2015年高考真题——理科数学(湖南卷) Word版含解析(部分)

合集下载

2023年高考真题——数学(新高考II卷) Word版含解析

2023年高考真题——数学(新高考II卷) Word版含解析

程,解出即可.
y xm
【详解】将直线
y
x
m
与椭圆联立
x2 3
y2
,消去
1
y
可得
4x2
6mx
3m2
3
0

因为直线与椭圆相交于 A, B 点,则 36m2 4 4 3m2 3 0 ,解得 2 m 2 ,
设 F1 到 AB 的距离 d1,F2 到 AB 距离 d2 ,易知 F1 2, 0 , F2 2, 0 ,
5.
已知椭圆 C :
x2 3
y2
1 的左、右焦点分别为 F1 ,F2 ,直线
y
x m 与 C 交于 A,B 两点,若 △F1AB
面积是 △F2 AB 面积的 2 倍,则 m ( ).
2 A. 3
B. 2 3
C. 2 3
D. 2 3
【答案】C
【解析】
【分析】首先联立直线方程与椭圆方程,利用 0 ,求出 m 范围,再根据三角形面积比得到关于 m 的方
综上所述: a 1 .
故选:B.
3. 某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高 中部两层共抽取 60 名学生,已知该校初中部和高中部分别有 400 名和 200 名学生,则不同的抽样结果共有 ( ).
A.
C45 400
C15 200

.C
C30 400
C40 400
C20 200
种.
故选:D.
4.

f
x
x
a
ln
2x 2x
1 1
为偶函数,则
a

).
A. 1

(word完整版)湖南省_2001年_高考数学真题(理科数学)(附答案)_历年历届试题DOC

(word完整版)湖南省_2001年_高考数学真题(理科数学)(附答案)_历年历届试题DOC

2001年普通高等学校招生全国统一考试数学(理工农医类)-同湖南卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式: 三角函数的积化和差公式()()[]βαβαβ-++=sin sin 21cos sin a ()()[]βαβαβ--+=sin sin 21sin cos a()()[]βαβαβ-++=cos cos 21cos cos a()()[]βαβαβ--+-=cos cos 21sin sin a正棱台、圆台的侧面积公式 S 台侧l c c )(21+'=其中c ′、c 分别表示上、下底面周长, l 表示斜高或母线长 台体的体积公式 V 台体h S S S S )(31+'+'=一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.若sini θcos θ>0,则θ在 ( )A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限2.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2 = 0上的圆的方程是( )A .(x -3) 2+(y +1) 2 = 4B .(x +3) 2+(y -1) 2 = 4C .(x -1) 2+(y -1) 2 = 4D .(x +1) 2+(y +1) 2 = 43.设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 ( ) A .1B .2C .4D .64.若定义在区间(-1,0)的函数2()log (1)a f x x =+满足()0f x >,则a 的取值范围是 ( ) A .(210,)B .⎥⎦⎤ ⎝⎛210,C .(21,+∞) D .(0,+∞)5.极坐标方程)4sin(2πθρ+=的图形是( )6.函数y = cos x +1(-π≤x ≤0)的反函数是 ( )A .y =-arc cos (x -1)(0≤x ≤2)B .y = π-arc cos (x -1)(0≤x ≤2)C .y = arc cos (x -1)(0≤x ≤2)D .y = π+arc cos (x -1)(0≤x ≤2)7. 若椭圆经过原点,且焦点为F 1 (1,0), F 2 (3,0),则其离心率为 ( ) A .43 B .32 C .21 D .41 8. 若0<α<β<4π,sin α+cos α = α,sin β+cos β= b ,则 ( ) A .a <bB .a >bC .ab <1D .ab >29. 在正三棱柱ABC -A 1B 1C 1中,若12BB AB =,则AB 1 与C 1B 所成的角的大小为( ) A .60°B .90°C .105°D .75°10.设f (x )、g (x )都是单调函数,有如下四个命题:① 若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增; ② 若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增; ③ 若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减;④ 若f (x )单调递减,g (x )单调递减,则f (x )-g (x )单调递减. 其中,正确的命题是 ( ) A .①③B .①④C .②③D .②④11. 一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P 1、P 2、P 3.若屋顶斜面与水平面所成的角都是α,则 ( ) A .P 3>P 2>P 1B .P 3>P 2 = P 1C .P 3 = P 2>P 1D .P 3 = P 2 = P 112. 如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为 ( ) A .26 B .24C .20D .19第Ⅱ卷(非选择题共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中. 2.答卷前将密封线内的项目填写清楚.二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是14.双曲线116922=-y x 的两个焦点为F 1、F 2,点P 在双曲线上.若PF 1⊥PF 2,则点P 到x 轴的距离为15.设{a n }是公比为q 的等比数列,S n 是它的前n 项和.若{S n }是等差数列,则q =16.圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)如图,在底面是直角梯形的四棱锥S —ABCD 中,∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,21=AD . (Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值. 18. (本小题满分12分)已知复数z 1 = i (1-i ) 3.(Ⅰ)求arg z 1及1z ;(Ⅱ)当复数z 满足1z =1,求1z z -的最大值. 19. (本小题满分12分)设抛物线y 2 =2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O . 20. (本小题满分12分)已知i ,m ,n 是正整数,且1<i ≤m <n .(Ⅰ)证明in i i m i P m P n <;(Ⅱ)证明(1+m ) n > (1+n ) m . 21. (本小题满分12分)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41. (Ⅰ)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元.写出a n ,b n 的表达式;(Ⅱ)至少经过几年旅游业的总收入才能超过总投入?22. (本小题满分14分)设f (x ) 是定义在R 上的偶函数,其图像关于直线x = 1对称.对任意x 1,x 2∈[0,21]都有f (x 1+x 2) = f (x 1) · f (x 2).且f (1) = a >0. (Ⅰ)求f (21) 及f (41); (Ⅱ)证明f (x ) 是周期函数; (Ⅲ)记a n = f (2n +n21),求()n n a ln lim ∞→.2001年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准说明:一. 本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三. 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. 只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.每小题5分,满分60分.(1)B (2)C (3)B (4)A (5)C (6)A (7)C (8)A (9)B (10)C (11)D (12)D二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(13)2π (14)516(15)1 (16)2n (n -1)三.解答题:(17)本小题考查线面关系和棱锥体积计算,以及空间想象能力和逻辑推理能力.满分12分.解:(Ⅰ)直角梯形ABCD 的面积是 M 底面()43125.0121=⨯+=⋅+=AB AD BC , ……2分 ∴ 四棱锥S —ABCD 的体积是⨯⨯=SA V 31M 底面43131⨯⨯=41=. ……4分 (Ⅱ)延长BA 、CD 相交于点E ,连结SE 则SE 是所求二面角的棱. ……6分∵ AD ∥BC ,BC = 2AD , ∴ EA = AB = SA ,∴ SE ⊥SB ,∵ SA ⊥面ABCD ,得SEB ⊥面EBC ,EB 是交线, 又BC ⊥EB ,∴ BC ⊥面SEB , 故SB 是CS 在面SEB 上的射影, ∴ CS ⊥SE ,所以∠BSC 是所求二面角的平面角. ……10分 ∵ 22AB SA SB +=2=,BC =1,BC ⊥SB ,∴ tan ∠BSC =22=SB BC .即所求二面角的正切值为22. ……12分 (18)本小题考查复数基本性质和基本运算,以及分析问题和解决问题的能力.满分12分.解:(Ⅰ)z 1 = i (1-i ) 3 = 2-2i , 将z 1化为三角形式,得⎪⎭⎫ ⎝⎛+=47sin 47cos 221ππi z ,∴ 47arg 1π=z ,221=z . ……6分 (Ⅱ)设z = cos α+i sin α,则z -z 1 = ( cos α-2)+(sin α+2) i , ()()22212sin 2cos ++-=-ααz zsin 249+=(4πα-), ……9分当sin(4πα-) = 1时,21z z -取得最大值249+.从而得到1z z -的最大值为122+. ……12分 (19)本小题考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力.满分12分.证明一:因为抛物线y 2 =2px (p >0)的焦点为F (2p,0),所以经过点F 的直线的方程可设为2pmy x +=; ……4分 代入抛物线方程得y 2 -2pmy -p 2 = 0,若记A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根,所以y 1y 2 = -p 2. ……8分因为BC ∥x 轴,且点c 在准线x = -2p 上,所以点c 的坐标为(-2p,y 2),故直线CO 的斜率为111222x y y p p y k ==-=. 即k 也是直线OA 的斜率,所以直线AC 经过原点O . ……12分证明二:如图,记x 轴与抛物线准线l 的交点为E ,过A 作AD ⊥l ,D 是垂足.则 AD ∥FE ∥BC . ……2分 连结AC ,与EF 相交于点N ,则ABBF AC CN AD EN ==,,ABAF BCNF = ……6分 根据抛物线的几何性质,AD AF =,BC BF =, ……8分∴ NF ABBC AF ABBF AD EN =⋅=⋅=,即点N 是EF 的中点,与抛物线的顶点O 重合,所以直线AC 经过原点O . ……12分 (20)本小题考查排列、组合、二项式定理、不等式的基本知识和逻辑推理能力.满分12分.(Ⅰ)证明: 对于1<i ≤m 有im p = m ·…·(m -i +1),⋅-⋅=m m m m m p ii m 1…mi m 1+-⋅, 同理 ⋅-⋅=n n n n n p i in 1…ni n 1+-⋅, ……4分由于 m <n ,对整数k = 1,2…,i -1,有mkm n k n ->-, 所以 i im i i n mp n p >,即im i i n i p n p m >. ……6分(Ⅱ)证明由二项式定理有()in ni i nC m m ∑==+01, ()i mmi i mCn n ∑==+01, ……8分由 (Ⅰ)知i n i p m >im i p n (1<i ≤m <n =,而 !i p C i m im=,!i p C i n in =, ……10分所以, im i i n i C n C m >(1<i ≤m <n =.因此,∑∑==>mi im i mi i niC n Cm 22. 又 10000==m n C n C m ,mn nC mC m n ==11,()n i m C m in i ≤<>0.∴∑∑==>mi im i ni i niC n Cm 0. 即 (1+m )n >(1+n )m . ……12分 (21)本小题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力.满分12分.解:(Ⅰ)第1年投入为800万元,第2年投入为800×(1-51)万元,……,第n 年投入为800×(1-51)n -1万元. 所以,n 年内的总投入为a n = 800+800×(1-51)+…+800×(1-51)n -1∑=--⨯=nk k 11)511(800= 4000×[1-(54)n]; ……3分 第1年旅游业收入为400万元,第2年旅游业收入为400×(1+41)万元,……,第n年旅游业收入为400×(1+41)n -1万元.所以,n 年内的旅游业总收入为b n = 400+400×(1+41)+…+400×(1+41)n -1∑=-⨯=nk k 11)45(400= 1600×[ (54)n-1]. ……6分 (Ⅱ)设至少经过n 年旅游业的总收入才能超过总投入,由此b n -a n >0,即 1600×[(45)n -1]-4000×[1-(54)n ]>0. 化简得 5×(54)n +2×(54)n -7>0, ……9分设=x (54)n ,代入上式得5x 2-7x +2>0,解此不等式,得52<x ,x >1(舍去). 即 (54)n <52,由此得 n ≥5.答:至少经过5年旅游业的总收入才能超过总投入. ……12分 (22)本小题主要考查函数的概念、图像,函数的奇偶性和周期性以及数列极限等基础知识;考查运算能力和逻辑思维能力.满分14分.(Ⅰ)解:因为对x 1,x 2∈[0,21],都有f (x 1+x 2) = f (x 1) · f (x 2),所以=)(x f f (2x ) · f (2x )≥0,x ∈[0,1]. ∵ =)1(f f (2121+) = f (21) · f (21) = [f (21)]2,f (21)=f (4141+) = f (41) · f (41) = [f (41)]2. ……3分0)1(>=a f ,∴ f (21)21a =,f (41)41a =. ……6分(Ⅱ)证明:依题设y = f (x )关于直线x = 1对称, 故 f (x ) = f (1+1-x ),11 / 11 即f (x ) = f (2-x ),x ∈R . ……8分 又由f (x )是偶函数知f (-x ) = f (x ) ,x ∈R ,∴ f (-x ) = f (2-x ) ,x ∈R ,将上式中-x 以x 代换,得f (x ) = f (x +2),x ∈R .这表明f (x )是R 上的周期函数,且2是它的一个周期. ……10分 (Ⅲ)解:由(Ⅰ)知f (x )≥0,x ∈[0,1].∵ f (21)= f (n ·n 21) = f (n 21+(n -1)·n 21)= f (n 21) · f ((n -1)·n 21)= f (n 21) · f (n 21) · … ·f (n 21)= [ f (n 21)]n ,f (21) = 21a ,∴ f (n 21) = na 21.∵ f (x )的一个周期是2,∴ f (2n +n 21) = f (n 21),因此a n = n a 21,……12分 ∴ ()∞→∞→=n n n a lim ln lim (a n ln 21) = 0.……14分。

【高考真题】2015年高考数学(理科)课标卷(二)Ⅱ(Word版,含答案解析)

【高考真题】2015年高考数学(理科)课标卷(二)Ⅱ(Word版,含答案解析)

2015年普通高等学校招生全国统一考试(课标全国卷Ⅱ)理数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}2.若a为实数,且(2+ai)(a-2i)=-4i,则a=( )A.-1B.0C.1D.23.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=( )A.21B.42C.63D.845.设函数f(x)=1+log2(2-x), x<1,2x-1,x≥1,则f(-2)+f(log212)=( )A.3B.6C.9D.126.一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.157.过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )A.26B.8C.46D.108.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=( )A.0B.2C.4D.149.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36πB.64πC.144πD.256π10.如图,长方形ABCD的边AB=2,BC=1,O是AB的中点.点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为( )11.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )A. B.2 C.3 D.12.设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf'(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是( )A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.设向量a,b不平行,向量λa+b与a+2b平行,则实数λ= .14.若x,y满足约束条件x-y+1≥0,x-2y≤0,x+2y-2≤0,则z=x+y的最大值为.15.(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a= .16.设S n是数列{a n}的前n项和,且a1=-1,a n+1=S n S n+1,则S n= .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(Ⅰ)求sin∠Bsin∠C;(Ⅱ)若AD=1,DC=22,求BD和AC的长.18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区: 73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(本小题满分12分)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由);(Ⅱ)求直线AF与平面α所成角的正弦值.20.(本小题满分12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(Ⅰ)证明:直线OM的斜率与l的斜率的乘积为定值;,m,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此(Ⅱ)若l过点m3时l的斜率;若不能,说明理由.21.(本小题满分12分)设函数f(x)=e mx+x2-mx.(Ⅰ)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,O为等腰三角形ABC内一点,☉O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(Ⅰ)证明:EF∥BC;(Ⅱ)若AG等于☉O的半径,且AE=MN=23,求四边形EBCF的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,曲线C1:x=t cosα,y=t sinα(t为参数,t≠0),其中0≤α<π.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(Ⅰ)求C2与C3交点的直角坐标;(Ⅱ)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.24.(本小题满分10分)选修4—5:不等式选讲设a,b,c,d均为正数,且a+b=c+d,证明:(Ⅰ)若ab>cd,则a+c+(Ⅱ)a+>c+|a-b|<|c-d|的充要条件.2015年普通高等学校招生全国统一考试(课标全国卷Ⅱ)一、选择题1.A因为B={x|(x-1)(x+2)<0}={x|-2<x<1},A={-2,-1,0,1,2},故A∩B={-1,0}.选A.2.B∵(2+ai)(a-2i)=-4i⇒4a+(a2-4)i=-4i,∴4a=0,a2-4=-4,解得a=0.3.D由柱形图可知:A、B、C均正确,2006年以来我国二氧化硫年排放量在逐渐减少,所以排放量与年份负相关,∴D不正确.4.B设{a n}的公比为q,由a1=3,a1+a3+a5=21得1+q2+q4=7,解得q2=2(负值舍去).∴a3+a5+a7=a1q2+a3q2+a5q2=(a1+a3+a5)q2=21×2=42.5.C∵-2<1,∴f(-2)=1+log2[2-(-2)]=3;∵log212>1,∴f(log212)=2log212-1=2log26=6.∴f(-2)+f(log212)=9.6.D如图,由已知条件可知,截去部分是以△ABC为底面且三条侧棱两两垂直的正三棱锥D-ABC.设正方体的棱长为a,则截去部分的体积为16a3,剩余部分的体积为a3-16a3=56a3.它们的体积之比为15.故选D.评析本题主要考查几何体的三视图和体积的计算,考查空间想象能力.7.C设圆心为P(a,b),由点A(1,3),C(1,-7)在圆上,知b=3-72=-2.再由|PA|=|PB|,得a=1.则P(1,-2),|PA|=(1-1)2+(3+2)2=5,于是圆P的方程为(x-1)2+(y+2)2=25.令x=0,得y=-2±26,则|MN|=|(-2+2)-(-2-2.8.B开始:a=14,b=18,第一次循环:a=14,b=4;第二次循环:a=10,b=4;第三次循环:a=6,b=4;第四次循环:a=2,b=4;第五次循环:a=2,b=2.此时,a=b,退出循环,输出a=2.评析熟悉“更相减损术”对理解框图所确定的算法有帮助.9.C∵S△OAB是定值,且V O-ABC=V C-OAB,∴当OC⊥平面OAB时,V C-OAB最大,即V O-ABC最大.设球O的半径为R,则(V O-ABC)max=13×12R2×R=16R3=36,∴R=6,∴球O的表面积S=4πR2=4π×62=144π.评析 点C 是动点,如果以△ABC 为底面,则底面面积与高都是变量,因此转化成以△OAB 为底面(S △OAB 为定值),这样高越大,体积越大.10.B 当点P 与C 、D 重合时,易求得PA+PB=1+ 5;当点P 为DC 的中点时,有OP ⊥AB,则x=π2,易求得PA+PB=2PA=2 .显然1+ >2 ,故当x=π2时, f(x)没有取到最大值,则C 、D 选项错误.当x ∈ 0,π4时, f(x)=tan x+ 4+tan 2x ,不是一次函数,排除A,故选B.11.D 设双曲线E 的标准方程为x 2a -y 2b =1(a>0,b>0),则A(-a,0),B(a,0),不妨设点M 在第一象限内,则易得M(2a, 3a),又M 点在双曲线E 上,于是(2a )2a -( 3a)2b =1,解得b 2=a 2,∴e= 1+b 2a = .12.A 令g(x)=f (x )x,则g'(x)=xf '(x )-f (x )x 2,由题意知,当x>0时,g'(x)<0,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数, f(-1)=0,∴f(1)=-f(-1)=0, ∴g(1)=f (1)1=0,∴当x ∈(0,1)时,g(x)>0,从而f(x)>0; 当x ∈(1,+∞)时,g(x)<0,从而f(x)<0. 又∵g(-x)=f (-x )-x=-f (x )-x=f (x )x=g(x),∴g(x)是偶函数,∴当x ∈(-∞,-1)时,g(x)<0,从而f(x)>0; 当x ∈(-1,0)时,g(x)>0,从而f(x)<0. 综上,所求x 的取值范围是(-∞,-1)∪(0,1).评析 出现xf '(x)+f(x)>0(<0)时,考虑构造函数F(x)=xf(x),出现xf '(x)-f(x)>0(<0)时,考虑构造函数g(x)=f (x )x.二、填空题 13.答案12解析 由于a,b 不平行,所以可以以a,b 作为一组基底,于是λa+b 与a +2b 平行等价于λ1=12,即λ=12.14.答案32解析作出可行域,如图:由z=x+y得y=-x+z,当直线y=-x+z过点A1,12时,z取得最大值,z max=1+12=32.15.答案 3解析设f(x)=(a+x)(1+x)4,则其所有项的系数和为f(1)=(a+1)·(1+1)4=(a+1)×16,又奇数次幂项的系数和为12[f(1)-f(-1)],∴12×(a+1)×16=32,∴a=3.评析二项展开式问题中,涉及系数和的问题,通常采用赋值法.16.答案-1n解析∵a n+1=S n+1-S n,∴S n+1-S n=S n+1S n,又由a1=-1,知S n≠0,∴1S n -1S n+1=1,∴1S n是等差数列,且公差为-1,而1S1=1a1=-1,∴1S n=-1+(n-1)×(-1)=-n,∴S n=-1n.三、解答题17.解析(Ⅰ)S △ABD=12AB·ADsin∠BAD,S△ADC=12AC·ADsin∠CAD.因为S△ABD=2S△ADC,∠BAD=∠CAD,所以AB=2AC.由正弦定理可得sin∠Bsin∠C =ACAB=12.(Ⅱ)因为S△ABD∶S△ADC=BD∶DC,所以BD=2. 在△ABD和△ADC中,由余弦定理知AB2=AD2+BD2-2AD·BDcos∠ADB,AC2=AD2+DC2-2AD·DCcos∠ADC.故AB2+2AC2=3AD2+BD2+2DC2=6.由(Ⅰ)知AB=2AC,所以AC=1.评析本题考查正弦定理,余弦定理的应用,以及三角形的面积公式.属常规题,中等偏易.18.解析(Ⅰ)两地区用户满意度评分的茎叶图如下:通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(Ⅱ)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2.P(C)=P(C B1C A1∪C B2C A2)=P(C B1C A1)+P(C B2C A2)=P(C B1)P(C A1)+P(C B2)P(C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,故P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820, P(C)=1020×1620+820×420=0.48.19.解析 (Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM ⊥AB,垂足为M,则AM=A 1E=4,EM=AA 1=8.因为EHGF 为正方形,所以EH=EF=BC=10.于是MH= EH 2-E M 2=6,所以AH=10.以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),FE =(10,0,0),HE=(0,-6,8). 设n =(x,y,z)是平面EHGF 的法向量,则 n ·FE =0,n ·HE=0,即 10x =0,-6y +8z =0, 所以可取n =(0,4,3).又AF =(-10,4,8),故|cos<n ,AF >|=|n ·AF||n ||AF |=4 515. 所以AF 与平面EHGF 所成角的正弦值为4 515.评析 本题背景常规,设问新颖,鼓励动手试验、创新尝试、独立思考.对空间想象力有较高要求.20.解析 (Ⅰ)设直线l:y=kx+b(k ≠0,b ≠0),A(x 1,y 1),B(x 2,y 2),M(x M ,y M ).将y=kx+b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx+b 2-m 2=0,故x M=x1+x22=-kbk2+9,y M=kx M+b=9bk2+9.于是直线OM的斜率k OM=y Mx M =-9k,即k OM·k=-9.所以直线OM的斜率与l的斜率的乘积为定值.(Ⅱ)四边形OAPB能为平行四边形.因为直线l过点m3,m,所以l不过原点且与C有两个交点的充要条件是k>0,k≠3.由(Ⅰ)得OM的方程为y=-9kx.设点P的横坐标为x P.由y=-9kx,9x2+y2=m2得x P2=k2m29k2+81,即x P=3 k2+9.将点m3,m的坐标代入l的方程得b=m(3-k)3,因此x M=k(k-3)m3(k2+9).四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M.于是2=2×k(k-3)m3(k+9),解得k1=4-2=4+.因为k i>0,k i≠3,i=1,2,所以当l的斜率为4-7或4+7时,四边形OAPB为平行四边形.评析本题考查直线与圆锥曲线的位置关系,设问常规,但对运算能力要求较高,考查学生的思维能力.21.解析(Ⅰ)f '(x)=m(e mx-1)+2x.若m≥0,则当x∈(-∞,0)时,e mx-1≤0, f '(x)<0;当x∈(0,+∞)时,e mx-1≥0, f '(x)>0.若m<0,则当x∈(-∞,0)时,e mx-1>0, f '(x)<0;当x∈(0,+∞)时,e mx-1<0, f '(x)>0.所以, f(x)在(-∞,0)单调递减,在(0,+∞)单调递增.(Ⅱ)由(Ⅰ)知,对任意的m, f(x)在[-1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1的充要条件是f(1)-f(0)≤e-1, f(-1)-f(0)≤e-1,即e m-m≤e-1,e-m+m≤e-1.①设函数g(t)=e t-t-e+1,则g'(t)=e t-1.当t<0时,g'(t)<0;当t>0时,g'(t)>0.故g(t)在(-∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(-1)=e-1+2-e<0,故当t∈[-1,1]时,g(t)≤0.当m∈[-1,1]时,g(m)≤0,g(-m)≤0,即①式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m-m>e-1;当m<-1时,g(-m)>0,即e-m+m>e-1.综上,m的取值范围是[-1,1].22.解析(Ⅰ)由于△ABC是等腰三角形,AD⊥BC,所以AD是∠CAB的平分线.又因为☉O分别与AB,AC相切于点E,F,所以AE=AF,故AD⊥EF.从而EF∥BC.(Ⅱ)由(Ⅰ)知,AE=AF,AD⊥EF,故AD是EF的垂直平分线.又EF为☉O的弦,所以O在AD上. 连结OE,OM,则OE⊥AE.由AG等于☉O的半径得AO=2OE,所以∠OAE=30°.因此△ABC和△AEF都是等边三角形.因为AE=2,所以AO=4,OE=2.因为OM=OE=2,DM=12MN=3,所以OD=1.于是AD=5,AB=1033.所以四边形EBCF的面积为12×10332×32-12×(23)2×32=1633.23.解析(Ⅰ)曲线C 2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2-23x=0.联立x2+y2-2y=0,x2+y2-23x=0,解得x=0,y=0,或x=32,y=32.所以C2与C3交点的直角坐标为(0,0)和32,3 2.(Ⅱ)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.因此A的极坐标为(2sin α,α),B的极坐标为(23cos α,α).所以|AB|=|2sin α-23cos α|=4sin α-π3.当α=5π6时,|AB|取得最大值,最大值为4.24.解析(Ⅰ)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd, 由题设a+b=c+d,ab>cd得(a+2>(c+)2.因此a+b>c+d.(Ⅱ)(i)若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(Ⅰ)得a+>c+(ii)若a+>c+则(a+2>(c+2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.。

