关于高级初中中学数学网格作图题
中考数学专题《在网格线中作图》
(1)在图1中,画出线段AB的垂直平分线MN;
(2)在图2中,线段CD∥AB,画出线段CD的中点O.
M
利用轴对称
的性质作图
A
A
N B
利用梯形 四点共线作图
C O D B
知识点
01 利用常用技巧作图 02 利用性质作位置关系 03 利用性质作数量关系 04 按要求构造图形
典例精讲
利用性质作位置关系
知识点二
【例2】(2016·T17)如图,六个完全相同的小长方形拼成一个大长方形,AB
是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:
1仅用无刻度直尺,2保留必要的画图痕迹.
(1)在图1中画一个45º角,使点A或点B是这个角的顶点,AB为这个角的一边.
(2)在图2中画出线段AB的垂直平分线.
典例精讲
通过计算面积作图
知识点三
【例3】(2014·T17)已知梯形ABCD,请使用无刻度直尺画一个与梯形ABCD
面积相等的图形.
(1)在图1中,画以CD为边的三角形;
(2)在图2中,画以AB为边的平行四边形.
A
D
A
D
F
EB
C
如图1
如图1,△CDE即为所求;
B
E
C
如图2
如图2,□ABEF即为所求.
完成下列作图.
(1)在图1中,作线段AB∥MN; (2)在图2中,作线段CD⊥MN.
A M
M
CC C
A
NB
N
图1 B
D D D 图2
当堂训练
利用性质作位置关系
知识点二
2.如图,在正三角形网格内,A、B、P、Q均为网格格点,仅用无刻度的直尺
2023年中考数学《网格作图》真题及答案解析
2023中考真题抢先练:数学网格作图1.(2023达州18题)如图,网格中每个小正方形的边长均为1,△ABC 的顶点均在小正方形的格点上.(1)将△ABC 向下平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1;(2)将△ABC 绕点C 顺时针旋转90度得到△A 2B 2C 2,画出△A 2B 2C 2;(3)在(2)的运动过程中请计算出△ABC 扫过的面积.第1题图【推荐区域:安徽陕西】【参考答案】解:(1)如解图,△A 1B 1C 1即为所求;(2)如解图,△A 2B 2C 2即为所求;第1题解图(3)由图可得,△ABC 为等腰直角三角形,∴51222=+==BC AB ,AC =101322=+,∴25552121=´´=×=D BC AB S ABC ,∴△A 1B 1C 1在旋转过程中扫过的面积为2ABCACA S S D +扇形290360p ´=+52=52π+52.反比例与一次函数性质综合题2.(2023自贡24题)如图,点A (2,4)在反比例函数xm y =1图象上,一次函数b kx y +=2的图象经过点A ,分别交x 轴,y 轴于点B ,C ,且△OAC 与△OBC 的面积比为2:1.(1)求反比例函数和一次函数的解析式;(2)请直接写出y 1≥y 2时,x 的取值范围.第2题图【推荐区域:安徽江西甘肃】【参考答案】解:(1)将A (2,4)代入x m y =1中得24m =,解得m =8,∴xy 81=,∵C (0,b ),∴12OAC S OC D =·2=b ,∵△OAC 与△OBC 的面积比为2:1,∴b OB OC S OBC 2121=´=D ,解得OB =1,∴B (-1,0)或(1,0),①将A (2,4),B (-1,0)代入b kx y +=2中,得îíì+-=+=,,b k b k 024解得ïîïíì==,,3434b k ∴34342+=x y ;②将A (2,4),B (1,0)代入b kx y +=2中,得îíì+=+=,,b k b k 024解得îíì-==,,44b k ∴442-=x y ;综上可知,一次函数的解析式为34342+=x y 或442-=x y ;(2)当34342+=x y 时,x ≤-3或0<x ≤2;当442-=x y 时,x ≤-1或0<x ≤2.解直角三角形的实际应用3.(2023达州19题)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱,如图所示,秋千链子的长度为3m ,当摆角∠BOC 恰为26°时,座板离地面的高度BM 为0.9m ,当摆动至最高位置时,摆角∠AOC 为50°,求座板距地面的最大高度为多少m?(结果精确到0.1m ;参考数据:sin 26°=0.44,cos 26°≈0.9,tan 26°≈0.49,sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.2)第3题图【推荐区域:安徽江西河南甘肃】【参考答案】解:如解图,过点B 作BD ⊥ON 于点D ,过点A 作AE ⊥ON 于点E ,作AF ⊥MN于点F,第3题解图∴四边形BDNM,AENF均为矩形,∴BM=DN=0.9,AF=EN,在Rt△OBD中,OD=OB·cos26°=3cos26°,∴ON=OD+DN=3cos26°+0.9,在Rt△OAE中,OE=OA·cos50°=3cos50°,∴EN=ON-OE=3cos26°+0.9-3cos50°,∴AF=3cos26°+0.9-3cos50°≈3×0.9+0.9-3×0.64=1.68≈1.7(m),答:座板距地面的最大高度为1.7m.4.(2023重庆A卷24题)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图:①A—D—C—B;②A—E—B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B的南偏西60°方向.( 1.41≈1.73)(1)求AD的长度;(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?第4题图【推荐区域:安徽江西河南甘肃】【参考答案】解:(1)如解图,过点D作DF⊥AB于点F.第4题解图由题意可知,AB∥CD,BC⊥AB,∴四边形BCDF是矩形,且BC=10,CD=14.∴DF=BC=10,在Rt△ADF中,∠DAF=45°,∴AD≈14(千米),答:AD的长度约为14千米;(2)由题意可知,EA⊥AB,∠ABE=90°-60°=30°,∵AF=DF=10,BF=CD=14,∴AB=AF+BF=10+14=24,∴在Rt△ABE中,AE AB BE=2AE线路①:AD+CD+BC≈38.1(千米),线路②:AE+BE41.52(千米),∵38.1<41.52,∴小明应选择线路①.二次函数的实际应用5.(2023南充23题)某工厂计划从A ,B 两种产品中选择一种生产并销售,每日产销x 件,已知A 产品成本价m 元/件(m 为常数,且4≤m ≤6),售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B 产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y 元,y (元)与每日产销x (件)满足关系式201.080x y +=.(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润;(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.[利润=(售价一成本)×产销数量一专利费]【推荐区域:安徽河北云南江西】【参考答案】解:(1)根据题意,得30)8(1--=x m w ,0≤x ≤500.)01.080()1220(22x x w +--=80801.02-+-=x x ,0≤x ≤300;(2)∵8-m >0,∴1w 随x 的增大而增大,又0≤x ≤500,∴当x =500时,1w 的值最大,39705001+-=m w 最大.1520)400(01.080801.0222+--=-+-=x x x w .∵-0.01<0,对称轴为直线x =400,当0≤x ≤300时,2w 随x 的增大而增大,∴当x =300时,2w 最大=-0.01×(300-400)2+1 520=1 420(元).(3)①若最大1w =最大2w ,即-500m +3970=1420,解得m =5.1;②若最大1w >最大2w ,即-500m +3970>1 420,解得m <5.1;③若最大1w <最大2w ,即-500m +3 970<1420,解得m >5.1.又∵4≤m ≤6,∴综上可得,为获得最大日利润:当m =5.1时,选择A ,B 产品产销均可;当4≤m <5.1时,选择A 种产晶产销;当5.1<m ≤6时,选择B 种产品产销.二次函数性质综合题6.(2023遂宁25题)在平面直角坐标系中,O 为坐标原点,抛物线c bx x y ++=241经过点O (0,0),对称轴过点B (2,0),直线l 过点C (2,-2)且垂直于y 轴.过点B 的直线1l 交抛物线于点M ,N ,交直线l 于点Q ,其中点M ,Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ ,PO ,其中PO 交1l 于点E ,设△OQE 的面积为1S ,△PQE 的面积为2S ,求12S S 的最大值.第6题图【推荐区域:安徽陕西】【参考答案】解:(1)由题意得0b 2124c =ìïïí-=ï´ïî,,解得01c b =ìí=-î,,∴抛物线的解析式为y =214x -x ;(2)如解图,过点M ,Q 作MD ⊥x 轴,QH ⊥x 轴分别于点D ,H ,第6题解图∴DM ∥HQ ,∴△BDM ∽△BHQ ,∴BM BQ =DM HQ ,∴38=2DM ,∴DM =34,∴点M 的纵坐标为-34,代入y =34x 2-x 中,解得x M =1或x M =3,∵点M 在抛物线对称轴的左侧,∴x M =1,∴点M (1,-34),设直线BM 的解析式为y =kx +b 1,将点M (1,-34)和点B (2,0)代入,得113=402k b k b ì-+ïíï=+î,,解得13=432k b ìïïíï=-ïî,,∴直线BM 的解析式为y =2343-x ,联立2143342y x x y x ì=-ïïíï=-ïî,,解得134x y =ìïí=-ïî,或63x y =ìí=î,,∵点N 在对称轴的右侧,∴点N (6,3);(3)由题意可知,点Q 的坐标为(0,-2),设点P (m ,14m 2-m ),由题意得直线y OP =(14m -1)x ,直线l 1的解析式为y BQ =x -2,联立1(1)42y m x y x ì=-ïíï=-î,,∴点E 的横坐标为x E =88m -,∴S 1=21OQ ·x E =21×2×m -88=m-88,S 2=21OQ ·(P E x x -)=21×2(m -m-88)=m m m ---8882,∴22188888S m m m S m ---=-=1812-+-m m =1)4812+--m (,∵81-<0,∴当m =4时,12S S 有最大值,最大值为1,∴12S S 的最大值为1.。
中考数学题型训练网格作图
