曲线积分与曲面积分内容小结

合集下载

曲线、曲面积分方法小结

曲线、曲面积分方法小结

求曲线、曲面积分的方法与技巧一.曲线积分的计算方法与技巧计算曲线积分一般采用的方法有:利用变量参数化将曲线积分转化为求定积分、利用格林公式将曲线积分转化为二重积分、利用斯托克斯公式将空间曲线积分转化为曲面积分、利用积分与路径无关的条件通过改变积分路径进行计算、利用全微分公式通过求原函数进行计算等方法。

例一.计算曲线积分⎰+Lxdy ydx ,其中L 是圆)0(222>=+y x y x 上从原点)0,0(O 到)0,2(A 的一段弧。

本题以下采用多种方法进行计算。

解1:A O 的方程为⎪⎩⎪⎨⎧-==,2,2x x y x x L 由,A O →x 由,20→.212dx xx x dy --=⎰+Lxdy ydx dx xx x x x x ⎰--+-=222]2)1(2[dx xx x x dx xx x x xx x ⎰⎰--+----=20220222)1(2)1(220.00442=--=分析:解1是利用变量参数化将所求曲线积分转化为求定积分进行计算的,选用的参变量为.x 因所求的积分为第二类曲线积分,曲线是有方向的,在这种解法中应注意参变量积分限的选定,应选用对应曲线起点的参数的起始值作为定积分的下限。

解2:在弧A O上取)1,1(B 点,B O 的方程为⎪⎩⎪⎨⎧--==,11,2y x y y L 由,B O →y 由,10→.12dy y y dx -= A B 的方程为⎪⎩⎪⎨⎧-+==,11,2y x y y L 由,A B →y 由,01→.12dy y y dx --= ⎰+Lxdy ydx dy y y y dy y y y ⎰⎰-++--+--+-=012221222)111()111(dy yy ⎰-=102212dy y ⎰--10212dy yy ⎰-=10221210212yy --dyyy ⎰--+102212.0)011(2=---=分析:解2是选用参变量为,y 利用变量参数化直接计算所求曲线积分的,在方法类型上与解1相同。

