结构力学十大关系详解
结构力学最全知识点梳理及学习方法
结构力学最全知识点梳理及学习方法结构力学是工程领域的基础学科之一,主要研究物体在受力作用下的变形和破坏行为。
下面将对结构力学的知识点进行梳理,并提供一些学习方法。
1.静力学知识点:(1)力的分解与合成(2)平衡条件及对应的力矩平衡条件(3)杆件内力分析(4)支座反力的计算(5)重力中心和重力矩计算方法学习方法:静力学是结构力学的基础,要通过大量的练习加深对概念和公式的理解,并注重实际问题的应用。
2.应力学知识点:(1)应力的定义和类型(正应力、剪应力、主应力等)(2)应力的均衡方程(3)材料的本构关系(线性弹性、非线性弹性、塑性等)(4)薄壁压力容器的应力分析学习方法:应力学是结构力学的核心内容,要掌握应力的计算方法和不同材料的应力应变关系,需要多阅读教材和参考书籍,理解背后的物理原理,并进行大量的练习。
3.变形学知识点:(1)应变的定义和类型(线性应变、剪应变、工程应变等)(2)应变-位移关系(3)杆件弹性变形分析(4)杆件的刚度计算学习方法:变形学是结构力学的重要组成部分,要掌握应变的计算方法和杆件的变形规律,可以通过编程模拟杆件的变形过程或进行实验验证。
4.强度计算知识点:(1)材料的强度和安全系数(2)拉压杆件的强度计算(3)梁的强度计算(4)刚结构的强度计算5.破坏学知识点:(1)破坏形态(拉伸、压缩、剪切、扭转等)(2)材料的断裂特性和疲劳破坏(3)结构的失效分析(4)杆件和梁的屈曲分析学习方法:破坏学是结构力学的进一步深入,要了解不同破坏形态的特点和计算方法,并进行典型案例分析,以提高预测和识别破坏的能力。
学习方法总结:(1)理论学习:多阅读教材和参考书籍,并注重理解概念和原理。
(2)练习和实践:进行大量的计算练习和模拟分析,提高解决实际结构问题的能力。
(3)案例分析:通过分析实际案例,学习不同结构的设计和分析方法。
(4)交流和讨论:与同学和老师进行交流和讨论,共同学习和解决问题。
结构力学知识点超全总结
结构力学知识点超全总结结构力学是一门研究物体受力和变形的力学学科,它是很多工程学科的基础,如土木工程、机械工程、航空航天工程等。
以下是结构力学的一些重要知识点的总结:1.载荷:结构承受的外力或外界加载的活动载荷,如重力、风荷载、地震载荷等。
2.支座反力:为了平衡结构受力,在支座处产生的力。
3.静力平衡:结构处于静止状态时,受力分析满足力的平衡条件。
这包括平面力系统的平衡、剪力力系统的平衡和力矩力系统的平衡。
4.杆件的拉力和压力:杆件受力状态分为拉力和压力。
拉力是杆件由两端拉伸的状态,压力是杆件由两端压缩的状态。
5.梁的受力和变形:梁是一种长条形结构,在实际工程中经常使用。
梁的受力分析包括剪力和弯矩的计算,梁的变形包括弯曲和剪切变形。
6.悬臂梁和简支梁:悬臂梁是一种只有一端支座的梁结构,另一端自由悬挂。
简支梁是两端都有支座的梁结构。
7.梁的挠度和渐进程度:梁的挠度是指结构在受力后发生的形变。
梁的渐进程度是指梁的挠度随着距离变化的情况。
8.板和平面受力分析:板是一种平面结构,它的受力和变形分析和梁类似。
平面受力分析是一种在平面框架结构上进行受力分析的方法。
9.斜拉索:斜拉索是一种由杆件和拉索组成的结构,它广泛应用于桥梁、摩天大楼等工程中。
斜拉索的受力分析包括张力和弯矩的计算。
10.刚度:刚度是指物体在受力作用下抵抗变形的能力。
刚度越大,物体的变形越小。
刚度可以通过杆件的弹性模量和几何尺寸进行计算。
11.弹性和塑性:结构的受力状态可以分为弹性和塑性两种情况。
弹性是指结构受力后能够恢复到原始形状的性质,塑性是指结构受力后会产生永久变形的性质。
12.稳定性和失稳:结构的稳定性是指结构在受力作用下保持原始形状的能力。
失稳是指结构在受力过程中无法保持原始形状,产生不稳定状态。
13.矩形截面和圆形截面的力学特性:矩形截面和圆形截面是两种常见的结构截面形状。
矩形截面具有较高的抗弯刚度,而圆形截面具有较高的抗剪强度。
《结构力学》知识点归纳梳理(最祥版本)
《结构力学》知识点概括梳理(最祥版本)第一章绪论第一节:结构力学的研究对象和任务一、结构的定义 : 由基本构件(如拉杆、柱、梁、板等)依照合理的方式所构成的构件的系统,用以支承荷载并传达荷载起支撑作用的部分。
注:结构一般由多个构件联络而成,如:桥梁、各样房子(框架、桁架、单层厂房)等。
最简单的结构能够是单个的构件,如单跨梁、独立柱等。
二、结构的分类:由构件的几何特色可分为以下三类1.杆件结构——由杆件构成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。