中考题型训练——网格作图1.(07.云南)(6分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)作出格点△ABC关于直线DE对称的△A1B1C1; (2)作出△A1B1C1绕点B1顺时针方向旋转90°后的△A2B1C2;(3)求△A2B1C2的周长;(第1题) (第2题)2.(06.云南)(7分)在如图的方格纸中,每个小正方形的边长都是1,△ABC与△A1B1C1构成的图形是中心对称图形. (1)画出此中心对称图形的对称中心O; (2)画出将△A1B1C1沿直线DE方向向上平移5格得到的△A2B2C2;(3)要使△A2B 2C2与△CC1C2重合,则△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度?(不要求证明)3.(05.云南)(7分)如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(3)将补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,再向上平移一格,画出这个直角梯形(不要求写作法)(第3题) (第4题) 4.(07.安徽)△ABC和点S在平面直角坐标系中的位置如图所示:(1)将△ABC向右平移4个单位得到△A1B1C1,则点A1 、B1的坐标分别为和 .(2)将△ABC绕点S按顺时针方向旋转90°,画出旋转后的图形.5.(07.江苏)如图,网格中每一个小正方形的边长为1个单位长度.(1)请在所给的网格内画出以线段AB,BC为边的菱形ABCD;(2)填空:菱形ABCD的面积等于.(第5题)(第6题)6.(07.福州)如图的方格纸中,每个小正方形的边长都为1个单位的正方形,在建立平面直角坐标系后, △ABC的顶点均在格点上,点C的坐标为(4,-1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.7.(07.哈尔滨)△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于y轴对称的△A1B1C;(2)将△ABC向下平移3个单位长度,画出平移后的△A2B2C2.(第7题) (第8题)8.(07.辽宁)如图, 在平面直角坐标系中,图错误!与图错误!关于点P成中心对称.(1)画出对称中心P,并写出点P的坐标;(2)将图形\o\ac(○,2)向下平移4个单位,画出平移后的图形错误!,并判断图形错误!与图形错误!的位置关系.(直接写出结果)9.(07.安徽)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);(2)求线段BC的对应线段B′C′所在直线的表达式.(第9题) (第10题)10.(07.长沙)如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作: (1)作出关于直线AB的轴对称图形;(2)将你画出的部分连同原图形绕点O逆时针旋转90°;(3)发挥你的想象,给得到的图案适当涂上阴影,让图案变得更加美丽.11.(07.海南)在如图的方格纸中,△ABC的顶点坐标分别为A(-2,5)、B(-4,1)和C(-1,3).(1)作出△ABC关于x轴对称的△A1B1C1,并写出点A、B、C的对称点A1、B1、C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点A、B、C的对称点A2、B2、C2的坐标;(3)试判断:△A1B1C1与△A2B2C2是否关于y轴对称(只需写出判断结果)(第11题) (第12题)12.(07.青海)如图所示,图错误!和图错误!中的每个小正方形的边长都为1个单位长度.(1)将图错误!中的格点△ABC(顶点都在网格线交点的三角形叫格点三角形)向在平移2个单位长度得到△A1B1C1,请你在图中画出△A1B1C1;(2)在图错误!中画一个与格点△ABC相似的格点△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.13.(07.广西)如图,在正方形网格中,△ABC的三个顶点A、B、C均在格点上,将△ABC向右平移5格,得到△A1B1C1,再将△A1B1C1绕点B1按顺时针方向旋转90°,得到△A2B2C2.(1)请在网格中画出△A1B1C1和△A2B2C2(不要求写画法)(2)画出△A1B1C1和△A2B2C2后,填空:∠C1B1C2= 度,∠A2=度.(第13题)14.(06.成都)如图,在平面直角坐标系中,点B的坐标为(-1,-1).(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1并写出点B1的坐标; (2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3.(第14题)15.(06.广东)如图,图中的小正方形是边长为1的正方形,△ABC与是关于O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与的位似比;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比为1.5;。
中考数学专题复习(三)网格作图题(含答案)
专题复习(三)网格作图题1.拟)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点),按要求画出四边形AB1C1D1和四边形AB2C2D2.(1)以A为旋转中心,将四边形ABCD顺时针旋转90°,得到四边形AB1C1D1;(2)以A为位似中心,将四边形ABCD作位似变换,且放大到原来的两倍,得到四边形AB2C2D2.解:(1)如图,四边形AB1C1D1为所作.(2)如图,四边形AB2C2D2为所作.2.二模)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1,写出B1点的坐标;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,写出B2点的坐标.解:(1)如图所示,△A1B1C1即为△ABC关于x轴对称的图形,B1点的坐标是(1,0).(2)如图所示,△A2B2C2即为△ABC绕原点O按逆时针旋转90°的三角形,B2点的坐标是(0,1).3.模)如图,已知A(2,3),B(1,1),C(4,1)是平面直角坐标系中的三点.(1)请画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移3个单位得到的△A2B2C2;(3)若△ABC中有一点P坐标为(x,y),请直接写出经过以上变换后△A2B2C2中点P的对应点P2的坐标.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)根据题意,可得P的对应点P2的坐标为(-x,y-3).4.拟)如图,在9×7的小正方形网格中,△ABC的顶点A,B,C在网格的格点上.将△ABC向左平移3个单位,再向上平移3个单位得到△A′B′C′.再将△ABC按一定规律依次旋转:第1次,将△ABC绕点B顺时针旋转90°得到△A1BC1;第2次,将△A1BC1绕点A1顺时针旋转90°得到△A1B1C2;第3次,将△A1B1C2绕点C2顺时针旋转90°得到△A2B2C2;第4次,将△A2B2C2绕点B2顺时针旋转90°得到△A3B2C3,依次旋转下去.(1)在网格中画出△A′B′C′和△A2B2C2;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.解:(1)△A′B′C′和△A2B2C2的图象如图所示.(2)通过画图可知,△ABC至少在第8次旋转后得到△A′B′C′.5.如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称;(3)在(1)、(2)中所得到的△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.解:(1)如图所示,△A1B1C1,即为所求.(2)如图所示,△A2B2C2,即为所求.(3)如图所示,△A1B1C1与△A2B2C2成轴对称,直线a,b即为所求.6.级二模)如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A ,B ,C 在小正方形的顶点上.将△ABC 向下平移2个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点C 1顺时针旋转90°得到△A 2B 2C 1.(1)在网格中画出△A 1B 1C 1和△A 2B 2C 1;(2)计算线段AC 在变换到A 2C 1的过程中扫过区域的面积.(重叠部分不重复计算)解:(1)如图,△A 1B 1C 1和△A 2B 2C 1为所作.(2)线段AC 在变换到A 2C 1的过程中扫过区域的面积S =2×2+90·π·(22)2360=4+2π.7.如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1;(2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.解:(1)如图所示.(2)如图所示.(3)找出A 关于x 轴的对称点A′(1,-1),连接BA′,与x 轴交点即为P.如图所示,点P 坐标为(2,0).8.模拟)如图,已知△ABC 的三个顶点的坐标分别为A(3,3),B(-1,0),C(4,0).(1)经过平移,可使△ABC 的顶点A 与坐标原点O 重合,请直接写出此时点C 的对应点C 1坐标;(不必画出平移后的三角形)(2)将△ABC 绕点B 逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;(3)以点A 为位似中心放大△ABC ,得到△AB 2C 2,使放大前后的面积之比为1∶4,请你在网格内画出△AB 2C 2.解:(1)∵经过平移,可使△ABC的顶点A与坐标原点O重合,∴A点向下平移3个单位再向左平移3个单位,故C1坐标为(1,-3).(2)如图所示,△A′BC′即为所求,A′点的坐标为(-4,4).(3)如图所示,△AB2C2即为所示.。
中考数学专题复习网格作图题重点突破练习(三)
1.(1) ;(2)图见解析;取格点 , , , ,连接 , ,它们分别与网格线相交于点 , ,取格点 ,连接 , ,它们相交于点 ,则点 即为所求;取格点 , ,连接 ,与网格线相交于点 ,连接 ,与网格线相交于点 ,则点 即为所求.
【解析】
【分析】
(1)根据勾股定理先求出AB的长,再利用中位线定理可得出DP的长;
【解析】
【分析】
(1)先根据网格确定AB、BC的长,然后根据勾股定理即可解答;
(2)利用格点构造全等三角形CB'=FH=3,EF⊥AC,A'B'=4,从而点E、F、M、N,作直线EF,直线MN,MN与EF交于点A',EF与AC交于点B',连接CA'即可.
【详解】
解:(1)根据网格可知:
AB=4,BC=3,
(2)如图1,设P为AC上任意一点,过点P′作P′C′⊥CB交其延长线与点C′,易得△CDP≌△C′P′D,得出P′C′=CD= ,从而可得出点P′一定在直线l上,再找出点B关于直线l的对称点K,连接DK与l的交点即可点P′,此时 的值最小,因此根据平行四边形的判定与性质以及全等三角形的判定与性质先作出直线l(或在直线l上的线段),利用轴对称的性质可得出点K,进而可得出点 ;利用旋转的性质以及全等三角形的判定与性质在AC上找一点P,使△CDP≌△QKP′,则有DP=KP′=DP′,即可得出点P.
∴AC= =5,
故答案为:5;
(2)取格点E,F,M,N,作直线EF,直线MN,
MN与EF交于点A′,
EF与AC交于点B′,
连接CA′.
△A'B'C即为所求.
【点睛】
本题考查了作图——旋转变换,掌握旋转的性质和全等三角形的判定与性质是解答本题的关键.
几何(网格、尺规)作图+第五章 图形的变换与作图+课件+2025年中考数学一轮总复习第五章
1
②分别以点D,E为圆心,大于 DE长
2
为半径画弧,两弧在∠ABC的内部相
交于点F,作射线BF交AC于点G.则
∠ABG的大小为 35
度.
6.如图,在平面直角坐标系中,若将△ABC绕点C顺
时针旋转90°得到△A1B1C,则点B的对应点B1的坐标
为
(2,-1).
7.如图,在菱形ABCD中,按如下步骤作图:
交线段BO于点D,交BC于点E;
②以点O为圆心,BD长为半径画弧,交
线段OA于点F;
③以点F为圆心,DE长为半径画弧,交前一条弧于点
G,点G与点C在直线AB同侧;
④作直线OG,交AC于点M.
下列结论不一定成立的是(
D )
A.∠AOM=∠B
B.∠OMC+∠C=180°
C.AM=CM
1
D.OM= AB
1
①分别以点C,D为圆心,大于 CD长为半径作弧,两弧交于
2
点M,N;
②作直线MN,且MN恰好经过点A,
与CD交于点E,连接BE.
若AD=4,则BE的长为 2 7
.