曲线积分曲面积分总结

曲线积分曲面积分总结

第十三章 曲线积分与曲面积分定积分和重积分是讨论定义在直线段、平面图形或者空间区域上函数的积分问题.但在实际问题中,这些还不够用,例如当我们研究受力质点作曲线运动时所作的功以及通过某曲面流体的流量等问题时,还要用到积分区域是平面上或空间中的一条曲线,或者空间中的一张曲面的积分,这就是这一章要讲的曲线积分和曲面积分.第一节 对弧长的曲线积分一、 对弧长的曲线积分的概念与性质在设计曲线构件时,常常要计算他们的质量,如果构件的线密度为常量,那么这构件的质量就等于它的线密度与长度的乘积. 由于构件上各点处的粗细程度设计得不完全一样, 因此, 可以认为这构件的线密度(单位长度的质量)是变量, 这样构件的质量就不能直接按下面它的线密度与长度的乘积来计算. 下面考虑如何计算这构件的质量. 设想构件为一条曲线状的物体在平面上的曲线方程为()x f y =,[]b a x ,∈,其上每一点的密度为()y x ,ρ.如图13-1我们可以将物体分为n 段,分点为n M M M ,...,,21, 每一小弧段的长度分别是12,,...,n s s s ∆∆∆.取其中的一小段弧i i M M 1-来分析.在线密度连续变化的情况下, 只要这一小段足够小,就可以用这一小段上的任意一点(),i i ξη的密度(),i i ρξη来近似整个小段的密度.这样就可以得到这一小段的质量近似于(),i i i s ρξη∆.将所有这样的小段质量加起来,就得到了此物体的质量的近似值.即()∑=∆≈ni i i i s y x M 1,ρ.用λ表示n 个小弧段的最大长度. 为了计算M 的精确值, 取上式右端之和当0λ→时的极限,从而得到1lim (,).ni i i i M s λρξη→∞==∆∑即这个极限就是该物体的质量.这种和的极限在研究其它问题时也会遇到.上述结果是经过分割、求和、取极限等步骤而得到的一种和数得极限,这意味着我们已经得到了又一种类型的积分. 抛开问题的具体含义,一般的来研究这一类型的极限,便引入如下定义:定义 设L 是xoy 面内的一条光滑曲线,函数()y x f ,在L 上有界,用L 上任意插入一点图13-1列n M M M ,...,,21将曲线分为n 个小段. 设第i 段的长度为i s ∆(1,2,,i n =L ),又()i i ηξ,为第i 个小段上任意取定的一点,作乘积()i i i s f ∆ηξ,,并作和()iiini s f ∆∑=ηξ,1,若当各小段的长度λ的最大值趋于零时,此和式的极限存在,称此极限为函数()y x f ,在曲线L 上对弧长的曲线积分, 也称为第一类曲线积分, 记作()⎰L ds y x f ,, 即1(,)lim (,)n i i i Li f x y ds f s λξη→==∆∑⎰,其中()y x f ,叫做被积函数,L 称为积分弧段.当L 是光滑封闭曲线时,记为()⎰Lds y x f ,.类似地,对于三元函数()z y x f ,,在空间的曲线L 上光滑,也可以定义()z y x f ,,在曲线L 上对弧长的曲线积分()⎰Lds z y x f ,,.这样,本节一开始所要求的构件质量就可表示为(,).LM x y ds ρ=⎰由对弧长的曲线积分的定义可以知道,第一类曲线积分具有下面的性质: 性质1(线性性)若,f g 在曲线L 上第一类曲线积分存在,,αβ是常数, 则(,)(,)f x y g x y αβ+在曲线L 上第一类曲线积分也存在,且()()()()(),,,,LLLf x yg x y ds f x y ds g x y ds αβαβ±=±⎰⎰⎰;性质2(对路径的可加性)设曲线L 分成两段12,L L . 如果函数f 在L 上的第一类曲线积分存在,则函数分别在1L 和2L 上的第一类曲线积分也存在. 反之,如果函数f 在1L 和2L 上的第一类曲线积分存在,则函数f 在L 上的第一类曲线积分也存在. 并且下面等式成立1212L L L L fds fds fds +=+⎰⎰⎰.(12L L +表示L )对于三元函数也有类似的性质,这里不再一一列出. 二、 第一类曲线积分的计算定理 设有光滑曲线():,[,].()x t L t y t ϕαβψ=⎧∈⎨=⎩ 即'()t ϕ,'()t ψ连续. 若函数(,)f x y 在L 上连续,则它在L 上的第一类曲线积分存在,且()()()(,,Lf x y ds f t t βαϕψ=⎰⎰证明 如前面定义一样,对L 依次插入121,,...,n M M M -,并设0((),())M ϕαψα=,((),())n M ϕβψβ=. 注意到01.n t t t αβ=<<<=L 记小弧段1i i M M -的长度为i s ∆,那么,1,2,.ii t i t s i n -∆==⎰L1,(').i i t i i i i t s t t τ--∆=<<⎰所以, 当('')i i x ϕτ=,('')i i y ψτ=时,ii i 11(,)((''),(t ,n niiii i f x y s f ϕτψτ==∆=∑∑这里i 1i i i t ',''t .ττ-≤≤ 设ni i i 1f ((''),(i t σϕτψτ==∆∑则有n niiiii i i 1i 1f (x ,y )s f ((''),(t .ϕτψτσ==∆=+∑∑令12n t max{t ,t ,,t },∆=∆∆∆L 要证明的是t 0lim 0.σ∆→=因为复合函数f ((t),(t))ϕψ关于t 连续,所以在闭区间[,]αβ上有界,即存在M ,对一切t [,]αβ∈有|f ((t),(t))|M.ϕψ≤再由[,]αβ上连续,所以它在[,]αβ上一致连续. 即当任给0ε>,必存在0δ>,当t δ∆<时有|.ε≤从而1||().ni i M t M σεεβα=≤∆=-∑所以lim 0.t σ∆→=再从定积分定义得n22i i i i i 0i 1lim f ((''),(''))'('')'('')t t ϕτψτϕτψτ∆→=+∆∑22((),())'()'().f t t t t dt βαϕψϕψ=+⎰所以当n n22iiiii i i i i 1i 1f (x ,y )s f ((''),(''))'('')'('')t ϕτψτϕτψτσ==∆=+∆+∑∑两边取极限后,即得所要证的结果.特别地,如果平面上的光滑曲线的方程为(),,y y x a x b =≤≤则()()()()()2,,1'b Laf x y ds f x y x y x dx =+⎰⎰.例 计算曲线积分⎰Lds y ,其中L 是抛物线2x y =上的点()0,0A 与点()1,1B 之间的一段弧.(如图)图13-2解:积分曲线由方程[]1,0,2∈=x x y给出,所以()()⎰⎰+=1222'1dx x x ds y L12014x dx =+⎰()1241121⎥⎦⎤⎢⎣⎡+=x =()155121-.例 计算积分()22nLxyds +⎰Ñ,其中L 为圆周:sin ,x a t =cos ,y a t =02t π≤≤.解:由于L 为圆周:π20,cos ,sin ≤≤==t t a y t a x ,所以()()()()222220sin cos nnLxyds a t a t π+=+⎰⎰Ñ⎰==ππ20222nn a dt a . 对于三元函数的对弧长的曲线积分,可以类似地计算.例如:若曲线L 由参数方程()()()t z z t y y t x x ===,,,βα≤≤t 确定,则有()()()dt t z t y t x ds 222'''++=,从而()()()()()()()()dt t z t y t x t z t y t x f ds z y x f L⎰⎰++=βα222''',,,,.例13.3 计算曲线积分()⎰Γ++ds z y x222,其中Γ是螺旋线cos ,x a t = sin ,y a t =z kt =上相应于t 从0到π2的一段弧.解:由上面的结论有()()()()()()()dt k t a t a kt t a t a ds z y x⎰⎰++-++=++Γπ20222222222cos sin sin cos()()2222220222224332k a k a dtk a t k aπππ++=++=⎰例 计算2Lx ds ⎰, 其中L 为球面2222x y z a ++=被平面0x y z ++=所截得的圆周.解:由对称性可知222,LLLx ds y ds z ds ==⎰⎰⎰所以22222312().333L L L a x ds x y z ds ds a π=++==⎰⎰⎰习题1. 计算半径为R 、中心角为2α的圆弧L 对于它的对称轴的转动惯量I (设线密度1μ=).2. 计算曲线积分222()x y z ds Γ++⎰,其中Γ为螺旋线cos x a t =,sin y a t =,z kt=上相应于t 从0到2π的一段弧.3. 计算,x Cye dS -⎰其中C 为曲线2ln(1),23x t y arctgt t =+=-+由0t =到1t =间的一段弧.4. 求L xydS ⎰,其中L 是椭圆周22221x y a b+=位于第一象限中的那部分。