2.薄壁结构——结构的厚度远小于其余两个尺度,平面为板曲面为壳,如楼面、屋面等。
3.实体结构——结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。
第二节结构计算简图一、计算简图的观点:将一个详细的工程结构用一个简化的受力争形来表示。
选择计算简图时,要它能反应工程结构物的以下特色:1.受力特征(荷载的大小、方向、作用地点)2.几何特征(构件的轴线、形状、长度)3.支承特征(支座的拘束反力性质、杆件连结形式)二、结构计算简图的简化原则1.计算简图要尽可能反应实质结构的主要受力和变形特色,使计算结果安全靠谱;..............2.略去次要因素,便于剖析和计算。
.......三、结构计算简图的几个简化重点1.实质工程结构的简化:由空间向平面简化2.杆件的简化:以杆件的轴线取代杆件3.结点的简化:杆件之间的连结由理想结点来取代(1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可随意改变。
不存在结点对杆的转动拘束,即因为转动在杆端不会产生力矩,也不会传达力矩,只好传达轴力和剪力,一般用小圆圈表示。
(2)刚结点:结点对与之相连的各杆件的转动有拘束作用,转动时各杆间的夹角保持不变,杆端除产生轴力和剪力外,还产生弯矩,同时某杆件上的弯矩也能够经过结点传给其余杆件。
(3)组合结点(半铰):刚结点与铰结点的组合体。
4.支座的简化:以理想支座取代结构与其支承物(一般是大地)之间的连结(1)可动铰支座:又称活动铰支座、链杆支座、辊轴支座,同意沿支座链杆垂直方向的细小挪动。
结构力学概要
结构力学概要一、几个重要概念1) 刚度:k ab b 处发生单位位移,在a 处产生的力。
2) 柔度:δab b 处作用单位力,在a 处发生的位移。
3) 虚功原理:任何一个处于平衡状态的变形体,外力虚功之和恒等于内力虚功之和。
二、虚功原理任何一个处于平衡状态的变形体,当发生任意一个虚位移时,变形体所受外力在虚位移上所作的总虚功W ,恒等于变形体各微段外力(对微段是外力,对结构是内力)在微段变形位移上作的虚功之和W i 。
1) 局部变形位移公式:a) 微段拉伸:ds d ελ=b) 微段剪切:ds γη=d c) 微段弯曲:ds κθ=d2) 外力虚功1·∆=∑∫(M̆κ+F ̆N ε+F ̆Q γ)ds 注意啦啦啦……,结构在实际力P 作用下有位移,单位力(自己想想为什么是单位力)在这个位移上做虚功。
虚功方程是能量方程,不是位移方程。
3) 对于弹性材料,根据杆件各截面荷载的弯矩M P 、轴力F N 、剪力F Q 得:弯曲应变κ=M P EI、拉伸应变ε=F N EA、剪切应变γ=kF Q GA4) 所以呀:1·∆=∑∫(M̆M P EI +F ̆N FN EA +kF ̆Q F Q GA)ds (一般用图乘法解决∫M ̆M P EIds 的计算,这就是图乘法的用处了……)5) M P 、F N 、F Q ——实际荷载引起的内力dsd ελ=dsγη=d dsκθ=dP1∆M̆、F ̆N 、F ̆Q ——虚设单位荷载引起的内力 三、虚功原理在结构力学的两种应用1) 结构受力分析的有效方法_单位位移法(平衡方程)虚功原理用于虚设的协调位移状态与实际的平衡力状态之间。
例1.求 A 端的支座反力(Reaction at Support) ① 去掉A 端约束并代以反力 X ,构造相应的虚位移状态② 在拟求支座反力之点沿拟求位移方向(竖向)设置单位位移1=∆X 。
③ 再求得支座位移(以及杆件变形)与单位位移的关系:a b C //1=∆④ 由外力虚功总和为零:0·1=∆+C P X⑤ 解析解得:a bP X /-=(注:上述属于刚体计算1·∆+∑F̆ck c k =0)2) 结构位移计算一般公式_单位力法(几何方程)虚功原理用于虚设的平衡力状态与实际的协调位移状态之间。
结构力学名词解释
结构力学名词解释结构力学是力学的一个分支,主要研究刚体和物体的运动、变形、应力和应变等力学问题。
1. 刚体:刚体是指物体所有点之间的相对位置在运动或作用力下不发生改变的物体。
刚体不会发生形变,其运动可以用平动和转动两种方式描述。
2. 运动学:运动学研究物体的运动状态,主要研究物体的位移、速度和加速度等。
运动学分为平动运动和转动运动两大类。
3. 平动运动:物体的所有点在同一时间内沿着相同方向移动,并且移动的距离相等。
平动运动可以用质心的位置、速度和加速度来描述。