8.(2024·龙东)如图,在正方形网格中,每个小正方
形的边长都是1个单位长度,在平面直角坐标系中,
△ABC的三个顶点坐标分别为A(-1,1),B(-2,
若射线AP恰好经过点E,则下列四个结
论:①∠C=30°;②AP垂直平分线段
1
BF;③CE=2BE;④S△BEF= S△ABC.其中
6
正确结论的个数有( D
A.1个 B.2个 C.3个
)
D.4个
5.(2024·甘孜州)如图,在△ABC
中,AB=AC,∠A=40°,按如下步
2024年中考数学复习重难点题型训练—网格作图(含答案解析)
2024年中考数学复习重难点题型训练—网格作图(含答案解析)类型一平移1.如图,在9×7的小正方形网格中,△ABC的顶点A,B,C在网格的格点上.将△ABC 向左平移3个单位,再向上平移3个单位得到△A′B′C′.再将△ABC按一定规律依次旋转:第1次,将△ABC绕点B顺时针旋转90°得到△A1BC1;第2次,将△A1BC1绕点A1顺时针旋转90°得到△A1B1C2;第3次,将△A1B1C2绕点C2顺时针旋转90°得到△A2B2C2;第4次,将△A2B2C2绕点B2顺时针旋转90°得到△A3B2C3,依次旋转下去.(1)在网格中画出△A′B′C′和△A2B2C2;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.【答案】解:(1)△A′B′C′和△A2B2C2的图象如图所示.(2)通过画图可知,△ABC至少在第8次旋转后得到△A′B′C′.2.已知梯形ABCD,请使用无刻度直尺画图.(1)在图①中画一个与梯形ABCD面积相等,且以CD为边的三角形;(2)在图②中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.【解析】(1)如解图①所示,△CDE即为所求.(2)如解图②所示,▱ABFG即为所求.3.如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1;(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2;(3)求△CC1C2的面积.【答案】(1)如图所示:;(2)如图所示:;(3)如图所示:△CC1C2的面积=12×3×6=9.【考点定位】:作图-位似变换;作图-平移变换.属基础题.【试题解析】解:(1)根据平移的性质画出图形即可;(2)根据位似的性质画出图形即可;(3)根据三角形的面积公式求出即可.;△CC1C2的面积=12×3×6=9.【命题意图】本题主要考查位似变换与平移变换,得出变换后的对应点的位置是解题的关键.【方法、技巧、规律】网格问题就是在网格中研究格点问题,这类问题现在在中考中比较常见,成为中考中的热点问题,具有很强的操作性,考查的类型问题有:点与有序数对的一一对应问题、平移问题、旋转问题、轴对称问题、勾股定理问题、分类思想的运用等. 4.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.将△ABC向左平移3个单位长度,再向下平移2个单位长度得到△A1B1C1.(1)写出△ABC的顶点坐标;(2)请在图中画出△A1B1C1.【答案】(1)A(1,0),B(0,-1),C(2,-2);(2)参见解析.【解析】(1)由观察得知:A(1,0),B(0,-1),C(2,-2);(2)将A,B,C三点坐标横坐标分别减3,纵坐标分别减2得A1(-2,-2),B1(-3,-3),C1(-1,-4).三点连线即可.如下图:5.作图题:(1)把△ABC向右平移5个方格;CBA(2)绕点B的对应点顺时针方向旋转90°CBA【答案】见解析【解析】(1)如图所示:(2)如图所示:6.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(-3,4),B(-4,2),C(-2,1),且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A 1B 1C 1,并写出A 1的坐标;(2)P (a ,b )是△ABC 的AC 边上一点,△ABC 经平移后点P 的对称点P′(a+3,b+1),请画出平移后的△A 2B 2C 2.【答案】(1)作图见解析,A 1的坐标是(3,-4);(2)作图见解析.【解析】(1)如图所示:A 1的坐标是(3,-4);(2)△A 2B 2C 2是所求的三角形.类型二旋转7.(2021·湖北黄石·中考真题)如图,ABC 的三个顶点都在方格纸的格点上,其中A 点的坐标是()1,0-,现将ABC 绕A 点按逆时针方向旋转90︒,则旋转后点C 的坐标是()A .()2,3-B .()2,3-C .()2,2-D .()3,2-【答案】B【分析】在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【解析】如图,绘制出CA 绕点A 逆时针旋转90°的图形,由图可得:点C 对应点C '的坐标为(-2,3).故选B .【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.8.如图,已知O 是坐标原点,B 、C 两点的坐标分别为(3,-1),(2,1),将△BOC 绕点O 逆时针旋转90度,得到△B 1OC 1,画出△B 1OC 1,并写出B 、C 两点的对应点B 1、C 1的坐标,【解析】解:如图,△B1OC1为所作,点B1,C1的坐标分别为(1,3),(-1,2).9.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.【答案】(1)E(3,3),F(3,﹣1);(2)答案不唯一,如:(﹣2,0).【解析】(1)∵△AOB绕点A逆时针旋转90°后得到△AEF,∴AO⊥AE,AB⊥AF,BO⊥EF,AO=AE,AB=AF,BO=EF,∴△AEF在图中表示为:∵AO⊥AE,AO=AE,∴点E的坐标是(3,3),∵EF=OB=4,∴点F的坐标是(3,﹣1);(2)∵点F落在x轴的上方,∴EF<AO,又∵EF=OB,∴OB<AO,AO=3,∴OB<3,∴一个符合条件的点B的坐标是:答案不唯一,如:(﹣2,0).10.方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C的坐标为(-3,-1).(1)试作出△ABC以C为旋转中心,沿逆时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.【解析】解:根据旋转中心为点C,旋转方向为逆时针,旋转角度为90°,所作图形如下:.(2)所作图形如下:结合图形可得点C2坐标为(3,1).11.如图,在平面直角坐标系中,有一Rt△ABC,且点A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.(1)旋转中心的坐标是________,旋转角的度数是________.(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°,180°的三角形.(3)设Rt△ABC的两直角边BC=a,AC=b,斜边AB=c,利用变换前后所形成的图案证明勾股定理.【解析】(1)O(0,0),90°.(2)如解图.(3)由旋转可知,四边形CC 1C 2C 3和四边形AA 1A 2B 都是正方形.∵S 正方形CC 1C 2C 3=S 正方形AA 1A 2B +4S △ABC ,∴(a +b)2=c 2+4×12ab ,即a 2+2ab +b 2=c 2+2ab ,∴a 2+b 2=c 2.12.在如图所示的直角坐标系中,解答下列问题:(1)分别写出A 、B 两点的坐标;(2)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△AB 1C 1.【解析】解:(1)由点A 、B 在坐标系中的位置可知:A (2,0),B (-1,-4);(2)如图所示:13.如图,已知△ABC的三个顶点的坐标分别为A(3,3),B(-1,0),C(4,0).(1)经过平移,可使△ABC的顶点A与坐标原点O重合,请直接写出此时点C的对应点C1坐标;(不必画出平移后的三角形)(2)将△ABC绕点B逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;(3)以点A为位似中心放大△ABC,得到△AB2C2,使放大前后的面积之比为1∶4,请你在网格内画出△AB2C2.【答案】解:(1)∵经过平移,可使△ABC的顶点A与坐标原点O重合,∴A点向下平移3个单位再向左平移3个单位,故C1坐标为(1,-3).(2)如图所示,△A′BC′即为所求,A′点的坐标为(-4,4).(3)如图所示,△AB2C2即为所示.14.如图,已知坐标平面内的三个点A(3,5),B(3,1),O(0,0),把△ABO向下平移3个单位,再向右平移2个单位后得到△DEF.(1)直接写出A,B,O三个对应点D、E、F的坐标;(2)画出将△AOB绕O点逆时针方向旋转90∘后得到的△A'OB';(3)求△DEF的面积.【解析】解:(1)点D、E、F的坐标分别为(5,2)、(5,-2)、(2,-3).(2)如图,△A'OB'即为所求作.(3)△DEF的面积=12×4×3=6.15.在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.【解析】解:(1)如图所示;(2)如图所示.16.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)判断△A2B2C2是否可由△AB1C1绕某点M旋转得到;若是,请画出旋转中心M,并直接写出旋转中心M的坐标.【解析】解:(1)如图所示,△AB1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)如图所示,△A2B2C2可由△AB1C1绕点M,顺时针旋转90°得到,其中点M坐标为(0,-1).17.如图,在平面直角坐标系中,点A,B,C的坐标分别为(-1,3),(-4,1),(-2,1),△A1B1C1与△ABC关于原点O成中心对称,△A2B2C2是由△ABC绕着原点O顺时针旋转90°后得到的.(1)画出△A1B1C1,并写出点A的对称点A1的坐标;(2)画出△A2B2C2,并写出点A的对称点A2的坐标;(3)求出点B到达点B2的路径长度.【解析】解:(1)如图,△A1B1C1为所作,A1(1,-3);(2)如图,△A2B2C2为所作,A2(3,1);(3)∵OB=42+12=17,∴B到达点B2的路径长度.18.下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G ,G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G .则将图形1G 绕____点顺时针旋转____度,可以得到图形2G .(2)在图2中分别画出....G 关于y 轴和直线1y x =+的对称图形1G ,2G .将图形1G 绕____点(用坐标表示)顺时针旋转______度,可以得到图形2G .(3)综上,如图3,直线1:22l y x =-+和2:l y x =所夹锐角为α,如果图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕____点(用坐标表示)顺时针旋转_____度(用α表示),可以得到图形2G .【答案】(1)O ,180;(2)图见解析,()0,1,90;(3)22,33⎛⎫ ⎪⎝⎭,2α【分析】(1)根据图形可以直接得到答案;(2)根据题意画出图形,观察图形,利用图形旋转的性质得到结论;(3)从(1)(2)问的结论中得到解题的规律,求出两个函数的交点坐标,即可得出答案.【解析】解:(1)由图象可得,图形1G 与图形2G 关于原点成中心对称,则将图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;故答案为:O ,180;(2)1G ,2G 如图;由图形可得,将图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,故答案为:()0,1,90;(3)∵当G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G 时,1G 与2G 关于原点(0,0)对称,即图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;当G 关于y 轴和直线1y x =+的对称图形1G ,2G 时,图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,点(0,1)为直线1y x =+与y 轴的交点,90度角为直线1y x =+与y 轴夹角的两倍;又∵直线1:22l y x =-+和2:l y x =的交点为22,33⎛⎫ ⎪⎝⎭,夹角为α,∴当直线1:22l y x =-+和2:l y x =所夹锐角为α,图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕22,33⎛⎫ ⎪⎝⎭点(用坐标表示)顺时针旋转2α度(用α表示),可以得到图形2G .故答案为:22,33⎛⎫ ⎪⎝⎭,2α.【点睛】本题主要考查了图形的对称性与旋转的性质,关键在于根据题意正确的画出图形,得出规律.类型三对称19.如图,在边长为1个单位长度的小正方形格中,给出了△ABC(顶点是格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.【答案】(1)如图:△A1B1C1即为所求.(2)如图:△A2B2C2即为所求.20.在如图所示的方格纸中,每个小正方形的边长都是1,△ABC和△A1B1C1成中心对称.(1)请在图中画出对称中心O;(2)在图中画出将△A1B1C1沿直线DE平移5格得到的△A2B2C2;(3)要使△A2B2C2与△CC1C2重合,需将△A2B2C2绕点C2顺时针旋转,则至少要旋转________度.【答案】(1)如图:点O即为所求.(2)如图:△A2B2C2即为所求.(3)9021.如图,在正方形网格中,△ABC 各顶点都在格点上,点A 、C 的坐标分别为(-5,1)、(-1,4),结合所给的平面直角坐标系,解答下列问题:(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△ABC 关于原点O 对称的△A 2B 2C 2;(3)点C 1的坐标是________;点C 2的坐标是________;过C ,C 1,C 2三点的圆的圆弧的长是________(保留π).【答案】(1)如图:△A 1B 1C 1即为所求.(2)如图:△A 2B 2C 2即为所求.(3)(1,4)(1,-4)17π22.(2022年陕西中考)如图,ABC ∆的顶点坐标分别为(2,3)A -,(3,0)B -,(1,1)C --.将ABC ∆平移后得到△A B C ''',且点A 的对应点是(2,3)A ',点B 、C 的对应点分别是B '、C '.(1)点A 、A '之间的距离是;(2)请在图中画出△A B C '''.【解答】解:(1)(2,3)--=。
中考复习数学 网格作图与相关计算问题
网格作图与相关计算问题
D C
A
O
B
O
归纳总结
考题再现
如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平 面直角坐标系△ABC的三个顶点坐标分别为A(1,-1),B(2,-5),C(5,-4), (1)将△ABC先向左平移6个单位,再向上平移4个单位,得到△A1B1C1, 画出两次平移后的△A1B1C1,并写出点A1的坐标; (2)画出△A1B1C1绕点C1顺时针旋转90°后得到△A2B2C1,并写出点A2坐 标; (3)在(2)的条件下,求点A1旋转到点A2的过程中所经过的路径长(结果保 留π).