高数(同济第六版)下册曲线积分与曲面积分总结

高数(同济第六版)下册曲线积分与曲面积分总结
Σ
2 1 + x2 y ( y , z ) + x z ( y , z )dydz
Dyz
3)曲面 Σ 的方程为 y = y ( x, z ) , Dxz 为曲面 Σ 在 xOz 面上的投影区域,则
∫∫ f ( x, y, z )dS = ∫∫ f [ x, y ( x, z ), z ]
Σ
2 1 + yx ( x, z ) + yz2 ( x, z ) dzdx
Σ1 +Σ 2
∫∫
A( x, y , z )idS = ∫∫ A( x, y , z )idS + ∫∫ A( x , y , z )idS
Σ1 Σ2
2)(有方向性)
∫∫ Pdydz + Qdzdx + Rdxdy = − ∫∫ Pdydz + Qdzdx + Rdxdy
Σ Σ− −
(其中 Σ 表示与 Σ 取相反侧的曲面) (3)计算方法: 1)曲面 Σ 的方程: z = z ( x, y ) , Dxy 为曲面 Σ 在 xOy 面上的投影区域,则 (上侧取“+” ,下侧取“ − ” ) ∫∫ R( x, y, z )dxdy = ± ∫∫ R[ x, y, z ( x, y )]dxdy ,
Dxz
2.对坐标的曲面积分: (1)定义:
∫∫ Pdydz + Qdzdx + Rdxdy
Σ
∫∫ Pdydz + Qdzdx + Rdxdy
Σ
n
= lim ∑ [ P (ξi ,ηi , ζ i )(∆Si ) yz + Q (ξi ,ηi , ζ i )(∆Si ) zx + R (ξi ,ηi , ζ i )( ∆Si ) xy ]

曲线积分与曲面积分重点总结+例题教学文稿

曲线积分与曲面积分重点总结+例题教学文稿

曲线积分与曲面积分重点总结+例题第十章曲线积分与曲面积分【教学目标与要求】1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。

2.掌握计算两类曲线积分的方法。

3.熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数。

4.了解第一类曲面积分的概念、性质,掌握计算第一类曲面积分的方法。

【教学重点】1.两类曲线积分的计算方法;2.格林公式及其应用;3. 第一类曲面积分的计算方法;【教学难点】1.两类曲线积分的关系及第一类曲面积分的关系;2.对坐标的曲线积分与对坐标的曲面积分的计算;3.应用格林公式计算对坐标的曲线积分;6.两类曲线积分的计算方法;7.格林公式及其应用格林公式计算对坐标的曲线积分;【参考书】[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社.[2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社.仅供学习与交流,如有侵权请联系网站删除谢谢2仅供学习与交流,如有侵权请联系网站删除 谢谢3[3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社§11.1 对弧长的曲线积分一、 对弧长的曲线积分的概念与性质曲线形构件的质量:设一曲线形构件所占的位置在xOy 面内的一段曲线弧L 上, 已知曲线形构件在点(x , y )处的线密度为μ(x , y ). 求曲线形构件的质量.把曲线分成n 小段, ∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n (∆s i 也表示弧长);任取(ξi , ηi )∈∆s i , 得第i 小段质量的近似值μ(ξi , ηi )∆s i ;整个物质曲线的质量近似为i i i ni s M ∆≈=∑),(1ηξμ;令λ=max{∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n }→0, 则整个物质曲线的质量为i i i ni s M ∆==→∑),(lim 10ηξμλ. 这种和的极限在研究其它问题时也会遇到.定义 设函数f (x , y )定义在可求长度的曲线L 上, 并且有界.,将L 任意分成n 个弧段: ∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n , 并用∆s i 表示第i 段的弧长; 在每一弧段∆s i 上任取一点(ξi , ηi ), 作和i i i ni s f ∆=∑),(1ηξ; 令λ=max{∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n }, 如果当λ→0时, 这和的极限总存在, 则称此极限为函数f (x , y )在曲线弧L 上对弧长的仅供学习与交流,如有侵权请联系网站删除 谢谢4曲线积分或第一类曲线积分, 记作ds y x f L),(⎰, 即 i i i n i L s f ds y x f ∆==→∑⎰),(lim ),(10ηξλ. 其中f (x , y )叫做被积函数, L 叫做积分弧段.曲线积分的存在性: 当f (x , y )在光滑曲线弧L 上连续时, 对弧长的曲线积分ds y x f L ),(⎰是存在的. 以后我们总假定f (x , y )在L 上是连续的.根据对弧长的曲线积分的定义,曲线形构件的质量就是曲线积分ds y x L),(⎰μ的值, 其中μ(x , y )为线密度.对弧长的曲线积分的推广: i i i i n i s f ds z y x f ∆==→Γ∑⎰),,(lim ),,(10ζηξλ. 如果L (或Γ)是分段光滑的, 则规定函数在L (或Γ)上的曲线积分等于函数在光滑的各段上的曲线积分的和. 例如设L 可分成两段光滑曲线弧L 1及L 2, 则规定 ds y x f ds y x f ds y x f L L L L ),(),(),(2121⎰⎰⎰+=+. 闭曲线积分: 如果L 是闭曲线, 那么函数f (x , y )在闭曲线L 上对弧长的曲线积分记作 ds y x f L),(⎰. 对弧长的曲线积分的性质:性质1 设c 1、c 2为常数, 则ds y x g c ds y x f c ds y x g c y x f c LL L ),(),()],(),([2121⎰⎰⎰+=+; 性质2 若积分弧段L 可分成两段光滑曲线弧L 1和L 2, 则ds y x f ds y x f ds y x f L L L ),(),(),(21⎰⎰⎰+=;仅供学习与交流,如有侵权请联系网站删除 谢谢5性质3设在L 上f (x , y )≤g (x , y ), 则⎰⎰≤LL ds y x g ds y x f ),(),(. 特别地, 有⎰⎰≤LL ds y x f ds y x f |),(||),(| 二、对弧长的曲线积分的计算法根据对弧长的曲线积分的定义, 如果曲线形构件L 的线密度为f (x , y ), 则曲线形构件L 的质量为 ⎰Lds y x f ),(. 另一方面, 若曲线L 的参数方程为x =ϕ(t ), y =ψ (t ) (α≤t ≤β),则质量元素为 dt t t t t f ds y x f )()()]( ),([),(22ψϕψϕ'+'=,曲线的质量为 ⎰'+'βαψϕψϕdt t t t t f )()()]( ),([22. 即 ⎰⎰'+'=βαψϕψϕdt t t t t f ds y x f L )()()]( ),([),(22. 定理 设f (x , y )在曲线弧L 上有定义且连续, L 的参数方程为 x =ϕ(t ), y =ψ(t ) (α≤t ≤β),其中ϕ(t )、ψ(t )在[α, β]上具有一阶连续导数, 且ϕ'2(t )+ψ'2(t )≠0, 则曲线积分ds y x f L ),(⎰存在, 且 dt t t t t f ds y x f L )()()](),([),(22ψϕψϕβα'+'=⎰⎰(α<β).仅供学习与交流,如有侵权请联系网站删除 谢谢6应注意的问题: 定积分的下限α一定要小于上限β.讨论:(1)若曲线L 的方程为y =ψ(x )(a ≤x ≤b ), 则ds y x f L),(⎰=? 提示: L 的参数方程为x =x , y =ψ(x )(a ≤x ≤b ), dx x x x f ds y x f ba L ⎰⎰'+=)(1)](,[),(2ψψ. (2)若曲线L 的方程为x =ϕ(y )(c ≤y ≤d ), 则ds y x f L),(⎰=? 提示: L 的参数方程为x =ϕ(y ), y =y (c ≤y ≤d ), dy y y y f ds y x f dc L ⎰⎰+'=1)(]),([),(2ϕϕ. (3)若曲Γ的方程为x =ϕ(t ), y =ψ(t ), z =ω(t )(α≤t ≤β),则ds z y x f ),,(⎰Γ=? 提示: dt t t t t t t f ds z y x f )()()()](),(),([),,(222ωψϕωψϕβα'+'+'=⎰⎰Γ. 例1 计算ds y L ⎰, 其中L 是抛物线y =x 2上点O (0, 0)与点B (1, 1)之间的一段弧. 解 曲线的方程为y =x 2 (0≤x ≤1), 因此 ⎰⎰'+=10222)(1dx x x ds y L ⎰+=10241dx x x )155(121-=. 例2 计算半径为R 、中心角为2α的圆弧L 对于它的对称轴的转动惯量I (设线密度为μ=1).解 取坐标系如图所示, 则⎰=Lds y I 2. 曲线L 的参数方程为 x =R cos θ, y =R sin θ (-α≤θ<α).仅供学习与交流,如有侵权请联系网站删除 谢谢7于是 ⎰=L ds y I 2⎰-+-=ααθθθθd R R R 2222)cos ()sin (sin ⎰-=ααθθd R 23sin =R 3(α-sin α cos α). 例3 计算曲线积分ds z y x )(222++⎰Γ, 其中Γ为螺旋线x =a cos t 、y =a sin t 、z =kt 上相应于t 从0到达2π的一段弧.解 在曲线Γ上有x 2+y 2+z 2=(a cos t )2+(a sin t )2+(k t )2=a 2+k 2t 2, 并且 dt k a dt k t a t a ds 22222)cos ()sin (+=++-=,于是 ds z y x )(222++⎰Γ⎰++=π2022222)(dt k a t k a )43(3222222k a k a ππ++=.小结用曲线积分解决问题的步骤:(1)建立曲线积分;(2)写出曲线的参数方程 ( 或直角坐标方程) , 确定参数的变化范围;(3)将曲线积分化为定积分;(4)计算定积分.教学方式及教学过程中应注意的问题在教学过程中要注意曲线积分解决问题的步骤,要结合实例,反复讲解。

