的应用
01
02
03
线性方程组求解是高斯赛德尔迭代法的重要应用 之一。对于给定的线性方 程组Ax=b,高斯-赛德尔 迭代法可以用来求解x的
值。
通过迭代的方式,高斯赛德尔迭代法不断逼近 方程的解,直到满足一
定的收敛条件。
该方法在数值分析中广 泛应用于解决线性方程 组问题,具有较高的稳
高斯-赛德尔迭代法是一种直观且易 于理解的迭代方法,计算过程相对简 单,易于编程实现。
收敛速度快
对于某些问题,高斯-赛德尔迭代法可 能比其他迭代方法具有更快的收敛速 度。
高斯-赛德尔迭代法的优缺点
• 适用于多种线性系统:该方法适用于多种线性系统,包括 稀疏矩阵和稠密矩阵。
高斯-赛德尔迭代法的优缺点
松弛法(SOR方法)
总结词
松弛法是一种改进的高斯-赛德尔迭代法,通过引入松弛参数,使得迭代过程更 加灵活,提高了收敛速度。
详细描述
松弛法(SOR方法)是在高斯-赛德尔迭代法的基础上,引入了一个松弛参数,使得 迭代过程中每一步的解不仅依赖于前一步的解,还与前几步的解有关。这种方法 能够更好地处理非严格对角占优的线性系技巧通过优化迭代过程中的参数或采用其他方法, 加速高斯-赛德尔迭代法的收敛速度。

数值分析

数值分析

2013/9/10
zhwang@
24
有效数字(续1)


有效数:当 有效数 当x* 准确到末位,即 准确到末位 即n=p,则称 则称x*为 有效数 举例 x=π, x1*=3.141, x2*=3.142 举例:
1 13 x x 0.00059 0.005 10 2
2013/9/10
zhwang@
9
设计高效可靠的算法(续2)