4. 转动运动:物体的某一点围绕某个轴进行旋转运动。
转动运动可以用角度、角速度和角加速度来描述。
5. 力:力是促使物体发生运动或变形的物理量,用矢量表示。
力的单位是牛顿(N),它等于1千克质量在1秒钟内获得的加速度。
6. 应力:应力是物体内部受到的单位面积力的大小,用矢量表示。
常用的应力有压应力和剪应力。
7. 压应力:压应力是垂直于物体表面的作用力对单位面积的大小。
压应力可以导致物体的压缩变形。
8. 剪应力:剪应力是平行于物体表面的作用力对单位面积的大小。
剪应力可以导致物体的剪切变形。
9. 应变:应变是物体在受到外力作用下发生形变的程度,用无量纲的比例表示。
常用的应变有线性应变和切变应变。
10. 线性应变:线性应变是物体的长度与原始长度之差与原始长度的比值。
线性应变可以用来描述物体的拉伸或压缩变形。
11. 切变应变:切变应变是物体内部某一点沿切面上的平均切线方向的位移与该点到切面的距离的比值。
切变应变可以用来描述物体的剪切变形。
12. 应力-应变关系:应力-应变关系描述了物体在外力作用下产生应变的规律。
材料的应力-应变关系可以通过实验得到,常用的应力-应变关系包括线弹性、非线弹性和塑性等。
以上是结构力学中的一些重要名称和概念的解释,结构力学在实际工程中具有重要的应用价值,能够帮助工程师分析和设计各种结构的力学性能。
《结构力学》知识点归纳梳理
《结构力学》知识点归纳梳理《结构力学》是土木工程、建筑工程等专业的重要基础课程之一,它主要研究物体受力作用下的力学性质及其运动规律。
结构力学的知识对于设计和分析各种工程结构具有重要意义。
以下是对《结构力学》中的一些重要知识点进行归纳梳理。
1.静力学基本原理:(1)牛顿第一定律与质点的平衡条件;(2)牛顿第二定律与质点运动方程;(3)牛顿第三定律与作用力对;(4)力的合成与分解。
2.力和力矩的概念和计算:(1)力的点表示和力的向量运算;(2)力矩的点表示和力矩的向量运算;(3)力的矢量和点表示的转换。
3.等效静力系统:(1)强心轴的概念和计算;(2)悬臂梁的等效静力;(3)等效力和等效力矩。
4.支持反力分析:(1)节点平衡法计算支持反力;(2)静力平衡方程计算支持反力。
5.算术运算法:(1)类似向量的加法和减法;(2)类似向量的数量积和向量积。
6.静力平衡条件:(1)法向力平衡条件;(2)切向力平衡条件;(3)力矩平衡条件。
7.杆件受力分析:(1)内力的概念和分类;(2)弹性力的性质和计算方法;(3)强度力的性质和计算方法。
8.杆件内力的作图法:(1)内力的几何关系;(2)内力图的作图方法。
9.杆件内力的计算方法:(1)等效系统的概念和计算方法;(2)推力与拉力的分析与计算。
10.刚性梁的受力分析:(1)刚性梁的受力模式;(2)刚性梁的截面受力分析;(3)刚性梁的等效荷载。
11.弯矩与剪力的计算方法:(1)弯矩和剪力的表达式;(2)弯矩和剪力的计算方法。
12.杆件的弯曲:(1)弯曲梁的受力分析;(2)弯曲梁的弯曲方程。
13.弹性曲线:(1)弹性曲线的概念和性质;(2)弹性曲线的计算方法。
14.梁的挠度:(1)梁的挠度方程;(2)梁的挠度计算方法。
15.梁的受力:(1)梁受力分析的应用;(2)梁的横向剪切力。
以上是对《结构力学》中的一些重要知识点的归纳和梳理。
通过学习和掌握这些知识点,可以帮助我们更好地理解结构力学的基本原理,从而能够进行工程结构的设计和分析。
十六种结构力学公式
十六种结构力学公式十六种结构力学公式是在工程结构领域中广泛应用的力学公式。
结构力学公式是结构工程的基础,是工程师在进行结构工程设计和分析时必须了解和掌握的基本技能。
结构工程是建筑工程中的一个分支,主要关注建筑物或其他结构的设计、分析和建造。
结构工程需要对建筑物或其他结构的结构、力学和物理性质有深入的了解,才能确保建筑物或其他结构的结构安全和稳定。
以下是十六种结构力学公式的详细介绍。
1. 颜氏公式颜氏公式是一种用于计算杆件在受力下的位移的公式,也称为斯特鲁夫定理。
该公式使用杆件的模量、长度、截面积和载荷来计算底部的杆件位移。
2. 韦尔斯公式韦尔斯公式是一种用于计算梁在受力下的最大弯曲应力的公式。
该公式使用梁的长度、截面积、载荷和弹性模量来计算梁上的最大弯曲应力。
3. 安普洛公式安普洛公式是一种用于计算板在受力下的最大弯曲应力的公式,也称为克莱温公式。
该公式使用板的长度、宽度、厚度、载荷和弹性模量来计算板上的最大弯曲应力。
4. 克利通公式克利通公式是一种用于计算光杆在受力下的临界载荷的公式。
该公式使用光杆的长度、截面积和弹性模量来计算光杆的临界载荷。