高数:曲线积分与曲面积分总结

高数:曲线积分与曲面积分总结

对坐标的曲线积分
L
f ( x , y )ds lim f ( i , i )si
0 i 1
n
L P ( x, y )dx Q( x, y )dy
n 0 i 1
lim [ P ( i , i )xi Q( i , i )yi ]
L Pdx Qdy L ( P cos Q cos )ds
Q P ( )dxdy Pdx Qdy (沿L的正向) L x y D 格林公式
3.三重积分与曲面积分的联系
P Q R ( )dv Pdydz Qdzdx Rdxdy x y z 高斯公式
4.曲面积分与曲线积分的联系
( 1 ) 对D内任意一条闭路径L, Pdx Qdy 0; ( 2)
Pdx Qdy 在D内与积分路径无关;
L
L
( 3 ) 存在二阶连续可导函数 u( x, y )使得 du Pdx Qdy, ( x, y ) D;
Q P (4) , ( x , y ) D. x y
y
x
投影法
(1)把曲面Σ向xoy面投影,得区域D xy
( 2)把曲面Σ的方程z f ( x , y )代入被积函数 .
n { z x , z y ,1},
R( x , y, z )dxdy R( x , y, z ) cos dS
cos

1
2 1 z2 z x y
L f ( x, y )ds

2 2

LPdx Qdy

[ P[ x ( t ), y( t )] x t Q[ x ( t ), y ( t )] y t dt f [ x( t ), y( t )] x y dt t t 算 二代一定 (与方向有关) ( ) 三个代换