鉴于实际问题的复杂性,通常将其具体地 分解为 系列 问 进行 究 本 程 分解为一系列子问题进行研究,本课程主要涉 涉 及如下几个方面问题的求解算法: 函数的插值和逼近 数值积分和数值微分 线性方程组求解、非线性方程(组)求解 代数特征值问题 常微分方程数值解。
zhwang@ 10
2013/9/10
算法应用状态
数值分析研究对象以及解决问题方法的 广泛适用性,著名流行软件如Maple、Matlab、 Mathematica等已将其绝大多数内容设计成函 数,简单调用之后便可以得到运行结果。 但由于实际问题的具体特征、复杂性 但由于实际问题的具体特征 复杂性, 以及算法自身的适用范围决定了应用中必须选 择、设计适合于自己特定问题的算法,因而掌 握数值方法的思想和内容是至关重要的。
2013/9/10
zhwang@
6
数值问题举例
dy x y 2 x [0, 1] dx y ( 0) y 0 是用一阶常微分方程初值问题表示的数学模型, 是用 阶常微分方程初值问题表示的数学模型, 要求无穷多个输出,因而它不是数值问题 。但 当我们要求出有限个点处函数值的近似值时, 便成为一数值问题。
数值分析 科学计算的理论基础:计算数学
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f ( x) f ( x h) f ( x) h
向后差商公式
向前差商公式
f ( x)
xh
x
x h (h 0)
f ( x) f ( x h) f ( x h) 中心差商公式
2h
3
差商型求导公式的截断误差:
向前:f ( x)
f ( x h) h
f (x)
O(h)
h 2
f ( )
n1
(
x
)得,
f ( xi ) Ln ( xi )
f (n1) ( )
(n 1)!
n
( xi x j )
j0
ji
等距节点下的常用公式,见课本
6
1.3利用样条插值函数求数值微分
设S( x)为f ( x)的三次样条插值函数, 由三次样条插值函数的性质(定理5.5), 可用三次样条插值函数的导数或二阶导数,
f ( x h)
f ( x) hf ( x)
h2 2!
f ( x)
h3 3!
f ( x)
h4 4!
f (4) (2 )
5
1.2插值型求导公式: 用插值多项式的导数作为函数导数的近似,即
f ( xi ) Ln ( xi )
由f ( x) Ln( x)
f (n1) ( )
(n 1)!
梯形公式是用一次插值多项式的积分近似f ( x)的积分
b
b
a f ( x)dx a L1( x)dx
一般地,可以用插值多项式的积分近似函数的积分 12
插值型求积公式
设Ln ( x)是f ( x)的n次Lagrange插值多项式
b
b
bn
f ( x)dx
a
a Ln ( x)dx
[
a
f ( xk )lk ( x)]dx
第七章 数值微分与数值积分
习题
P257 4(2), 8, 10(1), 11, 12, 13(1) 16, 19, 21(3点公式)
1
§1数值微分
问题: 若已知函数在一些节点上的值,如何近似节点处的导数?
f ( x)
xh
x
x h (h 0)
2
1.1差商型求导公式:
f ( x) f ( x) f ( x h) h
f ''( x)
h2
二阶导数的中心差商公式的截断误差:
f
''( x)
f ( x h) 2 f ( x) h2
f ( x h)
O(h2 ) h2
12
f (4) ( )
f ( x h)
f ( x) hf ( x)
h2 2!
f ( x)
h3 3!
f ( x)
h4 4!
f (4)(1 )
ex2 ,
1 sin x
,
,
ln x
x
2.被积函数只有图形或者数据表,没有解析式
3.被积函数的原函数的求解过程复杂
1 ,
4 x2 arcsin x 2
x (1 x)3 ,
问题:如何构造数值积分公式?
10
2.1 数值积分的基本思想
积分中值定理:
b
a f ( x)dx f ( )(b a)
未知,若取 a, b, a b 有
近似函数的导数或二阶导数。
f ( x) S( x)
f ( x) S( x) 误差估计:
x (a,b)
R(k)( x) f (k)( x) S(k)( x) O(h4k ) (k 1, 2)
7
§2 Newton-Cotes求积公式 定积分的图形表示
b
a f ( x)dx F(b) F(a)
8
行星运行轨道:开普勒定律 行星在两点之间的运行距离
x r1 cos
y
r2
sቤተ መጻሕፍቲ ባይዱn
L b dx2 dy2 a
2 1
(r1 sin d )2 (r2 cos d )2
2 1
(r1 sin )2 (r2 cos )2 d
9
下列情况下,需要用数值积分
1.被积函数的原函数不能用初等函数表示
2
b
f ( x)dx f (a)(b a)
左矩形公式
a
b
f ( x)dx f (b)(b a)
右矩形公式
a
b
ab
f ( x)dx f ( )(b a)
中矩形公式
a
2
11
若用梯形的面积近似有
b f ( x)dx b a [ f (a) f (b)]
a
2
梯形公式
记L1( x)是f ( x)关于x0 a和x1 b的一次插值多项式
向后 : f ( x) f ( x) f ( x h) O(h) h f ()
h
2
中心 :
f ( x)
f ( x h)
f ( x h)
O(h2 )
h2
f ( )
2h
6
由Taylor公式推得,例如中心差商的误差阶
f ( x h)
f (x)
hf ( x)
h2 2!
f ( x)
b
b
a f ( x)dx a L1( x)dx
b xb
b xa
f (a)a
dx ab
f (b)a
ba
dx
b a [ f (a) f (b)] 2
b
a
f
( x)dx
ba
2
f
(a)
f
(b)
梯形公式 15
将区间[a, b]二等分,
x0
a,
x1
a
2
b
,
x2
b
相邻节点间的距离记为h b a , 2
b
a [ f ( x) Ln( x)]dx
b a
f (n1) (n
(
1)
x
!
)
n1
(
x
)dx
考虑用积分区间[a, b]的等分点为插值节点的情形
14
2.2 Newton-Cotes求积公式
积分区间的左右端点为插值接点,x0 a, x1 b
xb
xa
L1( x) a b f (a) b a f (b)
L2( x) l0( x) f ( x0 ) l1( x) f ( x1 ) l2( x) f ( x2 )
b
a l0 ( x)dx
b ( x x1 )( x x2 ) a ( x0 x1 )( x0 x2 )
k0
n b
( a lk ( x)dx) f ( xk ) k0
记Ak
b a
lk
(
x)dx,

b
n
f ( x)dx
a
Ak f ( xk ) 插值型求积公式
k0
xk为求积节点,Ak为求积系数
Ak只与节点有关,与f ( x)无关
13
插值型求积公式的截断误差:
b
b
Rn( f ) a f ( x)dx a Ln( x)dx
h3 3!
f (1 )
f ( x h)
f ( x) hf ( x) h2 2!
f ( x) h3 3!
f (2 )
f ( x h) f ( x h) 2h
f
(
x
)
h2 12
[
f
(1
)
f (2 )]
f ( x) h2 6
f ()
4
二阶导数的中心差商公式:
f ( x h) 2 f ( x) f ( x h)
相关文档
最新文档