2015年湖南省高考数学试卷(理科)及答案

2015年湖南省高考数学试卷(理科)及答案

2015年湖南省高考数学试卷(理科)一、选择题,共10小题,每小题5分,共50分1.(5分)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.(5分)设A、B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.B.C.D.4.(5分)若变量x、y满足约束条件,则z=3x﹣y的最小值为()A.﹣7 B.﹣1 C.1 D.25.(5分)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数6.(5分)已知(﹣)5的展开式中含x的项的系数为30,则a=()A.B.﹣C.6 D.﹣67.(5分)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X﹣N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=0.6826.p(μ﹣2σ<X≤μ+2σ)=0.9544.A.2386 B.2718 C.3413 D.47728.(5分)已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则||的最大值为()A.6 B.7 C.8 D.99.(5分)将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()A. B.C.D.10.(5分)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()A. B. C.D.二、填空题,共5小题,每小题5分,共25分11.(5分)(x﹣1)dx=.12.(5分)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是.13.(5分)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.14.(5分)设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n=.15.(5分)已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是.三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.(6分)如图,在⊙O中,相交于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相交于点F,证明:(1)∠MEN+∠NOM=180°(2)FE•FN=FM•FO.选修4-4:坐标系与方程17.(6分)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.选修4-5:不等式选讲18.设a>0,b>0,且a+b=+.证明:(ⅰ)a+b≥2;(ⅱ)a2+a<2与b2+b<2不可能同时成立.19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.20.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.21.如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ的体积.22.(13分)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点.C1与C2的公共弦长为2.(Ⅰ)求C2的方程;(Ⅱ)过点F的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.(ⅰ)若|AC|=|BD|,求直线l的斜率;(ⅱ)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.23.(13分)已知a>0,函数f(x)=e ax sinx(x∈[0,+∞]).记x n为f(x)的从小到大的第n(n∈N*)个极值点.证明:(Ⅰ)数列{f(x n)}是等比数列;(Ⅱ)若a≥,则对一切n∈N*,x n<|f(x n)|恒成立.2015年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题,共10小题,每小题5分,共50分1.(5分)(2015•湖南)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【分析】由条件利用两个复数代数形式的乘除法法则,求得z的值.【解答】解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.2.(5分)(2015•湖南)设A、B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】直接利用两个集合的交集,判断两个集合的关系,判断充要条件即可.【解答】解:A、B是两个集合,则“A∩B=A”可得“A⊆B”,“A⊆B”,可得“A∩B=A”.所以A、B是两个集合,则“A∩B=A”是“A⊆B”的充要条件.故选:C.3.(5分)(2015•湖南)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.B.C.D.【分析】列出循环过程中S与i的数值,满足判断框的条件即可结束循环.【解答】解:判断前i=1,n=3,s=0,第1次循环,S=,i=2,第2次循环,S=,i=3,第3次循环,S=,i=4,此时,i>n,满足判断框的条件,结束循环,输出结果:S===故选:B4.(5分)(2015•湖南)若变量x、y满足约束条件,则z=3x﹣y的最小值为()A.﹣7 B.﹣1 C.1 D.2【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得C(0,﹣1).由解得A(﹣2,1),由,解得B(1,1)∴z=3x﹣y的最小值为3×(﹣2)﹣1=﹣7.故选:A.5.(5分)(2015•湖南)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数【分析】求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.【解答】解:函数f(x)=ln(1+x)﹣ln(1﹣x),函数的定义域为(﹣1,1),函数f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),所以函数是奇函数.排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f(0)=0;x=时,f()=ln(1+)﹣ln(1﹣)=ln3>1,显然f(0)<f(),函数是增函数,所以B错误,A正确.故选:A.6.(5分)(2015•湖南)已知(﹣)5的展开式中含x的项的系数为30,则a=()A.B.﹣C.6 D.﹣6【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,T r+1==;展开式中含x的项的系数为30,∴,∴r=1,并且,解得a=﹣6.故选:D.7.(5分)(2015•湖南)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X﹣N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=0.6826.p(μ﹣2σ<X≤μ+2σ)=0.9544.A.2386 B.2718 C.3413 D.4772【分析】求出P(0<X≤1)=×0.6826=0.3413,即可得出结论.【解答】解:由题意P(0<X≤1)=×0.6826=0.3413,∴落入阴影部分点的个数的估计值为10000×0.3413=3413,故选:C.8.(5分)(2015•湖南)已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P 的坐标为(2,0),则||的最大值为()A.6 B.7 C.8 D.9【分析】由题意,AC为直径,所以||=|2+|.B为(﹣1,0)时,|2+|≤7,即可得出结论.【解答】解:由题意,AC为直径,所以||=|2+|所以B为(﹣1,0)时,|2+|≤7.所以||的最大值为7.故选:B.9.(5分)(2015•湖南)将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()A. B.C.D.【分析】利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可.【解答】解:因为将函数f(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=,不妨x1=,x2=,即g(x)在x2=,取得最小值,sin(2×﹣2φ)=﹣1,此时φ=,不合题意,x1=,x2=,即g(x)在x2=,取得最大值,sin(2×﹣2φ)=1,此时φ=,满足题意.故选:D.10.(5分)(2015•湖南)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()A. B. C.D.【分析】根据三视图可判断其为圆锥,底面半径为1,高为2,求解体积.利用几何体的性质得出此长方体底面边长为n的正方形,高为x,利用轴截面的图形可判断得出n=(1﹣),0<x<2,求解体积式子,利用导数求解即可,最后利用几何概率求解即.【解答】解:根据三视图可判断其为圆锥,∵底面半径为1,高为2,∴V=×2=∵加工成一个体积尽可能大的长方体新工件,∴此长方体底面边长为n的正方形,高为x,∴根据轴截面图得出:=,解得;n=(1﹣),0<x<2,∴长方体的体积Ω=2(1﹣)2x,Ω′=x2﹣4x+2,∵,Ω′=x2﹣4x+2=0,x=,x=2,∴可判断(0,)单调递增,(,2)单调递减,Ω最大值=2(1﹣)2×=,∴原工件材料的利用率为=×=,故选:A二、填空题,共5小题,每小题5分,共25分11.(5分)(2015•湖南)(x﹣1)dx=0.【分析】求出被积函数的原函数,代入上限和下限求值.【解答】解:(x﹣1)dx=(﹣x)|=0;故答案为:0.12.(5分)(2015•湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是4.【分析】根据茎叶图中的数据,结合系统抽样方法的特征,即可求出正确的结论.【解答】解:根据茎叶图中的数据,得;成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取7×=4(人).故答案为:4.13.(5分)(2015•湖南)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.【分析】设F(c,0),P(m,n),(m<0),设PF的中点为M(0,b),即有m=﹣c,n=2b,将中点M的坐标代入双曲线方程,结合离心率公式,计算即可得到.【解答】解:设F(c,0),P(m,n),(m<0),设PF的中点为M(0,b),即有m=﹣c,n=2b,将点(﹣c,2b)代入双曲线方程可得,﹣=1,可得e2==5,解得e=.故答案为:.14.(5分)(2015•湖南)设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n=3n﹣1.【分析】利用已知条件列出方程求出公比,然后求解等比数列的通项公式.【解答】解:设等比数列的公比为q,S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,可得4S2=S3+3S1,a1=1,即4(1+q)=1+q+q2+3,q=3.∴a n=3n﹣1.故答案为:3n﹣1.15.(5分)(2015•湖南)已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是{a|a<0或a>1} .【分析】由g(x)=f(x)﹣b有两个零点可得f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a的范围【解答】解:∵g(x)=f(x)﹣b有两个零点,∴f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,由x3=x2可得,x=0或x=1①当a>1时,函数f(x)的图象如图所示,此时存在b,满足题意,故a>1满足题意②当a=1时,由于函数f(x)在定义域R上单调递增,故不符合题意③当0<a<1时,函数f(x)单调递增,故不符合题意④a=0时,f(x)单调递增,故不符合题意⑤当a<0时,函数y=f(x)的图象如图所示,此时存在b使得,y=f(x)与y=b 有两个交点综上可得,a<0或a>1故答案为:{a|a<0或a>1}三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.(6分)(2015•湖南)如图,在⊙O中,相交于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相交于点F,证明:(1)∠MEN+∠NOM=180°(2)FE•FN=FM•FO.【分析】(1)证明O,M,E,N四点共圆,即可证明∠MEN+∠NOM=180°(2)证明△FEM∽△FON,即可证明FE•FN=FM•FO.【解答】证明:(1)∵N为CD的中点,∴ON⊥CD,∵M为AB的中点,∴OM⊥AB,在四边形OMEN中,∴∠OME+∠ONE=90°+90°=180°,∴O,M,E,N四点共圆,∴∠MEN+∠NOM=180°(2)在△FEM与△FON中,∠F=∠F,∠FME=∠FNO=90°,∴△FEM∽△FON,∴=∴FE•FN=FM•FO.选修4-4:坐标系与方程17.(6分)(2015•湖南)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.【分析】(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.【解答】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x﹣1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5﹣1)2+3﹣1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.选修4-5:不等式选讲18.(2015•湖南)设a>0,b>0,且a+b=+.证明:(ⅰ)a+b≥2;(ⅱ)a2+a<2与b2+b<2不可能同时成立.【分析】(ⅰ)由a>0,b>0,结合条件可得ab=1,再由基本不等式,即可得证;(ⅱ)运用反证法证明.假设a2+a<2与b2+b<2可能同时成立.结合条件a>0,b>0,以及二次不等式的解法,可得0<a<1,且0<b<1,这与ab=1矛盾,即可得证.【解答】证明:(ⅰ)由a>0,b>0,则a+b=+=,由于a+b>0,则ab=1,即有a+b≥2=2,当且仅当a=b取得等号.则a+b≥2;(ⅱ)假设a2+a<2与b2+b<2可能同时成立.由a2+a<2及a>0,可得0<a<1,由b2+b<2及b>0,可得0<b<1,这与ab=1矛盾.a2+a<2与b2+b<2不可能同时成立.19.(2015•湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.【分析】(Ⅰ)由题意和正弦定理可得sinB=cosA,由角的范围和诱导公式可得;(Ⅱ)由题意可得A∈(0,),可得0<sinA<,化简可得sinA+sinC=﹣2(sinA﹣)2+,由二次函数区间的最值可得.【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]20.(2015•湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.【分析】(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件A2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},利用A1,A2相互独立,,互斥,B1,B2互斥,然后求出所求概率即可.(2)顾客抽奖1次可视为3次独立重复试验,判断X~B.求出概率,得到X的分布列,然后求解期望.【解答】解:(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件B2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},由题意A1,A2相互独立,,互斥,B1,B2互斥,且B1=A1A2,B2=+,C=B1+B2,因为P(A1)=,P(A2)=,所以,P(B1)=P(A1)P(A2)==,P(B2)=P()+P()=+==,故所求概率为:P(C)=P(B1+B2)=P(B1)+P(B2)=.(2)顾客抽奖1次可视为3次独立重复试验,由(1)可知,顾客抽奖1次获一等奖的概率为:所以.X~B.于是,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.故X的分布列为:X0123PE(X)=3×=.21.(2015•湖南)如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ的体积.【分析】(1)首先以A为原点,AB,AD,AA1所在直线分别为x,y,z轴,建立空间直角坐标系,求出一些点的坐标,Q在棱BC上,从而可设Q(6,y1,0),只需求即可;(2)设P(0,y2,z2),根据P在棱DD1上,从而由即可得到z2=12﹣2y2,从而表示点P坐标为P(0,y2,12﹣2y2).由PQ∥平面ABB1A1便知道与平面ABB1A1的法向量垂直,从而得出y1=y2,从而Q点坐标变成Q(6,y2,0),设平面PQD的法向量为,根据即可表示,平面AQD的一个法向量为,从而由即可求出y2,从而得出P点坐标,从而求出三棱锥P﹣AQD的高,而四面体ADPQ 的体积等于三棱锥P﹣AQD的体积,从而求出四面体的体积.【解答】解:根据已知条件知AB,AD,AA1三直线两两垂直,所以分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(0,0,0),B(6,0,0),D(0,6,0),A1(0,0,6),B1(3,0,6),D1(0,3,6);Q在棱BC上,设Q(6,y1,0),0≤y1≤6;∴(1)证明:若P是DD1的中点,则P;∴,;∴;∴;∴AB1⊥PQ;(2)设P(0,y2,z2),y2,z2∈[0,6],P在棱DD1上;∴,0≤λ≤1;∴(0,y2﹣6,z2)=λ(0,﹣3,6);∴;∴z2=12﹣2y2;∴P(0,y2,12﹣2y2);∴;平面ABB1A1的一个法向量为;∵PQ∥平面ABB1A1;∴=6(y1﹣y2)=0;∴y1=y2;∴Q(6,y2,0);设平面PQD的法向量为,则:;∴,取z=1,则;又平面AQD的一个法向量为;又二面角P﹣QD﹣A的余弦值为;∴;解得y2=4,或y2=8(舍去);∴P(0,4,4);∴三棱锥P﹣ADQ的高为4,且;∴V四面体ADPQ =V三棱锥P﹣ADQ=.22.(13分)(2015•湖南)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点.C1与C2的公共弦长为2.(Ⅰ)求C2的方程;(Ⅱ)过点F的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.(ⅰ)若|AC|=|BD|,求直线l的斜率;(ⅱ)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.【分析】(Ⅰ)根据两个曲线的焦点相同,得到a2﹣b2=1,再根据C1与C2的公共弦长为2,得到=1,解得即可求出;(Ⅱ)设出点的坐标,(ⅰ)根据向量的关系,得到(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l的方程,分别与C1,C2构成方程组,利用韦达定理,分别代入得到关于k的方程,解得即可;(ⅱ)根据导数的几何意义得到C1在点A处的切线方程,求出点M的坐标,利用向量的乘积∠AFM是锐角,问题得以证明.【解答】解:(Ⅰ)抛物线C1:x2=4y的焦点F的坐标为(0,1),因为F也是椭圆C2的一个焦点,∴a2﹣b2=1,①,又C1与C2的公共弦长为2,C1与C2的都关于y轴对称,且C1的方程为x2=4y,由此易知C1与C2的公共点的坐标为(±,),所以=1,②,联立①②得a2=9,b2=8,故C2的方程为+=1.(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),(ⅰ)因为与同向,且|AC|=|BD|,所以=,从而x3﹣x1=x4﹣x2,即x1﹣x2=x3﹣x4,于是(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,③设直线的斜率为k,则l的方程为y=kx+1,由,得x2﹣4kx﹣4=0,而x1,x2是这个方程的两根,所以x1+x2=4k,x1x2=﹣4,④由,得(9+8k2)x2+16kx﹣64=0,而x3,x4是这个方程的两根,所以x3+x4=,x3x4=﹣,⑤将④⑤代入③,得16(k2+1)=+,即16(k2+1)=,所以(9+8k2)2=16×9,解得k=±.(ⅱ)由x2=4y得y′=x,所以C1在点A处的切线方程为y﹣y1=x1(x﹣x1),即y=x1x﹣x12,令y=0,得x=x1,M(x1,0),所以=(x1,﹣1),而=(x1,y1﹣1),于是•=x12﹣y1+1=x12+1>0,因此∠AFM是锐角,从而∠MFD=180°﹣∠AFM是钝角,故直线l绕点F旋转时,△MFD总是钝角三角形.23.(13分)(2015•湖南)已知a>0,函数f(x)=e ax sinx(x∈[0,+∞]).记x n为f(x)的从小到大的第n(n∈N*)个极值点.证明:(Ⅰ)数列{f(x n)}是等比数列;(Ⅱ)若a≥,则对一切n∈N*,x n<|f(x n)|恒成立.【分析】(Ⅰ)求出导数,运用两角和的正弦公式化简,求出导数为0的根,讨论根附近的导数的符号相反,即可得到极值点,求得极值,运用等比数列的定义即可得证;(Ⅱ)由sinφ=,可得对一切n∈N*,x n<|f(x n)|恒成立.即为nπ﹣φ<e a(nπ﹣φ)恒成立⇔<,①设g(t)=(t>0),求出导数,求得最小值,由恒成立思想即可得证.【解答】证明:(Ⅰ)f′(x)=e ax(asinx+cosx)=•e ax sin(x+φ),tanφ=,0<φ<,令f′(x)=0,由x≥0,x+φ=mπ,即x=mπ﹣φ,m∈N*,对k∈N,若(2k+1)π<x+φ<(2k+2)π,即(2k+1)π﹣φ<x<(2k+2)π﹣φ,则f′(x)<0,因此在((m﹣1)π﹣φ,mπ﹣φ)和(mπ﹣φ,(m+1)π﹣φ)上f′(x)符号总相反.于是当x=nπ﹣φ,n∈N*,f(x)取得极值,所以x n=nπ﹣φ,n∈N*,此时f(x n)=e a(nπ﹣φ)sin(nπ﹣φ)=(﹣1)n+1e a(nπ﹣φ)sinφ,易知f(x n)≠0,而==﹣e aπ是常数,故数列{f(x n)}是首项为f(x1)=e a(π﹣φ)sinφ,公比为﹣e aπ的等比数列;(Ⅱ)由sinφ=,可得对一切n∈N*,x n<|f(x n)|恒成立.即为nπ﹣φ<e a(nπ﹣φ)恒成立⇔<,①设g(t)=(t>0),g′(t)=,当0<t<1时,g′(t)<0,g(t)递减,当t>1时,g′(t)>0,g(t)递增.t=1时,g(t)取得最小值,且为e.因此要使①恒成立,只需<g(1)=e,只需a>,当a=,tanφ==,且0<φ<,可得<φ<,于是π﹣φ<<,且当n≥2时,nπ﹣φ≥2π﹣φ>>,因此对n∈N*,ax n=≠1,即有g(ax n)>g(1)=e=,故①亦恒成立.综上可得,若a≥,则对一切n∈N*,x n<|f(x n)|恒成立.。

(word完整版)湖南省_2003年_高考数学真题(理科数学)(附答案)_历年历届试题

(word完整版)湖南省_2003年_高考数学真题(理科数学)(附答案)_历年历届试题

2003年普通高等学校招生全国统一考试数学(理工农医类)-同湖南一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247 B .247-C .724D .724- 2.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =A .2B .22-C .12-D .12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m ( )A .1B .43 C .21 D .83 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π10.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x 1),0,44则若<<x 的取值范围是( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ΛΛ( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .3π3D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.92)21(xx -展开式中9x 的系数是 . 14.使1)(log 2+<-x x 成立的x 的取值范围是 .15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区 域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共 有 种.(以数字作答)16.下列五个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为具所在棱的中点,能得出l ⊥面MNP 的图形的序号是 .(写出所有符合要求的图形序号)三、解答题:本大题共6小题,共74分. 解答应写出文字的说明,证明过程或演算步骤.已知复数z 的辐角为60°,且|1|-z 是||z 和|2|-z 的等比中项. 求||z .18.(本小题满分12分) 如图,在直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G. (Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示); (Ⅱ)求点A 1到平面AED 的距离. 19.(本小题满分12分)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围. 20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102arccos(=θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动. 台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h 的速度不断增大. 问几小时后该城市开始受到台风的侵袭?已知常数,0>a 在矩形ABCD 中,AB=4,BC=4a ,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DA DGCD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.22.(本小题满分12分,附加题4分)(Ⅰ)设Z}t s,,0|2{2}{t ∈<≤+且是集合t s a sn 中所有的数从小到大排列成的数列,即.,12,10,9,6,5,3654321Λ======a a a a a a将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表: 35 69 10 12— — — —— — — — — (i )写出这个三角形数表的第四行、第五行各数; (i i )求100a .(Ⅱ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)设Z}t s,r,,0|22{2}{r ∈<<≤++且是集合t s r b st n 中所有的数都是从小到大排列成的数列,已知k.,1160求=k b2003年普通高等学校招生全国统一考试数 学(理工农医类)答案一、选择题1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题: 17. 解:设)60sin 60cos οοr r z+=,则复数.2rz 的实部为2,r z z r z z ==-由题设.12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,112211,,,,,,.1,1, 3.(4)31262,.2,22,23, 3.3622sin .arcsin .3D E CC A B DC ABC CDEF DE G ADB G DF EFD EF FG FD FD EF FD ED EG FC CD AB A B EB EG EBG A B ABD EB ⊥∴∆∴∈=⋅==∴=⨯=====∴===∴∠==⋅=∴Q Q L L Q 分别是的中点又平面为矩形连结是的重心在直角三角形中分于是与平面所成的角是(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又Θ.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数x c y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+).,1[]21,0(.1,,.210,,.21121|2|.2|2|,2,2,2,22|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴⎩⎨⎧<≥-=-+的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y c x c c x c x c x x Θ20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+- 其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有 .)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭. 21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤==k DADCCD CF BC BE 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak )直线OF 的方程为:0)12(2=-+y k ax ①直线GE 的方程为:02)12(=-+--a y x ka ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长。