微积分中的曲线积分和曲面积分

微积分中的曲线积分和曲面积分

微积分中的曲线积分和曲面积分微积分作为数学的一个分支,涉及到许多非常重要的概念和工具。

其中,曲线积分和曲面积分是微积分中引人注目的两个概念。

在本文中,我们将简要介绍这两个概念以及它们的应用。

曲线积分曲线积分主要用于计算沿着曲线的函数的积分。

它既可以利用直线路径计算,也可以利用曲线路径计算。

曲线积分的计算方法有许多,但其中最常见的是参数化方法和向量场方法。

在参数化方法中,我们将曲线表示为一个参数方程形式,如r(t) = (x(t), y(t), z(t))。

然后,我们在曲线上选择一组点,将每个点的函数值与曲线的曲率相乘,再将所有值相加,从而得到曲线积分的值。

另一种方法是向量场方法。

此时,我们将曲线表示为向量场的形式,如F(x, y, z) = (<M(x, y, z)>, <N(x, y, z)>, <P(x, y, z)>)。

然后,我们需要在曲线上选择一个方向,以保证对称性。

然后,我们将并将它们相加。

曲线积分在物理学中也有广泛的应用。

例如,它可以用于计算沿着曲线的电场强度、磁场强度和压强等物理量。

它也可以用于计算沿着曲线的质点的力和工作。

曲面积分曲面积分是用于计算沿着曲面的函数的积分。

它既可以利用平面路径计算,也可以利用曲面路径计算。

曲面积分的计算方法有许多,但其中最常见的是参数化曲面和向量场。

在参数化曲面中,我们将曲面表示为一个参数方程形式,如r(u, v) = (x(u, v), y(u, v), z(u, v))。

然后,我们在曲面上选择一个区域,并计算每个小面元的积分,并将它们相加。

另一种方法是向量场方法。

此时,我们将曲面表示为向量场的形式,如F(x, y, z) = (<M(x, y, z)>, <N(x, y, z)>, <P(x, y, z)>)。

然后,我们需要在曲面上选择一个方向,以保证对称性。

然后,我们将并将它们相加。

曲线积分与曲面积分总结笔记

曲线积分与曲面积分总结笔记

曲线积分与曲面积分总结笔记曲线积分和曲面积分是微积分中重要的概念,它们在物理学、工程学和数学中都有广泛的应用。

下面对曲线积分和曲面积分进行总结和拓展。

一、曲线积分曲线积分是对曲线上的函数进行积分运算。

根据曲线的参数方程给出曲线积分的计算公式。

曲线积分分为第一类曲线积分和第二类曲线积分。

1. 第一类曲线积分:对标量函数进行积分,求曲线上的标量场沿曲线的积分值。

它主要应用于测量曲线长度、质量等问题。

2. 第二类曲线积分:对矢量函数进行积分,求曲线上的矢量场沿曲线的积分值。

它主要应用于计算曲线上的力的做功、电流的环路积分等问题。

二、曲面积分曲面积分是对曲面上的函数进行积分运算。

曲面积分也有两类:第一类曲面积分和第二类曲面积分。

1. 第一类曲面积分:对标量函数进行积分,求曲面上的标量场通过曲面的积分值。

它主要应用于计算场的通量、质量通量等问题。

2. 第二类曲面积分:对矢量函数进行积分,求曲面上的矢量场通过曲面的积分值。

它主要应用于计算磁通量、电通量等问题。

曲线积分和曲面积分的计算方法有很多,常用的方法包括参数化、格林公式、斯托克斯定理和高斯定理等。

对于一些简单的曲线和曲面,也可以通过直接计算来求解。

此外,曲线积分和曲面积分还与梯度、散度和旋度等概念密切相关。

这些概念可以帮助我们理解和计算曲线和曲面上的积分值。

总之,曲线积分和曲面积分是微积分中的重要概念,它们在物理学和工程学中有广泛应用。

通过对曲线和曲面上的函数进行积分,我们可以得到一些重要的物理量和场量。

掌握曲线积分和曲面积分的计算方法和应用可以帮助我们解决实际问题。

曲线积分与曲面积分总结

曲线积分与曲面积分总结

曲线积分与曲面积分总结standalone; self-contained; independent; self-governed;autocephalous; indie; absolute; unattached; substantive第十一章:曲线积分与曲面积分一、对弧长的曲线积分 ⎰⎰+=LLy d x d y x f ds y x f 22),(),(若 ⎩⎨⎧==)()(:t y y t x x L βα≤≤t则 原式=dt t y t x t y t x f ⎰'+'βα)()())(),((22对弧长的曲线积分 (,,)((),(),(LLf x y z ds f x t y t z t =⎰⎰若 ():()()x x t L y y t z z t =⎧⎪=⎨⎪=⎩βα≤≤t则 原式=((),(),(f x t y t z t βα⎰常见的参数方程为:特别的:22222.2xy LLLe ds e ds e ds e π+===⎰⎰⎰22=2(0)L x y y +≥为上半圆周二、对坐标的曲线积分 ⎰+L dy y x q dx y x p ),(),( 计算方法一: 若 ⎩⎨⎧==)()(:t y y t x x L 起点处α=t ,终点处β=t 则原式=dt t y t y t x q dt t x t y t x p )())(),(()())(),(('+'⎰βα对坐标的曲线积分 (,,)(,,)(,,)L P x y z dx Q x y z dy R x y z dz ++⎰():()()x x t L y y t z z t =⎧⎪=⎨⎪=⎩起点处α=t ,终点处β=t 则原式=((),(),())()((),(),())()((),(),())()P x t y t z t x t dt Q x t y t z t y t dt R x t y t z t z t dt βα'''++⎰计算方法二:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式,后者利用参数方程。

曲面积分曲线积分总结(推荐3篇)

曲面积分曲线积分总结(推荐3篇)