求点B在旋转过程中所经过的路径长。(结果保留π)
O
x
考题再现
如图,正方形网格中,每个小正方形的边长都是一个单位长 度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为 A(3,1),B(4, 4),C(2, 4). (1)请画出△ABC 向下平移5个单位后得到的△A1B1C1,直 接写出点B1的坐标 (2)请画出△ABC 绕点O逆时针旋转 90°后的△A2B2C2. (3)在(2)的条件下,求点C经过的路径长.(结果保留π).
y
O
x A
C B
考题再现
如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平 面直角坐标系中, △ABC 的三个顶点 A(5,2)、B(5,5)、c(1,1)均在 格点上. (1)将△ABC向左平移5个单位得到△A1B1C1,并写出点A1的坐标; (2)画出△A1B1C1绕点C1顺时针旋转 90°后得到的△A₂B2C2,并写出点 A2的坐标; (3)在(2)的条件下,求△A1B1C1在旋转过程中扫过的面积(结果保留π).
y
C
中考数学尺规作图真题汇编
中考数学之尺规作图真题汇编一、网格纸作图【2019·武汉】如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.【解答】解:(1)如图所示,线段AF即为所求;(2)如图所示,点G即为所求;(3)如图所示,线段EM即为所求.【2019·无锡】按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.【解答】解:(1)如图1,连结AO并延长交圆O于点C,作AC的中垂线交圆于点B,D,四边形ABCD即为所求.(2)①如图2,连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB 于点F,F即为所求②如图3所示,AH即为所求.【2020·安徽】如图1,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网M N在网格线上,格线的交点)为端点的线段AB,线段,()1画出线段AB关于线段MN所在直线对称的线段11A B(点A B分别为,A B的对应点);11()2将线段11B A ,绕点1B ,顺时针旋转90︒得到线段12B A ,画出线段12B A .【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先找出A ,B 两点关于MN 对称的点A 1,B 1,然后连接A 1B 1即可; (2)根据旋转的定义作图可得线段B 1A 2.【详解】(1)如图所示,11A B 即为所作;(2)如图所示,12B A 即为所作.【点睛】本题主要考查作图-旋转与轴对称,解题的关键是掌握旋转变换和轴对称的定义与性质.【2021·荆州】如图,在5×5的正方形网格图形中,小正方形的边长都为1,线段ED 与AD 的端点都在网格小正方形的顶点(称为格点)上.请在网格图形中画图:(1)以线段AD 为边画正方形ABCD ,再以线段DE 为斜边画等腰直角三角形DEF ,其中顶点F在正方形ABCD外;(2)在(1)中所画图形基础上,以点B为其中一个顶点画一个新正方形,使新正方形的面积为正方形ABCD和△DEF面积之和,其它顶点也在格点上.【分析】(1)根据正方形,等腰直角三角形的定义画出图形即可.(2)画出边长为的正方形即可.【解答】解:(1)如图,正方形ABCD,△DEF即为所求.(2)如图,正方形BKFG即为所求.二、角平分线【2021·铜仁】.如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,按下列步骤作图:步骤1:以点A为圆心,小于AC的长为半径作弧分别交AC、AB于点D、E.步骤2:分别以点D、E为圆心,大于DE的长为半径作弧,两弧交于点M.步骤3:作射线AM交BC于点F.则AF的长为()A.6B.3C.4D.6【分析】利用基本作图得到AF平分∠BAC,过F点作FH⊥AB于H,如图,根据角平分线的性质得到FH=FC,再根据勾股定理计算出AC=6,设CF=x,则FH=x,然后利用面积法得到×10•x+×6•x=×6×8,解得x=3,最后利用勾股定理计算AF的长.【解答】解:由作法得AF平分∠BAC,过F点作FH⊥AB于H,如图,∵AF平分∠BAC,FH⊥AB,FC⊥AC,∴FH=FC,在△ABC中,∵∠C=90°,AB=10,BC=8,∴AC==6,设CF=x,则FH=x,∵S△ABF+S△ACF=S△ABC,∴×10•x+×6•x=×6×8,解得x=3,在Rt△ACF中,AF===3.故选:B.三、垂直平分线【2019·泰州】如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.【解答】解:(1)如图直线MN即为所求.(2)∵MN垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∵AD2=AC2+CD2,∴x2=42+(8﹣x)2,解得x=5,∴BD=5.【2021·北部湾】如图,四边形ABCD中,AB//CD,∠B=∠D,连接AC.(1)求证:△ABC≌△CDA;(2)尺规作图:过点C作AB的垂线,垂足为E(不要求写作法,保留作图痕迹);(3)在(2)的条件下,已知四边形ABCD的面积为20,AB=5,求CE的长.【答案】(1)证明:∵AB//CD,∴∠ACD=∠CAB,在△ABC和△CDA中,{∠B=∠D∠CAB=∠ACD AC=CA,∴△ABC≌△CDA(AAS);(2)解:过点C作AB的垂线,垂足为E,如图:(3)解:由(1)知:△ABC≌△CDA,∵四边形ABCD的面积为20,∴S△ABC=S△CDA=10,∴12AB⋅CE=10,∵AB=5,∴CE=4.【2019·盐城】如图,AD是△ABC的角平分线.(1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE、DF,四边形AEDF是形.(直接写出答案)【解答】解:(1)如图,直线EF即为所求.(2)∵AD平分∠ABC,∴∠BAD=∠CAD,∴∠BAD=∠CAD,∵∠AOE=∠AOF=90°,AO=AO,∴△AOE≌△AOF(ASA),∴AE=AF,∵EF垂直平分线段AD,∴EA=ED,F A=FD,∴EA=ED=DF=AF,∴四边形AEDF是菱形.故答案为菱形.四、全等或相似【2019·福建】如图,已知△ABC为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC,S△A'B'C'=4S△ABC;(尺规作图,保留作图痕迹,不写作法)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF∽△D'E'F'.(2)证明(略)【答案】见解析【解析】【2021·贵港】尺规作图(只保留作图痕迹,不要求写出作法).如图,已知△ABC,且AB >AC.(1)在AB边上求作点D,使DB=DC;(2)在AC边上求作点E,使△ADE∽△ACB.CBACBA【分析】(1)作线段BC的垂直平分线交AB于点D,连接CD即可.(2)作∠ADT=∠ACB,射线DT交AC于点E,点E即为所求.【解答】解:(1)如图,点D即为所求.(2)如图,点E即为所求.五、三角形四心(内心、外心、重心、垂心)【2019·陇南】已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.【答案】25π【解析】解:(1)如图⊙O即为所求.(2)设线段BC的垂直平分线交BC于点E.由题意OE=4,BE=EC=3,在Rt△OBE中,OB=√32+42=5,∴S圆O=π•52=25π.故答案为25π.(1)作线段AB,BC的垂直平分线,两线交于点O,以O为圆心,OB为半径作⊙O,⊙O即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.五、其他类型【2021·山西】已知正方形ABCD的边长为4个单位长度,点E是CD的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45°;(2)在图2中,将直线AC向上平移1个单位长度.【分析】(1)根据正方形的性质和旋转的性质即可作出图形;(2)根据平移的性质即可作出图形.【解答】解:(1)如图1,直线l即为所求;(2)如图2中,直线a即为所求.。
云南省中考数学总复习 题型专项(六)网格作图题试题
题型专项(六) 网格作图题网格作图题是对图形变换的综合考查,在网格中可以同时考察平移、旋转、轴对称、中心对称等几种图形变换.此类题目属于图形的操作问题,在网格中进行图形变换的操作时,图形的每一个顶点都是关键点,可以将图形的变换操作转化为点的变换操作.此类题目属中档题,复习时注意练习即可.1.(2016·宁夏)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,-1),B(3,-3),C(0,-4).(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.2.(2015·昆明二模)在如图所示的方格纸中,每个小正方形的边长都是1,△ABC和△A1B1C1成中心对称.(1)请在图中画出对称中心O;(2)在图中画出将△A1B1C1沿直线DE平移5格得到的△A2B2C2;(3)要使△A2B2C2与△CC1C2重合,需将△A2B2C2绕点C2顺时针旋转,则至少要旋转90度.解:(1)如图,点O即为所求.(2)如图,△A2B2C2即为所求.3.(2015·昆明西山区一模)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-4,3),B(-3,1),C(-1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度,再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O中心对称,画出△A2B2C2;(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标(2,1).解:(1)①如图:△A1B1C1即为所求.②如图:△A2B2C2即为所求.4.(2016·昆明模拟)在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A,C两点的坐标;(3)根据(2)的坐标系作出与△ABC 关于原点对称的图形△A 2B 2C 2,并标出B 2,C 2两点的坐标.解:(1)△AB 1C 1如图所示.(2)如图所示,A(0,1),C(-3,1).(3)△A 2B 2C 2如图所示,B 2(3,-5),C 2(3,-1).5.(2016·龙东)如图,在平面直角坐标系中,点A 、B 、C 的坐标分别为(-1,3)、(-4,1)、(-2,1),先将△ABC 沿一确定方向平移得到△A 1B 1C 1,点B 的对应点B 1的坐标是(1,2),再将△A 1B 1C 1绕原点O 顺时针旋转90°得到△A 2B 2C 2,点A 1的对应点为点A 2.(1)画出△A 1B 1C 1; (2)画出△A 2B 2C 2;(3)求出在这两次变换过程中,点A 经过点A 1到达点A 2的路径总长.