人教版九年级数学上册 二次函数单元培优测试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级数学上册二次函数单元培优测试卷
一、初三数学二次函数易错题压轴题(难)
1.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式:
(2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.
【答案】(1)2
y x2x3
=-++;3
y x
=-+;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)
【解析】
【分析】
(1)将点A,B坐标代入抛物线解析式中,求出b,c得出抛物线的解析式,进而求出点C 的坐标,再将点A,C坐标代入直线AC的解析式中,即可得出结论;
(2)利用抛物线的对称性得出BD=AD,进而判断出△ABC的面积和△ACP的面积相等,即可得出结论;
(3)分点Q在x轴上方和在x轴下方,构造全等三角形即可得出结论.
【详解】
解:(1)把A(3,0),B(﹣1,0)代入y=﹣x2+bc+c中,得
930
10
b c
b c
-++=
⎧
⎨
--+=
⎩
,
∴
2
3
b
c
=
⎧
⎨
=
⎩
,
∴抛物线的解析式为y=﹣x2+2x+3,
当x=0时,y=3,
∴点C的坐标是(0,3),
把A(3,0)和C(0,3)代入y=kx+b1中,得1
1
30
3
k b
b
+=
⎧
⎨
=
⎩
,
∴
1
1
3
k
b
=-
⎧
⎨
=
⎩
∴直线AC的解析式为y=﹣x+3;
(2)如图,连接BC,
∵点D是抛物线与x轴的交点,
∴AD=BD,
∴S△ABC=2S△ACD,
∵S△ACP=2S△ACD,
∴S△ACP=S△ABC,此时,点P与点B重合,
即:P(﹣1,0),
过B点作PB∥AC交抛物线于点P,则直线BP的解析式为y=﹣x﹣1①,∵抛物线的解析式为y=﹣x2+2x+3②,
联立①②解得,
1
x
y
=-
⎧
⎨
=
⎩
或
4
5
x
y
=
⎧
⎨
=-
⎩
,
∴P(4,﹣5),
∴即点P的坐标为(﹣1,0)或(4,﹣5);
(3)如图,
①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,
当x=1时,y=2,
∴Q'坐标为(1,2),
∵Q'D=AD=BD=2,
∴∠Q'AB=∠Q'BA=45°,
∴∠AQ'B=90°,
∴点Q'为所求,
②当点Q在x轴下方时,设点Q(1,m),
过点A1'作A1'E⊥DQ于E,
∴∠A1'EQ=∠QDA=90°,
∴∠DAQ+∠AQD=90°,
由旋转知,AQ=A1'Q,∠AQA1'=90°,
∴∠AQD+∠A1'QE=90°,
∴∠DAQ=∠A1'QE,
∴△ADQ≌△QEA1'(AAS),
∴AD =QE =2,DQ =A 1'E =﹣m ,
∴点A 1'的坐标为(﹣m +1,m ﹣2),
代入y =﹣x 2+2x +3中,
解得,m =﹣3或m =2(舍),
∴Q 的坐标为(1,﹣3),
∴点Q 的坐标为(1,2)和(1,﹣3).
【点睛】
本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k ”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.
2.在平面直角坐标系中,抛物线2
2(0)y ax bx a =++≠经过点(2,4)A --和点(2,0)C ,与y 轴交于点D ,与x 轴的另一交点为点B .
(1)求抛物线的解析式;
(2)如图1,连接BD ,在抛物线上是否存在点P ,使得2PBC BDO ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由;
(3)如图2,连接AC ,交y 轴于点E ,点M 是线段AD 上的动点(不与点A ,点D 重合),将CME △沿ME 所在直线翻折,得到FME ,当FME 与AME △重叠部分的
面积是AMC 面积的14
时,请直接写出线段AM 的长. 【答案】(1)22y x x =-++;(2)存在,(23,209)或(103,529
-);(3)
【解析】
【分析】
(1)根据点A 和点C 的坐标,利用待定系数法求解;
(2)在x 轴正半轴上取点E ,使OB=OE ,过点E 作EF ⊥BD ,垂足为F ,构造出
∠PBC=∠BDE ,分点P 在第三象限时,点P 在x 轴上方时,点P 在第四象限时,共三种情况分别求解;
(3)设EF 与AD 交于点N ,分点F 在直线AC 上方和点F 在直线AC 下方时两种情况,利用题中所给面积关系和中线的性质可得MN=AN ,FN=NE ,从而证明四边形FMEA 为平行四边形,继而求解.
【详解】
解:(1)∵抛物线22(0)y ax bx a =++≠经过点A (-2,-4)和点C (2,0),
则44220422a b a b -=-+⎧⎨=++⎩,解得:11a b =-⎧⎨=⎩
, ∴抛物线的解析式为22y x x =-++;
(2)存在,理由是:
在x 轴正半轴上取点E ,使OB=OE ,过点E 作EF ⊥BD ,垂足为F ,
在22y x x =-++中,
令y=0,解得:x=2或-1,
∴点B 坐标为(-1,0),
∴点E 坐标为(1,0),
可知:点B 和点E 关于y 轴对称,
∴∠BDO=∠EDO ,即∠BDE=2∠BDO ,
∵D (0,2),
∴=,
在△BDE 中,有12×BE ×OD=12
×BD ×EF ,
即2×EF ,解得:EF=
5,
∴5
,