2015年普通高等学校招生全国统一考试(湖南卷)数学试题 (理科)解析版

2015年普通高等学校招生全国统一考试(湖南卷)数学试题 (理科)解析版

2015年高考湖南卷理数试题解析(精编版)(解析版)一.选择题:本大题共10小题,每小题5分,共50分,每小题给出的四个选项中,只有一项是符合题目要求的.1.已知()211i i z-=+(i 为虚数单位),则复数z =( ) A. 1i + B.1i - C.1i -+ D.1i --【答案】D.【考点定位】复数的计算.【名师点睛】本题主要考查了复数的概念与基本运算,属于容易题,意在考查学生对复数代数形式四则运 算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数 的乘法则是按多项式的乘法法则进行处理.2.设A ,B 是两个集合,则“A B A =”是“A B ⊆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】C.【考点定位】1.集合的关系;2.充分必要条件.【名师点睛】本题主要考查了集合的关系与充分必要条件,属于容易题,高考强调集合作为工具与其他知 识点的结合,解题的关键是利用韦恩图或者数轴求解,充分,必要条件的判断性问题首要分清条件 和结论,然后找出条件和结论之间的推出或包含关系.3.执行如图所示的程序框图,如果输入3n =,则输出的S =( )A.67 B.37 C.89 D.49【答案】B.【考点定位】1程序框图;2.裂项相消法求数列的和.【名师点睛】本题主要考查了数列求和背景下的程序框图问题,属于容易题, 解题过程中首先要弄清程序框图所表达的含义,解决循环结构的程序框图 问题关键是列出每次循环后的变量取值情况,循环次数较多时,需总结规 律,若循环次数较少可以全部列出.4.若变量x ,y 满足约束条件1211x y x y y +≥-⎧⎪-≤⎨⎪≤⎩,则3z x y =-的最小值为( )A.-7B.-1C.1D.2【答案】A.而可知当2-=x ,1=y 时,min 3(2)17z =⨯--=-的最小值是7-,故选A.【考点定位】线性规划.【名师点睛】本题主要考查了利用线性规划求线性目标函数的最值,属于容易题,在画可行域时,首先必须找准可行域的范围,其次要注意目标函数对应的直线斜率的大小,从而确定目标函数取到最优解时所经过的点,切忌随手一画导致错解.5.设函数()ln(1)ln(1)f x x x =+--,则()f x 是( )A .奇函数,且在(0,1)上是增函数 B. 奇函数,且在(0,1)上是减函数 C. 偶函数,且在(0,1)上是增函数 D. 偶函数,且在(0,1)上是减函数 【答案】A.【考点定位】函数的性质.【名师点睛】本题主要考查了以对数函数为背景的单调性与奇偶性,属于中档题,首先根据函数奇偶性的 判定可知其为奇函数,判定时需首先考虑定义域关于原点对称是函数为奇函数的必要条件,再结合复合函 数单调性的判断,即可求解.6.已知5x x 的展开式中含32x 的项的系数为30,则a =( )33- D .-6【答案】D.【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握nb a )(+的二项展开式的通项第1+r 项为rr n r n r b a C T -+=1,即可建立关于a 的方程,从而求解.7.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N(0,1)的密度曲线)的点的个数的估计值为( )A.2386B.2718C.3413D.4772 附:若2(,)XN μσ,则6826.0)(=+≤<-σμσμX P ,9544.0)22(=+≤<-σμσμX P【答案】C.【考点定位】1.正态分布;2.几何概型.【名师点睛】本题主要考查正态分布与几何概型等知识点,属于容易题,结合参考材料中给出的数据,结 合正态分布曲线的对称性,再利用几何概型即可求解,在复习过程中,亦应关注正态分布等相对冷门的知 识点的基本概念.8.已知点A ,B ,C 在圆221x y +=上运动,且AB BC ⊥,若点P 的坐标为(2,0),则P A P B P C ++的最大值为( )A.6B.7C.8D.9【答案】B.【考点定位】1.圆的性质;2.平面向量的坐标运算及其几何意义.【名师点睛】本题主要考查向量的坐标运算,向量的几何意义以及点到圆上点的距离的最值问题,属于中 档题,结合转化思想和数形结合思想求解最值,关键是把向量的模的最值问题转化为点与圆上点的距离的 最值问题,即圆221x y +=上的动点到点)0,6(距离的最大值.9.将函数()sin 2f x x =的图像向右平移(0)2πϕϕ<<个单位后得到函数()g x 的图像,若对满足12()()2f x g x -=的1x ,2x ,有12min 3x x π-=,则ϕ=( )A.512π B.3π C.4π D.6π【答案】D.【考点定位】三角函数的图象和性质.【名师点睛】本题主要考查了三角函数的图象和性质,属于中档题,高考题对于三角函数的考查,多以 )sin()(ϕω+=x A x f 为背景来考查其性质,解决此类问题的关键:一是会化简,熟悉三角恒等变形,对三 角函数进行化简;二是会用性质,熟悉正弦函数的单调性,周期性,对称性,奇偶性等.10.某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.169πC.34(21)πD.321)π【答案】A.【考点定位】1.圆锥的内接长方体;2.基本不等式求最值.【名师点睛】本题主要考查立体几何中的最值问题,与实际应用相结合,立意新颖,属于较难题,需要考生从实际应用问题中提取出相应的几何元素,再利用基本不等式求解,解决此类问题的两大核心思路:一是化立体问题为平面问题,结合平面几何的相关知识求解;二是建立目标函数的数学思想,选择合理的变量,或利用导数或利用基本不等式,求其最值.二.填空题:本大题共5小题,每小题5分,共25分.11.20(1) x dx⎰-= .【答案】0.【考点定位】定积分的计算.【名师点睛】本题主要考查定积分的计算,意在考查学生的运算求解能力,属于容易题,定积分的计算通常有两类基本方法:一是利用牛顿-莱布尼茨定理;二是利用定积分的几何意义求解.12.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示,若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是 .【答案】4.【考点定位】1.系统抽样;2.茎叶图.【名师点睛】本题主要考查了系统抽样与茎叶图的概念,属于容易题,高考对统计相关知识的考查,重点在于其相关的基本概念,如中位数,方差,极差,茎叶图,回归直线等,要求考生在复习时注意对这些方面的理解与记忆.13.设F是双曲线C:22221x ya b-=的一个焦点,若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为 . 【答案】5.【考点定位】双曲线的标准方程及其性质.【名师点睛】本题主要考查了双曲线的标准方程及其性质,属于容易题,根据对称性将条件中的信息进行 等价的转化是解题的关键,在求解双曲线的方程时,主要利用222b a c +=,焦点坐标,渐近线方程等性质, 也会与三角形的中位线,相似三角形,勾股定理等平面几何知识联系起来.14.设n S 为等比数列{}n a 的前n 项和,若11a =,且13S ,22S ,3S 成等差数列,则n a = . 【答案】13-n .【考点定位】等差数列与等比数列的性质.【名师点睛】本题主要考查等差与等比数列的性质,属于容易题,在解题过程中,需要建立关于等比数列 基本量q 的方程即可求解,考查学生等价转化的思想与方程思想.15.已知32,(),x x af x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是 .【答案】),1()0,(+∞-∞ .【考点定位】1.函数与方程;2.分类讨论的数学思想.【名师点睛】本题主要考查了函数的零点,函数与方程等知识点,属于较难题,表面上是函数的零点问题,实际上是将问题等价转化为不等式组有解的问题,结合函数与方程思想和转化思想求解函数综合问题,将函数的零点问题巧妙的转化为不等式组有解的参数,从而得到关于参数a 的不等式,此题是创新题,区别于其他函数与方程问题数形结合转化为函数图象交点的解法,从另一个层面将问题进行转化,综合考查学生的逻辑推理能力.三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(Ⅰ)如图,在圆O 中,相交于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 与直线CD 相交于点F ,证明:(1)180MEN NOM ∠+∠=; (2)FE FN FM FO ⋅=⋅【答案】(1)详见解析;(2)详见解析.【考点定位】1.垂径定理;2.四点共圆;3.割线定理.【名师点睛】本题主要考查了圆的基本性质等知识点,属于容易题,平面几何中圆的有关问题是高考考查 的热点,解题时要充分利用圆的性质和切割线定理,相似三角形,勾股定理等其他平面几何知识点的交汇.(Ⅱ)已知直线35:132x l y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1) 将曲线C 的极坐标方程化为直角坐标方程;(2) 设点M 的直角坐标为,直线l 与曲线C 的交点为A ,B ,求||||MA MB ⋅的值. 【答案】(1)0222=-+x y x ;(2)18.的两个实数根分别为1t ,2t ,则由参数t 的几何意义即知,1821==⋅|t |t |MB||MA|. 【考点定位】1.极坐标方程与直角坐标方程的互相转化;2.直线与圆的位置关系.【名师点睛】本题主要考查了极坐标方程与直角坐标方程的互相转化以及直线与圆的位置关系,属于容易 题,在方程的转化时,只要利用θρcos =x ,θρsin =y 进行等价变形即可,考查极坐标方程与参数方程, 实为考查直线与圆的相交问题,实际上为解析几何问题,解析几何中常用的思想,如联立方程组等,在极 坐标与参数方程中同样适用.(Ⅲ)设0,0a b >>,且11a b a b+=+. (1)2a b +≥;(2)22a a +<与22b b +<不可能同时成立. 【答案】(1)详见解析;(2)详见解析.【考点定位】1.基本不等式;2.一元二次不等式;3.反证法.【名师点睛】本题主要考查了不等式的证明与反证法等知识点,属于中档题,第一小问需将条件中的式子 作等价变形,再利用基本不等式即可求解,第二小问从问题不可能同时成立,可以考虑采用反证法证明, 否定结论,从而推出矛盾,反证法作为一个相对冷门的数学方法,在后续复习时亦应予以关注.17.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,tan a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围.【答案】(1)详见解析;(2)9]8. 【解析】【考点定位】1.正弦定理;2.三角恒等变形;3.三角函数的性质.【名师点睛】本题主要考查了利用正弦定理解三角形以及三角恒等变形等知识点,属于中档题,高考解答题对三角三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,在三角函数求值问题中,一般运用恒等变换,将未知角变换为已知角求解,在研究三角函数的图象和性质问题时,一般先运用三角恒等变形,将表达式转化为一个角的三角函数的形式求解,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小.18.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望. 【答案】(1)107;(2)详见解析.【考点定位】1.概率的加法公式;2.离散型随机变量的概率分布与期望.【名师点睛】本题主要考查了离散型随机变量的概率分布与期望以及概率统计在生活中的实际应用,这一 直都是高考命题的热点,试题的背景由传统的摸球,骰子问题向现实生活中的热点问题转化,并且与统计 的联系越来越密切,与统计中的抽样,频率分布直方图等基础知识综合的试题逐渐增多,在复习时应予以 关注.19.如图,已知四棱台1111ABCD A B C D -上、下底面分别是边长为3和6的正方形,16AA =,且1AA ⊥底面ABCD ,点P ,Q 分别在棱1DD ,BC 上.(1)若P 是1DD 的中点,证明:1AB PQ ⊥;(2)若//PQ 平面11ABB A ,二面角P QD A --的余弦值为37,求四面体ADPQ 的体积.【答案】(1)详见解析;(2)24.【考点定位】1.空间向量的运用;2.线面垂直的性质;3.空间几何体体积计算. 【名师点睛】本题主要考查了线面垂直的性质以及空间几何体体积计算,属于中档题,由于空间向量工具的引入,使得立体几何问题除了常规的几何法之外,还可以考虑利用向量工具来解决,因此有关立体几何的问题,可以建立空间直角坐标系,借助于向量知识来解决,在立体几何的线面关系中,中点是经常使用的一个特殊点,无论是试题本身的已知条件,还是在具体的解题中,通过找“中点”,连“中点”,即可出现平行线而线线平行是平行关系的根本,在垂直关系的证明中线线垂直是核心,也可以根据已知的平面图形通过计算的方式证明线线垂直,也可以根据已知的垂直关系证明线线垂直.20.已知抛物线21:4C x y =的焦点F 也是椭圆22222:1(0)y x C a b a b+=>>的一个焦点,1C 与2C 的公共弦的长为(1)求2C 的方程; (2)过点F 的直线l 与1C 相交于A ,B 两点,与2C 相交于C ,D 两点,且AC 与BD 同向(ⅰ)若||||AC BD =,求直线l 的斜率(ⅱ)设1C 在点A 处的切线与x 轴的交点为M ,证明:直线l 绕点F 旋转时,MFD ∆总是钝角三角形【答案】(1)22198y x+=;(2)(i)6±,(ii)详见解析.【考点定位】1.椭圆的标准方程及其性质;2.直线与椭圆位置关系.【名师点睛】本题主要考查了椭圆的标准方程及其性质以及直线与椭圆的位置关系,属于较难题,解决此 类问题的关键:(1)结合椭圆的几何性质,如焦点坐标,对称轴,222c b a +=等;(2)当看到题目中出现 直线与圆锥曲线时,不需要特殊技巧,只要联立直线与圆锥曲线的方程,借助根与系数关系,找准题设条 件中突显的或隐含的等量关系,把这种关系“翻译”出来,有时不一定要把结果及时求出来,可能需要整 体代换到后面的计算中去,从而减少计算量.21.已知0a >,函数()sin ([0,))ax f x e x x =∈+∞,记n x 为()f x 的从小到大的第n *()n N ∈个极值点,证明:(1)数列{()}n f x 是等比数列(2)若21a e ≥-,则对一切*n N ∈,|()|n n x f x <恒成立. 【答案】(1)详见解析;(2)详见解析.【考点定位】1.三角函数的性质;2.导数的运用;3.恒成立问题.【名师点睛】本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.。

2017年高考真题——理科数学(全国II卷)+Word版含解析

2017年高考真题——理科数学(全国II卷)+Word版含解析

绝密★启用前2017年普通高等学校招生全国统一考试一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i - 2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,学 科粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A . 90πB .63πC .42πD .36π5.设,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .D .6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,学 科给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3C .4D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B .3C .2D .3310.已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A 3B 15C 10D 311.若2x =-是函数21`()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( )A.1-B.32e -- C.35e - D.1 12.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。

2015年湖南省高考数学试卷(理科)(含解析版)

2015年湖南省高考数学试卷(理科)(含解析版)