5. 邓肯公式邓肯公式是一种用于计算杆件在受力下的临界载荷的公式。
该公式使用杆件的长度、截面积、弹性模量和有效长度系数来计算杆件的临界载荷。
6. eul公式欧拉公式是一种用于计算杆件在不同长度、截面积、模量和载荷条件下的临界载荷的公式。
该公式使用杆件的长度、截面积、弹性模量和材料的泊松比来计算杆件的临界载荷。
7. 比客定律比客定律是一种用于计算异性截面梁的转角和剪力的公式,也称为截面定理。
该定律使用梁的截面积和重心位置来计算梁的剪力和转角。
8. 最小势能定理最小势能定理是一种用于计算结构势能最小的方法,也称为虚功原理。
该定理使用结构从起始到结束所消耗的能量,即适用于弹性结构中弹性应力根据微小位移所产生的功。
9. 莫尔定理莫尔定理是一种用于计算板的振动特性的定理。
结构力学知识点
结构力学知识点结构力学是研究结构在外力作用下的受力和变形规律的学科,它涉及到力学、材料科学、数学等多个领域的知识。
以下是结构力学的主要知识点总结:1. 基本概念- 外力:作用在结构上的力,包括重力、风力、地震力等。
- 内力:结构内部由于外力作用而产生的力,如拉力、压力、剪力等。
- 变形:结构在外力作用下形状或尺寸的变化。
- 刚度:结构抵抗变形的能力。
- 强度:结构在外力作用下不发生破坏的能力。
2. 基本假设- 材料均质连续:假设结构材料是均匀且连续分布的。
- 线弹性:材料的应力与应变关系遵循胡克定律,即在弹性范围内应力与应变成正比。
- 小变形:结构的变形量远小于原始尺寸,可以忽略变形对结构受力的影响。
3. 基本方法- 静力平衡:通过静力平衡方程求解结构的内力。
- 虚功原理:利用虚功原理求解结构的位移和应力。
- 能量方法:通过能量守恒原理分析结构的受力和变形。
- 有限元分析:利用数值方法将结构离散化,通过计算机求解结构的受力和变形。
4. 基本构件- 杆件:承受轴向力的构件,如梁、柱。
- 梁:承受弯矩和剪力的构件,通常承受垂直于轴线的载荷。
- 板:承受面内力的构件,如楼板、墙板。
- 壳:承受曲面内力的构件,如屋顶、管道。
5. 基本理论- 材料力学:研究材料在外力作用下的应力、应变和破坏规律。
- 弹性力学:研究材料在弹性范围内的应力、应变和变形规律。
- 塑性力学:研究材料在塑性变形范围内的应力、应变和变形规律。
- 断裂力学:研究材料在外力作用下的裂纹扩展和断裂规律。
6. 分析方法- 刚度法:通过建立结构的刚度矩阵求解结构的位移和内力。
- 柔度法:通过建立结构的柔度矩阵求解结构的位移和内力。
- 弯矩分配法:一种简化的梁结构分析方法,通过分配弯矩来求解结构的内力。
- 影响线法:通过绘制结构的弯矩、剪力等影响线来分析结构的受力。
7. 结构稳定性- 屈曲:结构在外力作用下失去稳定性,发生弯曲变形。
- 振动:结构在外力作用下发生的周期性运动。
结构力学知识点超全总结
(2)任取一力法基本结构,加虚拟力作出其M 图; (3)将M图和M 图图乘。
10.超静定结构内力图的校核
最后内力图的校核包括平衡条件和位移条件的校核。
·平衡条件校核,即利用最后内力图,取结构的整体及任一
隔离体,考察是否满足平衡条件。
力法方程表示位移条件或变形条件。
6.力法计算步骤
• 确定超静定次数,取基本体系
• 建立力法方程
• 做 M i 、MP 图
•
求系数
和自由项Δ
ij
iP
• 解力法方程,求出多余力
• 作内力图(可利用迭加原理)
• 校核
7.用力法计算超静定结构在支座位移和温 度变化时的内力
超静定结构在支座位移和温度变化作 用下,即会产生变形和位移,也会产生内力 和反力。其计算与在荷载作用下的基本相同, 只是其中的自由项是基本结构在支座位移和 温度变化作用下产生的位移,需按照静定结 构相应的位移计算公式和方法来确定。
几何可变体系
几何不变体系
A
C
B
几何常变体系
几何瞬变体系
几何可变体系
联系:链杆、单铰、复铰
W—自由度,m—刚片数,h—单铰数,r—支座链杆数
W = 3m - (2h+r) 若有复铰,则要换算成单铰。
连接n个刚片的复铰,相当于 (n-1)个单铰。
2 几何不变体系的简单组成规则
三刚片规则:三个刚片通过三个不共线单铰两两相连,
8 对称性及应用
概念:对称结构在对称荷载作用下,其
内力、反力和变形的对称性与荷载的对称 性是一致的
应用:半结构法
原结构
结构力学知识点汇总
结构力学知识点汇总结构力学是一门研究物体在外力作用下变形和破坏规律的学科。
它是工程力学的一个重要分支,广泛应用于工程设计和结构分析中。
本文将对结构力学的几个重要知识点进行汇总和介绍。
