甲基化

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在发育阶段和成年之后的哺乳动物大脑中,DNA甲基化修饰模式(DNA methylation patterns)对于突触(synaptic)的发育和成熟都起到了至关重要的影响作用。

哺乳动物基因组内发生的DNA甲基化修饰作用能够对基因的表达进行调控,介导细胞的分化(differentiation),并且维持细胞的已分化状态。不过DNA甲基化修饰作用在哺乳动物的大脑中可能还起到了另外一种作用。Lister等人以单碱基的分辨率,对哺乳动物额皮质区(frontal cortex)的DNA甲基化修饰,和羟甲基化修饰情况(hydroxymethylation)进行了一次全面的分析。他们发现,哺乳动物神经元细胞的甲基化修饰情况在出生之后的突触形成阶段会发生非常明显的改变,而且在胎儿期至成年期阶段还会不断发生变化。这说明DNA甲基化修饰作用对于发育中的大脑神经元细胞的成熟至关重要。

在所有的哺乳动物细胞里,DNA甲基化修饰都能够抑制基因的表达。CG双核苷酸中的C 被甲基化修饰之后会成为mCG,这是一种非常稳定的DNA抑制标志物(repressive mark)。Tet酶蛋白家族成员??又能够进一步将甲基化修饰过的胞嘧啶转换成羟甲基胞嘧啶(hydroxymethylcytosine, hmC),这种氧化的胞嘧啶可以进一步发生去甲基反应(demethylated)。在干细胞和神经元细胞中含有大量的hmC,这说明这些位点能够对DNA的甲基化修饰状态起到决定性的作用。有意思的是,在干细胞和脑组织里,除了CG 里的胞嘧啶会发生甲基化修饰之外,还含有大量甲基化修饰的mCH(这里的H可以是A、T、C等任意碱基),这种情况在绝大部分已分化的体细胞内是很少见的。科研人员们已经在碱基对水平对干细胞里的这些hmC和mCH进行过大量的研究,但是还没有人以更高的分辨率(单碱基水平)对大脑里的甲基化修饰情况进行过研究。

于是Lister课题组决定做第一个吃螃蟹的人,他们利用高通量测序技术对胎儿期至成人期的小鼠和人大脑皮质进行了研究,发现我们哺乳动物在出生之后,大脑里mCH的数量就一直在不断的增加。虽然小鼠和人类mCH数量增加的时

间不一样(小鼠只会增加几个星期,表观基因组学的变化,包括DNA的化学修饰,可以作为基因组的一层额外信息。表观基因组学在学习和记忆及年龄相关的认知度方面扮演

着重要的角色。新的研究发现DNA甲基化,一种特殊的表观基因组学修饰的形式。从出生到成年,DNA甲基化形式在大脑细胞中是动态变化的。从而帮助理解大脑细胞中基因组学

的信息是如何控制胎儿的发育的。大脑比其它器官复杂,这项发现使科学家们可以更深一层的了解大脑中错综复杂的连接是如何形成的。

Joseph R. Ecker表示:“这项研究结果扩展了我们的知识,使我们进一步的了解DNA 甲基化在大脑发育和功能方面所起的作用。研究者们提供了一个新的框架,用于测试表观基因组学在健康和疾病状态下在神经回路中起的作用。”

一个健康的大脑是一种需要长期开发的产品。大脑最前面的一部分称为额叶皮质,额

叶皮质对我们思考,行动能力的形成起着重要的作用。大脑实现这一切通过特殊细胞的交互如神经元和神经胶质。我们知道这些细胞有独特的功能,但是如何定义这些细胞本身呢?答案在于每个细胞如何通过内在的DNA表达信息。表观基因组学的修饰,如DNA甲基化,

可以通过基因的开启或关闭来控制,而无需改变DNA的序列,因此可以帮助我们区别不同的细胞类型。

图2

据《Science》报道:科学家发现DNA甲基化模式在小鼠和人脑大脑皮质进行了广泛的重组在发育过程中。研究者发现DNA甲基化在大脑基因组中的准确位点。他们发现DNA 甲基化出现在婴儿到成年的整个过程中。引人注目的是,DNA甲基化的第二种形式“non-CG”,几乎是神经元专有的,并且成为了人类神经元基因组学的主要甲基化形式。这些结果帮助我们理解在孩子阶段DNA如何影响大脑细胞的发育。

DNA的遗传密码由四种化学碱基组成:腺嘌呤,鸟嘌呤,胞嘧啶和胸腺嘧啶。DNA甲基化主要发生在CpG位点。大约80%到90%的CpG位点在人类DNA中发生了甲基化。Salk和研究者们先前发现人类胚胎干细胞和诱导多能干细胞,DNA的甲基化形式也为“non-CG甲基化”。最初,他们认为这种甲基化形式消失当干细胞分化为特殊的组织时如肺或脂肪细胞、目前研究发现这种甲基化形式并没有在大脑中消失,随着细胞的分化仍然出现了“non-CG甲基化”形式。

对老鼠和人类的脑组织以及神经元及胶质在出生后,青少年及成年人阶段进行了基因

组的测序。Salk团队发现non-CG甲基化在神经元中逐渐积累,并且成为了人类成熟神经

元中的主要的甲基化形式。Ecker表示:“这也表明在成熟大脑中神经元回路伴随着表观基

因组学大规模重组的过程。”

这项研究第一次提供了DNA甲基化变化模式在鼠和人类大脑发育过程中,对于探究甲基化与人类疾病的关系打下了一个基础。最近研究表明DNA甲基化在精神分裂症,抑郁症,自杀和躁郁症疾病中也扮演着潜在的角色。EranMukamel表示:“我们的工作让我们开始产生更多的关于表观基因组学在大脑细胞中是如何变化的等更多的细节问题。”

Ryan Lister表示:“人类的大脑被称为最复杂的系统。也许我们不应该那么惊讶把这种复杂性延伸到大脑表观基因组学的水平。这些DNA甲基化的特点出现在大脑发育的关键阶段,也表明可能与脑的功能和疾病有关。”

目前,神经科学家们达成了共识,即许多精神障碍由于神经发育以及基因易感性与环境的相互作用影响了大脑的网络活动。大脑复杂网络的形成需要长期成熟的过程通过中枢神经细胞表达基因编码。

Terrence J. Sejnowski表示:“DNA甲基化在大脑发育过程中是动态变化的,尤其是non-CG甲基化形式,转变的方式与大脑正常的功能和疾病有关。”

M. Margarita Behrens表示:“这些甲基化模式的转变影响网络的形成,反过来,在后来的生活中引起了大脑的疾病。”

相关文档
最新文档