2015年湖南省高考数学试卷(理科)一、选择题,共10小题,每小题5分,共50分1.(5分)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.(5分)设A、B是两个集合,则“A∩B=A”是“A⊆B”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.B.C.D.4.(5分)若变量x、y满足约束条件,则z=3x﹣y的最小值为()A.﹣7B.﹣1C.1D.25.(5分)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数第 1 页共 32 页 1D.偶函数,且在(0,1)上是减函数6.(5分)已知(﹣)5的展开式中含x的项的系数为30,则a=()A.B.﹣C.6D.﹣67.(5分)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X﹣N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=0.6826.p(μ﹣2σ<X≤μ+2σ)=0.9544.A.2386B.2718C.3413D.47728.(5分)已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则||的最大值为()A.6B.7C.8D.99.(5分)将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x 1、x 2,有|x 1﹣x 2|min=,则φ=()A.B.C.D.10.(5分)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()2第 2 页共 32 页A.B.C.D.二、填空题,共5小题,每小题5分,共25分11.(5分)(x﹣1)dx=.12.(5分)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是.13.(5分)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.14.(5分)设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n=.15.(5分)已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是.第 3 页共 32 页 3三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.(6分)如图,在⊙O中,相交于点E的两弦AB,CD的中点分别是M,N,直线MO 与直线CD相交于点F,证明:(1)∠MEN+∠NOM=180°(2)FE•FN=FM•FO.选修4-4:坐标系与方程17.(6分)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.4第 4 页共 32 页选修4-5:不等式选讲18.设a>0,b>0,且a+b=+.证明:(ⅰ)a+b≥2;(ⅱ)a2+a<2与b2+b<2不可能同时成立.七、标题19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.第 5 页共 32 页 520.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有1个红球,则获得二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为ξ,求ξ的分布列和数学期望21.如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ 的体积.6第 6 页共 32 页22.(13分)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点.C1与C2的公共弦长为2.(Ⅰ)求C2的方程;(Ⅱ)过点F的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.(1)若|AC|=|BD|,求直线l的斜率;(2)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.23.(13分)已知a>0,函数f(x)=e ax sinx(x∈[0,+∞]).记x n为f(x)的从小到大的第n(n∈N*)个极值点.证明:(Ⅰ)数列{f(x n)}是等比数列;(Ⅱ)若a≥,则对一切n∈N*,x n<|f(x n)|恒成立.第 7 页共 32 页72015年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题,共10小题,每小题5分,共50分1.(5分)已知=1+i(i为虚数单位),则复数z=()A.1+i B .1﹣i C.﹣1+i D .﹣1﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由条件利用两个复数代数形式的乘除法法则,求得z的值.【解答】解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.2.(5分)设A、B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】5J:集合;5L:简易逻辑.【分析】直接利用两个集合的交集,判断两个集合的关系,判断充要条件即可.【解答】解:A、B是两个集合,则“A∩B=A”可得“A⊆B”,“A⊆B”,可得“A∩B=A”.所以A、B是两个集合,则“A∩B=A”是“A⊆B”的充要条件.故选:C.【点评】本题考查充要条件的判断与应用,集合的交集的求法,基本知识的应用.8第 8 页共 32 页3.(5分)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.B.C.D.【考点】EF:程序框图.【分析】列出循环过程中S与i的数值,满足判断框的条件即可结束循环.【解答】解:判断前i=1,n=3,s=0,第1次循环,S=,i=2,第2次循环,S=,i=3,第3次循环,S=,i=4,此时,i>n,满足判断框的条件,结束循环,输出结果:S===故选:B.【点评】本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力第 9 页共 32 页94.(5分)若变量x、y满足约束条件,则z=3x﹣y的最小值为()A.﹣7B.﹣1C.1D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得C(0,﹣1).由解得A(﹣2,1),由,解得B(1,1)∴z=3x﹣y的最小值为3×(﹣2)﹣1=﹣7.故选:A.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.易错点是图形中的B点.5.(5分)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数10第 10 页共 32 页B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数【考点】3K:函数奇偶性的性质与判断;3N:奇偶性与单调性的综合.【专题】53:导数的综合应用.【分析】求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.【解答】解:函数f(x)=ln(1+x)﹣ln(1﹣x),函数的定义域为(﹣1,1),函数f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),所以函数是奇函数.排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f(0)=0;x=时,f()=ln(1+)﹣ln(1﹣)=ln3>1,显然f(0)<f(),函数是增函数,所以B错误,A正确.故选:A.【点评】本题考查函数的奇偶性以及函数的单调性的判断与应用,考查计算能力.6.(5分)已知(﹣)5的展开式中含x的项的系数为30,则a=()A.B.﹣C.6D.﹣6【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,T r+1==;第 11 页共 32 页11展开式中含x的项的系数为30,∴,∴r=1,并且,解得a=﹣6.故选:D.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.7.(5分)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X﹣N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=0.6826.p(μ﹣2σ<X≤μ+2σ)=0.9544.A.2386B.2718C.3413D.4772【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;5I:概率与统计.【分析】求出P(0<X≤1)=×0.6826=0.3413,即可得出结论.【解答】解:由题意P(0<X≤1)=×0.6826=0.3413,∴落入阴影部分点的个数的估计值为10000×0.3413=3413,故选:C.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.12第 12 页共 32 页8.(5分)已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则||的最大值为()A.6B.7C.8D.9【考点】9D:两向量的和或差的模的最值;9O:平面向量数量积的性质及其运算.【专题】11:计算题;5B:直线与圆.【分析】由题意,AC为直径,所以||=|2+|.B为(﹣1,0)时,|2+|≤7,即可得出结论.【解答】解:由题意,AC 为直径,所以||=|2+|所以B为(﹣1,0)时,|2+|≤7.所以||的最大值为7.另解:设B(cosα,sinα),|2+|=|2(﹣2,0)+(cosα﹣2,sinα)|=|(cosα﹣6,sinα)|==,当cosα=﹣1时,B为(﹣1,0),取得最大值7.故选:B.【点评】本题考查向量知识的运用,考查学生分析解决问题的能力,比较基础.9.(5分)将函数f(x)=sin2x 的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()A.B.C.D.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.第 13 页共 32 页13【专题】57:三角函数的图像与性质.【分析】利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可.【解答】解:因为将函数f(x )=sin2x的周期为π,函数的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min =,不妨x1=,x2=,即g(x)在x 2=,取得最小值,sin(2×﹣2φ)=﹣1,此时φ=,不合题意,x1=,x2=,即g(x )在x2=,取得最大值,sin(2×﹣2φ)=1,此时φ=,满足题意.另解:f(x)=sin2x ,g(x)=sin(2x﹣2φ),设2x1=2kπ+,k∈Z,2x2﹣2φ=﹣+2mπ,m∈Z,x1﹣x2=﹣φ+(k﹣m)π,由|x1﹣x2|min=,可得﹣φ=,解得φ=,故选:D.【点评】本题考查三角函数的图象平移,函数的最值以及函数的周期的应用,考查分析问题解决问题的能力,是好题,题目新颖.有一定难度,选择题,可以回代验证的方法快速解答.10.(5分)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()14第 14 页共 32 页A .B.C.D.【考点】L!:由三视图求面积、体积.【专题】2:创新题型;5F:空间位置关系与距离;5I:概率与统计.【分析】根据三视图可判断其为圆锥,底面半径为1,高为2,求解体积.利用几何体的性质得出此长方体底面边长为n的正方形,高为x,利用轴截面的图形可判断得出n=(1﹣),0<x<2,求解体积式子,利用导数求解即可,最后利用几何概率求解即.【解答】解:根据三视图可判断其为圆锥,∵底面半径为1,高为2,∴V=×2=第 15 页共 32 页15∵加工成一个体积尽可能大的长方体新工件,∴此长方体底面边长为n的正方形,高为x,∴根据轴截面图得出:=,解得;n=(1﹣),0<x<2,∴长方体的体积Ω=2(1﹣)2x,Ω′=x2﹣4x+2,∵,Ω′=x2﹣4x+2=0,x=,x=2,∴可判断(0,)单调递增,(,2)单调递减,Ω最大值=2(1﹣)2×=,∴原工件材料的利用率为=×=,故选:A.【点评】本题很是新颖,知识点融合的很好,把立体几何,导数,概率都相应的考查了,综合性强,属于难题.二、填空题,共5小题,每小题5分,共25分11.(5分)(x﹣1)dx=0.【考点】67:定积分、微积分基本定理.【专题】52:导数的概念及应用.【分析】求出被积函数的原函数,代入上限和下限求值.【解答】解:(x﹣1)dx=(﹣x)|=0;故答案为:0.【点评】本题考查了定积分的计算;关键是求出被积函数的原函数.12.(5分)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图16第 16 页共 32 页如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是4.【考点】BA:茎叶图.【专题】5I:概率与统计.【分析】根据茎叶图中的数据,结合系统抽样方法的特征,即可求出正确的结论.【解答】解:根据茎叶图中的数据,得;成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取7×=4(人).故答案为:4.【点评】本题考查了茎叶图的应用问题,也考查了系统抽样方法的应用问题,是基础题目.13.(5分)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设F(c,0),P(m,n),(m<0),设PF的中点为M(0,b),即有m=﹣c,n=2b,将中点M的坐标代入双曲线方程,结合离心率公式,计算即可得到.【解答】解:设F(c,0),P(m,n),(m<0),第 17 页共 32 页17设PF的中点为M(0,b),即有m=﹣c,n=2b,将点(﹣c,2b)代入双曲线方程可得,﹣=1,可得e2==5,解得e=.故答案为:.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,同时考查中点坐标公式的运用,属于中档题.14.(5分)设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n=3n﹣1.【考点】8M:等差数列与等比数列的综合.【专题】54:等差数列与等比数列.【分析】利用已知条件列出方程求出公比,然后求解等比数列的通项公式.【解答】解:设等比数列的公比为q,S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,可得4S2=S3+3S1,a1=1,即4(1+q)=1+q+q2+3,q=3.∴a n=3n﹣1.故答案为:3n﹣1.【点评】本题考查等差数列以及等比数列的应用,基本知识的考查.15.(5分)已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是{a|a<0或a>1} .18第 18 页共 32 页【考点】51:函数的零点.【专题】11:计算题;2:创新题型;51:函数的性质及应用.【分析】由g(x)=f(x)﹣b有两个零点可得f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a的范围【解答】解:∵g(x)=f(x)﹣b有两个零点,∴f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,由x3=x2可得,x=0或x=1①当a>1时,函数f(x)的图象如图所示,此时存在b,满足题意,故a>1满足题意②当a=1时,由于函数f(x)在定义域R上单调递增,故不符合题意③当0<a<1时,函数f(x)单调递增,故不符合题意第 19 页共 32 页19④a=0时,f(x)单调递增,故不符合题意⑤当a<0时,函数y=f(x)的图象如图所示,此时存在b使得,y=f(x)与y=b有两个交点综上可得,a<0或a>1故答案为:{a|a<0或a>1}【点评】本题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.(6分)如图,在⊙O中,相交于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相交于点F,证明:(1)∠MEN+∠NOM=180°(2)FE•FN=FM•FO.20第 20 页共 32 页【考点】N4:相似三角形的判定.【专题】17:选作题;5M:推理和证明.【分析】(1)证明O,M,E,N四点共圆,即可证明∠MEN+∠NOM=180°(2)证明△FEM∽△FON,即可证明FE•FN=FM•FO.【解答】证明:(1)∵N为CD的中点,∴ON⊥CD,∵M为AB的中点,∴OM⊥AB,在四边形OMEN中,∴∠OME+∠ONE=90°+90°=180°,∴O,M,E,N四点共圆,∴∠MEN+∠NOM=180°(2)在△FEM与△FON中,∠F=∠F,∠FME=∠FNO=90°,∴△FEM∽△FON,∴=∴FE•FN=FM•FO.【点评】本题考查垂径定理,考查三角形相似的判定与应用,考查学生分析解决问题的能力,比较基础.选修4-4:坐标系与方程17.(6分)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】17:选作题;5S:坐标系和参数方程.第 21 页共 32 页21【分析】(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.【解答】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x﹣1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5﹣1)2+3﹣1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,属于基础题.选修4-5:不等式选讲18.设a>0,b>0,且a+b=+.证明:(ⅰ)a+b≥2;(ⅱ)a2+a<2与b2+b<2不可能同时成立.【考点】R6:不等式的证明.【专题】59:不等式的解法及应用.【分析】(ⅰ)由a >0,b>0,结合条件可得ab=1,再由基本不等式,即可得证;(ⅱ)运用反证法证明.假设a2+a<2与b2+b<2可能同时成立.结合条件a>0,b>0,以及二次不等式的解法,可得0<a<1,且0<b<1,这与ab=1矛盾,即可得证.【解答】证明:(ⅰ)由a>0,b>0,则a+b=+=,由于a+b>0,则ab=1,即有a+b≥2=2,22第 22 页共 32 页当且仅当a=b取得等号.则a+b≥2;(ⅱ)假设a2+a <2与b2+b<2可能同时成立.由a2+a <2及a >0,可得0<a<1,由b 2+b<2及b>0,可得0<b<1,这与ab=1矛盾.a2+a<2与b2+b<2不可能同时成立.【点评】本题考查不等式的证明,主要考查基本不等式的运用和反证法证明不等式的方法,属于中档题.七、标题19.设△ABC的内角A 、B、C 的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.【考点】HP:正弦定理.【专题】58:解三角形.【分析】(Ⅰ)由题意和正弦定理可得sinB=cosA,由角的范围和诱导公式可得;(Ⅱ)由题意可得A∈(0,),可得0<sinA<,化简可得sinA+sinC=﹣2(sinA﹣)2+,由二次函数区间的最值可得.【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)第 23 页共 32 页23=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA ﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]【点评】本题考查正弦定理和三角函数公式的应用,涉及二次函数区间的最值,属基础题.20.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有1个红球,则获得二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为ξ,求ξ的分布列和数学期望【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件A2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},利用A1,A2相互独立,,互斥,B1,B2互斥,然后求出所求概率即可.(2)顾客抽奖1次可视为3次独立重复试验,判断X~B.求出概率,得到X的分布列,然后求解期望.【解答】解:(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱24第 24 页共 32 页中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件B2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},由题意A1,A2相互独立,,互斥,B1,B2互斥,且B 1=A1A2,B2=+,C=B1+B 2,因为P(A1)=,P(A2)=,所以,P(B1)=P(A1)P(A2)==,P(B2)=P()+P ()=+==,故所求概率为:P (C )=P(B1+B2)=P(B1)+P (B 2)=.(2)顾客抽奖1次可视为3次独立重复试验,由(1)可知,顾客抽奖1次获一等奖的概率为:所以.X~B.于是,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.故X的分布列为:X0123PE(X)=3×=.【点评】期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ 的体积.第 25 页共 32 页25【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离;5G:空间角;5H:空间向量及应用.【分析】(1)首先以A为原点,AB,AD,AA1所在直线分别为x,y,z轴,建立空间直角坐标系,求出一些点的坐标,Q 在棱BC上,从而可设Q(6,y1,0),只需求即可;(2)设P(0,y2,z2),根据P在棱DD1上,从而由即可得到z2=12﹣2y2,从而表示点P坐标为P(0,y2,12﹣2y2).由PQ∥平面ABB1A1便知道与平面ABB1A1的法向量垂直,从而得出y1=y2,从而Q 点坐标变成Q (6,y2,0),设平面PQD的法向量为,根据即可表示,平面AQD的一个法向量为,从而由即可求出y2,从而得出P点坐标,从而求出三棱锥P﹣AQD 的高,而四面体ADPQ的体积等于三棱锥P﹣AQD的体积,从而求出四面体的体积.【解答】解:根据已知条件知AB,AD,AA1三直线两两垂直,所以分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(0,0,0),B(6,0,0),D(0,6,0),A1(0,0,6),B1(3,0,6),D1(0,3,6);Q在棱BC上,设Q(6,y1,0),0≤y1≤6;26第 26 页共 32 页∴(1)证明:若P是DD1的中点,则P;∴,;∴;∴;∴AB1⊥PQ;(2)设P(0,y2,z2),y2,z2∈[0,6],P在棱DD1上;∴,0≤λ≤1;∴(0,y2﹣6,z2)=λ(0,﹣3,6);∴;∴z2=12﹣2y2;∴P(0,y2,12﹣2y2);∴;平面ABB1A1的一个法向量为;∵PQ∥平面ABB1A1;∴=6(y1﹣y2)=0;∴y 1=y2;∴Q(6,y2,0);设平面PQD的法向量为,则:;∴,取z=1,则;又平面AQD的一个法向量为;第 27 页共 32 页27又二面角P﹣QD﹣A的余弦值为;∴;解得y2=4,或y2=8(舍去);∴P(0,4,4);∴三棱锥P﹣ADQ的高为4,且;∴V四面体ADPQ =V三棱锥P﹣ADQ=.【点评】考查建立空间直角坐标系,利用空间向量解决异面直线垂直及线面角问题的方法,共线向量基本定理,直线和平面平行时,直线和平面法向量的关系,平面法向量的概念,以及两平面法向量的夹角和平面二面角大小的关系,三棱锥的体积公式.22.(13分)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点.C1与C2的公共弦长为2.(Ⅰ)求C2的方程;(Ⅱ)过点F 的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.(1)若|AC|=|BD|,求直线l的斜率;(2)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,第 28 页共 32 页28△MFD总是钝角三角形.【考点】K3:椭圆的标准方程;KH:直线与圆锥曲线的综合.【专题】2:创新题型;5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)根据两个曲线的焦点相同,得到a2﹣b2=1,再根据C1与C2的公共弦长为2,得到=1,解得即可求出;(Ⅱ)设出点的坐标,(1)根据向量的关系,得到(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l的方程,分别与C1,C2构成方程组,利用韦达定理,分别代入得到关于k的方程,解得即可;(2)根据导数的几何意义得到C1在点A 处的切线方程,求出点M的坐标,利用向量的乘积∠AFM是锐角,问题得以证明.【解答】解:(Ⅰ)抛物线C1:x2=4y的焦点F的坐标为(0,1),因为F也是椭圆C 2的一个焦点,∴a 2﹣b2=1,①,又C1与C2的公共弦长为2,C 1与C2的都关于y轴对称,且C1的方程为x2=4y,由此易知C1与C2的公共点的坐标为(±,),所以=1,②,联立①②得a2=9,b2=8,故C 2的方程为+=1.(Ⅱ)设A(x1,y 1),B(x2,y2),C(x3,y3),D(x4,y4),(1)因为与同向,且|AC|=|BD|,所以=,从而x3﹣x1=x4﹣x2,即x1﹣x2=x3﹣x4,于是(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,③设直线的斜率为k,则l的方程为y=kx+1,第 29 页共 32 页29由,得x2﹣4kx﹣4=0,而x1,x2是这个方程的两根,所以x1+x2=4k,x1x2=﹣4,④由,得(9+8k2)x2+16kx﹣64=0,而x3,x4是这个方程的两根,所以x3+x4=,x3x4=﹣,⑤将④⑤代入③,得16(k2+1)=+,即16(k2+1)=,所以(9+8k2)2=16×9,解得k=±.(2)由x2=4y得y′=x,所以C1在点A处的切线方程为y﹣y 1=x1(x﹣x1),即y=x1x﹣x12,令y=0,得x=x1,M(x1,0),所以=(x1,﹣1),而=(x1,y1﹣1),于是•=x12﹣y1+1=x12+1>0,因此∠AFM是锐角,从而∠MFD=180°﹣∠AFM是钝角,故直线l绕点F旋转时,△MFD总是钝角三角形.【点评】本题考查了圆锥曲线的和直线的位置与关系,关键是联立方程,构造方程,利用韦达定理,以及向量的关系,得到关于k的方程,计算量大,属于难题.30第 30 页共 32 页23.(13分)已知a>0,函数f(x)=e ax sinx(x∈[0,+∞]).记x n为f(x)的从小到大的第n(n∈N*)个极值点.证明:(Ⅰ)数列{f(x n)}是等比数列;(Ⅱ)若a≥,则对一切n∈N*,x n <|f(x n)|恒成立.【考点】6D:利用导数研究函数的极值;6E:利用导数研究函数的最值.【专题】2:创新题型;53:导数的综合应用;54:等差数列与等比数列;59:不等式的解法及应用.【分析】(Ⅰ)求出导数,运用两角和的正弦公式化简,求出导数为0的根,讨论根附近的导数的符号相反,即可得到极值点,求得极值,运用等比数列的定义即可得证;(Ⅱ)由sinφ=,可得对一切n∈N *,x n<|f(x n)|恒成立.即为nπ﹣φ<e a(nπ﹣φ)恒成立⇔<,①设g(t)=(t>0),求出导数,求得最小值,由恒成立思想即可得证.【解答】证明:(Ⅰ)f′(x)=e ax(asinx+cosx)=•e ax sin(x+φ),tanφ=,0<φ<,令f′(x)=0,由x≥0,x+φ=mπ,即x=mπ﹣φ,m∈N*,对k∈N,若(2k+1)π<x+φ<(2k+2)π,即(2k+1)π﹣φ<x<(2k+2)π﹣φ,则f′(x)<0,因此在((m﹣1)π﹣φ,mπ﹣φ)和(mπ﹣φ,(m+1)π﹣φ)上f′(x )符号总相反.于是当x=nπ﹣φ,n∈N*,f(x)取得极值,所以x n=nπ﹣φ,n∈N*,此时f(x n)=e a(nπ﹣φ)sin(nπ﹣φ)=(﹣1)n+1e a(nπ﹣φ)sinφ,易知f(x n)≠0,而==﹣e aπ是常数,第 31 页共 32 页31故数列{f(x n)}是首项为f(x1)=e a(π﹣φ)sinφ,公比为﹣e aπ的等比数列;(Ⅱ)由sinφ=,可得对一切n∈N*,x n<|f(x n)|恒成立.即为nπ﹣φ<e a(nπ﹣φ)恒成立⇔<,①设g(t)=(t>0),g′(t)=,当0<t<1时,g′(t)<0,g (t)递减,当t >1时,g′(t)>0,g(t )递增.t=1时,g(t)取得最小值,且为e.因此要使①恒成立,只需<g(1)=e,只需a>,当a=,tanφ==,且0<φ<,可得<φ<,于是π﹣φ<<,且当n≥2时,nπ﹣φ≥2π﹣φ>>,因此对n∈N*,ax n=≠1,即有g(ax n)>g(1)=e=,故①亦恒成立.综上可得,若a≥,则对一切n∈N*,x n<|f(x n)|恒成立.【点评】本题考查导数的运用:求极值和单调区间,主要考查三角函数的导数和求值,同时考查等比数列的定义和通项公式的运用,考查不等式恒成立问题的证明,属于难题.32第 32 页共 32 页。

2020年高考真题——数学(理)(全国卷Ⅲ)+Word版含解析

 2020年高考真题——数学(理)(全国卷Ⅲ)+Word版含解析

2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题目时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题目时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x *N ,{(,)|8}B x y x y ,则A B ∩中元素的个数为()A.2B.3C.4D.6【答案】C 【解析】【分析】采用列举法列举出A B ∩中元素的即可.【详解】由题意,A B ∩中的元素满足8y xx y ,且*,x y N ,由82x y x ,得4x ,所以满足8x y 的有(1,7),(2,6),(3,5),(4,4),故A B ∩中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2.复数113i的虚部是()A.310B.110C.110D.310【答案】D 【解析】【分析】利用复数的除法运算求出z 即可.【详解】因为1131313(13)(13)1010i z i i i i ,所以复数113z i 的虚部为310.故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ,则下面四种情形中,对应样本的标准差最大的一组是()A.14230.1,0.4p p p pB.14230.4,0.1p p p pC.14230.2,0.3p p p pD.14230.3,0.2p p p p 【答案】B 【解析】【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.【详解】对于A 选项,该组数据的平均数为 140.1230.4 2.5A x ,方差为 222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s ;对于B 选项,该组数据的平均数为 140.4230.1 2.5B x ,方差为 222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s ;对于C 选项,该组数据的平均数为 140.2230.3 2.5C x ,方差为 222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s ;对于D 选项,该组数据的平均数为 140.3230.2 2.5D x ,方差为 222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s .因此,B 选项这一组的标准差最大.故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t ,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为()(ln19≈3)A.60 B.63C.66D.69【答案】C 【解析】【分析】将t t 代入函数0.23531t KI t e结合 0.95I tK求得t即可得解.【详解】0.23531t KI t e∵,所以0.23530.951t KI t K e,则 0.235319t e ,所以,0.2353ln193t,解得353660.23t .故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.(14,0) B.(12,0) C.(1,0) D.(2,0)【答案】B 【解析】【分析】根据题中所给的条件OD OE ,结合抛物线的对称性,可知4COx COx,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x 与抛物线22(0)y px p 交于,C D 两点,且OD OE ,根据抛物线的对称性可以确定4DOx COx,所以(2,2)C ,代入抛物线方程44p ,求得1p ,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6.已知向量a ,b 满足||5a ,||6b ,6a b ,则cos ,= a a b ()A.3135B.1935C.1735 D.1935【答案】D 【解析】【分析】计算出a ab 、a b 的值,利用平面向量数量积可计算出cos ,a a b的值.【详解】5a ∵,6b ,6a b,225619a a b a a b .7a b,因此,1919cos ,5735a a b a a b a a b.故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =()A.19B.13C.12 D.23【答案】A 【解析】【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC,即可求得答案.【详解】∵在ABC 中,2cos 3C,4AC ,3BC 根据余弦定理:2222cos AB AC BC AC BC C2224322433AB可得29AB ,即3AB 由∵22299161cos 22339AB BC AC B AB BC故1cos 9B .故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.8.下图为某几何体的三视图,则该几何体的表面积是()A.B. C.6+2 D.【答案】C 【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S△△△根据勾股定理可得:AB AD DB ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD△该几何体的表面积是:632 .故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.已知2tan θ–tan(θ+π4)=7,则tan θ=()A.–2 B.–1C.1D.2【答案】D 【解析】【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.【详解】2tan tan 74∵,tan 12tan 71tan,令tan ,1t t ,则1271tt t,整理得2440t t ,解得2t ,即tan 2 .故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.10.若直线l 与曲线y =和x 2+y 2=15都相切,则l 的方程为()A.y =2x +1B.y =2x +12C.y =12x +1 D.y =12x +12【答案】D 【解析】【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y上的切点为 0x ,则00x ,函数y的导数为y,则直线l的斜率k,设直线l的方程为 0y x x,即00x x ,由于直线l 与圆2215x y,两边平方并整理得2005410x x ,解得01x ,015x(舍),则直线l 的方程为210x y ,即1122y x .故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.11.设双曲线C :22221x y a b(a >0,b >0)的左、右焦点分别为F 1,F 2.P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A.1B.2C.4D.8【答案】A 【解析】【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【详解】ca∵,c ,根据双曲线的定义可得122PF PF a ,12121||42PF F PF F S P△,即12||8PF PF ,12F P F P ∵, 22212||2PF PF c ,22121224PF PF PF PF c ,即22540a a ,解得1a ,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A.a <b <cB.b <a <cC.b <c <aD.c <a <b【答案】A 【解析】【分析】由题意可得a 、b 、 0,1c ,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b ,得85b ,结合5458 可得出45b,由13log 8c ,得138c ,结合45138 ,可得出45c,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a、b、0,1c ,222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b,a b ;由8log 5b ,得85b ,由5458 ,得5488b ,54b ,可得45b;由13log 8c ,得138c ,由45138 ,得451313c ,54c ,可得45c .综上所述,a b c .故选:A.【点睛】本题考查对数式大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题目:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x,,则z =3x +2y 的最大值为_________.【答案】7【解析】【分析】作出可行域,利用截距的几何意义解决.【详解】不等式组所表示的可行域如图因为32z x y ,所以322x zy ,易知截距2z 越大,则z 越大,平移直线32x y ,当322x zy 经过A 点时截距最大,此时z 最大,由21y x x,得12x y ,(1,2)A ,所以max 31227z 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.262()x x的展开式中常数项是__________(用数字作答).【答案】240【解析】【分析】写出622x x二项式展开通项,即可求得常数项.【详解】∵622x x其二项式展开通项:62612rrrr C xx T1226(2)r r r r x C x 1236(2)r r rC x 当1230r ,解得4r 622x x的展开式中常数项是:664422161516240C C .故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握na b 的展开通项公式1C r n r r r n T ab ,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM,故122S△A BC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S △△△△111222AB r BC r AC r13322r解得:2r =,其体积:3433V r .故答案为:3.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.关于函数f (x )=1sin sin x x有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x 可判断命题④的正误.综合可得出结论.【详解】对于命题①,152622f,152622f,则66f f,所以,函数 f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数 f x 的定义域为,x x k k Z ,定义域关于原点对称, 111sin sin sin sin sin sin f x x x x f x x x x,所以,函数 f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x∵,11sin cos 22cos sin 2f x x x x x,则22f x f x,所以,函数 f x 的图象关于直线2x对称,命题③正确;对于命题④,当0x 时,sin 0x ,则 1sin 02sin f x x x,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n .(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a ,37a ,21n a n ,证明见解析;(2)1(21)22n n S n .【解析】【分析】(1)利用递推公式得出23,a a ,猜想得出 n a 的通项公式,利用数学归纳法证明即可;(2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a ,32381587a a ,由数列 n a 的前三项可猜想数列 n a 是以3为首项,2为公差的等差数列,即21n a n ,证明如下:当1n 时,13a 成立;假设n k 时,21k a k 成立.那么1n k 时,1343(21)4232(1)1k k a a k k k k k 也成立.则对任意的*n N ,都有21n a n 成立;(2)由(1)可知,2(21)2nnn a n 231325272(21)2(21)2n n n S n n ,①23412325272(21)2(21)2n n n S n n ,②由① ②得:23162222(21)2nn n S n 21121262(21)212n n n1(12)22n n ,即1(21)22n n S n .【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22列联表,计算出2K的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43 100,等级为2的概率为510120.27100,等级为3的概率为6780.21100,等级为4的概率为7200.09100;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100(3)22 列联表如下:人次400人次400空气质量不好3337空气质量好228221003383722 5.820 3.84155457030K ,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D 中,点,E F 分别在棱11,DD BB 上,且12DE ED ,12BF FB .(1)证明:点1C 在平面AEF 内;(2)若2AB ,1AD ,13AA ,求二面角1A EF A 的正弦值.【答案】(1)证明见解析;(2)427.【解析】【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz ,利用空间向量法可计算出二面角1A EF A 的余弦值,进而可求得二面角1A EF A 的正弦值.【详解】(1)在棱1CC 上取点G ,使得112C G CG,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D 中,//AD BC 且AD BC ,11//BB CC 且11BB CC ,112C G CG ∵,12BF FB ,112233CG CC BB BF 且CG BF ,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG ,同理可证四边形1DEC G 为平行四边形,1//C E DG 且1C E DG ,1//C E AF 且1C E AF ,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz ,则 2,1,3A 、 12,1,0A 、 2,0,2E 、 0,1,1F ,0,1,1AE , 2,0,2AF , 10,1,2A E , 12,0,1A F,设平面AEF 的法向量为 111,,m x y z,由0m AE m AF,得11110220y z x z 取11z ,得111x y ,则 1,1,1m ,设平面1A EF 的法向量为 222,,n x y z,由110n A E n A F,得22222020y z x z ,取22z ,得21x ,24y ,则 1,4,2n,cos ,7m n m n m n,设二面角1A EF A 的平面角为,则cos 7,sin 7.因此,二面角1A EF A的正弦值为7.【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.已知椭圆222:1(05)25x y C m m 的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,求APQ 的面积.【答案】(1)221612525x y ;(2)52.【解析】【分析】(1)因为222:1(05)25x y C m m ,可得5a ,b m ,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N ,可得PMB BNQ △△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积.【详解】(1)∵222:1(05)25x y C m m 5a ,b m ,根据离心率154c e a ,解得54m或54m (舍), C 的方程为:22214255x y ,即221612525x y ;(2)∵点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N 根据题意画出图形,如图∵||||BP BQ ,BP BQ ,90PMB QNB ,又∵90PBM QBN ,90BQN QBN ,PBM BQN ,根据三角形全等条件“AAS ”,可得:PMB BNQ △△,∵221612525x y , (5,0)B ,651PM BN ,设P 点为(,)P P x y ,可得P 点纵坐标为1P y ,将其代入221612525x y,可得:21612525P x ,解得:3P x 或3P x ,P 点为(3,1)或(3,1) ,①当P 点为(3,1)时,故532MB ,∵PMB BNQ △△,||||2MB NQ ,可得:Q 点为(6,2),画出图象,如图∵(5,0)A ,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y ,根据点到直线距离公式可得P 到直线AQ的距离为:5d,根据两点间距离公式可得:AQ,APQ面积为:15252;②当P 点(3,1) 时,故5+38MB ,∵PMB BNQ △△,||||8MB NQ ,可得:Q 点为(6,8),画出图象,如图∵(5,0)A ,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y ,根据点到直线距离公式可得P 到直线AQ 的距离为:d ,根据两点间距离公式可得:AQAPQ面积为:1522 ,综上所述,APQ 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.21.设函数3()f x x bx c ,曲线()y f x 在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【答案】(1)34b ;(2)证明见解析【解析】【分析】(1)利用导数的几何意义得到'1(02f ,解方程即可;(2)由(1)可得'2311()32()(422f x x x x ,易知()f x 在11(,22 上单调递减,在1(,)2 ,1(,)2 上单调递增,且111111(1),(),(,(1)424244f c f c f c f c ,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b ,由题意,'1()02f ,即21302b 则34b;(2)由(1)可得33()4f x x x c ,'2311()33()422f x x x x ,令'()0f x ,得12x 或21x ;令'()0f x ,得1122x ,所以()f x 在11(,22 上单调递减,在1(,2 ,1(,)2 上单调递增,且111111(1),(,(),(1)424244f c f c f c f c ,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f 或(1)0f ,即14c 或14c .当14c 时,111111(1)0,()0,()0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(4,1)c 上存在唯一一个零点0x ,即()f x 在(,1) 上存在唯一一个零点,在(1,) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c 时,111111(1)0,(0,(0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(1,4)c 上存在唯一一个零点0x ,即()f x (1,) 上存在唯一一个零点,在(,1) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3cos sin 120【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值;(2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x ,则220t t ,解得2t 或1t (舍),则26412y ,即(0,12)A .令0y ,则2320t t ,解得2t 或1t (舍),则2244x ,即(4,0)BAB;(2)由(1)可知12030(4)AB k ,则直线AB 的方程为3(4)y x ,即3120x y .由cos ,sin x y 可得,直线AB 的极坐标方程为3cos sin 120 .【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .【答案】(1)证明见解析(2)证明见解析.【解析】【分析】(1)由2222()2220a b c a b c ab ac bc 结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a ,由题意得出0,,0a b c ,由222322b c b c bc a a a bc bc,结合基本不等式,即可得出证明.【详解】(1)2222()2220a b c a b c ab ac bc ∵,22212ab bc ca a b c .,,a b c ∵均不为0,则2220a b c , 222120ab bc ca a b c;(2)不妨设max{,,}a b c a ,由0,1a b c abc 可知,0,0,0a b c ,1,a b c a bc ∵, 222322224b c b c bc bc bc a a a bc bc bc.当且仅当b c 时,取等号,a ,即max{,,}abc .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.祝福语祝你马到成功,万事顺意!。