我们来讨论结构力学中的平衡条件。
平衡条件是指物体在受力作用下不发生平动和转动的条件。
物体达到平衡状态时,受力的合力为零,受力的合力矩也为零。
通过分析物体受力的大小、方向和作用点的位置,可以确定平衡条件并解决实际问题。
接下来,让我们来了解一下结构力学中的受力分析。
受力分析是结构力学中最基本的内容之一。
它通过分析物体受力的大小、方向和作用点,确定物体受力的特征和作用规律。
受力分析可以帮助我们计算物体受力的大小和方向,从而为结构设计和分析提供基础数据。
另一个重要的知识点是结构的内力分析。
内力是指物体内部各点之间相互作用的力。
在结构力学中,我们常常需要计算物体各部分的内力分布情况,以了解结构的受力特征和破坏状态。
内力分析可以通过应力分析和应变分析来实现,其中应力是单位面积上的力,应变是物体单位长度的变形量。
结构力学中还有一个重要的概念是弹性力学。
弹性力学研究物体在外力作用下的变形和恢复规律。
在弹性力学中,我们常常使用胡克定律来描述物体的变形和应力关系。
胡克定律认为,物体的应力和应变之间成正比,比例常数为弹性模量。
通过弹性力学的分析,可以确定物体受力后的变形情况,为结构设计和分析提供依据。
我们来讨论结构力学中的静力学问题。
静力学是研究物体在静力平衡条件下的受力和变形规律的学科。
在静力学中,我们通过平衡方程和受力分析来确定物体的受力情况,通过弹性力学来计算物体的变形情况。
静力学问题常常涉及到力的平衡、杆件的受力和支反力的计算等内容。
在工程实践中,结构力学的知识可以应用于各种结构的设计和分析中,如建筑物、桥梁、航天器等。
通过运用结构力学的理论和方法,可以保证结构的安全性和稳定性,提高工程的可靠性和经济性。
结构力学是工程力学的重要分支,研究物体在外力作用下的变形和破坏规律。
结构力学知识点范文
结构力学知识点范文结构力学是工程力学的一个分支学科,主要研究物体的力学性能和结构的力学行为。
在工程领域中,结构力学是非常重要的知识点,涉及到了建筑物、桥梁、车辆等各种结构体的设计和分析。
下面,将介绍一些结构力学的基本知识点。
1.弹性力学弹性力学是结构力学的基础,主要研究物体在外力作用下的形变和应力分布。
弹性力学的核心概念是胡克定律,即应力与应变之间的线性关系。
弹性力学的经典理论包括拉伸、压缩、弯曲、剪切等情况下的应力与应变计算,以及悬臂梁、梁的挠度和变形等问题。
2.稳定性分析稳定性分析是在结构受力情况下,判断结构是否会发生失稳的分析方法。
稳定性分析主要涉及结构的杆件稳定性和平衡稳定性两个方面。
杆件稳定性指的是在受压情况下,杆件能够抵抗弯曲和屈曲的能力。
平衡稳定性指的是结构的整体平衡状态是否稳定,即结构是否足够刚性以不发生失稳。
稳定性分析对于结构设计非常关键,可以保证结构在长期使用过程中的安全性。
3.超静定结构超静定结构指的是由于结构的过度约束或不完全提供自由度而导致外力施加后结构不稳定的情况。
对于超静定结构的分析和设计,需要进行力法或位移法的分析。
力法指的是将外力用未知的内力替代,通过求解内力的方程来确定内力和位移的关系。
位移法指的是假设结构发生一个小位移,通过解析法或数值法计算结构的外力和内力。
4.动力学分析动力学分析主要研究结构在外力作用下的动力响应,包括结构的振动和动力荷载等问题。
动力学分析的关键是求解结构的固有频率和振型,以及结构在外力作用下的响应。
动力学分析在结构设计中非常重要,可以评估结构的抗震性能和减振措施的有效性。
5.疲劳和断裂力学疲劳和断裂力学研究结构在重复循环载荷下的疲劳寿命和断裂机制。
疲劳寿命是指结构在循环载荷下能够承受的次数,而断裂机制研究结构在超过其疲劳寿命后出现的裂纹和破坏形态。
疲劳和断裂力学对于工程结构的可靠性和安全性评估非常重要,可以提供结构寿命和改进设计的依据。
结构力学知识点总结精编版
结构力学知识点总结精编版结构力学是研究物体受力和变形的科学,它是建筑、土木、机械等工程技术学科的基础。
下面对结构力学的一些重要知识点进行总结。
1.受力分析:-受力分类:受力可以分为内力和外力。
-受力要素:力的作用点、力的作用方向和力的大小。
-平衡条件:静力平衡条件包括力的平衡条件和力矩的平衡条件。
2.结构受力分析:-支座反力计算:利用受力平衡条件来计算支座的反力。
-梁的内力分析:梁的内力包括弯矩、剪力和轴力,可以通过剪力和弯矩图来表示。
3.弹性力学:-应变和应力:应变描述物体的变形程度,应力描述物体受力状态。
-应力-应变关系:弹性体的应力和应变满足线性关系,可以通过杨氏模量来描述。