曲面积分曲线积分总结第1篇对坐标积分,第二型积分是有方向的,对应的物理意义是力沿曲线做功两种方法1.根据对称性、代入性 2.采用化为参数方程例题一、曲线L为 \begin {cases} x^2+y^2+z^2=R^2 \\ x+y+z=0 \end{cases} ,计算\int_{L}xyds (代入性、对称性)例题二、L为 \begin {cases} 2x^2+y^2=2\\ z=x \end {cases} ,计算 \oint_{L}(x^2+y^2)ds (转空间曲线为参数方程形式)\oint_{L}\frac{(x+y)dx-(x-y)dy}{x^2+y^2} ,其中L为 x^2+y^2=a^2 的正向直接使用xxx就是“经典错误,标准错误”当 \frac{\partial P}{dy}=\frac{\partial Q}{dx}证明与路径无关,则可以重新选择简单路径,注意选择新的路径时,一定不能含有奇点。

计算 \int_{L} \frac{x-y}{x^2+y^2}dx+\frac{x+y}{x^2+y^2}dy ,L是从A(-a,0)到B(a,0)的椭圆 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1(y\geq0,a>0,b>0)的一段。

①当区域里面还有奇点,就采用挖洞法②挖洞有讲究,不能乱挖,最好挖得和分母式子是一样的,比如分母是4x^2+y^2 ,那就挖一个椭圆 4x^2+y^2=\xi^2③挖洞的方向要和所求区域是一致的同学问的题,发现这方面的题还没做到,就写一下例题:计算曲面积分 \oint_{c}(x^2+y^2)^2ds ,其中曲线c为 \begin{cases} x^2+y^2+z^2=1 \\ x=y \end{cases}解释:1投是把积分曲面投影到相应的平面,2代是把需要变的值代换,3微变是变换积分例题、求 \iint_{\Sigma}x\sqrt{y^2+z^2}dS , \Sigma 为 x=\sqrt{y^2+z^2}与x=1围成立体的边界曲面思路:这题不是常规的直接投影到xoy平面,但我们可以通过改变坐标轴来改变积分解释:1投求那个面上的积分就往那个面上投影,2代把不在平面的值代换,3定号看与z轴的夹角,若为锐角则正号,若为钝角,则是负值。

曲线积分与曲面积分知识点

曲线积分与曲面积分知识点

第十章 曲线积分与曲面积分一、 一、 重点两类曲面积分及两类曲面积分的计算和格林公式、高斯公式的应用 二、 二、 难点对曲面侧的理解,把对坐标的曲面积分化成二重积分,利用格林公式求非闭曲线上的第二类曲线积分,及利用高斯公式计算非闭曲面上的第二类曲面积分。

三、 三、 内容提要1. 1. 曲线(面)积分的定义:(1) (1) 第一类曲线积分∑⎰=→∆∆ni i i i LS f ds y x f 0),(lim ),(ηξλ(存在时)i S ∆表示第i 个小弧段的长度,(i i ηξ,)是i S ∆上的任一点小弧段的最大长度。

实际意义:当f(x,y)表示L 的线密度时,⎰Lds y x f ),(表示L 的质量;当f(x,y) ≡1时,⎰Lds表示L 的弧长,当f(x,y)表示位于L 上的柱面在点(x,y )处的高时,⎰Lds y x f ),(表示此柱面的面积。

(2) (2) 第二类曲线积分]),(),([lim 1i i i ni iiiLy Q x P Qdy Pdx ∆+∆∆+∑⎰=→ηξηξλ(存在时)实际意义:设变力F =P(x,y) i +Q(x,y) j 将质点从点A 沿曲线L 移动到B 点,则F 作的功为:⎰⎰+=⋅=L L Qdy Pdx S d F W,其中S d =(dx,dy )事实上,⎰L Pdx ,⎰L Qdy 分别是F在沿X 轴方向及Y 轴方向所作的功。

(3) (3) 第一类曲面积分∑⎰⎰=→∑∆∆ni i iiiS f ds z y x f 1),,(lim ),,(ζηξλ(存在时)i S ∆表示第i 个小块曲面的面积,(i i i ζηξ,,)为i S ∆上的任一点,λ是n 块小曲面的最大直径。

实际意义:当f(x,y ,z)表示曲面∑上点(x,y,z )处的面密度时,⎰⎰∑ds z y x f ),,(表示曲面∑的质量,当f(x,y,z) ≡1时,⎰⎰∑ds 表示曲面∑的面积。

曲线积分与曲面积分内容小结

曲线积分与曲面积分内容小结

第四章曲线积分与曲面积分内容小结本章介绍了曲线积分与曲面积分。

从数学角度来讲,与重积分类似,曲线积分与曲面积分都就是定积分得推广,它们都就是用于处理非均匀变化,具有可加性得整体量得。

诸如求质量不均匀分布得各种形体得质量,变力所做得功,不均匀流体得流量等,其处理得方法都就是将整体进行分割,在微小得局部取近似,求与,令分割无限变细取极限.正因为曲线、曲面积分得基本思
想与定积分一致,所以它们得定义及性质也与定积分得类似。

本章得重点有两部分,一部分就是曲线、曲面积分得计算,其基本方法就就是转化为定积分或重积分得计算;另一部分就是介绍揭示平面有界闭区域上得二重积分与该区域边界曲线得对坐标得曲线积分之间关系得格林公式与揭示空间有界闭区域上得三重积分与该区域得边界曲面得对坐标得曲面积分之间关系得高斯公式.
一、曲线积分、曲面积分得计算公式
3.对面积得曲面积分
二、格林公式与平面曲线积分与路径无关得条件。