2015年高考真题——理科综合(全国i卷) word版含答案

2015年高考真题——理科综合(全国i卷)  word版含答案

2015年普通高等学校招生全国统一考试(新课标I卷)理科综合能力侧试一、选择题:本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列叙述错误..的是A.DNA与ATP中所含元素的种类相同B.一个tRNA分子中只有一个反密码子C.T2噬菌体的核酸由脱氧核糖核苷酸组成D.控制细菌性状的基因位于拟核和线粒体中的DNA上2. 下列关于植物生长素的叙述,错误..的是A.植物幼嫩叶片中的色氨酸可转变为生长素B.成熟茎韧皮部中的生长素可以进行非极性运输C.幼嫩细胞和成熟细胞对生长素的敏感程度相同D.豌豆幼苗切段中乙烯的合成受生长素浓度的影响3. 某同学给健康实验兔静脉滴注0.9%的NaCl溶液(生理盐水)20mL后,会出现的现象是A.输入的溶液会从血浆进入组织液B.细胞内液和细胞外液分别增加10mLC.细胞内液Na+的增加远大于细胞外液Na+的增加D.输入的Na+中50%进入细胞内液,50%分布在细胞外液4. 下列关于初生演替中草本阶段和灌木阶段的叙述,正确的是A.草本阶段与灌木阶段群落的丰富度相同B.草本阶段比灌木阶段的群落空间结构复杂C.草本阶段比灌木阶段的群落自我调节能力强D.草本阶段为灌木阶段的群落形成创造了适宜环境5. 人或动物PrP基因编码一种蛋白(PrP c),该蛋白无致病性。

PrP c的空间结构改变后成为PrP Bc(朊粒),就具有了致病性。

PrP Bc可以诱导更多PrP c的转变为PrP Bc,实现朊粒的增——可以引起疯牛病.据此判——下列叙述正确的是A.朊粒侵入机体后可整合到宿主的基因组中B.朊粒的增殖方式与肺炎双球菌的增殖方式相同C.蛋白质空间结构的改变可以使其功能发生变化D. PrP c转变为PrP Bc的过程属于遗传信息的翻译过程6. 抗维生素D佝偻病为X染色体显性遗传病,短指为常染色体显性遗传病,红绿色盲为X染色体隐性遗传病,白化病为常染色体隐性遗传病。

2015湖南(理)高考数学精校解析版

2015湖南(理)高考数学精校解析版

2015·湖南卷(理数)1.L4[2015·湖南卷] 已知(1-i )2z =1+i(i 为虚数单位),则复数z =( )A .1+iB .1-iC .-1+iD .-1-i1.D [解析] 由题得z =(1-i )21+i =-2i1+i=-i(1-i)=-1-i ,故选D.2.A2[2015·湖南卷] 设A ,B 是两个集合,则“A ∩B =A ”是“A ⊆B ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.C [解析] 由集合的运算知,A ∩B =A ⇔A ⊆B ,故选C. 3.L1、D4[2015·湖南卷] 执行如图1-1所示的程序框图,如果输入n =3,则输出的S =( )图1-1A.67B.37C.89D.493.B [解析] 第一次循环后S =11×3=13,i =2;第二次循环后S =11×3+13×5=12×1-13+13-15=25,i =3;第三次循环后S =11×3+13×5+15×7=12×1-13+13-15+15-17=37,此时i =4>3,退出循环,输出结果S =37.故选B.4.E5[2015·湖南卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥-1,2x -y ≤1,y ≤1,则z =3x -y 的最小值为( )A .-7B .-1C .1D .2 4.A [解析] 画出可行域,平移直线y =3x -z ,在直线x +y =-1与y =1的交点A (-2,1)处z 取最小值,故z min =3×(-2)-1=-7.5.B3、B4、B7[2015·湖南卷] 设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B .奇函数,且在(0,1)上是减函数 C .偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数 5.A [解析] 由已知可得,f (x )=ln1+x 1-x =ln 21-x -1,y =21-x-1在(0,1)上为增函数,故y =f (x )在(0,1)上为增函数.又f (-x )=ln(1-x )-ln(1+x )=-f (x ),故y =f (x )为奇函数. 6.J3[2015·湖南卷] 已知x -a x5的展开式中含x 32的项的系数为30,则a =( )A. 3 B .- 3C .6D .-66.D [解析] 由二项展开式的通项公式得T r +1=C r 5(x )5-r -a x r =(-a )r C r 5x 5-r 2-r 2=(-a )r C r 5x 52-r ,令52-r =32,得r =1,所以-a C 15=30,解得a =-6.7.I3、K3[2015·湖南卷] 在如图1-2所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )图1-2A .2386B .2718C .3413D .4772附:若X ~N (μ,σ2),则 P (μ-σ<X ≤μ+σ)=0.682 6, P (μ-2σ<X ≤μ+2σ)=0.954 4.7.C [解析] 设X 服从标准正态分布N (0,1),则P (0<X ≤1)=12P (-1<X ≤1)=0.341 3,故所投点落入阴影部分的概率P =S 阴S 正方形=0.341 31=n10 000,得n =3413.8.F4、F2[2015·湖南卷] 已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( )A .6B .7C .8D .98.B [解析] 方法一:因为A ,B ,C 均在单位圆上,A ,C 为直径的端点,所以P A →+PC →=2PO →=(-4,0),|P A →+PB →+PC →|=|2PO →+PB →|≤2|PO →|+|PB →|.又|PB →|≤|PO →|+1=3,所以|P A →+PB →+PC →|≤4+3=7,故选B.方法二:因为A ,B ,C 均在单位圆上,A ,C 为直径的端点,所以可令A (cos x ,sin x ),B (cos(x +α),sin(x +α)),C (-cos x ,-sin x ),0<α<π,则P A →+PB →+PC →=(cos(x +α)-6,sin(x +α)),|P A →+PB →+PC →|=[cos (x +α)-6]2+sin 2(x +α)=37-12cos (x +α)≤7. 9.C4、C9[2015·湖南卷] 将函数f (x )=sin 2x 的图像向右平移φ0<φ<π2个单位后得到函数g (x )的图像,若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( ) A.5π12 B.π3 C.π4 D.π69.D [解析] 由已知得g (x )=sin(2x -2φ),又|f (x 1)-g (x 2)|=2,0<φ<π2,所以当|x 1-x 2|取最小值时,刚好是取两个函数相邻的最大值与最小值点.令2x 1=π2,2x 2-2φ=-π2,则|x 1-x 2|=⎪⎪⎪⎪π2-φ=π3,得φ=π6.10.G2、G7、B12、K3[2015·湖南卷] 某工件的三视图如图1-3所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为材料利用率=新工件的体积原工件的体积( )图1-3A.89πB.169πC.4(2-1)3πD.12(2-1)3π10.A [解析] 方法一:由圆锥的对称性可知,要使其内接长方体最大,则底面为正方形,令此正四棱柱的底面对角线为2x ,高为h ,则由三角形相似可得,x 1=2-h2,∴h =2-2x ,x ∈(0,1),其体积V 长=(2x )2h =2x 2(2-2x )≤2x +x +2-2x 33=1627当且仅当x =23时取等号,V圆锥=13π×12×2=23π,得利用率为162723π=89π. 方法二:由圆锥的对称性可知,要使其内接长方体最大,则底面为正方形,令此正四棱柱的底面对角线为2x ,高为h ,则由三角形相似可得,x 1=2-h2,∴h =2-2x ,x ∈(0,1),其体积V 长=(2x )2h =2x 2(2-2x )=-4x 3+4x 2,令V 长′=-12x 2+8x =0,得当x =23时,V 长取最大值1627.又V 圆锥=13π×12×2=23π,得利用率为162723π=89π,故选A.11.B13[2015·湖南卷] ⎠⎛02(x -1)d x =________.11.0 [解析] ⎠⎛02(x -1)d x =⎪⎪12x 2-x 20=12×4-2=0.12.I1、I2[2015·湖南卷] 在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图1-4所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.图1-412.4 [解析] 将运动员按成绩由好到差分为7组,则第一组(130,130,133,134,135),第二组(136,136,138,138,138),第三组(139,141,141,141,142),第四组(142,142,143,143,144),第五组(144,145,145,145,146),第六组(146,147,148,150,151),第七组(152,152,153,153,153),故成绩在[139,151]内恰有4组,故有4人.13.H5[2015·湖南卷] 设F 是双曲线C :x 2a 2-y 2b 2=1的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为________.13.5 [解析] 由已知,令F (-c ,0),虚轴的一个端点B (0,b ),B 恰为线段PF 的中点,故P (c ,2b ).又P 在双曲线上,代人双曲线方程得c 2a 2-4b 2b 2=1,即e =ca= 5.14.D2、D3[2015·湖南卷] 设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.14.3n -1 [解析] 设等比数列{a n }的公比为q .由3S 1,2S 2,S 3成等差数列,得4S 2=3S 1+S 3,即3S 2-3S 1=S 3-S 2,所以3a 2=a 3,得公比q =3,所以a n =a 1q n -1=3n -1.15.B9[2015·湖南卷] 已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是________.15.(-∞,0)∪(1,+∞) [解析] 令φ(x )=x 3(x ≤a ),h (x )=x 2(x >a ),函数g (x )=f (x )-b 有两个零点,即函数y =f (x )的图像与直线y =b 有两个交点.结合图像,当a <0时,存在实数b 使h (x )=x 2(x >a )的图像与直线y =b 有两个交点;当a ≥0时,必须满足φ(a )>h (a ),即a 3>a 2,解得a >1.综上得a ∈(-∞,0)∪(1,+∞). 16.[2015·湖南卷] N1(1)选修4-1:几何证明选讲 如图1-5,在⊙O 中,相交于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 与直线CD 相交于点F .证明:(i)∠MEN +∠NOM =180°; (ii)FE ·FN =FM ·FO .图1-5N3(2)选修4-4:坐标系与参数方程已知直线l :⎩⎨⎧x =5+32t ,y =3+12t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(i)将曲线C 的极坐标方程化为直角坐标方程;(ii)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. N4、M2(3)选修4-5:不等式选讲设a >0,b >0,且a +b =1a +1b.证明:(i)a +b ≥2;(ii)a 2+a <2与b 2+b <2不可能同时成立. 16.(1)证明:(i)如图所示,因为M ,N 分别是弦AB ,CD 的中点,所以OM ⊥AB ,ON ⊥CD ,即∠OME =90°,∠ENO =90°,因此∠OME +∠ENO =180°.又四边形的内角和等于360°,故∠MEN +∠NOM =180°.(ii)由(i)知,O ,M ,E ,N 四点共圆,故由割线定理即得FE ·FN =FM ·FO . (2)解:(i)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.②(ii)将⎩⎨⎧x =5+32t ,y =3+12t代入②,得t 2+53t +18=0.设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义知,|MA |·|MB |=|t 1t 2|=18.(3)证明:由a +b =1a +1b =a +bab,a >0,b >0,得ab =1.(i)由基本不等式及ab =1,有a +b ≥2ab =2(当且仅当a =b 时等号成立),即a +b ≥2. (ii)假设a 2+a <2与b 2+b <2同时成立,则由a 2+a <2及a >0,得0<a <1;同理,0<b <1.从而ab <1,这与ab =1矛盾,故a 2+a <2与b 2+b <2不可能同时成立.17.C8[2015·湖南卷] 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A ,且B 为钝角.(1)证明:B -A =π2;(2)求sin A +sin C 的取值范围.17.解:(1)证明:由a =b tan A 及正弦定理,得sin A cos A =a b =sin Asin B ,所以sin B =cos A ,即sin B =sin π2+A .又B 为钝角,因此π2+A ∈π2,π,故B =π2+A ,即B -A =π2.(2)由(1)知,C =π-(A +B )=π-2A +π2=π2-2A >0,所以A ∈0,π4.于是sin A +sin C =sin A +sinπ2-2A = sin A +cos 2A =-2sin 2A +sin A +1= -2sin A -142+98.因为0<A <π4,所以0<sin A <22,因此22<-2sin A -142+98≤98. 由此可知,sin A +sin C 的取值范围是22,98. 18.J2、K2、K6、K4[2015·湖南卷] 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.18.解:(1)记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A 2与A 1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A 2+A 1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (A 1A 2+A 1A 2)=P (A 1A 2)+P (A 1A 2) =P (A 1)P (A 2)+P (A 1)P (A 2)=P (A 1)(1-P (A 2))+(1-P (A 1))P (A 2) =25×1-12+1-25×12=12. 故所求概率P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B 3,15.于是P (X =0)=C 03150453=64125, P (X =1)=C 13151452=48125, P (X =2)=C 23152451=12125, P (X =3)=C 33153450=1125. 故X 的分布列为X 的数学期望为E (X )=3×15=35.19.G5、G1、G11[2015·湖南卷] 如图1-6,已知四棱台ABCD - A 1B 1C 1D 1的上、下底面分别是边长为3和6的正方形,A 1A =6,且A 1A ⊥底面ABCD ,点P ,Q 分别在棱DD 1,BC 上.(1)若P 是DD 1的中点,证明:AB 1⊥PQ ;(2)若PQ ∥平面ABB 1A 1,二面角P - QD - A 的余弦值为37,求四面体ADPQ 的体积.图1-619.解:方法一:由题设知,AA 1,AB ,AD 两两垂直,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A (0,0,0),B 1(3,0,6),D (0,6,0),D 1(0,3,6),Q (6,m ,0),其中m =BQ ,0≤m ≤6.(1)若P 是DD 1的中点,则P 0,92,3,PQ →=6,m -92,-3.又AB 1→=(3,0,6),于是AB 1→·PQ→=18-18=0,所以AB 1→⊥PQ →,即AB 1⊥PQ .(2)由题设知,DQ →=(6,m -6,0),DD 1→=(0,-3,6)是平面PQD 内的两个不共线向量.设n 1=(x ,y ,z )是平面PQD 的一个法向量,则⎩⎪⎨⎪⎧n 1·DQ →=0,n 1·DD 1→=0,即⎩⎪⎨⎪⎧6x +(m -6)y =0,-3y +6z =0.取y =6,得n 1=(6-m ,6,3).又平面AQD 的一个法向量是n 2=(0,0,1),所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=31·(6-m )2+62+32=3(6-m )2+45. 而二面角P - QD - A 的余弦值为37,因此3(6-m )2+45=37,解得m =4或m =8(舍去),此时Q (6,4,0).设DP →=λDD 1→(0<λ≤1),而DD 1→=(0,-3,6),由此得点P (0,6-3λ,6λ),所以PQ →=(6,3λ-2,-6λ).因为PQ ∥平面ABB 1A 1,且平面ABB 1A 1的一个法向量是n 3=(0,1,0),所以PQ →·n 3=0,即3λ-2=0,即λ=23,从而P (0,4,4).于是,将四面体ADPQ 视为以△ADQ 为底面的三棱锥P - ADQ ,则其高h =4,故四面体ADPQ 的体积V =13S △ADQ ·h =13×12×6×6×4=24.方法二:(1)如图所示,取A 1A 的中点R ,连接PR ,BR ,PC .因为A 1A ,D 1D 是梯形A 1ADD 1的两腰,P 是D 1D 的中点,所以PR ∥AD ,于是由AD ∥BC 知,PR ∥BC ,所以P ,R ,B ,C 四点共面.由题设知,BC ⊥AB ,BC ⊥A 1A ,所以BC ⊥平面ABB 1A 1,因此BC ⊥AB 1.①因为tan ∠ABR =AR AB =36=A 1B 1A 1A =tan ∠A 1AB 1,所以∠ABR =∠A 1AB 1,因此∠ABR +∠BAB 1=∠A 1AB 1+∠BAB 1=90°,于是AB 1⊥BR .再由①即知AB 1⊥平面PRBC ,又PQ ⊂平面PRBC ,故AB 1⊥PQ .(2)如图所示,过点P 作PM ∥A 1A 交AD 于点M ,则PM ∥平面ABB 1A 1.②因为A 1A ⊥平面ABCD ,所以PM ⊥平面ABCD ,过点M 作MN ⊥QD 于点N ,连接PN ,则PN ⊥QD ,∠PNM 为二面角P - QD - A 的平面角,所以cos ∠PNM =37,即MN PN =37,从而PM MN =403.③连接MQ ,由PQ ∥平面ABB 1A 1及②知, 平面PQM ∥平面ABB 1A 1,所以MQ ∥AB .又四边形ABCD 是正方形,所以四边形ABQM 为矩形,故MQ =AB =6. 设MD =t ,则MN =MQ ·MD MQ 2+MD 2=6t36+t 2.④过点D 1作D 1E ∥A 1A 交AD 于点E ,则四边形AA 1D 1E 为矩形,所以D 1E =A 1A =6,AE =A 1D 1=3,因此ED =AD -AE =3.于是PM MD =D 1E ED =63=2,所以PM =2MD =2t .再由③④,得36+t 23=403,解得t =2,因此PM =4.故四面体ADPQ 的体积V =13S △ADQ·PM =13×12×6×6×4=24.20.F1、H1、H5、H7、H8[2015·湖南卷] 已知抛物线C 1:x 2=4y 的焦点F 也是椭圆C 2:y 2a 2+x 2b 2=1(a >b >0)的一个焦点,C 1与C 2的公共弦的长为2 6. (1)求C 2的方程.(2)过点F 的直线l 与C 1相交于A ,B 两点,与C 2相交于C ,D 两点,且AC →与BD →同向. (i)若|AC |=|BD |,求直线l 的斜率;(ii)设C 1在点A 处的切线与x 轴的交点为M ,证明:直线l 绕点F 旋转时,△MFD 总是钝角三角形.20.解:(1)由C 1:x 2=4y 知其焦点F 的坐标为(0,1).因为F 也是椭圆C 2的一个焦点,所以a 2-b 2=1.①又C 1与C 2的公共弦的长为26,C 1与C 2都关于y 轴对称,且C 1的方程为x 2=4y , 由此易知C 1与C 2的公共点的坐标为±6,32,所以94a 2+6b 2=1.②联立①②,得a 2=9,b 2=8, 故C 2的方程为y 29+x 28=1.(2)如图所示,设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4).(i)因为AC →与BD →同向,且|AC |=|BD |,所以AC →=BD →,从而x 3-x 1=x 4-x 2,即x 1-x 2=x 3-x 4,于是(x 1+x 2)2-4x 1x 2=(x 3+x 4)2-4x 3x 4.③设直线l 的斜率为k ,则l 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y 得x 2-4kx -4=0,而x 1,x 2是这个方程的两根,所以x 1+x 2=4k ,x 1x 2=-4.④由⎩⎪⎨⎪⎧y =kx +1,x 28+y 29=1得(9+8k 2)x 2+16kx -64=0. 而x 3,x 4是这个方程的两根,所以 x 3+x 4=-16k 9+8k 2,x 3x 4=-649+8k 2.⑤将④⑤代入③,得16(k 2+1)=162k 2(9+8k 2)2+4×649+8k 2,即16(k 2+1)=162×9(k 2+1)(9+8k 2)2,所以(9+8k 2)2=16×9,解得k =±64,即直线l 的斜率为±64.(ii)证明:由x 2=4y 得y ′=x 2,所以C 1在点A 处的切线方程为y -y 1=x 12(x -x 1),即y =x 1x 2-x 214. 令y =0,得x =x 12,即M x 12,0,所以FM →=x 12,-1.而F A →=(x 1,y 1-1),于是F A →·FM →=x 212-y 1+1=x 214+1>0, 因此∠AFM 是锐角,从而∠MFD =180°-∠AFM 是钝角.故直线l 绕点F 旋转时,△MFD 总是钝角三角形.21.D3、B11、M2[2015·湖南卷] 已知a >0,函数f (x )=e ax sin x (x ∈[0,+∞)).记x n 为f (x )的从小到大的第n (n ∈N *)个极值点.证明:(1)数列{f (x n )}是等比数列;(2)若a ≥1e 2-1,则对一切n ∈N *,x n <|f (x n )|恒成立. 21.证明:(1)f ′(x )=a e ax sin x +e ax cos x =e ax (a sin x +cos x )=a 2+1e ax sin(x +φ),其中tan φ=1a ,0<φ<π2. 令f ′(x )=0,由x ≥0,得x +φ=m π,即x =m π-φ,m ∈N *.对k ∈N ,若2k π<x +φ<(2k +1)π,即2k π-φ<x <(2k +1)π-φ,则f ′(x )>0; 若(2k +1)π<x +φ<(2k +2)π,即(2k +1)π-φ<x <(2k +2)π-φ,则f ′(x )<0.因此,在区间((m -1)π,m π-φ)与(m π-φ,m π)上,f ′(x )的符号总相反,于是当x =m π-φ(m ∈N *)时,f (x )取得极值,所以x n =n π-φ(n ∈N *).此时,f (x n )=e a (n π-φ)sin(n π-φ)=(-1)n +1e a (n π-φ)sin φ.易知f (x n )≠0,而f (x n +1)f (x n )=(-1)n +2e a [(n +1)π-φ]sin φ(-1)n +1e a (n π-φ)sin φ=-e a π是常数, 故数列{f (x n )}是首项为f (x 1)=e a (π-φ)sin φ,公比为-e a π的等比数列.(2)由(1)知,sin φ=1a 2+1,于是对一切n ∈N *,x n <|f (x n )|恒成立,即n π-φ<1a 2+1e a (nπ-φ)恒成立,等价于a 2+1a <e a (n π-φ)a (n π-φ)(*)恒成立(因为a >0). 设g (t )=e tt (t >0),则g ′(t )=e t(t -1)t 2.令g ′(t )=0,得t =1. 当0<t <1时,g ′(t )<0,所以g (t )在区间(0,1)上单调递减;当t >1时,g ′(t )>0,所以g (t )在区间(1,+∞)上单调递增.从而当t =1时,函数g (t )取得最小值g (1)=e.因此,要使(*)式恒成立,只需a 2+1a <g (1)=e ,即只需a >1e 2-1.而当a =1e 2-1时,由tan φ=1a =e 2-1>3且0<φ<π2知,π3<φ<π2.于是π-φ<2π3<e 2-1,且当n ≥2时,n π-φ≥2π-φ>3π2>e 2-1.因此对一切n ∈N *,ax n =n π-φe 2-1≠1,所以g (ax n )>g (1)=e =a 2+1a,故(*)式恒成立. 综上所述,若a ≥1e 2-1,则对一切n ∈N *,x n <|f (x n )|恒成立.。