4.梁的弯曲:-切应力和曲率:梁在弯曲时产生的切应力与曲率有关,切应力最大处位于梁的纵中性轴上。
-弯矩-曲率关系:梁的弯矩和曲率满足弯矩-曲率关系,可以通过弯矩-曲率图来表示。
5.梁的剪力和扭转:-剪力分布:在梁的截面上有剪力分布,剪力最大值出现在梁的支座处。
-扭矩和扭转角:梁在扭曲时产生扭矩和扭转角,扭转角与梁上的扭矩和截面性质有关。
-扭转应力:梁在扭转时产生扭转应力,可以通过扭转应力图表示。
6.梁的挠度和应变能:-挠度计算:挠度表示梁的变形程度,可以通过梁的载荷和横截面性质来计算。
-应变能:梁在弹性变形时会产生应变能,梁的应变能可以通过挠度来计算。
7.柱的压力和稳定性:-柱的稳定性:柱在受压时可能发生屈曲,屈曲的稳定性与柱的材料、截面性质和长度等有关。
-稳定系数:利用稳定系数可以判断柱的屈曲情况。
8.梁的基本方程和边界条件:-梁的基本方程:梁的基本方程是梁的弯曲方程和梁的剪力方程,可以用来描述梁的力学行为。
-边界条件:边界条件包括梁的支座反力和梁的位移条件,可以通过边界条件来解决梁的基本方程。
以上只是结构力学的一些重要知识点的简单总结,结构力学是一个广泛而复杂的学科,需要掌握更多的理论和方法才能解决实际的工程问题。
结构力学知识点汇总 -回复
结构力学知识点汇总 -回复结构力学是研究物体受力状态及其变形规律的一门学科,涉及力的平衡、弹性、塑性、稳定性、疲劳等方面的知识点。
以下是结构力学的一些主要知识点:1. 静力学:- 力的分解与合成- 力的平衡条件:平衡方程、力偶、力的平衡图- 对称平面梁与结构的平衡条件- 高斯定理、斯托克斯定理、柯西积分定理2. 静力学系统及结构的受力分析:- 郁雅柏的定理- 线系的静力平衡方程- 非共点力系的合力与力偶的受力分析- 图解法和解析法求解静力学问题- 静力平衡的工程应用3. 结构的内力分析:- 梁的受力分析:剪力、弯矩、弯曲应力- 悬臂梁、简支梁、梁的支座反力与力矩- 各种加载条件下的梁内力图- 杆件受力分析:正应力、剪应力、轴力4. 结构的弹性变形:- 弹性力学基本原理:胡克定律、叠加原理、位移和应变间关系- 弹性材料的应力-应变关系- 梁和板的线弹性理论和平面假设- 绳索、组合结构、体式结构等的弹性变形5. 结构的稳定性分析:- 稳定性的基本概念和问题- 悬臂梁、简支梁的临界加载条件- 稳定的等效长度和分析方法- 屈服稳定与失稳的判据6. 结构的塑性分析:- 弹塑性力学基本概念- 松弛与塑性变形- 塑性材料的应力-应变关系- 弹塑性梁和塑性极限分析7. 结构的疲劳与断裂:- 疲劳与疲劳寿命的基本概念- 疲劳应力与应力寿命曲线- 断裂力学:脆性断裂和延性断裂的机制与判据- 复合材料的疲劳和断裂行为以上只是结构力学的一些主要知识点,仅供参考。
如需深入了解结构力学,建议学习相关教材或参加相关课程。
《结构力学》详细解析
04
地质勘察
对地下空间进行地质勘察,了 解地质构造、岩土性质等信息
,为结构设计提供依据。
结构选型
根据使用功能和地质条件选择 合适的结构类型,如地下室、
地下通道、地铁车站等。
防水设计
考虑地下水的渗透和侵蚀作用 ,进行防水设计,保证结构的
耐久性和使用功能。
施工方法
选择对周围环境影响小的施工 方法,如暗挖法、盾构法等, 确保施工安全和环境保护。
用于飞机、火箭、卫星 等飞行器的结构设计和
性能分析。
土木建筑领域
机械工程领域
海洋工程领域
用于房屋、桥梁、道路、隧 道等建筑结构的设计和施工 过程中的力学问题分析。
用于机械零部件、机床、 汽车等产品的结构设计
和优化。
用于船舶、海洋平台、 水下结构等海洋工程结 构的设计和安全评估。
02 静力学基础
静力学基本概念与原理
弯曲变形
材料在弯曲载荷作用下,会发生弯曲变形,表现为材料的挠度和 转角等参数变化。
应力分布
在弯曲变形过程中,材料内部的应力分布呈现一定的规律,可通 过力学原理进行分析和计算。
强度校核
根据应力分析结果,对材料的强度进行校核,以确定其是否满足 使用要求。
强度理论及其在工程中应用
强度理论
研究材料在复杂应力状态下的破坏规律,提出相应的强度准则,为工程设计和安全评估提供依据。
结构力学发展历史及现状
发展历史
结构力学起源于古代建筑和桥梁建设 ,经历了静力学、材料力学、弹性力 学等阶段,逐渐发展成现代结构力学 。
现状
随着计算机技术的发展,结构力学在 数值计算、仿真模拟、优化设计等方 面取得了显著进展,广泛应用于航空 航天、土木建筑、机械工程等领域。
结构力学必考知识点
KP
yc
EI
图乘法几点说明
• 必须符合以上三个条件
• 与 yc分别取自不同M图,且 yc 只能是直线