解:(1)如图,△A 1B 1C 1即为所求. (2)如图,△A 2B 2C 2即为所求. (3)OA 1=42+42=42,点A 经过点A 1到达A 2的路径总长为52+12+90·π·42180=26+22π.6.(2016·昆明模拟)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,请在图中画出△A 2BC 2,并求出线段BC 旋转过程中所扫过的面积(结果保留π).解:(1)如图所示,△A 1B 1C 1即为所求. (2)如图所示,△A 2BC 2即为所示,线段BC 旋转过程中所扫过的面积S =90×13π360=13π4.7.(2015·昆明盘龙区二模)如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 先向左,再向下都平移5个单位长度后得到的△A 1B 1C 1; (2)请画出将△ABC 绕O 按逆时针方向旋转90°后得到的△A 2B 2C 2;(3)在x 轴上求作一点P ,使△PAB 周长最小,请画出△PAB 并直接写出点P 的坐标.解:(1)如图,△A 1B 1C 1即为所求. (2)如图,△A 2B 2C 2即为所求.(3)如图,△PAB 即为所求,P(2,0).8.(2016·云南模拟)图中的小方格都是边长为1的正方形,△ABC 的顶点和O 点都在正方形的顶点上.(1)以点O 为位似中心,在方格图中画出将△ABC 放大为原来的2倍得到的△A ′B ′C ′;(2)△A ′B ′C ′绕点B ′顺时针旋转90°,画出旋转后得到的△A ″B ′C ″,并求边A ′B ′在旋转过程中扫过的图形面积.解:(1)如图,△A ′B ′C ′即为所求. (2)如图,△A ″B ′C ″即为所求. S =90360π(22+42)=14π·20=5π.。
18题格点作图集锦
宁波中考数学近年第18题格点作图题集锦1.(2022·宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.2.(2021·宁波)如图是由边长为1的小正方形构成的6×4的网格,点A,B均在格点上.(1)在图1中画出以AB为边且周长为无理数的▱ABCD,且点C和点D均在格点上(画出一个即可).(2)在图2中画出以AB为对角线的正方形AEBF,且点E和点F均在格点上.3.(2020·宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:4.(2019·宁波).图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形。
(2)使得6个阴影小等边三角形组成一个中心对称图形。
(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)5.(2018·宁波).在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD△AC,其中D是格点;(2)在图2中画出线段BE,使BE△AC,其中E是格点.6.(2017·宁波).在4×4的方格中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.7.(2016·宁波)20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)。
2019-2020年中考数学总复习 题型专项(六)网格作图题试题
2019-2020年中考数学总复习题型专项(六)网格作图题试题网格作图题是对图形变换的综合考查,在网格中可以同时考察平移、旋转、轴对称、中心对称等几种图形变换.此类题目属于图形的操作问题,在网格中进行图形变换的操作时,图形的每一个顶点都是关键点,可以将图形的变换操作转化为点的变换操作.此类题目属中档题,复习时注意练习即可.1.(2016·宁夏)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,-1),B(3,-3),C(0,-4).(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.2.(2015·昆明二模)在如图所示的方格纸中,每个小正方形的边长都是1,△ABC和△A1B1C1成中心对称.(1)请在图中画出对称中心O;(2)在图中画出将△A1B1C1沿直线DE平移5格得到的△A2B2C2;(3)要使△A2B2C2与△CC1C2重合,需将△A2B2C2绕点C2顺时针旋转,则至少要旋转90度.解:(1)如图,点O即为所求.(2)如图,△A2B2C2即为所求.3.(2015·昆明西山区一模)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-4,3),B(-3,1),C(-1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度,再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O中心对称,画出△A2B2C2;(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标(2,1).解:(1)①如图:△A1B1C1即为所求.②如图:△A2B2C2即为所求.4.(2016·昆明模拟)在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A,C两点的坐标;(3)根据(2)的坐标系作出与△ABC 关于原点对称的图形△A 2B 2C 2,并标出B 2,C 2两点的坐标.解:(1)△AB 1C 1如图所示.(2)如图所示,A(0,1),C(-3,1).(3)△A 2B 2C 2如图所示,B 2(3,-5),C 2(3,-1).5.(2016·龙东)如图,在平面直角坐标系中,点A 、B 、C 的坐标分别为(-1,3)、(-4,1)、(-2,1),先将△ABC 沿一确定方向平移得到△A 1B 1C 1,点B 的对应点B 1的坐标是(1,2),再将△A 1B 1C 1绕原点O 顺时针旋转90°得到△A 2B 2C 2,点A 1的对应点为点A 2.(1)画出△A 1B 1C 1;(2)画出△A 2B 2C 2;(3)求出在这两次变换过程中,点A 经过点A 1到达点A 2的路径总长.解:(1)如图,△A 1B 1C 1即为所求.(2)如图,△A 2B 2C 2即为所求.(3)OA 1=42+42=42,点A 经过点A 1到达A 2的路径总长为52+12+90·π·42180=26+22π. 6.(2016·昆明模拟)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,请在图中画出△A 2BC 2,并求出线段BC 旋转过程中所扫过的面积(结果保留π).解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2BC 2即为所示, 线段BC 旋转过程中所扫过的面积S =90×13π360=13π4. 7.(2015·昆明盘龙区二模)如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 先向左,再向下都平移5个单位长度后得到的△A 1B 1C 1;(2)请画出将△ABC 绕O 按逆时针方向旋转90°后得到的△A 2B 2C 2;(3)在x 轴上求作一点P ,使△PAB 周长最小,请画出△PAB 并直接写出点P 的坐标.解:(1)如图,△A 1B 1C 1即为所求.(2)如图,△A 2B 2C 2即为所求.(3)如图,△PAB 即为所求,P(2,0).8.(2016·云南模拟)图中的小方格都是边长为1的正方形,△ABC 的顶点和O 点都在正方形的顶点上.(1)以点O 为位似中心,在方格图中画出将△ABC 放大为原来的2倍得到的△A ′B ′C ′;(2)△A ′B ′C ′绕点B ′顺时针旋转90°,画出旋转后得到的△A ″B ′C ″,并求边A ′B ′在旋转过程中扫过的图形面积.解:(1)如图,△A ′B ′C ′即为所求.(2)如图,△A ″B ′C ″即为所求.S =90360π(22+42)=14π·20=5π.。
专题02 网格类作图题中考题型训练(解析版)
专题2 网格类作图题中考题型训练1.(2022•荆州)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【分析】(1)根据全等三角形的判定画出图形即可;(2)根据菱形的定义画出图形即可.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.2.(2022•宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.【分析】(1)结合等腰三角形的性质,找出点C的位置,再连线即可.(2)结合菱形的性质,找出点D,E的位置,再连线即可.【解答】解:(1)如图所示:(答案不唯一).(2)如图所示:3.(2022•丽水)如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.【分析】(1)把点B、A向右作平移1个单位得到CD;(2)作A点关于BC的对称点D即可;(3)延长CB到D使CD=2CB,延长CA到E点使CE=2CA,则△EDC满足条件.【解答】解:(1)如图1,CD为所作;(2)如图2,(3)如图3,△EDC为所作.4.(2022•衢州)如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2)利用矩形的对角线互相平分解决问题即可.【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).5.(2022•长春)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是 直角三角形 ;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2)根据全等三角形的判定,作出图形即可;(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.6.(2022•湖北)已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【分析】(1)如图1中,连接AC,BD交于点O,作直线OE即可;(2)如图2中,同法作出点O,连接BE交AC于点T,连接DT,延长TD交AB于点R,作直线OR即可.【解答】解:(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;7.(2022•江西)如图是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作∠ABC的角平分线;(2)在图2中过点C作一条直线l,使点A,B到直线l的距离相等.【分析】(1)连接AC,取AC的中点P,作射线BP即可;(2)利用数形结合的射线画出图形即可.【解答】解:(1)如图1中,射线BP即为所求;(2)如图2中,直线l或直线l′即为所求.8.