最新普通高等学校招生理科数学全国统一考试试题(湖南卷)(含解析)

最新普通高等学校招生理科数学全国统一考试试题(湖南卷)(含解析)

普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出地四个选项中,只有一项是符合题目要求地 .1.复数()()1=+g为虚数单位在复平面上对应地点位于z i i iA.第一象限 B.第二象限 C.第三象限D.第四象限2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用地 抽样方法是A .抽签法B .随机数法C .系统抽样法D .分层抽样法3.在锐角中ABC ∆,角,A B 所对地 边长分别为,a b .若2sin ,a B A =则角等于A .12πB .6πC .4π D .3π 4.若变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,2x y +则的最大值是A .5-2B .0C .53D .525.函数()2ln f x x =地 图像与函数()245g x xx =-+地 图像地交点个数为 A .3 B .2 C .1D .06. 已知,a b 是单位向量,0a b =g .若向量c 满足1,c a b c --=则的取值范围是A .⎤⎦ B .⎤⎦C .1⎡⎤⎣⎦ D .1⎡⎤⎣⎦7.已知棱长为1地 正方体地 俯视图是一个面积为1地 正方形,则该正方体地 正视图地 面积不可能...等于A .1 B C .2D .28.在等腰三角形ABC中,=4AB AC=,点P是边AB上异于,A B 地一点,光线从点P出发,经,BC CA发射后又回到原点P(如图1).若光线QR经过ABC∆地中心,则AP 等A.2 B.1 C.83D.43二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题计分)9.在平面直角坐标系xoy 中,若,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a 的值为 . 10.已知222,,,236,49a b c a b c a b c ∈++=++则的最小值为 12 .11.如图2,在半径为7地 O e 中,弦,AB CD 相交于点,2P PA PB ==,1PD =,则圆心O 到弦CD 地 距离为 .必做题(12-16题)12.若209,Tx dx T =⎰则常数的值为 .13.执行如图3所示地 程序框图,如果输入1,2,a b a ==则输出的的值为 9 .14.设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>地 两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆地 最小内角为30o ,则C 地 离心率为___。

2015年高考湖南理科数学试题及答案(详解纯word版)

2015年高考湖南理科数学试题及答案(详解纯word版)

2015年普通高等学校招生全国统一测试(湖南卷)数 学(理科)本试题卷包括选择题、填空题和解答题三部分,时量120分钟,满分150分一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i zi +=-1)1(2(i 是虚数单位),则复数z= A. i +1 B. i -1 C. i +-1 D. i --12. 设A 、B 是两个集合,则“A B A = ”是“B A ⊆”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 3. 执行如图所示的程序框图,如果输入的3=n ,则输出的S =A.76 B. 73C. 98D. 944. 若变量x, y 满足约束条件⎪⎩⎪⎨⎧≤≤--≥+1121y y x y x ,则yx z -=3的最小值为A. 7-B. 1-C. 1D. 25. 设函数)1ln()1ln()(x x x f --+=,则)(x f 是A. 奇函数,且在)1,0(是增函数B. 奇函数,且在)1,0(是减函数C. 偶函数,且在)1,0(是增函数D. 偶函数,且在)1,0(是减函数 6. 已知5)(xa x -的展开式中含23x 的项的系数为30,则=aA. 3B. 3-C. 6D. 6- 7. 在如图2所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布)1,0(N 的密度曲线)的点的个数的估计值为A. 2386B. 2718C. 3413D. 4772附:若),(~2σμN X ,则6826.0)(=+≤<-σμσμX P , 9544.0)22(=+≤<-σμσμX P .8. 已知点A, B, C 在圆122=+y x 上运动,且BC AB ⊥ . 若点P 的坐标为)0,2(, 则||PC PB PA ++的最大值为A. 6B. 7C. 8D. 9 9. 将函数x x f 2sin )(=的图象向右平移ϕ)20(πϕ<<个单位后得到函数)(x g 的图象,若对满足2|)()(|21=-x g x f 的1x ,2x ,有3||min 21π=-x x ,则=ϕA. 125πB. 3πC. 4πD.6π 10. 某工件的三视图如图所示,现将该工件通过切削,加工成体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料的利用率原工件的体积新工件的体积=) A. π98 B. π916C.π2124)-( D.π21212)-(二、填空题:本大题共5小题,每小题5分,共25分. 11.⎰=-20)1(dx x __________.12. 在一次马拉松比赛中,35名运动员的成绩(单位:分钟)茎叶图如图所示若将运动员按成绩由好到差编为1-35号,再用系统抽样的方法从中抽取7人,则其中成绩在区间]151,139[上的运动员的人数是_________.13. 设F 是双曲线C 1:2222=-by a x 的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为________.14.设n S 为等比数列}{n a 的前n 项和,若11=a ,且321,2,3S S S 成等差数列,则=n a ___________.15. 已知函数⎪⎩⎪⎨⎧>≤=.,,,)(23a x x a x x x f 若存在实数b ,使函数b x f x g -=)()(有两个零点,则a 的取值范围是___________.三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)本小题有Ⅰ、Ⅱ、Ⅲ三个选做题,请考生任选两题作答,并将解答过程写在答题纸中相俯视图侧视图正视图222121应题号的答题区域内,如果全做,则按所做的前两题计分. Ⅰ.(本小题满分6分)选修4-1 几何证明选讲如图,在⊙O 中,相交于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 和直线CD 相交于点F ,证明:(i )180=∠+∠NOM MEN ; (ii )FO FM FN FE ⋅=⋅.Ⅱ.(本小题满分6分)选修4-4 坐标系和参数方程已知直线l ⎪⎪⎩⎪⎪⎨⎧+=+=.213,235:t y t x (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρcos 2=.(i )将曲线C 的极坐标方程化为直角坐标方程;(ii )设点M 的直角坐标为)3,5(,直线l 和曲线C 的交点为A ,B ,求||||MB MA ⋅的值.Ⅲ.(本小题满分6分)选修4-5 不等式选讲 设0,0>>b a ,且ba b a 11+=+,证明: (i ) 2≥+b a ;(ii )22<+a a 和22<+b b 不可能同时成立. 17. (本小题满分12分)设ABC ∆的内角C B A ,,的对边分别为c b a ,,,A b a tan =,且B 为钝角. (Ⅰ) 证明:2π=-A B ;(Ⅱ) 求C A sin sin +的取值范围. 18. (本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖. 每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球. 在摸出的2球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(Ⅰ) 求顾客抽奖1次能获奖的概率; (Ⅱ) 若某顾客有3次抽奖的机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望. 19. (本小题满分13分)如图,在四棱台1111D C B A ABCD -的上、下底面分别是边长为3和6的正方形,61=AA ,且⊥1AA 底面ABCD ,点P ,Q 分别在棱1DD ,BC 上.(Ⅰ) 若点P 是1DD 的中点,证明:PQ AB ⊥1; (Ⅱ) 若//PQ 平面11A ABB ,二面角A QD P --的余弦值为73,求四面体ADPQ 的体积.ABDA 1B 1C 1D 1Q PE FMNOBDC20. (本小题满分13分)已知抛物线1C y x 4:2=的焦点F 也是椭圆2C )0(1:2222>>=+b a bx a y 的一个焦点,1C 和2C 的公共弦长为62. (Ⅰ) 求2C 的方程;(Ⅱ) 过点F 的直线l 和1C 相交于A ,B 两点,和2C 相交于C ,D 两点,且和BD 同向.(i ) 若||||BD AC =,求直线l 的斜率;(ii )设1C 在点A 处的切线和x 轴的交点为M ,证明:直线l 绕点F 旋转时,MFD ∆总是钝角三角形.21. (本小题满分13分)已知0>a ,函数)),0[(sin )(∞+∈=x x e x f ax,记n x 为)(x f 的从小到大的第n *)(N n ∈个极值点. 证明: (Ⅰ) 数列)}({n x f 是等比数列; (Ⅱ) 若112-≥e a ,则对一切*N n ∈,|)(|n n xf x <恒成立.2015年高考湖南卷理科数学参考答案一、选择题D C B A A D C B D A 二、填空题11. 0 12. 4 13. 5 14. 13-n 15. ),1()0,(∞+-∞ 三、解答题16. Ⅰ. 证明:(i )如图,因为M ,N 分别是两弦AB ,CD 的中点,所以AB OM ⊥, CD ON ⊥,即 90=∠=∠ONE OME ,因此180=∠+∠ONE OME ,又四边形的内角和等于 360,故 180=∠+∠NOM MEN .(ii ) 由(i )知, O ,M ,E ,N 四点共圆,故由割线定理即得FO FM FN FE ⋅=⋅.Ⅱ.解: (i )θρcos 2=等价于 θρρcos 22=,将 222y x +=ρ,x =θρcos 代入上式即得曲线C 的直角坐标方程是0222=-+x y x .(ii ) 将⎪⎪⎩⎪⎪⎨⎧+=+=.213,235t y t x 代入0222=-+x y x 得018352=++t t .设这个方程的 两个实根分别为21,t t ,则由参数t 的几何意义知||||MB MA ⋅=.18||21=t tⅢ.证明: 由abb a b a b a +=+=+11,0,0>>b a 得 1=ab E FMN OBDC(i )由基本不等式及1=ab ,有22=≥+ab b a ,即2≥+b a .(ii ) 设22<+a a 和22<+b b 可同时成立,则由22<+a a 及0>a 可得10<<a ,同理 10<<b ,从而10<<ab 这和1=ab 相矛盾,故22<+a a 和22<+b b 不可能同时成立.17. 解:(Ⅰ)由A b a tan =及正弦定理,得BAb a A A sin sin cos sin ==,所以A B cos sin =,即)2sin(sin A B +=π. 又B 为钝角,),2(2πππ∈+A ,故A B +=2π,即2π=-A B . (Ⅱ) 由(Ⅰ)知 022)(>-=+-=A B A C ππ, 所以)4,0(π∈A . 于是 )22sin(sin sin sin A A C A -+=+πA A 2cos sin +=.89)41(sin 2sin 21sin 22+--=-+=A A A因为40π<<A ,所以 22sin 0<<A ,因此8989)41(sin 2222≤+--<A . 由此可得C A sin sin +的取值范围是]89,22(. 18. 解:(Ⅰ)记事件1A ={从甲箱中摸出的一个球是红球},2A ={从乙箱中摸出的一个球是红球},1B ={顾客抽奖一次获一等奖},2B ={顾客抽奖一次获二等奖},C ={顾客抽奖一次能获奖}.由题意1A 和2A 相互独立,21A A 和21A A 互斥,1B 和2B 互斥,且 211A A B =,2B =21A A +21A A ,21B B C +=. 又因为52104)(1==A P ,21105)(2==A P ,所以 512152)()()()(21211=⨯===A P A P A A P B P , )()()()(212121212A A P A A P A A A A P B P +=+=2121)521()211(52)()()()(2121=⨯-+-⨯=+=A P A P A P A P ,故所求概率为1072151)()()()(2121=+=+=+=B P B P B B P C P .(Ⅱ) 顾客抽奖3次可视为3次独立重复实验,由(Ⅰ)知,顾客抽奖1次获一等奖的概率为51,所以)51,3(~B X ,于是 )3,2,1,0()54()51()(33===-K C K X P KK K X 0123P1256412548 12512 1251X 的数学期望为53513)(=⨯=X E . 19. 解法一: (Ⅰ)如图,取1AA 的中点R ,连结PR BR ,, 因为1AA ,1DD 是梯形D D AA 11的两腰,点P 是1DD 的中点,所以AD PR //,于是由BC AD //知,BC PR //,所以C B R P ,,,四点共面. 由题设知 AB BC ⊥,1AA BC ⊥,A AA AB =1 ,所以 ⊥BC 平面11A ABB ,⊂1AB 平面11A ABB ,因此 1AB BC ⊥.因为11111tan 63tan AB A AA B A AB AR ABR ∠====∠,所以11AB A ABR ∠=∠,因此901111=∠+∠=∠+∠BAB AB A BAB ABR , 于是 1AB BR ⊥, 又已证得1AB BC ⊥,所以⊥1AB 平面BRPC ,显然有⊂PQ 平面BRPC , 故 PQ AB ⊥1.(Ⅱ) 如下图,过点P 作1//AA PM 交AD 于点M ,则//PM 平面11A ABB , 因为⊥1AA 底面ABCD ,所以⊥PM 底面ABCD ,过点M 作QD MN ⊥于点N ,连结PN ,则QD PN ⊥,PNM ∠是二面角A QD P --的平面角. 所以 73cos =∠PNM ,即 73=PN MN ,从而340=MN PM . 连结MQ ,由//PQ 平面11A ABB 及//PM 平面11A ABB 知,平面//PQM 平面11A ABB ,所以AB MQ //,又ABCD 是正方形,所以ABQM 是矩形,故MQ=AB=6. 设MD =t ,则.366222ttMD MQ MD MQ MN +=+⋅=过点1D 作A A E D 11//交AD 于点E ,则E D AA 11是矩形,所以 611==AA E D ,311==D A AE ,因此 3=-=AE AD DE . 于是 21==DEED MD PM , 所以t MD PM 22==,从而t t t MN PM 63623402+⨯==,解得2=t ,所以4=PM . 故四面体ADPQ 的体积 24466213131=⨯⨯⨯⨯=⋅=∆PM S V ADQ .解法二:由题设知AB AD AA ,,1G 两两垂直,以A 为坐标原点,AB ,AD ,1AA 所在直线分别为x 轴,y轴,z 轴,建立空间直角坐标系,如图,则相关各点的坐标为)0,0,0(A ,)6,0,3(1B ,)0,6,0(D ,)6,3,0(1D , )0,,6(m Q ,其中m BQ =,60≤≤m .R D 1C 1B 1A 1DB A P E A BD A 1B 1C 1D 1PM N x y zAB CDA 1B 1C 1D 1Q P(Ⅰ) 若点P 是1DD 的中点,则)3,29,0(P ,)3,29,6(--=m PQ ,又)6,0,3(1=AB ,于是018181=-=⋅, 所以AB ⊥1,即PQ AB ⊥1.(Ⅱ) 由题设知,)0,6,6(-=m , )6,3,0(1-=DD 是平面PQD 内两个不共线的向量,设),,(1z y x n =是平面PQD 的一个法向量,则 ⎪⎩⎪⎨⎧=⋅=⋅0,0111DD n 即⎩⎨⎧=+-=-+063,0)6(6z y y m x 取6=y ,得)3,6,6(1m n -=. 又平面AQD 的一个法向量是)1,0,0(2=n ,所以45)6(336)6(3||||,cos 2222212121+-=++-=⋅>=<m m n n n n ,而二面角A QD P --的余弦值为73,所以7345)6(32=+-m ,解得m=4或m=8(舍去),此时)0,4,6(Q . 再设)10(1≤<=λλDD ,而)6,3,0(1-=DD ,由此得到)6,36,0(λλ-P ,)6,23,6(λλ--=. 因为//PQ 平面11A ABB ,且平面11A ABB 的一个法向量是)0,1,0(3=n ,所以 0233=-=⋅λn ,32=λ,从而)4,4,0(P .于是,将四面体ADPQ 视为ADQ ∆为底面的三棱锥ADQ P -,其高4=h ,故四面体ADPQ 的体积 24466213131=⨯⨯⨯⨯=⋅=∆PM S V ADQ .20. 解:(Ⅰ) 由1C y x 4:2=知其焦点F 的坐标为(0,1),因为F 也是椭圆2C 的一个焦点,所以 122=-b a (1)又1C 和2C 的公共弦长为62,1C 和2C 都关于y 轴对称,且1C 的方程为y x 42=,由此易知1C 和2C 的公共点坐标为)23,6(±,所以164922=+ba (2) 联立(1)(2)得8,922==b a ,故2C 的方程为18922=+x y . (Ⅱ) 如图,设),(11y x A ,),(22y x B ,),(33y x C ,),(44y x D .(i )因和同向,且 ||||BD AC =,所以 =,从而 2413x x x x -=-,即4321x x x x -=-,于是43243212214)(4)(x x x x x x x x -+=-+. (3)设直线l 的斜率为k ,则l 的方程为1+=kx y .l xyD BAF OCM由⎩⎨⎧=+=yx kx y 4,12 得0442=--kx x ,而21,x x 是这个方程的两根,所以4,42121-==+x x k x x (4) 由⎪⎩⎪⎨⎧=++=189,122x y kx y 得06416)89(22=-++kx x k ,而43,x x 是这个方程的两根,所以2212438964,8916kx x k k x x +-=+-=+ (5) 将(4)(5)代入(3)得 22222289644)89(16)1(16k k k k +⨯++=+,即22222)89()1(916)1(16k k k ++⨯=+, 所以 916)89(22⨯=+k ,解得 46±=k ,即直线l 的斜率为46±. (ii )由 y x 42=得 2'xy =,所以1C 在点A 处的切线方程为)(2111x x x y y -=-,即42211x x x y -=,令0=y 得21x x =,即)0,2(1x M ,所以)1,2(1-=x ,而)14,(211-=x x ,于是014)14(2212121>+=--=⋅x x x ,因此AFM ∠总是锐角,从而AFM MFD ∠-=∠180是钝角. 故直线l 绕点F 旋转时,MFD ∆总是钝角三角形.21. 解:(Ⅰ) )cos sin (cos sin )('x x a e x ex ae x f ax axax +=+=)sin(12ϕ+⋅+=x e a ax ,其中a 1tan =ϕ,20πϕ<<.令 0)('=x f ,由0≥x 得 πϕm x =+,即*,N m m x ∈-=ϕπ. 对N k ∈,若πϕπ)12(2+<+<k x k ,即ϕπϕπ-+<<-)12(2k x k ,则0)('>x f ;若πϕπ)22()12(+<+<+k x k ,即ϕπϕπ-+<<-+)22()12(k x k ,则0)('<x f . 因此,在区间),)1((ϕππ--m m 和),(πϕπm m -上,)('x f 的符号总相反,于是,当*,N m m x ∈-=ϕπ时,)(x f 取得极值,所以*,N n n x n ∈-=ϕπ. 此时,)(1)()1()sin()(ϕπϕπϕπ-+--=-=n a n n a n e n e x f ,易知0)(≠n x f ,且πϕπϕπa n a n n a n n n e ee xf x f -=--=-+-+++)(1])1[(21)1()1()()(是常数,故数列)}({n x f 是首项为ϕϕπsin )()(1-=a e x f ,公比为πa e -的等比数列.(Ⅱ) 由(Ⅰ)知,11sin 2+=a ϕ,于是对一切*N n ∈,|)(|n n x f x <恒成立,即)(211ϕπϕπ-+<-n a e a n 恒成立,等价于)(1)(2ϕπϕπ-<+-n a e a a n a (*)恒成立(因为a>0).设)0()(>=t t e t g t ,则0)1()('2=-=t t e t g t 得1=t ,当10<<t 时,0)('<t g ,所以)(t g 在)1,0(上单调递减;当1>t 时,0)('>t g ,所以)(t g 在),1(∞+上单调递增.从而当1=t 时,函数)(t g 取得最小值e g =)1(. 因此,要使(*)式恒成立,只需e g aa =<+)1(12,即只需112->e a . 而当112-=e a 时,由311tan 2>-==e a ϕ且由20πϕ<<知,23πϕπ<<. 于是1322-<<-e πϕπ,且当2≥n 时,12322->>-≥-e n πϕπϕπ,因此,对一切*N n ∈,112≠--=e n ax n ϕπ,所以aa e g ax g n 1)1()(2+==>,故(*)式也恒成立. 综上所述,若112-≥e a ,则对一切*N n ∈,|)(|n n xf x <恒成立.。

2015年湖南省高考数学试题及答案(理科)【解析版】

2015年湖南省高考数学试题及答案(理科)【解析版】

2015年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题,共10小题,每小题5分,共50分1.(5分)(2015•湖南)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点: 复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由条件利用两个复数代数形式的乘除法法则,求得z的值.解答:解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.点评:本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.2.(5分)(2015•湖南)设A、B是两个集合,则“A∩B=A”是“A⊆B”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:集合;简易逻辑.分析:直接利用两个集合的交集,判断两个集合的关系,判断充要条件即可.解答:解:A、B是两个集合,则“A∩B=A"可得“A⊆B",“A⊆B",可得“A∩B=A”.所以A、B是两个集合,则“A∩B=A"是“A⊆B”的充要条件.故选:C.点评:本题考查充要条件的判断与应用,集合的交集的求法,基本知识的应用.3.(5分)(2015•湖南)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.B.C.D.考点:程序框图.分析:列出循环过程中S与i的数值,满足判断框的条件即可结束循环.解答:解:判断前i=1,n=3,s=0,第1次循环,S=,i=2,第2次循环,S=,i=3,第3次循环,S=,i=4,此时,i>n,满足判断框的条件,结束循环,输出结果:S===故选:B点评:本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力4.(5分)(2015•湖南)若变量x、y满足约束条件,则z=3x﹣y的最小值为()A.﹣7 B.﹣1 C.1D.2考点:简单线性规划.专题: 不等式的解法及应用.分析:由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.解答:解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得C(0,﹣1).由解得A(﹣2,1),由,解得B(1,1)∴z=3x﹣y的最小值为3×(﹣2)﹣1=﹣7.故选:A.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.易错点是图形中的B点.5.(5分)(2015•湖南)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.解答:解:函数f(x)=ln(1+x)﹣ln(1﹣x),函数的定义域为(﹣1,1),函数f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),所以函数是奇函数.排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f(0)=0;x=时,f()=ln(1+)﹣ln(1﹣)=ln3>1,显然f(0)<f(),函数是增函数,所以B错误,A正确.故选:A.点评:本题考查函数的奇偶性以及函数的单调性的判断与应用,考查计算能力.6.(5分)(2015•湖南)已知(﹣)5的展开式中含x的项的系数为30,则a=()A.B.﹣C.6D.﹣6考点:二项式定理的应用.专题:二项式定理.分析:根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x 的指数为求得r,再代入系数求出结果.解答:解:根据所给的二项式写出展开式的通项,T r+1==;展开式中含x的项的系数为30,∴,∴r=1,并且,解得a=﹣6.故选:D.点评:本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.7.(5分)(2015•湖南)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X﹣N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=0.6826.p(μ﹣2σ<X≤μ+2σ)=0。