M图的竖标 • 图乘法范围必须一致,且每一段图乘范围内,
y c 所在M图只有一条直线
• 若 与 yc 受拉侧相同, yc为正,反之为负
要熟练应用图乘法计算结构的位移,必须牢记一些常用 标准图形的面积和形心位置(如三角形,标准二次抛物 线等),对于非标准图形,可利用迭加原理进行分解。
mBB
mA
mB
P
+
mB Pl/4
M图的迭加不是图形的简单拼凑,而是竖标迭加
2 多跨静定梁 多跨静定梁的组成 基本部分--能独立
附属部分--不能独 承载的部分。 立承载的部分。
多跨静定梁的内力计算:先附后基
3 静定平面刚架
▪ 刚架:若干不共线杆件通过若干刚结点连接,组成的结构
▪ 平面刚架:刚架中的所有杆件和荷载均位于同一平面内
n W
式中,n为结构的超静定次数, W为体系的计算自由度。 (2)去约束法 将多余约束去掉,使原结构转化为静定结构,则所去联系总数, 即为原结构的超静定次数。 (3)框格法 框格法计算超静定次数的公式
n 3m h
式中,m为封闭框格数,h为单铰数
n=3×5-7=8 n=3×7-13=8
3. 力法的基本概念 基本未知量:多余约束力。 基本结构:去掉多余联系后的结构。 基本方程:利用基本结构与原结构变形一致的条件建立的求解 多余约束力的方程,又称为力法的典型方程或简称力法方程。 4. 力法的思路 力法的思路是搭桥法。即:综合考虑结构的平衡条件、物理条 件和位移条件,将超静定结构的计算转化为静定结构的计算。 可见,力法计算实际上是对静定结构进行计算。
结构力学主要定理
§11-1概述1.变形功与变形能弹性杆受拉力P作用(图11-1),当P从零开始到终值缓慢加载时,力P在其作用方向上的相应位移也由零增至而做功,称为变形功。
(11-1)与此同时弹性杆被拉长而具有做功的能力,表明杆件内储存了变形能。
单位体积储存的应变能称为应变比能(11-2)整个杆件的变形能为(11-3)如果略去拉伸过程中的动能及其它能量的变化与损失,由能量守恒原理,杆件的变形能U在数值上应等于外力做的功W,即有U=W (11-4)这是一个对变形体都适用的普遍原理称为功能原理,弹性固体变形是可逆的,即当外力解除后,弹性体将恢复其原来形状,释放出变形能而做功。
但当超出了弹性范围,具有塑性变形的固体,变形能不能全部转变为功,因为变形体产生塑性变形时要消耗一部分能量,留下残余变形。
2.应变余功与余能变形体受外力作用时的余功定义为其中P1是外力从零增加到的终值,仿照功与变形能相等的关系,将余功相应的能称为余能,用U c表示。
余功与余能相等,即可仿照前面,定义单位体积余应变能(或应变余能),称为余应变比能由此整个结构余应变能可写成应指出:余功、余应变能、余应变比能具有功的量纲,是变形体的另一能量参数,但都没有具体的物理概念,只是常力所做的功减去变力所做功余下的那部分功。
3.能量原理固体力学中运用功与能有关的基本原理统称为能量原理,由此发展出来的方法称为能量法。
能量原理是在总体上从功与能的角度考察变形体系统的受力、应力与变形的原理与方法,是进一步学习固体力学的基础,也是当今应用甚广的有限元法求解力学问题的重要基础。
4.本章内容本章只涉及能量原理在材料力学中常用的部分内容,如:变形能、互等定理、卡氏定理、虚功原理、单位载荷法及图乘法,更为深入的,如最小势能原理,最小余能原理等变分原理,可参考其它专著。
§11-2 杆件变形能计算杆件不同受力情况下的变形能。
1.轴向拉伸或压缩线弹性杆件(图11-3)拉、压杆应变比能则整个杆的变形能或(11-5)(11-6)其中,N是内力(轴力),A是截面面积,l是杆长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
---------课程阶段总结
概念结构力学
1. 强与弱的关系
在机制公平条件下,强者承担更多荷载 。
概念结构力学
概念结构力学
解释: 强弱, 指支座约束的强弱. 机制公平, 是指AC与BD线刚 度相同。图中CD线刚度为无穷大. 实际上, CD刚度为任一值, 结论不变。
概念结构力学
概念结构力学
静定结构和超静定结构比较: 超静定结构弯矩传播距离远
概念结构力学
静定结构的最大弯矩为pa, 但超静定绝对小于pa. 差别在于:超静定结构受力点,不可以自由转动。
pa
概念结构力学
< pa
有了我才 有大家的 共同富裕
最大轴力小于p
轴力为p
一次超静定,使全部杆件都受力
概念结构力学
概念结构力学
概念结构力学
下面精确计算:
概念结构力学
这是最后的结果!
显然,我关于右上角弯矩0点位置判断失误。 承认这点,对我而言,确实很痛苦!