(2023•锡山区校级模拟)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上.(Ⅰ)线段AC的长等于 ;(Ⅱ)以AB为直径的半圆的圆心为O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P.【分析】(Ⅰ)利用勾股定理求解即可;(Ⅱ)①取BC与网格线的交点D,②连接OD延长OD交⊙O于点E,③连接AE交BC于点G,④连接BE,延长AC交BE的延长线于F,⑤连接FG延长FG交AB于点P,点P即为所求.【解答】解:(Ⅰ)AC==.故答案为:;(Ⅱ)如图,①取BC与网格线的交点D,②连接OD延长OD交⊙O于点E,③连接AE交BC于点G,④连接BE,延长AC交BE的延长线于F,⑤连接FG延长FG交AB于点P,点P即为所求.9.(2023•鄞州区校级一模)如图,在6×6的方格纸中,每个小正方形的边长为1,点A,B均在格点上,在图1和图2中分别画出一个以点A,B为顶点且另两个顶点均在格点上的正方形,并分别求出其周长.【分析】分别根据“四条边相等且四个角相等的四边形是正方形”,“对角线互相垂直平分且相等的四边形是正方形“作图.【解答】解:如下图:正方形ABCD,正方形ACBD即为所求.10.(2023•衢州模拟)如图在7×7的方格中,有两个格点A、B.请用无刻度的直尺按要求画图.(1)在图1中画线段AB中点C;(2)在图2中在线段AB上找一点D,使AD:DB=1:2.【分析】(1)取格点E,F,连接EF交AB于点C,点C即为所求;(2)取格点J,K,连接JK交AB于点D,点D即为所求.【解答】解:(1)如图,点C即为所求;(2)如图,点D即为所求.理由:∵AJ∥BK,∴△ADJ∽△BDK,∴==.11.(2023•宁波模拟)作图题(1)填空:如果长方形的长为3,宽为2,那么对角线的长为 .(2)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点(端点),分别按下列要求画图(不要求写画法和证明,但要标注顶点).①在图1中,画一个面积为4的菱形,且邻边不垂直.②在图2中,画平行四边形ABCD,使∠A=45°,且面积为6.【分析】(1)根据勾股定理即可得到答案;(2)①根据正方形的性质得到MP和NQ互相平分,MP⊥NQ,则四边形MNPQ是菱形,再用勾股定理和菱形面积等于对角线乘积的一半,即可验证满足题意;②利用网格的特点构造一条边长为3,此边上的高为2,∠BAD=45°的平行四边形即可.【解答】JIE:(1)∵长方形的长为3,宽为2,∴对角线的长为=,故答案为:;(2)①如图,四边形MNPQ即为所求的菱形,由网格知,MP和NQ互相平分,∴四边形MNPQ是平行四边形,∵MP⊥NQ,∴四边形MNPQ是菱形,∵,NQ==,∴菱形MNPQ的面积是MP×NQ=×4×=4,故菱形MNPQ满足题意;②如图2,平行四边形ABCD满足题意,由图可知,AB ∥CD ,AB =CD =3,∴四边形ABCD 是平行四边形,则平行四边形ABCD 的面积=AB •DH =3×2=6,∵∠BAD =45°,∴平行四边形ABCD 满足题意.12.(2023•杨浦区一模)新定义:由边长为1的小正方形构成的网格图形中,每个小正方形的顶点称为格点.如图,已知在5×5的网格图形中,△ABC 的顶点A 、B 、C 都在格点上.请按要求完成下列问题:(1)S △ABC = 4 ;sin ∠ABC = ;(2)请仅用无刻度的直尺在线段AB 上求作一点P ,使S △ACP =S △ABC .(不要求写作法,但保留作图痕迹,写出结论)【分析】(1)由正方形面积减去三个直角三角形面积可求S △ABC ,过A 作AD ⊥BC 于D ,用面积法可求AD 的长,在Rt △ABD 中可得sin ∠ABC ;(2)取格点E ,F ,连接EF 交AB 于P ,由AE =BF 可知AP =BP ,从而AP =AB ,即可得S △ACP=S △ABC ,故P 是满足条件的点.【解答】解:(1)由图可得:S △ABC =3×3﹣×1×3﹣×3×1﹣×2×2=4,过A 作AD ⊥BC 于D ,如图:∵וAD=4,∴AD=,∴sin∠ABC===,故答案为:4,;(2)如图:点P即为所求点.13.(2023•武汉模拟)如图是由小正方形组成的7×6网格,每个小正方形的顶点叫做格点.仅用无刻度的直尺在给定网格中完成画图.(1)在图(1)中,A,B,C三点是格点,画经过这三点的圆的圆心O,并在该圆上画点D,使AD=BC;(2)在图(2)中,A,E,F三点是格点,⊙I经过点A.先过点F画AE的平行线交⊙I于M,N两点,再画弦MN的中点G.【分析】(1)根据90°的圆周角所对的弦是直径;(2)根据网格线的特征或平行线,再根据平行弦所夹的弧相等,再根据等腰梯形的性质作图.【解答】解:如下图:(1)点D,O即为所求;(2)线段MN,点G即为所求.14.(2023•乌鲁木齐一模)请仅用无刻度的直尺在网格中完成下列作图,保留作图痕迹,不写作法.(1)图①是由边长为1的小等边三角形构成的网格,△ABC为格点三角形.在图①中,画出△ABC 中AB边上的中线CM;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.【分析】(1)作出AB的中点M,连接CM即可;(2)连接AC,BD交于点O,延长BA交CD的延长线于点S,作直线SO即可.【解答】解:(1)如图1中,线段CM即为所求.(2)如图2中,直线n即为所求.15.(2023•靖江市校级模拟)如图是由小正方形组成的9×7网格,每个小正方形的顶点叫做格点,A,B,C三个格点都在圆上.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)画出该圆的圆心O,并画出劣弧的中点D;(2)画出格点E,使EA为⊙O的一条切线,并画出过点E的另一条切线EF,切点为F.【分析】(1)连接AC,AC的中点O即为所,取格点M,N,连接MN交格线于等J,连接OJ,延长OJ 交⊙O于点D,点D即为所求;(2)取格点E,作直线AE即可,取格点P,Q交格线于点K,连接AK交⊙O于点F,作直线EF,直线EF即为所求.【解答】解:(1)如图,点O,点D即为所求;(2)如图,直线AE,EF即为所求.16.(2023•九台区模拟)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C均在格点上.只用无刻度的直尺,在给定的网格中,按照要求作图(保留作图痕迹).(1)在图①中作△ABC的中线BD.(2)在图②中作△ABC的高BE.(3)在图③中作△ABC的角平分线BF.【分析】(1)利用网格特征作出AC的中点D,连接BD即可;(2)取格点T,连接BT交AC于点E,线段BE即为所求;(3)取格点W,连接BW交AC于点F,线段BF即为所求.【解答】解:(1)如图①中,线段BD即为所求;(2)如图②中,线段BE即为所求;(3)如图③中,线段BF即为所求.17.(2023•迁安市模拟)如图是由边长为1的小正方形组成的网格,△ABC的顶点均在格点上.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示,画图结果用实线表示.(1)在图(1)中画△ABC的高CH;(2)在图(1)的线段AC上画一点D,使得S△ABD :S△CBD=2:3;(3)在图(2)中C点的右侧画一点F,使∠FCA=∠BCA且CF=2.【分析】(1)取格点P,连接CP交AB于点H,线段CH即为所求作.(2)取格点M,N,连接MN交AC于点D,点D即为所求作.(3)取格线的中点R,连接CR,取格点K,格线的中点J,连接KJ交CR于点F,线段CF即为所求作.【解答】解:(1)如图1中,线段CH即为所求作.(2)如图2中,点D即为所求作.(3)如图2中,线段CF即为所求作.18.(2022•碧江区校级一模)操作理解,解答问题.(1)如图1:已知△ABC,AB=AC,直线CD∥AB;①完成作图:以点A为圆心,AB长为半径画弧,交直线CD于点P,连接PB.②试判断①中∠ABP与∠BAC的数量关系,并证明你的结论.(2)如图2:已知△ABC是格点三角形,点C在直线n上,且n∥AB;在直线n上画出点P,连接PB,使得∠PBA=∠CAB.(不用尺规作图)【分析】(1)①根据要求作出图形即可;②结论:∠APB=∠BAC.利用平行线的性质,圆周角定理证明即可.【解答】解:(1)①图形如图所示:②结论:∠APB=∠BAC.理由:∵CP∥AB,∴∠ABP=∠BPC,∵AB=AC=AP,∴∠BPC=∠BAC,∴∠ABP=∠BAC.(2)如图2中,∠APB=∠CAB.19.(2022•丽水模拟)图1,图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出一个以AC为底边的等腰△ABC,使点B落在格点上.(2)在图2中画出一个以AC为对角线且面积为6的格点矩形ABCD(顶点均在格点上).【分析】(1)根据等腰直角三角形的判定与性质,结合网格特点作图即可得;(2)根据矩形的判定与性质,结合网格特点作图即可得.【解答】解:(1)如图所示,等腰△ABC即为所求;(2)如图所示,矩形ABCD即为所求.20.(2022•婺城区校级模拟)如图,在4×4的方格中,点A,B,C为格点,利用无刻度的直尺画出满足以下条件的图形(保留必要的辅助线).(1)在图1中画△ABC的中线BE.(2)在图2中标注△ABC的外心O并画出其外接圆的切线CP.【分析】(1)根据中线的定义作图;(2)根据三角形的外心的定义和切线的判定定理作图.【解答】解:(1)如图所示,BE即为所求的△ABC的中线;(2)如图所示,点O即为所求的△ABC的外心,PC即为所求的外接圆的切线.21.(2022•海陵区校级三模)如图(1)(2),在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均落在格点上,以AB为直径的半圆的圆心为O,请用无刻度的直尺,在如图(1)图(2)所示的网格中,在半圆O上画出点P,连接AP,使AP平分∠CAB.【分析】如图(1)中,取格点T,连接OT交⊙O于点P,连接AP,点P即为所求.如图(2)中取BC 的中点J,连接OJ,延长OJ交⊙O于点P,连接AP,点P即为所求.【解答】解:如图(1)(2)中,点P即为所求.22.(2022•吉安模拟)如图,在正方形网格中,△ABC的顶点在格点(网格线的交点)上,请仅用无刻度直尺完成以下作图.(保留作图痕迹)(1)在图1中作△ABC的重心.(2)在图2中作∠AGB=∠ACB,且G是格点.【分析】(1)根据重心是三角形的中线的交点,画出图形即可;(2)利用圆周角定理,画出图形即可.【解答】解:(1)如图1,点D即为所求作的的;(2)如图2,∠AG1B,∠AG2B,∠AG3B,∠AG4B即为所求作.23.(2022•绿园区校级模拟)如图①,②,③中每个小正方形的边长均为1.△ABC的顶点A,B均落在小正方形的顶点上,点C在小正方形的边上,以AC为直径的半圆的圆心为O.请用无刻度的直尺按要求画图.(1)如图①,在半圆上确定点D,使OD∥AB.(2)如图②,在线段AB的延长线上确定点E,使AE=AC.(3)如图③,在线段AC上确定点F,使AF=AB.【分析】(1)取B长度中点D,连接OD即可;(2)延长OD交⊙O于点J,连接CJ,延长CJ交AB的延长线于点E,点E即为所求;(3)在图②的基础上,连接AJ交BC于点K,连接EK,延长EK交AC于点F,点F即为所求.