2014高考真题—数学理(湖南卷)Word版含解析

2014高考真题—数学理(湖南卷)Word版含解析

2014高考真题—数学理(湖南卷)Word版含解析2014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时间120分钟,满分150分.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足为虚数单位)的复数( )A.B.C.D.2.对一个容量为的总体抽取容量为的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别是则( )A.B.C.D.3.已知分别是定义在上的偶函数和奇函数,且,则( )A.-3 B.-1 C.1 D.34.的展开式中的系数是( )A.-20 B.-5 C.5 D.205.已知命题若,则,命题若,则.在命题:①②③④中,真命题是( )A.①③B.①④C.②③D.②④6.执行如图右所示的程序框图,如果输入的,则输出的属于( )A. B.C.D.7.一块石材表示的几何体的三视图如图右所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A.1 B.2C.3 D.48.某市生产总值连续两年持续增加,第一年的增长率为,第二年的增长率为,则该市这两年生产总值的年平均增长率为( )A.B.C.D.9.已知函数且,则函数的图象的一条对称轴是( )A.B.C.D.10.已知函数与的图象上存在关于轴对称的点,则的取值范围是( )A.B.C.D.二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.(一)选做题(请考生在第11、12、13三题中任选两题作答,如果全做,则按前两题记分)11.在平面直角坐标系中,倾斜角为的直线与曲线为参数)交于两点,且,以坐标原点为极点,轴正半轴为极轴建立极坐标系,则直线的极坐标方程是.12.如图右,已知是的两条弦,,则的半径等于.13.若关于的不等式的解集为,则.(二)必做题(14-16题)14.若变量满足约束条件,且的最小值为-6,则.15.如图右,正方形和正方形的边长分别为,原点为的中点,抛物线经过两点,则.16.在平面直角坐标系中,为原点,,动点满足,则的最大值是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品,乙组研发新产品.设甲、乙两组的研发相互独立.(Ⅰ)求至少有一种新产品研发成功的概率;(Ⅱ)若新产品研发成功,预计企业可获利润120万元;若新产品研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.18.(本小题满分12分)如图右,在平面四边形中,.(Ⅰ)求的值;(Ⅱ)若求的长.19.(本小题满分12分)如图,四棱柱的所有棱长都相等,四边形和四边形均为矩形.(Ⅰ)证明:底面;(Ⅱ)若,求二面角的余弦值.20.(本小题满分13分)已知数列满足(Ⅰ)若是递增数列,且成等差数列,求的值;(Ⅱ)若,且是递增数列,是递减数列,求数列的通项公式.21.(本小题满分13分)如图右,为坐标原点,椭圆的左、右焦点分别为,离心率为;双曲线的左、右焦点分别为,离心率为.已知且(Ⅰ)求的方程;(Ⅱ)过作的不垂直于轴的弦为* 的中点.当直线与交于两点时,求四边形面积的最小值.22.(本小题满分13分)已知常数,函数(Ⅰ)讨论在区间上的单调性;(Ⅱ)若存在两个极值点且求的取值范围.参考答案一.选择题1【解】选B.由,即选B.2【解】选D. 根据随机抽样的原理可得简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即,故选D.3【解】选C.由函数奇偶性,联想转化:.4【解】选A.二项式的通项为,令时,,故选A.5【解】选C.显然真假,所以可知复合命题①、③正确,选C.6【解】选D. 由程序框图可知①当时,运行程序如下,;②当时,则;综上①②可知,故选D.7【解】选B.由三视图可得该几何体为三棱柱(倒置:长为12、宽为6的矩形侧面与地面接触).易知不存在球与该三棱柱的上、下底面及三个侧面同时相切,故最大的球是与其三个侧面同时相切,所以最大球的半径为上(下)底面直角三角形内切圆的半径,则,故选B.8【解】选D.设两年的年平均增长率为,则有,故选D.9【解】选A.由得,,即,可化为,即,可得,也所以,经检验可知A选项符合.10【解】选B.依题意在曲线取一点,则在曲线上存在一点与之对应(关于轴对称),所以在上有解,即,也即在上有解,由于分别为上增函数、减函数,于是结合图象易知,方程在上有解的充要条件为,即,选B.二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.11【解】填.依题意曲线的普通方程为,设直线的方程为,因为弦长,所以圆心到直线的距离,所以圆心在直线上,故.12【解】填.设,易知,中由勾股定理可得,连接,则有.13【解】填-3 .由题可得,故填.(二)必做题(14-16题)14【解】填-2 .如右图所示,,且可行域为三角形,故当目标函数过点时,有最小值,即,即.15【解】填.由条件可知在抛物线上,代入点易得,又代入点得,,即,可化为,得,又因为,所以,即为所求.16【解】填.由知,动点在上,设,则,其几何意义为上动点与定点间距离的平方,如右图所示,由平面几何知,.三.解答题17【解】(Ⅰ)记{甲组研发新产品成功},{乙组研发新产品成功}.由题设知相互独立,且,又记事件"至少有一种新产品研发成功"为,则...............6分(Ⅱ)记该企业可获利润为(万元),则的可能取值有0,100,120,220.100120220且易知;;故所求的分布列为(如右表所示):且......................12分18【解】(Ⅰ)如图右,在中,由余弦定理,得...............5分(Ⅱ)设,则,因为,且,所以,同理,于是,,.............................................10分所以在中,由正弦定理有,即为所求...................12分19【解】(Ⅰ)证明:如图右,因为四边形为矩形,所以,同理,因为,所以,而,因此底面.由题设知,故底面;..................6分(Ⅱ)解法1 如图右,由(Ⅰ)知底面,所以底面,于是.又由题设知四边形是菱形,所以,而,故平面,于是过点作于,连结则(三垂线定理),故是二面角的平面角.不妨设,因为,所以,在中,,而,于是,故中,有,即二面角的余弦值为....................................................12分解法2 由题设知四边形是菱形,所以,又(Ⅰ)已证底面,从而两两垂直,如图右,以为原点,所在直线分别分轴,轴,轴,建立空间直角坐标系.不妨设,因为,所以,于是相关各点的坐标为,易知是平面的一个法向量.设是平面一个法向量,则,即,令,则,故,设二面角的大小为,由图可知为锐角,于是,故二面角的余弦值为....................................................12分20【解】(Ⅰ)因为是递增数列,所以,而,因为,又成等差数列,所以,因而,解得或,当时,,这与是递增数列矛盾.故;....................................6分(Ⅱ)由于是递增数列,因而,于是,......①而,......②由①②知,,即,......③因为是递减数列,同理可得,故......④由③④即知,,所以,又当时,也适合上式,故............................13分21【解】(Ⅰ)因为所以,得,从而,于是,即,故的方程分别为..........5分(Ⅱ)由(Ⅰ)易知,依题意设,,由,得,显然恒成立,所以,故,于是的中点,故直线的斜率为,即直线,即,由得,即,由双曲线的对称性易,由为的中点,显然到直线的距离相等,即,所以,又因为在直线的两侧,故,于是,又因为,即,故四边形的面积为,由,故当时,有最小值2,综上所述,四边形面积的最小值为2...................13分22【解】(Ⅰ)由,()①当时,;②当时,由得,(舍去),且由于二次函数的图象是开口向上的抛物线,故易知:当时,,当时,,综上所述,当时,在区间上单调递增;当时,在区间上递减,在区间上递增.......6分(Ⅱ)由(Ⅰ)知,所以①当时,,此时不存在极值点.②当时,的两根为,依题意是定义域上的两个极值点,故必有,解得,结合二次函数的图象可知,当时,分别是的极小值、极大值点.且.而,令,则,于是,即在上递减,所以①当时,,与的题意矛盾,舍去;②当时,,符合题意.综上可知,要使则必须有,即为所求.......13分。

2015年全国高考理科数学试题独家解析(湖南卷)答案

2015年全国高考理科数学试题独家解析(湖南卷)答案

2015年全国高考试题独家解析(湖南卷)理科数学答案1.D 【解析】由题意得,i iii i z --=+-=+-=1121)1(2,故选D . 2.C 【解析】∵A B A =I ,得A B Í,反之,若A B Í, 则A B A =I ;故“A B A =I ”是“A B ⊆”的充要条件. 3.B 【解析】第一次循环,113S =´,此时2i =,不满足条件,继续第二次循环111335S =+创,此时3i =,不满足条件,继续第三次循环11131335577S =++=创?,此时43i =>,退出循环,输出S 的值为37,选B .4.A 【解析】 如下图所示,画出线性约束条件所表示的区域,即可行域,从而可知当2-=x ,1=y 时,y x z -=3的最小值是7-,故选A .5.A 【解析】由题意可知,函数()f x 的定义域为(1,1)-,且12()lnln(1)11x f x x x+==---,易知211y x=--在(0,1)上为增函数,故()f x 在(0,1)上为增函数,又()ln(1)ln(1)()f x x x f x -=--+=-,故()f x 为奇函数.6.D 【解析】5215(1)r r rrr T C a x-+=-,令1=r ,可得530a -=6a ⇒=-,故选D .7.C 【解析】由题意可得,1(01)(11)0.34132P x P x <=-<=≤≤,设落入阴影部分的点的个数为n ,则0.3413==110000S nP S =阴影正方形,则3413n =,选C . 8.B 【解析】由题意得,AC 为圆的直径,故可设),(n m A ,),(n m C --,),(y x B ,∴(6,)PA PB PC x y ++=-u u u r u u u r u u u r ,而491237)6(22≤-=+-x y x ,∴PA PB PC ++u u u r u u u r u u u r 的最大值为7,故选B .9.D 【解析】向右平移ϕ个单位后,得到)22sin()(ϕ-=x x g ,又∵2|)()(|21=-x g x f ,∴不妨ππk x 2221+=,ππϕm x 22222+-=-,∴πϕπ)(221m k x x -+-=-,又∵12min3x x π-=,∴632πϕπϕπ=⇒=-,故选D .10.A 【解析】由圆锥的对称性可知,要使其内接长方体最大,则底面为正方形,令此长方体底面对角线长为2x ,高为h ,则由三角形相似可得,212xh-=,所以22h x =-,(0,1)x Î,长方体体积2232216)2(22)2()327x x x V h x x ++-==-=长方体≤,当且仅当22x x =-,即23x =时取等号,2121233V ππ=创=圆锥,故材料利用率为16827293ππ=,选A . 11.0【解析】0)21()1(22200=-=-⎰x x dx x .12.4【解析】由茎叶图可知,在区间]151,139[的人数为20,再由系统抽样的性质可知人数为435720=⨯人. 13由已知不妨设(,0)F c -,虚轴的一个端点为(0,)B b ,B 恰好为线段PF 的中点,故(,2)P c b ,代入双曲线方程得225c a=,即25e =,又1e >,故e =14.13-n 【解析】∵13S ,22S ,3S 成等差数列,∴333)(2223321121=⇒=⇒+++=+⨯q a a a a a a a a ,又∵等比数列}{n a ,∴1113--==n n n q a a .15.),1()0,(+∞-∞Y 【解析】分析题意可知,问题等价于方程)(3a xb x ≤=与方程)(2a x b x >=的根的个数和为2,若两个方程各有一个根:则可知关于b 的不等式组⎪⎪⎩⎪⎪⎨⎧≤->≤a b a b a b 31有解,从而1>a ;若方程)(3a xb x ≤=无解,方程)(2a xb x >=有2个根:则可知关于b 的不等式组⎪⎩⎪⎨⎧>->ab ab 31有解,从而0<a ;综上,实数a 的取值范围是),1()0,(+∞-∞Y . 16.Ⅰ.【解析】 (1)如图所示, 因为,M N 分别是弦AB ,CD 的中点,所以OM ⊥AB ,ON ⊥CD ,即∠OME =90o ,∠ENO =90o ,0180OME ENO ∠+∠=,又四边形的内角和等于360o,故0180MEN NOM ∠+∠=;(2)由(I )知,,,,O M E N 四点共圆,故由割线定理即得FE FN FM FO ⋅=⋅.Ⅱ.【解析】(1)2cos ρθ=等价于22cos ρρθ=①,将222x y ρ=+,cos x ρθ== 带入①,即得曲线C 的直角坐标方程为2220x y x +-=②,(2)将5212x t y⎧=+⎪⎪⎨⎪=⎪⎩代入②,得2180t ++=,设这个方程的两个实数根分别为12,t t ,则由参数t 的几何意义即知,1218MA MB t t ==g .Ⅲ.【证明】由abba b a b a +=+=+11,0>a ,0>b ,得1=ab . (i )由基本不等式及1=ab ,有2a b +=≥,即2a b +≥,当且仅当1a b == 时等号成立.(ii )假设22<+a a 与22<+b b 同时成立,则由22<+a a 及0>a 得10<<a ;同理,10<<b ,从而1<ab ,这与1=ab 矛盾,故22<+a a 与22<+b b 不可能同时成立. 17.【解析】(1)由tan a b A =及正弦定理,得sin sin cos cos A b BA a B==,所以sin cos B A =,即sin sin()2B A π=+.又B 为钝角,因此2π+A ∈(2π,π),故B =2π+A ,即B A -=2π; (2)由(1)知,C =π-(A +B )=π-(2A +2π)=2π-2A >0,所以A 0,4π⎛⎫∈ ⎪⎝⎭, 于是sin sin sin sin(2)2A C A A π+=+-=sin cos2A A +=22sin sin 1A A -++=2192(sin )48A --+,因为0<A <4π,所以0<sin A <2,因此2<-22199sin 488A ≤⎛⎫-+ ⎪⎝⎭.由此可知sin sin A C +的取值范围是(2,98]. 18.【解析】(Ⅰ)记事件1A ={从甲箱中摸出的1个球是红球},2A ={从乙箱中摸出的1个球是红球},1B ={顾客抽奖1次获一等奖},2B ={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,1A 与2A 相互独立,12A A 与12A A 互斥,1B 与2B 互斥,且1B =12A A ,2B =12A A +12A A ,C=1B +2B .因P (1A )=410=25,P (2A )=510=12, 所以P (1B )=P (12A A )=P (1A )P (2A )=25⨯12=15, P (2B )=P (12A A +12A A )=P (12A A )+P (12A A )=P (1A ) (1-P (2A ))+(1-P (1A ))P (2A )=25⨯(1-12)+(1-25)⨯12=12, 故所求概率为P (C)= P (1B +2B )=P (1B )+P (2B )=15+12=710.(Ⅱ)顾客抽奖3次独立重复试验,由(I )知,顾客抽奖1次获一等奖的概率为15, 所以1(3,)5X B :.于是 P (X =0)=003314()()55C =64125,P (X =1)=112314()()55C =48125,P (X =2)=221314()()55C =12125,P (X =3)=330314()()55C =1125 . 故X 的分布列为X 0 1 2 3P64125 48125 12125 1125X 的数学期望为 E (X )=3⨯5=5.19.【解析】解法1:由题设知,1,,AA AB AD 两两垂直.以A 为坐标原点,1,,AB AD AA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则相关各点的坐标为(0,0,0)A ,1(3,0,6)B ,(0,6,0)D ,1(0,3,6)D ,(6,,0)Q m ,其中m BQ =,06m ≤≤.(1)若P 是1DD 的中点,则9(0,,3)2P ,9(6,,3)2PQ m =-u u u v ,1(306)AB =u u u r ,,,于是118180AB PQ ⋅=-=u u u r u u u v ,所以1AB u u u v ⊥PQ u u u v,即1AB PQ ⊥;(2)由题设知,(6,6,0)DQ m =-u u u r ,1(0,3,6)DD =-u u u u r是平面PQD 内的两个不共线向量.设1(,,)n x y z =是平面PQD 的一个法向量,则1110n DQ n DD ⎧⋅=⎪⎨⋅=⎪⎩u u u v u u u u v ,即6(6)0360x m y y z +-=⎧⎨-+=⎩,取6y =,得1(6,6,3)n m =-.又平面AQD 的一个法向量是2(0,0,1)n =, 所以1212222212cos ,||||(6)63(6)45n n n n n n m m ⋅<>===⋅-++-+而二面角P QD A --的余弦值为37=.解得4m =或8m =(舍去),此时(6,4,0)Q .设1(01)DP DD λλ=<≤u u u v u u u u v ,而1(0,3,6)DD =-u u u u v,由此得点(0,63,6)P λλ-,所以(6,32,6)PQ λλ=--.因为PQ ∥平面11ABB A ,且平面11ABB A 的一个法向量是3(0,1,0)n =,所以30PQ n ⋅=u u u v ,即32=0λ-,亦即23λ=,从而P (0,4,4),于是,将四面体ADPQ视为△ADQ 为底面的三菱锥P ADQ -,则其高h =4,故四面体ADPQ 的体积11166424332ADQ V S h =⋅=⨯⨯⨯⨯=V .解法二 (Ⅰ)如图c ,取1A A 的中点R ,连结,PR BR ,因为1A A ,1D D 是梯形11A AD D 的两腰,P 是1D D 的中点,所以PR ∥AD ,于是由AD ∥BC 知,PR ∥BC ,所以,,,P R B C 四点共面.由题设知,BC AB ⊥,1BC A A ⊥,所以BC ⊥平面11ABB A ,因此BC ⊥1AB ① 因为tan ABR ∠=AR AB =36=11AB A A=tan 11A AB ∠,所以tan 11tan ABR A AB ∠=∠,因此111190o ABR BAB A AB BAB ∠+∠=∠+∠=,于是1AB BR ⊥,再由○1即知1AB ⊥平面PRBC ,又PQ ⊂平面PRBC ,故1AB ⊥PQ .图cBD图d(Ⅱ)如图d ,过点P 作PM ∥1A A 交AD 于点M ,则PM ∥平面11ABB A .因为1A A ⊥平面ABCD ,所以OM ⊥平面ABCD ,过点M 作MN ⊥QD 于点N ,连结PN ,则PN ⊥QD ,PNM ∠为二面角P QD A --的平面角,所以3cos 7PNM ∠=,即37MN PN =,从而PM MN = 连结MQ ,由PQ ∥平面11ABB A ,所以MQ ∥AB ,又ABCD 是正方形,所以ABQM 为矩形,故6MQ AB ==. 设MD t =,则MN ==.④ 过点1D 作11//D E A A 交AD 于点E ,则11AA D E 为矩形,所以116D E A A ==,113AE A D ==,因此3ED AD AE =-=于是1623D E PM MD ED ===,所以22PM MD t ==,再由③④得3=3,解得2t =,因此4PM =.故四面体ADPQ 的体积11166424332ADQ V S PM =⋅=⨯⨯⨯⨯=V .20.【解析】(1)由1C :24x y =知其焦点F 的坐标为(0,1),因为F 也是椭圆2C 的一个焦点,所以 221a b -= ① 又1C 与2C 的公共弦的长为1C 与2C 都关于y 轴对称,且1C 的方程为24x y =,由此易知1C 与2C的公共点的坐标为(32),所以229614a b += ②,联立①②得29a =,28b =,故2C 的方程为22198x y += ③;(2)如图f ,设A(11,x y ),B(22,x y ),C(33,x y ),D(44,x y ).(i )因AC u u u v 与BD u u u v 同向,且|AC|=|BD|,所以AC u u u v =BD u u u v,从而31x x -=42x x -,即12x x -=34x x -,于是()212x x +-412x x = ()234x x +-434x x ③设直线l 的斜率为k ,则l 的方程为1y kx =+.由214y kx x y =+⎧⎨=⎩得2440x kx --=.而1x ,2x 是这个方程的两根.所以124x x k +=,124x x =- ④ ,由221189y kx x y =+⎧⎪⎨+=⎪⎩得22(98)16640k x kx ++-=.而3x ,4x 是这个方程的两根.所以3421698kx x k +=-+,34x x =-26498k +⑤,将○4○5带入③ ,得16(2k +1)=()221698k k ++246498k ⨯+, 即()22222169(1)16(1)98k k k ⨯++=+,所以22(98)169k +=⨯,解得4k =±,即直线l 的斜率为.(ii )由24x y =得2xy '=,所以1C 在点A 处的切线方程为111()2x y y x x -=-,即 1214x y x x =-.令0y =得12x x =,即M (12x ,0),所以FM =(12x ,-1).而FA =(11,1x y -).于是1122111024x x FA FM y ⋅=-+=+>,因此AFM ∠是锐角,从而180oMFD AFM ∠=-∠是钝角.故直线l 绕点F 旋转时,△MFD总是钝角三角形.21.【解析】(1)'()sin cos axaxf x ae x e x =+(sin cos )axe a x x =+sin()ax x ϕ+其中tan ϕ=1a ,0<ϕ<2π. 令()f x '=0,由x 0≥得x +ϕ=mx ,即x =m π-ϕ,m ∈*N .对k ∈N ,若2k π<x +ϕ<(21k +)π,即2k π-ϕ<x <(21k +)π-ϕ,则'()f x >0;若(21k +)π<x +ϕ<(22k +)π,即(21k +)π-ϕ<x <(22k +)π-ϕ,则'()f x <0. 因此,在区间((1)m π-,m π-ϕ)与(m π-ϕ,m π)上,'()f x 的符号总相反.于是当x = m π-ϕ (m *N ∈)时,()f x 取得极值,所以*() n x n n N ϕπ∈=-.此时,()()1sin()()(1)sin .a n a n n n x e n f e πρπρπϕϕ--+=-=-易知()n f x ≠0,而()()1121()(1)()(1 s n in )i s a n ax n n n a n n f e f x e x e πρπρϕϕ+-⎡⎤⎣-+⎦++-==--是常数,故数列{}()n f x 是首项为1()f x =() sin a n e πρϕ-,公比为ax e -的等比数列;(2)由(1)知,sin ϕ,于是对一切*n N ∈,n x <|()n f x |恒成立,即() a n n πϕπϕ--<恒成立,()() a n e a n πρϕπ-<-(*)恒成立(因为a >0), 设()g t =t e t (0t >),则2(1)t e tg t t ()=-'.令g t ()'=0得t =1, 当0<t <1时,()0g t '<,所以()g t 在区间(0,1)上单调递减; 当t >1时,()0g t >,所以()g t 在区间(0,1)上单调递增. 从而当t =1时,函数()g t 取得最小值(1)e g =.因此,要是(*()1g e <=,即只需a >. 而当a时,由tan ϕ=1a>02πϕ<<.于是23ππϕ-<<n 2≥时,232n ππϕϕπ-≥-≥> 因此对一切*n N ∈,1n x a =≠,所以()n gax (1)g e a >==. 故(*)式亦恒成立.综上所述,若a ≥*n N ∈,()||n n x x f <恒成立.。