多元向量函数的曲线积分与曲面积分

多元向量函数的曲线积分与曲面积分

多元向量函数的曲线积分与曲面积分曲线积分和曲面积分是向量微积分中的重要概念,用于描述多元向量函数在曲线上和曲面上的积分性质。

在本文中,我们将介绍多元向量函数的曲线积分和曲面积分的定义、计算方法和一些重要性质。

一、曲线积分曲线积分用于描述多元向量函数沿着曲线的积分性质。

设曲线C为参数方程r(t)=(x(t),y(t),z(t)),其中a≤t≤b是参数区间。

若函数F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))定义在曲线C上,那么多元向量函数F沿曲线C的曲线积分可以表示为:∫C F·dr = ∫C (Pdx+Qdy+Rdz)其中dr=(dx,dy,dz)是曲线C上的微元向量,P,Q,R是F的分量函数。

计算曲线积分的方法有两种,一种是直接计算,根据曲线参数方程将x,y,z替换成参数t,在参数区间上对分量函数P,Q,R进行积分。

另一种是利用格林公式或斯托克斯定理,将曲线积分转化为二重积分或三重积分进行计算。

二、曲面积分曲面积分用于描述多元向量函数通过曲面的积分性质。

设曲面S为参数方程r(u,v)=(x(u,v),y(u,v),z(u,v)),其中(u,v)∈D是参数区域。

若函数F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))定义在曲面S上,那么多元向量函数F通过曲面S的曲面积分可以表示为:∬S F·dS = ∬S (PdSx+QdSy+RdSz)其中dS=(dSx,dSy,dSz)是曲面S上的面积微元向量,P,Q,R是F的分量函数。

计算曲面积分的方法也有两种,一种是直接计算,根据曲面参数方程将x,y,z替换成参数u,v,在参数区域上对分量函数P,Q,R乘以面积微元dS进行积分。

另一种是利用高斯定理,将曲面积分转化为三重积分进行计算。

三、曲线积分与曲面积分的关系曲线积分和曲面积分之间存在密切的关系。

根据斯托克斯定理,对于光滑曲面S的边界曲线C,有以下等式成立:∫C F·dr = ∬S rotF·dS其中rotF=(∂R/∂y-∂Q/∂z, ∂P/∂z-∂R/∂x, ∂Q/∂x-∂P/∂y)是F的旋度。

高等数学曲线积分和曲面积分总结

高等数学曲线积分和曲面积分总结

高等数学曲线积分和曲面积分总结
高等数学曲线积分和曲面积分是微积分领域中的重要概念,它们在实际应用中具有广泛的应用,例如在物理、工程、计算机科学等领域中都有重要的应用。

本文将对高等数学曲线积分和曲面积分的概念、计算方法和应用进行总结。

一、曲线积分的概念
曲线积分是指对一维曲线上的点的函数值求导的积分,也称为路径积分。

曲线积分的基本思想是通过对曲线上的点进行积分,得到曲线的面积或体积。

曲线积分的计算公式为:
∫Cf(x,y)dS = ∫∫∫Cf(x^TC(y), y^TC(z))dxdydz
其中,C是曲线,f(x,y)是曲线上的点值函数,T是曲线上的任意一点,S是曲线上的面积,z是曲线上的任意一点。

二、曲面积分的概念
曲面积分是指对三维曲面上的点的函数值求导的积分,也称为向量场积分。

曲面积分的基本思想是通过对曲面上的点进行积分,得到曲面的面积或体积。

曲面积分的计算公式为:
∫∫∫Sf(x,y,z)dsdV = ∫∫∫Sf(x^TS(y^TS(z)))dsdV
其中,S是曲面,f(x,y,z)是曲面上的点值函数,T是曲面上的任意一点,V是曲面上的任意体积,s是曲面上的任意法向量,dV是曲面上的任意体积法向量。

拓展:曲线积分和曲面积分在物理学中的应用
曲线积分和曲面积分在物理学中具有广泛的应用。

例如,在量子力学中,曲线积分被用来计算波函数的面积,而曲面积分被用来计算量子场论的场速可变的相对性原理。

在相对论中,曲线积分被用来计算相对论效应的积分,而曲面积分被用
来计算四维空间中的弯曲曲面。

曲线积分与曲面积分总结文字

曲线积分与曲面积分总结文字

曲线积分与曲面积分总结文字曲线积分和曲面积分是微积分中的两个重要概念,它们在物理、工程、数学等领域中都有广泛的应用。

本文将对曲线积分和曲面积分进行总结和介绍。

一、曲线积分曲线积分是对曲线上的函数进行积分的一种方法。

曲线积分可以用来计算曲线上的弧长、质量、电荷等物理量。

曲线积分的计算方法有两种:第一种是参数化曲线积分,第二种是非参数化曲线积分。

1. 参数化曲线积分参数化曲线积分是将曲线表示为参数方程的形式,然后对参数方程中的函数进行积分。

例如,对于曲线C:y=x^2,0≤x≤1,可以将其表示为参数方程C:r(t)=(t,t^2),0≤t≤1。

然后对函数f(x,y)在曲线C上进行积分,可以表示为:∫Cf(x,y)ds=∫1 0f(r(t))|r'(t)|dt其中,|r'(t)|表示曲线C在t时刻的切线长度,也就是曲线的弧长。

参数化曲线积分的计算方法比较简单,但是需要先将曲线表示为参数方程的形式。

2. 非参数化曲线积分非参数化曲线积分是将曲线表示为一般的方程形式,然后对方程中的函数进行积分。

例如,对于曲线C:y=x^2,0≤x≤1,可以将其表示为一般的方程形式C:y=f(x),0≤x≤1。

然后对函数f(x,y)在曲线C上进行积分,可以表示为:∫Cf(x,y)ds=∫1 0f(x,f(x))√(1+(dy/dx)²)dx其中,√(1+(dy/dx)²)表示曲线C在x时刻的切线长度,也就是曲线的弧长。