【解答】解:(1)如图①中,点D即为所求;(2)如图②中,点E 即为所求;(3)如图③中,点F 即为所求.24.(2022•南关区校级模拟)图①、图②、图③均是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,ABC 的顶点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求作图.(不写作法,保留画图痕迹)(1)在图①中,在BC 上画一点D ,使S △ABD =S △ACD .(2)在图②中,在BC 上画一点E ,使S △ABE :S △ACE =2:3.(3)在图③中,在ABC 内画一点F ,使S △ACF :S △ABF :S △BCF =2:3:3.【分析】(1)取BC 的中点D 即可;(2)取格点M ,N ,连接MN 交BC 于点E ,点E 即为所求;(3)利用数形结合的思想,判断出点F 到AC 的距离为1,到AB 的距离为,取格点P ,Q ,连接PQ 交直线m 于点F ,点F 即为所求.【解答】解:(1)在图①中,点D 即为所求;(2)在图②中,点E 即为所求;(3)在图③中,点F 即为所求.25.(2022•长春模拟)图①、图②分别是10×8的网格,网格中每个小正方形的边长均为1,A、B两点在小正方形的格点上,请在图①、图②中各取一点(点C必须在小正方形的格点上),使以A、B、C为顶点的三角形分别满足下列要求.(1)在图①中画一个△ABC,使∠ACB=90°,面积为5;(2)在图②中画一个△ABC,使BA=BC,∠ABC为钝角,并求△ABC的周长.【分析】(1)根据要求作出图形即可;(2)利用数形结合的思想作出图形,利用勾股定理求出AC,可得结论.【解答】解:(1)如图①中,△ABC即为所求;(2)如图②中,△ABC即为所求.∵AB=BC=5,AC==4,∴△ABC的周长为10+4.26.(2022•二道区校级二模)图①、图②、图③均是6×6的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB、EF、MN的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求画图.(1)在图①中,画∠ADB=45°;(2)在图②中,画∠APB=45°,且点P在线段EF上;(3)在图③中,画∠AQB=45°,且点Q在线段MN上.【分析】(1)构造等腰直角三角形,可得结论;(2)构造等腰直角三角形,可得结论;(3)取格点R,T,连接RT交MN于点Q,连接QB,QA,点Q即为所求.【解答】解:(1)如图①中,点D即为所求;(2)如图②中,点P即为所求;(3)如图③中,点Q即为所求.27.(2022•香坊区校级三模)如图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以AC为底边的等腰直角三角形ABC,点B在小正方顶点上;(2)在图2中画出以AC为腰的等腰三角形ACD,点D在小正方形的顶点上,且△ACD的面积为8,并直接写出tan A的值.【分析】(1)根据等腰直角三角形的定义画出图形即可;(2)利用数形结合的思想作出图形即可.【解答】解:(1)如图1中,△ABC即为所求;(2)如图2中,△ADC即为所求,tan A==2.28.(2022•瑞安市校级三模)如图是由边长为1的小正六边形构成的网格图,网格上的点称为格点.已知格点线段AB,利用网格图,仅用无刻度的直尺来完成下面几何作图.(1)请在图①中作一个格点等腰三角形△ABC;(2)请在图②在线段AB上求作点P,使得AP:BP=3:4.(要求:不写作法但保留作图痕迹)【分析】(1)画出如图中所示的线段AC,再连接BC即可;(2)如图②,作△ADP∽△BCP即可得出结论.【解答】解:(1)如图所示,△ABC即为所求作的等腰三角形:(2)如图②,点P即为所求作;29.(2022•江夏区模拟)用无刻度直尺作图:(1)如图1,在AB上作点E,使∠ACE=45°;(2)如图1,点F为AC与网格的交点,在AB上作点D,使∠ADF=∠ACB;(3)如图2,在AB上作点N,使=.(4)如图2,在AB上作点M,使∠ACM=∠ABC.【分析】(1)取格点Q,连接CQ交AB于点E,点E即为所求;(2)取AQ是中点P,连接FP交AB于点D,点D即为所求;(3)利用网格特征作出点N即可;(4)把∠ABC考查45°+∠CBK,∠ACE=45°,∠ECF=∠CBK,可得结论.【解答】解:(1)如图1中,点E即为所求;(2)如图1中,点D即为所求;(3)如图2中,点N即为所求;(4)如图2中,点M即为所求.30.(2022•阿城区模拟)如图,在每个小正方形的边长均为1的方格纸中,线段AB和线段DE,点A、B、D、E均在小正方形的顶点上.(1)在方格纸中画出以AB为底边的等腰三角形ABC,使△ABC的面积为10,点C在小正方形的顶点上,直接写出tan∠ABC的值;(2)在方格纸中画出钝角三角形DEF,使∠DEF=45°,点F在小正方形的顶点上.【分析】(1)利用数形结合的思想画出图形即可;(2)根据要求作出图形即可.【解答】解:(1)如图,△ABC即为所求,tan∠ABC=2;(2)如图,△DEF即为所求.31.(2022•长春模拟)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求作图,所画图形的顶点均在格点上.(1)在图①中,画等腰三角形ABC,使其面积为3.(2)在图②中,画等腰直角三角形ABD,使其面积为5.(3)在图③中,画平行四边形ABEF,使其面积为9.【分析】(1)根据等腰三角形的定义,利用数形结合的思想解决问题即可;(2)作一个腰为的等腰直角三角形即可;(3)根据平行四边形的判定,利用数形结合的思想解决问题.【解答】解:(1)如图①中,△ABC即为所求;(2)如图②中,△ABD即为所求;(3)如图③中,平行四边形ABEF即为所求.32.(2022•朝阳区校级模拟)如图在8×8的网格中,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,用无刻度的直尺在网格中完成下列画图,保留必要的作图痕迹,不要求说明理由.(1)如图1,过点A作线段AF,使AF∥DC,且AF=DC.(2)如图2,在四边形ABCD边上求作一点E,使点E与四边形ABCD某一顶点连线,能把该四边形分成的两部分恰好拼成一个无缝隙、不重叠的三角形.(画一个即可)(3)如图3,在边AB上求作一点G,使∠AGD=∠BGC.【分析】(1)根据要求作出图形即可;(2)取CD的中点E,连接AE即可;(3)取格点T,连接CT交AB于点G,连接DG,点G即为所求.【解答】解:(1)如图,线段AF即为所求;(2)如图,点E即为所求(答案不唯一);(3)如图,点G即为所求.。
专题4 网格作图题(人教版含答案)
网格作图题网格作图题是对图形变换的综合考查,在网格中可以同时考察平移、旋转、轴对称、中心对称等几种图形变换.此类题目属于图形的操作问题,在网格中进行图形变换的操作时,图形的每一个顶点都是关键点,可以将图形的变换操作转化为点的变换操作.此类题目属中档题,复习时注意联系即可.1.(2015·安徽)如图,在边长为1个单位长度的小正方形格中,给出了△ABC(顶点是格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.2.(2015·昆明二模)在如图所示的方格纸中,每个小正方形的边长都是1,△ABC和△A1B1C1成中心对称.(1)请在图中画出对称中心O;(2)在图中画出将△A1B1C1沿直线DE平移5格得到的△A2B2C2;(3)要使△A2B2C2与△CC1C2重合,需将△A2B2C2绕点C2顺时针旋转,则至少要旋转________度.3.(2015·昆明西山区一模)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-4,3),B(-3,1),C(-1,3).(1)请按下列要求画图;①将△ABC先向右平移4个单位长度,再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O中心对称,画出△A2B2C2.在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标________.4.(2015·贵港)如图,已知△ABC三个顶点的坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.5.(2015·崇左)如图,△A1B1C1是△ABC向右平移4个单位长度得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC,并写出点A,B,C的坐标;(2)求出△AOA1的面积.6.(2015·昆明盘龙区二模)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC先向左,再向下都平移5个单位长度后得到的△A1B1C1;(2)请画出将△ABC绕O按逆时针方向旋转90°后得到的△A2B2C2;(3)在x轴上求作一点P,使△PAB周长最小,请画出△PAB并直接写出点P的坐标.7.(2013·海南)如图,在正方形网格中,△ABC各顶点都在格点上,点A、C的坐标分别为(-5,1)、(-1,4),结合所给的平面直角坐标系,解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O对称的△A2B2C2;(3)点C1的坐标是________;点C2的坐标是________;过C,C1,C2三点的圆的圆弧的长是________(保留π).8.(2015·南宁)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).参考答案1.(1)如图:△A1B1C1即为所求.(2)如图:△A2B2C2即为所求.2.(1)如图:点O即为所求.(2)如图:△A2B2C2即为所求.(3)903.(1)①如图:△A 1B 1C 1即为所求.②如图:△A 2B 2C 2即为所求.(2)(2,1)4.(1)①如图:△A 1B 1C 1,即为所求;②如图:△A 2B 2C 2如图所示.(2)(-1,-4).5.(1)如图:△ABC 即为所求.A(-3,1),B(0,2),C(-1,4). (2)连接OA ,OA 1,AA 1即得△AOA 1,图略.S △AOA 1=12×4×1=2.6.(1)如图:△A 1B 1C 1即为所求. (2)如图:△A 2B 2C 2即为所求. (3)如图:△PAB 即为所求,P(2,0).7.(1)如图:△A 1B 1C 1即为所求.(2)如图:△A 2B 2C 2即为所求. (3)(1,4) (1,-4) 17π8.(1)如图:△A 1B 1C 1即为所求.(2)如图:△A 2BC 2即为所求.S =134π.。
专题8.3创新作图---在网格线中作图-中考数学二轮复习必会几何模型剖析(全国通用)
两点确定一条直线
②画线:_________________________________________;
按要求构造三角形、四边形等
③构图:_________________________________________.