2015年湖南省高考理科数学试卷和答案(分开

2015年湖南省高考理科数学试卷和答案(分开

2015年普通高等学校招生全国统一考试(湖南卷)理科数学本试题包括选择题,填空题和解答题三部分,共6页,时间120分钟,满分150分.一、选择题:本大题共10小题,每小题5分,共50分,贼每小题给出的四个选项中,只有一项是复合题目要求的.1.已知2(1)1i i z-=+(i 为虚数单位),则复数z =( ) A .1i + B .1i - C .1i -+ D .1i --2.设A ,B 是两个集合,则“A B A =”是“A B ⊆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.执行如图1所示的程序框图,如果输入3n =,则输出的S =( ) A .76B .73C .98D .944.若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤--≥+1121y y x y x ,则y x z -=3的最小值为( )A .7-B .1-C .1D .25. 设函数)1ln()1ln()(x x x f --+=,则)(x f 是( )A . 奇函数,且在)1,0(是增函数B . 奇函数,且在)1,0(是减函数C . 偶函数,且在)1,0(是增函数D . 偶函数,且在)1,0(是减函数 6.已知5)(xa x -的展开式中含23x 的项的系数为30,则=a ( )A .3B .3-C .6D .6-7. 在如图2所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布)1,0(N 的密度曲线)的点的个数的估计值为( )A .2386B .2718C .3413D .4772附:若),(~2σμN X ,则6826.0)(=+≤<-σμσμX P , 9544.0)22(=+≤<-σμσμX P .8. 已知点A ,B ,C 在圆122=+y x 上运动,且BC AB ⊥ . 若点P 的坐标为)0,2(, 则||PC PB PA ++的最大值为( ) A .6 B .7C .8D .99. 将函数x x f 2sin )(=的图象向右平移ϕ)20(πϕ<<个单位后得到函数)(x g 的图象,若对满足2|)()(|21=-x g x f 的1x ,2x ,有3||min 21π=-x x ,则=ϕ( )A .125πB .3πC .4πD .6π10. 某工件的三视图如图所示,现将该工件通过切削,加工成体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料的利用率原工件的体积新工件的体积=)( )A .π98B .π916C .π2124)-(D .π21212)-(二、填空题:本大题共5小题,每小题5分,共25分. 11.⎰=-2)1(dx x __________.12.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)茎叶图如图所示.若将运动员按成绩由好到差编为1-35号,再用系统抽样的方法从中抽取7人,则其中成绩在区间]151,139[上的运动员的人数是_________.13.设F 是双曲线C 1:2222=-by a x 的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为________.14.设n S 为等比数列}{n a 的前n 项和,若11=a ,且321,2,3S S S 成等差数列,则=n a ___________.15.已知函数32,,(),x x a f x x x a⎧≤⎪=⎨>⎪⎩ ,若存在实数b ,使函数b x f x g -=)()(有两个零点,则a 的取值范围是___________.三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)本小题有Ⅰ、Ⅱ、Ⅲ三个选做题,请考生任选两题....作答,并将解答过程写在答题卡中相应题号的答题区域内,如果全做,则按所做的前两题计分. Ⅰ.(本小题满分6分)选修4-1 几何证明选讲如图,在⊙O 中,相交于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 与直线CD 相交于点F .证明:(i )180=∠+∠NOM MEN ; (ii )FO FM FN FE ⋅=⋅.FⅡ.(本小题满分6分)选修4-4 坐标系与参数方程已知直线l ⎪⎪⎩⎪⎪⎨⎧+=+=.213,235:t y t x (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρcos 2=.(i )将曲线C 的极坐标方程化为直角坐标方程;(ii )设点M 的直角坐标为)3,5(,直线l 与曲线C 的交点为A ,B ,求||||MB MA ⋅的值. Ⅲ.(本小题满分6分)选修4-5 不等式选讲 设0,0>>b a ,且ba b a 11+=+,证明: (i )2≥+b a ;(ii )22<+a a 与22<+b b 不可能同时成立.17.(本小题满分12分)设ABC ∆的内角C B A ,,的对边分别为c b a ,,,A b a tan =,且B 为钝角. (Ⅰ)证明:2π=-A B ;(Ⅱ) 求C A sin sin +的取值范围.18.(本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(Ⅰ)求顾客抽奖1次能获奖的概率;(Ⅱ)若某顾客有3次抽奖的机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.19. (本小题满分13分) 如图,在四棱台1111D C B A ABCD -的上、下底面分别是边长为3和6的正方形,61=AA ,且⊥1AA 底面ABCD ,点P ,Q 分别在棱1DD ,BC 上. (Ⅰ) 若点P 是1DD 的中点,证明:PQ AB ⊥1;(Ⅱ) 若//PQ 平面11A ABB ,二面角A QD P --的余弦值为73,求四面体ADPQ 的体积.20. (本小题满分13分)已知抛物线1C y x 4:2=的焦点F 也是椭圆2C )0(1:2222>>=+b a bx a y 的一个焦点,1C 与2C 的公共弦长为62. (Ⅰ) 求2C 的方程;(Ⅱ) 过点F 的直线l 与1C 相交于A ,B 两点,与2C 相交于C ,D 两点,且与BD 同向. (i ) 若||||BD AC =,求直线l 的斜率;(ii )设1C 在点A 处的切线与x 轴的交点为M ,证明:直线l 绕点F 旋转时,MFD ∆总是钝角三角形.21. (本小题满分13分)已知0>a ,函数)),0[(sin )(∞+∈=x x e x f ax,记n x 为)(x f 的从小到大的第n *)(N n ∈个极值点. 证明: (Ⅰ) 数列)}({n x f 是等比数列; (Ⅱ) 若112-≥e a ,则对一切*N n ∈,|)(|n n x f x <恒成立.BD1.【解析】由题意得,得2(1)2111i iz i i i--===--++.故选D . 考点:复数的运算.2.【解析】由题意得,A B A A B =⇒⊆,反之,A B A B A =⇒⊆ ,故为充要条件.故选C . 考点:集合的关系.3.【解析】由题意得,输出的S 为数列1(21)(21)n n ⎧⎫⎨⎬-+⎩⎭的前三项和,而1111()(21)(21)22121n n n n =--+-+,所以11(1)22121n n S n n =-=++,从而337S =.故选B . 考点:程序框图,裂项相消求数列的和.4.【解析】如图所示,画出线性约束条件所表示的区域,即可行域,从而可知当2x =-,1y =时,y x z -=3的最小值是7-.故选A .考点:线性规划.5.【解析】试题分析:显然,()f x 定义域为(1,1)-,关于原点对称,又∵()ln(1)ln(1)()f x x x f x -=--+=-,∴()f x 为奇函数,显然()f x 在(0,1)上单调递增.故选A . 考点:函数的性质. 6.【解析】5215(1)r r rrr T C a x -+=-,令1r =,可得530a -=,从而6a =-.故选D .考点:二项式定理.7.【解析】根据正态分布的性质,1(01)(11)0.34132P x P x <<=-<<=.故选C . 考点:正态分布.8.【解析】由题意得AC 为圆的直径,故可设(,)A m n ,(,)B m n --,(,)C x y ,∴(6,)PA PB PC x y ++=-,而22(6)371249x y x -+=-≤,∴||PC PB PA ++的最大值为7.故选B . 考点:圆的9.【解析】向右平移ϕ个单位后,得到)22sin()(ϕ-=x x g ,又∵2|)()(|21=-x g x f ,∴不妨设ππk x 2221+=,ππϕm x 22222+-=-,∴πϕπ)(221m k x x -+-=-,又∵12min 3x x π-=,∴632πϕπϕπ=⇒=-.故选D .考点:三角函数的图象和性质.10.【解析】问题等价于圆锥的内接长方体的体积,如下图所示,则有212x h-=,∴22h x =-, ∴长方体的体积为22(2)(22)x h x x =-4(22)x x x =-3224()3x x x ++-≤3227=,当且仅当2223x x x =-=即时,等号成立, ∴利用率为232162719123ππ=.故选A . 考点:圆锥内接长方体,基本不等式求最值. 11.【解析】⎰=-2)1(dx x 2201|02x x -=.考点:定积分的计算. 12.13.【解析】根据对称性,不妨设(,0)F c ,短轴端点为(0,)b ,从而可知点(,2)c b -在双曲线上,∴222241c b a b -=,从而ce a==.考点:双曲线的标准方程及其性质.14.【解析】等比数列}{n a 中2111S a a q q =+=+,231S q q =++,∴24(1)31q q q +=+++,解得3q =,∴13n n a -=.考点:等比、等比数列的通项公式及其前n 项和.15.【解析】分析题意可知问题等价于方程)(3a xb x ≤=与方程)(2a xb x >=的根的个数为2,俯视图侧视图正视图若两个方程各有一个根:则可知关于b 的不等式组⎪⎪⎩⎪⎪⎨⎧≤->≤a b a b a b 31有解,从而1>a ;若方程)(3a xb x ≤=无解,方程)(2a xb x >=有2个根:则可知关于b 的不等式组⎪⎩⎪⎨⎧>->ab ab 31有解,从而0<a ; 综上,实数a 的取值范围是),1()0,(+∞-∞ . 考点:函数与方程,分类讨论的数学思想.16.Ⅰ.【解析】(i )如图,因为M ,N 分别是两弦AB ,CD 的中点,所以AB OM ⊥, CD ON ⊥,即90=∠=∠ONE OME ,因此180=∠+∠ONE OME ,又四边形的内角和等于360,故 180=∠+∠NOM MEN .(ii ) 由(i )知, O ,M ,E ,N 四点共圆,故由割线定理即得FO FM FN FE ⋅=⋅.17.【解析】(Ⅰ)由A b a tan =及正弦定理,得BAb a A A sin sin cos sin ==,所以A B cos sin =,即)2sin(sin A B +=π. 又B 为钝角,),2(2πππ∈+A ,故A B +=2π,即2π=-A B .(Ⅱ) 由(Ⅰ)知 022)(>-=+-=A B A C ππ, 所以)4,0(π∈A . 于是 )22sin(sin sin sin A A C A -+=+πA A 2cos sin +=.89)41(sin 2sin 21sin 22+--=-+=A A A因为40π<<A ,所以 22sin 0<<A ,因此8989)41(sin 2222≤+--<A . 由此可得C A sin sin +的取值范围是]89,22(. 16.Ⅱ.【解析】 (i )θρcos 2=等价于 θρρcos 22=,将 222y x +=ρ,x=θρcos 代入上式即得曲线C 的直角坐标方程是0222=-+x y x .(ii )将5,12x y t ⎧=⎪⎪⎨⎪=⎪⎩代入0222=-+x y x 得018352=++t t .设这个方程的两个实根16.Ⅲ.【解析】 由abba b a b a +=+=+11,0,0>>b a 得 1=ab (i )由基本不等式及1=ab ,有22=≥+ab b a ,即2≥+b a .(ii ) 设22<+a a 与22<+b b 同时成立,则由22<+a a 及0>a 可得10<<a ,同理10<<b ,从而10<<ab 这与1=ab 相矛盾,故22<+a a 与22<+b b 不可能同时成立.分别为21,t t ,则由参数t 的几何意义知||||MB MA ⋅=.18||21=t t18.【解析】(Ⅰ)记事件1A ={从甲箱中摸出的一个球是红球},2A ={从乙箱中摸出的一个球是红球},1B ={顾客抽奖一次获一等奖},2B ={顾客抽奖一次获二等奖},C ={顾客抽奖一次能获奖}.由题意1A 与2A 相互独立,21A A 与21A A 互斥,1B 与2B 互斥, 且211A A B =,2B =21A A +21A A ,21B B C +=.又因为52104)(1==A P ,21105)(2==A P , 所以512152)()()()(21211=⨯===A P A P A A P B P ,)()()()(212121212A A P A A P A A A A P B P +=+=2121)521()211(52)()()()(2121=⨯-+-⨯=+=A P A P A P A P ,故所求概率为1072151)()()()(2121=+=+=+=B P B P B B P C P .(Ⅱ) 顾客抽奖3次可视为3次独立重复实验. 由(Ⅰ)知,顾客抽奖1次获一等奖的概率为51,所以)51,3(~B X , 于是 )3,2,1,0()54()51()(33===-K C K X P KKK.X 的数学期望为553)(=⨯=X E .19.【解析】 解法一:(Ⅰ)如图,取1AA 的中点R ,连结PR BR ,,因为1AA ,1DD 是梯形D D AA 11的两腰,点P 是1DD 的中点,所以AD PR //, 于是由BC AD //知,BC PR //,所以C B R P ,,,四点共面.由题设知AB BC ⊥,1AA BC ⊥,A AA AB =1 ,所以 ⊥BC 平面11A ABB , 又⊂1AB 平面11A ABB ,因此 1AB BC ⊥.因为11111tan 63tan AB A AA B A AB AR ABR ∠====∠, 所以11AB A ABR ∠=∠,因此901111=∠+∠=∠+∠BAB AB A BAB ABR , 于是 1AB BR ⊥, 又已证得1AB BC ⊥,所以⊥1AB 平面BRPC ,显然有⊂PQ平面BRPC , 故PQ AB ⊥1.(Ⅱ) 如下图,过点P 作1//AA PM 交AD 于点M ,则//PM 平面11A ABB ,D因为⊥1AA 底面ABCD ,所以⊥PM 底面ABCD , 过点M 作QD MN ⊥于点N ,连结PN ,则QD PN ⊥,从而PNM ∠是二面角A QD P --的平面角.所以73cos =∠PNM ,即73=PN MN ,从而340=MN PM . 连结MQ ,由//PQ 平面11A ABB 及//PM 平面11A ABB 知, 平面//PQM 平面11A ABB ,所以AB MQ //,又ABCD 是正方形,所以ABQM 是矩形,故MQ=AB=6. 设MD =t ,则.366222ttMDMQ MD MQ MN +=+⋅=过点1D 作A A E D 11//交AD 于点E ,则E D AA 11是矩形,所以 611==AA E D ,311==D A AE ,因此 3=-=AE AD DE .于是21==DE ED MD PM , 所以t MD PM 22==, 从而tt t MN PM 63623402+⨯==,解得2=t ,所以4=PM . 故四面体ADPQ 的体积 24466213131=⨯⨯⨯⨯=⋅=∆PM S V ADQ .解法二:由题设知AB AD AA ,,1G 两两垂直,以A 为坐标原点,AB ,AD ,1AA 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图,则相关各点的坐标为)0,0,0(A ,)6,0,3(1B ,)0,6,0(D ,)6,3,0(1D ,)0,,6(m Q ,其中m BQ =,60≤≤m .(Ⅰ) 若点P 是1DD 的中点,则)3,29,0(P ,)3,29,6(--=m ,又)6,0,3(1=AB ,于是018181=-=⋅, 所以AB ⊥1,即PQ AB ⊥1.(Ⅱ) 由题设知,)0,6,6(-=m , )6,3,0(1-=DD 是平面PQD 内两个不共线的向量,设),,(1z y x n =是平面PQD 的一个法向量,则 ⎪⎩⎪⎨⎧=⋅=⋅0,0111DD n DQ n即⎩⎨⎧=+-=-+063,0)6(6z y y m x 取6=y ,得)3,6,6(1m n -=. 又平面AQD 的一个法向量是)1,0,0(2=n , 所以 45)6(336)6(3||||,cos 2222212121+-=++-=⋅>=<m m n n n n ,而二面角A QD P --的余弦值为73,所以7345)6(32=+-m ,解得m=4或m=8(舍去),此时)0,4,6(Q .BD再设)10(1≤<=λλDD DP ,而)6,3,0(1-=DD , 由此得到)6,36,0(λλ-P ,)6,23,6(λλ--=PQ .因为//PQ 平面11A ABB ,且平面11A ABB 的一个法向量是)0,1,0(3=n ,所以 0233=-=⋅λn ,32=λ,从而)4,4,0(P . 于是,将四面体ADPQ 视为ADQ ∆为底面的三棱锥ADQ P -,其高4=h ,故四面体ADPQ 的体积 24466213131=⨯⨯⨯⨯=⋅=∆PM S V ADQ .20.【解析】(Ⅰ) 由1C y x 4:2=知其焦点F 的坐标为(0,1),因为F 也是椭圆2C 的一个焦点,所以 122=-b a (1)又1C 与2C 的公共弦长为62,1C 与2C 都关于y 轴对称,且1C 的方程为y x 42=,由此易知1C 与2C 的公共点坐标为)23,6(±,所以164922=+ba (2) 联立(1)、(2)得8,922==b a ,故2C 的方程为18922=+x y . (Ⅱ) 如图,设),(11y x A ,),(22y x B ,),(33y x C ,),(44y x D .(i )因与BD 同向,且||||BD AC =, 所以 BD AC =,从而 2413x x x x -=-, 即4321x x x x -=-,于是43243212214)(4)(x x x x x x x x -+=-+. (3) 设直线l 的斜率为k ,则l 的方程为1+=kx y .由⎩⎨⎧=+=yx kx y 4,12 得0442=--kx x ,而21,x x 是这个方程的两根,所以 4,42121-==+x x k x x (4) 由⎪⎩⎪⎨⎧=++=189,122x y kx y 得06416)89(22=-++kx x k ,而43,x x 是这个方程的两根,所以2212438964,8916k x x k k x x +-=+-=+ (5) 将(4)(5)代入(3)得 22222289644)89(16)1(16k k k k +⨯++=+,即22222)89()1(916)1(16k k k ++⨯=+, 所以 916)89(22⨯=+k ,解得 46±=k ,即直线l 的斜率为46±. (ii )由 y x 42=得 2'x y =,所以1C 在点A 处的切线方程为)(2111x x x y y -=-,即42211x x x y -=,令0=y 得21x x =,即)0,2(1xM , 所以)1,2(1-=x ,而)14,(211-=x x ,2015年湖南省高考理科数学试卷和答案(分开11 / 11 于是014)14(2212121>+=--=⋅x x x , 因此AFM ∠总是锐角,从而AFM MFD ∠-=∠ 180是钝角.故直线l 绕点F 旋转时,MFD ∆总是钝角三角形.21.【解析】(Ⅰ) )cos sin (cos sin )('x x a e x e x ae x f ax ax ax +=+=)sin(12ϕ+⋅+=x e a ax ,其中a 1tan =ϕ,20πϕ<<. 令 0)('=x f ,由0≥x 得 πϕm x =+,即*,N m m x ∈-=ϕπ.对N k ∈,若πϕπ)12(2+<+<k x k ,即ϕπϕπ-+<<-)12(2k x k ,则0)('>x f ;若πϕπ)22()12(+<+<+k x k ,即ϕπϕπ-+<<-+)22()12(k x k ,则0)('<x f . 因此,在区间),)1((ϕππ--m m 与),(πϕπm m -上,)('x f 的符号总相反,于是,当*,N m m x ∈-=ϕπ时,)(x f 取得极值,所以*,N n n x n ∈-=ϕπ.此时,()1()()sin()(1)sin a n n a n n f x e n e πφπφπφϕ-+-=-=-,易知0)(≠n x f , 且2[(1)]11()()(1)sin ()(1)sin n a n a n n a n n f x e e f x e πφππφϕϕ++-++--==--是常数, 故数列)}({n x f 是首项为ϕϕπsin )()(1-=a ex f ,公比为πa e -的等比数列. (Ⅱ) 由(Ⅰ)知,11sin 2+=a ϕ,于是对一切*N n ∈,|)(|n n x f x <恒成立, 即)(211ϕπϕπ-+<-n a e a n 恒成立,等价于)(1)(2ϕπϕπ-<+-n a e a a n a (*)恒成立(因为a >0). 设)0()(>=t t e t g t ,则2(1)'()t e t g t t -=,由'()0g t =得1=t , 当10<<t 时,0)('<t g ,所以)(t g 在)1,0(上单调递减;当1>t 时,0)('>t g ,所以)(t g 在),1(∞+上单调递增.从而当1=t 时,函数)(t g 取得最小值e g =)1(.因此,要使(*)式恒成立,只需e g aa =<+)1(12,即只需112->e a . 而当112-=e a 时,由311tan 2>-==e a ϕ且20πϕ<<知,23πϕπ<<. 于是1322-<<-e πϕπ,且当2≥n 时,12322->>-≥-e n πϕπϕπ, 因此,对一切*N n ∈,112≠--=e n ax n ϕπ,所以a a e g ax g n 1)1()(2+==>,故(*)式也恒成立. 综上所述,若112-≥e a ,则对一切*N n ∈,|)(|n n xf x <恒成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本试题包括选择题,填空题和解答题三部分,共6页,时间120分钟,满分150分. 一.选择题:本大题共10小题,每小题5分,共50分,贼每小题给出的四个选项中,只有一项是复合题目要求的.
1.已知
()2
11i i z
-=+(i 为虚数单位)
,则复数z =( ) A.1i + B.1i - C.1i -+ D.1i --
【答案】D.
考点:复数的计算.
2.设A,B 是两个集合,则”A
B A =”是“A B ⊆”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件 【答案】C. 【解析】
试题分析:由题意得,A
B A A B =⇒⊆,反之,A B A B A =⇒⊆ ,故为充要条件,
选C .
考点:集合的关系.
3.执行如图1所示的程序框图,如果输入3n =,则输出的S =( ) A.
67 B.37 C.89 D.4
9
=
y时,
1
-,故选A. =3的最小值是7
x
y
z-
考点:线性规划.
5.设函数()ln(1)ln(1)f x x x =+--,则()f x 是( )
A.奇函数,且在(0,1)上是增函数
B. 奇函数,且在(0,1)上是减函数
C. 偶函数,且在(0,1)上是增函数
D. 偶函数,且在(0,1)上是减函数 【答案】A. 【解析】
试题分析:显然,)(x f 定义域为)1,1(-,关于原点对称,又∵
)()1ln()1ln()(x f x x x f -=+--=-,∴)(x f
7.在如图2所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()
A.2386
B.2718
C.3413
D.4772
【答案】C.
考点:正态分布.
A.
512π B.3π C.4π D.6
π 【答案】D. 【解析】
试题分析:向右平移ϕ个单位后,得到)22sin()(ϕ-=x x g ,又∵2|)()(|21=-x g x f ,∴不

ππ
k x 22
21+=
,ππ
ϕm x 22
222+-
=-,∴πϕπ
)(2
21m k x x -+-=
-,又∵
12
min
3
x x π
-=


6
3
2
π
ϕπ
ϕπ
=
⇒=
-,故选D.
考点:三角函数的图象和性质.
10.某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=
新工件的体积
原工件的体积
)( )
A.89π
B.169π
【答案】A.
考点:1.圆锥的内接长方体;2.基本不等式求最值.
二、填空题:本大题共5小题,每小题5分,共25分.
11.2
0(1) x dx
⎰-= . 【答案】0.
【解析】
试题分析:
0)2
1()1(22
2
0=-=-⎰x x dx x . 考点:定积分的计算.
12.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图4所示. 若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是 .
【答案】4. 【解析】
试题分析:由茎叶图可知,在区间]151
,139[的人数为20,再由系统抽样的性质可知人数为435
7
20=⨯
人. 考点:1.系统抽样;2.茎叶图.
14,设n S 为等比数列{}n a 的前n 项和,若11a =,且1233,2,S S S 成等差数列,则n a = . 【答案】32+n -.
考点:等差数列的通项公式及其前n 项和.
15,已知32,(),x x a
f x x x a
⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取
值范围
是 .
【答案】),1()0,(+∞-∞ . 【解析】
试题分析:分析题意可知,问题等价于方程)(3a x b x ≤=与方程)(2a x b x >=的根的个数和
为2,
若两个方程各有一个根:则可知关于b 的不等式组⎪⎪


⎪⎨⎧≤->≤a b a b a b 3
1
有解,从而1>a ;
若方程)(3a x b x ≤=无解,方程)(2a x b x >=有2个根:则可知关于b 的不等式组⎪⎩⎪⎨⎧>->a
b a
b 3
1有解,从而
0<a ;,综上,实数a 的取值范围是),1()0,(+∞-∞ .
考点:1.函数与方程;2.分类讨论的数学思想.。

相关文档
最新文档