概念结构力学
1
LINE STRESS
STEP=1
SUB =1
TIME=1
M6
M12
MIN =-.477E+07
ELEM=240
MAX =.170E+07
ELEM=81
概念结构力学
荷载作用在主体部分 附属部分不受力
6. 静定与超静定关系
有多余约束的结构--叫超静定结构。 超静定总体而言使内力分布更均匀,相应 地,使变形量也相对减少。
一般情况下,只要是能够承受弯矩的地方, 不管距离远近,多少要承担一点,不然不 够意思。
概念结构力学
概念结构力学
超静定结构使内力分布相对均匀
柱与梁比较
当梁柱刚度比不断增大,反弯点不断下移,直到最后稳定在柱子中点。
概念结构力学
概念结构力学
当梁的刚度无穷大的时候,三根柱子的最大弯矩与支座剪力 完全一样;但是,一般条件下,中间柱子弯矩与剪力最大。 请注意实际反弯点与水平刚度无穷大反弯点的细小差距。
概念结构力学
刚柔搭配要得当,配合不协调,刚者不能发挥作用
远与近的关系受力图
荷载离支座虽然很近,但没有反力, 这是因为右半部分为附属结构。
概念结构力学
5. 主从关系
荷载作用在主体部分一定不会传播到从属部分; 反过来,结论恰 好相反。 但有时一个非基本部分,由于其内力能够自相平衡, 所以也不能传播到主体部分。
概念结构力学
我的地盘我做 主
概念结构力学
从属部分内力自相平衡
理论上,支座的水平反力与梁刚度有关。 当梁刚度变化下,如果你计算出两个不同的VA,请不要慌张。
概念结构力学
梁柱刚度比例---2倍
概念结构力学
梁柱刚度比例---10倍
概念结构力学
梁柱刚度比例---2000倍
概念结构力学
梁的刚度增加, 更有利于水平荷载传递到强壮支座上。
看! VA减小了!
概念结构力学
因此,这里涉及一个传导机制问题
梁刚度越大,传导水平力的机制越好,支 座B的强,越能够发挥作用;
如果梁刚度越小,传导机制越差,支座强 的能力显现不出来,VA,与VB的差别越小。
这正如。。。
概念结构力学
中央有个好政策,
由于中层干部故意曲解误解,导致下层执 行结果的偏差。
不过要记住,结构力学中的偏差,没有社 会生活中的偏差---那么大!
具 体 解 法
概念结构力学
8. 对称与反对称
对称结构,对称荷载或者支座位移(温 度变化),在对称面上不产生剪力; 对称结构,反对称荷载或者支座位移 (温度变化)在对称面上只产生剪力。
概念结构力学
概念结构力学
?如果地基B有倾斜,先加固哪里?
B点外侧能想到,那么C点内侧呢
到底是那一种情况呢?我的第一感觉是:正对称情况下 转动困难!因此,应该是M1>M2.
JUN 10 2007 18:26:57
Y ZX
为什么夸大了C点的弯矩??明明是叠加的吗? -.477E+07
-.333E+07
-.189E+07
-454701
概念结构力学
2. 刚与柔的关系 在机制公平条件下,刚者承担更多荷载。
概念结构力学
柱与柱比较
解释: 刚与柔是指杆件体系的抗弯抗剪线刚度。线刚度大者, 刚;线刚度小者,柔。这里没有绝对的标准,只是比较而言。 本图中,BD线刚度是AC线刚度的2倍,那末,VB是VA的两倍。 机制十分公平。
概念结构力学
因此,刚柔是相对的,不是绝对的!
解释:主体部分----能够自身作为刚片与大地直接 静定或超静定 相连的部分;
附属部分----自身不是刚片,或者是刚片但 不能自身稳定平衡的部分
概念结构力学
荷载离支座的远与近
概念结构力学
概念结构力学
概念结构力学
一对孪生的弯矩图
概念结构力学
哎,公共财政的 阳光何时才能 照到咱们边远
山区
概念结构力学
静定与超静定没有鸿沟,当弹簧刚度无穷大,就是固端; 当弹簧刚度为0,就是绞。
7.主动与被动
在节点弯矩分配这个问题上, 分清主动与被动是必要的, 至于爱情,也就算了。
概念结构力学
比较结构©和基本结构(a)、(b)的内力
概念结构力学
M BC
1 8
Pa
4i
B
解释:杆中的B点,在荷载作用下, 必然有顺时针旋转的趋势,而BA 杆与BD 杆,显然是被迫跟着顺时 间旋转。这样,M(BC)在数值上 必然分解成M(BA)M(BD)的和。
连续的弯曲变形
概念结构力学
拱形结构中的直线传力路径
概念结构力学
解释: 曲线是相对直线而言的。 从拱形结构中发现直线, 是判断各个截面受力状态的一种简便方法。
对连续介质力学而言,所有的变形曲线必须分段光滑, 或者整体光滑。
概念结构力学
4。
概念结构力学
为什么我认为M1>M2?
同学们:请首先相信你的感觉,保护好你这种简单的直觉;然后用理论知识 检验它。这是结构力学的全部!
概念结构力学
简单看,B2的转动刚度大!
在支座转动相同的情况下, 那不是违背刚者弯矩更大的准则了吗?
概念结构力学
这是因为:
概念结构力学
可是:复杂看,B2的转动刚度还是大!
概念结构力学
3. 曲与直
力的自然属性是尽快入土为安。因此, 只要有可能,主要传力路径,就是接地的直杆;
承受剪力的直杆必然有连续的弯曲变形。
概念结构力学
力的最短传递路径
概念结构力学
朋友们,再见,我直接下 地狱了
形式上不对称,实质上对称,因为荷载特殊。
支座绝对没有水平反力
概念结构力学
没有可能直接下地!