非参数化曲线积分的计算方法比较复杂,但是可以将曲线表示为一般的方程形式,更加灵活。

二、曲面积分曲面积分是对曲面上的函数进行积分的一种方法。

曲面积分可以用来计算曲面上的面积、质量、电荷等物理量。

曲面积分的计算方法有两种:第一种是参数化曲面积分,第二种是非参数化曲面积分。

1. 参数化曲面积分参数化曲面积分是将曲面表示为参数方程的形式,然后对参数方程中的函数进行积分。

例如,对于曲面S:z=x^2+y^2,0≤x≤1,0≤y≤1,可以将其表示为参数方程S:r(u,v)=(u,v,u^2+v^2),0≤u≤1,0≤v≤1。

曲线积分与曲面积分的计算方法

曲线积分与曲面积分的计算方法

曲线积分与曲面积分的计算方法计算曲线积分与曲面积分是数学中重要的内容,本文将介绍曲线积分和曲面积分的定义和计算方法。

一、曲线积分的定义和计算方法曲线积分是在三维空间中曲线上的函数进行积分运算的一种方法。

曲线积分的计算可以分为两种情况:第一种情况是曲线的方程已知,我们可以通过参数化曲线来计算积分;第二种情况是曲线的方程未知,我们可以通过对弧长进行积分来计算。

1. 参数化曲线的曲线积分计算对于参数化曲线C: r(t) = (x(t), y(t), z(t)),函数f(x, y, z)的曲线积分可以表示为:∮C f(x, y, z) ds = ∫f(x(t), y(t), z(t))||r'(t)|| dt其中,ds表示曲线C上的弧长元素,r'(t)表示曲线C的切向量,||r'(t)||表示切向量的模长。

通过将参数t从t0到t1进行积分,即可计算出曲线积分的结果。

2. 弧长的曲线积分计算如果曲线的方程未知,但是我们可以计算出曲线上任意两点之间的弧长,则可以通过对弧长进行积分来计算曲线积分。

∮C f(x, y, z) ds = ∫f(x, y, z) dl其中,dl表示曲线C上的弧长元素,通过将参数l从l0到l1进行积分,即可得到曲线积分的结果。

二、曲面积分的定义和计算方法曲面积分是在三维空间中曲面上的函数进行积分运算的一种方法。

曲面积分的计算可以分为两种情况:第一种情况是曲面的方程已知,我们可以通过参数化曲面来计算积分;第二种情况是曲面的方程未知,我们可以通过将曲面分成小面元然后进行求和来进行计算。

1. 参数化曲面的曲面积分计算对于参数化曲面S: r(u, v) = (x(u, v), y(u, v), z(u, v)),函数f(x, y, z)的曲面积分可以表示为:∬S f(x, y, z) dS = ∫∫f(x(u, v), y(u, v), z(u, v))||r_u × r_v|| du dv其中,dS表示曲面S上的面积元素,r_u和r_v分别表示参数u和v 方向上的切向量,r_u × r_v表示切向量的叉乘,||r_u × r_v||表示叉乘的模长。

曲线积分与曲面积分总结

曲线积分与曲面积分总结

第十一章:曲线积分与曲而积分“・ (x = x(t) c若—)S则原式二£7(曲),w))X(/)+y"M对弧长的曲线积分 J/ /(x, y, z)ds = £ f(x(r), y(r), z(t))yjd2x + cl2y + d2z.X = x(t)L:< y = y(t) a <t < pz = z(/)则原式二J:/(4r),y(0,z(r))J(#a))U + ()())2+(z0))2/常见的参数方程为:特别的:j Q ds = J e2ds =,J ds =孑2TC厶为上半圆周x2 + y2=2 (y > 0)二对坐标的曲线积分 [p^y)dx + q{x9y)dy计算方法一:若L:f=%(Z)起点处t=a,终点处20则 =y(0原式二["(双。

,W))x'("〃 + g(x(f), y(/))y(r”〃对坐标的曲线积分 f P(x, y, z)dx + e(x, y,z)dy + R(x,y,讹J LX = x(t)L:< y = y⑴起点处t =a终点处/ = 0则z = z(/)原式二 J: P(x(/),W),Z(t))x\t\lt + Q(x(f), y(/), z(t))y\t)dt + R(x ⑴,y(/), z ⑴)z‘⑴〃/ 计算方法二:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式,后者利用参数方程。

如图:边界特别地:当竺=叟时,积分与路径无关,且 I:;:P(X' y)厶+q(x,y)dy = [ /心 y )dx + J:q(x2, y)dy注:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章曲线积分与曲面积分内容小结本章介绍了曲线积分与曲面积分。

从数学角度来讲,与重积分类似,曲线积分与曲面积分都就是定积分得推广,它们都就是用于处理非均匀变化,具有可加性得整体量得。

诸如求质量不均匀分布得各种形体得质量,变力所做得功,不均匀流体得流量等,其处理得方法都就是将整体进行分割,在微小得局部取近似,求与,令分割无限变细取极限.正因为曲线、曲面积分得基本思
想与定积分一致,所以它们得定义及性质也与定积分得类似。

本章得重点有两部分,一部分就是曲线、曲面积分得计算,其基本方法就就是转化为定积分或重积分得计算;另一部分就是介绍揭示平面有界闭区域上得二重积分与该区域边界曲线得对坐标得曲线积分之间关系得格林公式与揭示空间有界闭区域上得三重积分与该区域得边界曲面得对坐标得曲面积分之间关系得高斯公式.
一、曲线积分、曲面积分得计算公式
3.对面积得曲面积分
二、格林公式与平面曲线积分与路径无关得条件。

相关文档
最新文档