创新作图的常用的作图技巧有:
目录
01
利用平移作平行线
02
利用旋转作垂线
知识要点
【例2-1】如图,在5×7的正方形网格中,△ABC是格点三角形,请
仅用无刻度直尺完成以下作图.
(1)在图1中作出△ABC中AB边上的高;
(2)在图2中作出△ABC的重心
A
E
C
B
图1 ∴CE即为所求
A
F
C
B
图2 ∴点F即为所求
典例精讲
利用旋转作垂线
考点4-2
【例2-2】如图所示的是六个完全相同的小长方形拼成的一个大
04
利用相似等分线段
精讲精练
典例精讲
利用轴对称找最值
考点4-3
【例3-1】如图,在正方形网格中,△ABC的三个顶点在格点上.请
仅用无刻度的直尺按下列要求画图.
(1)在图1中,画出△ABC边AB上的高CD;
(2)在图2中,已知△ABC内部的点P也在格点上,点M,N分别在边AC,
BC上,请画出周长最小的△PMN.
∴EG即为所求
配套训练
在网格线中作图
查漏补缺
4.如图,在6×6的正方形网格中,等腰△ABC的顶点A,B在格点上,
顶角∠A=36º,请仅用无刻度直尺完成以下作图.
(1)在图1中,作△ABC的中线CD;
(2)在图2中,作△ABC的角平分线BE.
A
中考数学 中档题突破 专项训练六 网格作图
7.(2021·滨海一模)以下各图均是由边长为 1 的小正方形组成的网格, 图中的点 A,B,C,D 均在格点上. (1)在图①中,PC∶PB=____; (2)利用网格和无刻度的直尺作图,保留痕迹,不写作法. ①如图②,在 AB 上找一点 P,使 AP=3; ②如图③,在 BD 上找一点 P,使△APB∽△CPD.
2.(2020·双流区期末)如图①、图②都是由边长为 1 的小菱形构成的网 格,每个小菱形的顶点称为格点.已知点 O,M,N,A,B 均在格点上, 请按要求完成下列问题: (1)在图①中,仅用无刻度直尺在网格中画出∠MON 的平分线 OP,并简要 说明画图的依据; (2)在图②中,仅用无刻度直 尺在网格中画一个 Rt△ABC, 使点 C 在格点上,并简要说 明画图的依据.
4+2 13
10
3+ 73
49 5
解:如图,四边形即为 所求.
4.(2020·自贡期末)如图,正方形网格中的每个小正方形的边长都是 1, 每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形: (1)在图①中,画一个直角三角形,使它的三边长都是有理数; (2)在图②中,画一个等腰直角三角形,使它的三边长都是无理数; (3)在图③中,画一个正方形,Байду номын сангаас它的面积是 8. 解:如图所
3.(2020·广安)如图,将等腰三角形纸片 ABC 沿底边 BC 上的高 AD 剪成 两个三角形,AB=5 个单位长度,BC=6 个单位长度.用这两个三角形来 拼成四边形,请在下列网格中画出你拼成的四边形(每个小正方形的边长 均为 1 个单位长度,所画四边形全等视为同一种情况),并直接在对应的 横线上写出该四边形两条对角线长度的和.
安徽省中考必考题(4)网格作图.docx
安徽省中考必考题(1)网格作图(1)请画出AABC关于x轴对称的厶ABG,并写出点人的坐标;(2)请画出AABC绕点B逆时针旋转90°后的△ A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和IT).2.已ftlAABC在平而直角坐标系中的位置如图所示.(1)画岀AABC绕点C按顺时针方向旋转90。
后的AA' B z C;(2)求点A旋转到点A'所经过的路线长(结果保留;r)・3.(8分)(2015-聊城)在如图所示的直角处标系屮,每个小方格都是边长为1的正方形,△ ABC的顶点均在格点上,点A的坐标是(-3, - 1).(1 )将/^肮沿y轴正方向平移3个单位得到△ABC”画出△ABC】,并写出点B】坐标; (2)画HlAAiBiCi关于y轴对称的厶A2B2C2,并写出点C2的坐标.4.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,AABC和ADEF的顶点都在格点上,结合所给的平面直介坐标系解答下列问题:D/\A E0FAB/\C(1)呦出AABC向上平移4个单位长度示所得到的△ A.B.C.;(2)画H1ADEF绕点0按顺时针方向旋转90。
后所得到的△ DER;(3)AA.B.C.和厶DEFi组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.5.如图,在正方形网络中,AABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2, 4)、(-2, 0)、(-4, 1),将AABC 绕原点0 旋转180 度得到△ ABG.平移AABC得到△ A2B2C2,使点A移动到点A2 (0, 2),结合所给的平面直角坐标系解答下列问题:(1)请画出△ AjBiG;(2)请直接写出点B2、C2的坐标;(3)在Z\ABC、△ABC】、AA2B2C2中,AA2B2C2与成中心对称,其对称中心的坐标为.6.如图,方格纸中的每个小正方形边长都是1个单位长度,RtAABC的顶点均在格点上.建立平面直角处标系后,点A的处标为(1, 1),点B的坐标为(4, 1).(1)先将RtAABC向左平移5个单位长技,再向下平移1个单位长发得到RtAA^G, 试在图中画出RtAABC),并写出点A,的坐标;(2)再将RtAAiBiCi绕点A】顺时针旋转90°后得到RtAAiB2C2,试在图中画出3.a・4..;・••••••••;•••••••Ia二■二a•■■mm;・■■■■■・••eeeei^ieeeeeii• • • • ■: ■:7RtAA)B2C2,并计算RtAA.B.C,在上述旋转过程点G所经过的路径长.7.在平面直角坐标系中,AABC的三个顶点坐标分别为A ( -2, 1), B ( - 4, 5), C (-5, 2).(1)画HlAABC关于y轴对称的厶AiBiCi;(2)画出△ABC关于原点0成中心对称的△A2B2C2.8.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了格点Z\ABC (顶点是网格线的交点)和点Ai.(1)将AABC绕点A顺时针旋转90°,画出相应的△ ABiCi;(2)将△ABQ沿射线AAi平移到△ A I B2C2处,画出△ A I B2C2;9.(本题满分6分)在边长为1的小正方形网格中,AAOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)将AAOB向左平移3个单位长度得到厶A101B),请画出△ AABi;(3)在(2)的条件下,Ai的坐标为.10.如图,在平面直角坐标系中,AABC的三个顶点坐标分別为A (1, 4), B (4, 2), C (3, 5)(每个方格的边长均为1个单位长度).(1)请画岀△ AiBiCi,使△ARG与AABC关于x轴对称;(2)将AABC绕点0逆时针旋转90°,画出旋转后得到的△ A2B2C2,并肓接写出点B旋转到点氏所经过的路径长.11・(木题满分6分)如图,在平而总角处标系中,已知AABC三个顶点的他标分别为A (-4, -1), B (-3, -3), C (-1, -1),请按下列要求価图:(1)画lllAABC关于y轴对称的厶AM;(2)BiAA2B2C2,使厶A2B2C2-UAA^.C I关于原点0成中心对称.12.(木题满分5分)画图并填空:如图,在方格纸内将△八BC经过一次平移后得到AA,IT C',图中标出了点C的对应点C'・(1)画出平移后的AA' B' C1 2 3 4 5 6 7,(利用网格点和三角板画图)(2)画出AB边上的高线CD;(3)画出BC边上的中线AE;(4)在平移过程中高CD扫过的面积为.(网格中,每一小格单位长度为1)• • • • •13.(本题6分)如图所示的正方形网格中,AABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)请在图中画出平移后的AA,B z C f ,1 以A点为旋转中心,将AABC绕点A顺时针旋转90°得△ABQ,画出△ABC.2 作岀AABC关于处标原点0成中心对称的△ A&C2.3作出点C关于x轴的对称点P.若点P向右平移x个单位长度后落在AA2B2C2的内部(不含落在△A2B2C2的边上),请直接写出x的取值范围.(提醒:每个小正方形边长为1个单位长度)14.(本小题6分)如右图,在每个小正方形边长为1的方格纸中,AABC的顶点都在方格纸格点上.将AABC向左平移2格,再向上平移4格.(2)再在图中B' C z的高C,D‘ ,并求出ZXABC在整个平移过程中线段AC 扫过的面积15.如图,在每个小正方形边长为1的方格纸中,AABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4榕.(10分)(1)请在图中画出平移后的AA,B z C f o(2)再在图中画出B‘ C,的高C‘ D z,并求出AABC的血积.16.(8分)如图,△AbG是AABC向右平移四个单位长度后得到的,且三个顶点的坐标分别为儿(1, 1), Bi (4, 2), Ci (3, 4).(1)请画出△ABC,并写出点A、B、C的坐标;(2)求出△AOAi的面积.17.(本题满分8分)图中的小方格都是边长为1的正方形,AABC的顶点和0点都在正方形的顶点上.(1)以点0为位似中心,在方格图中将AABC放大为原來的2倍,得到AA,B,C':(2) AA Z B z C f 绕点刘顺时针旋转90° ,画出旋转后得到的B z C",并求边 A' B'在旋转过程中扫过的图形面积.18. (9分)在下图的网格中有一个三角形0AB,请你在网格中分别按卞列要求画出图形① 画出△OAB 向左平移3个单位后的三角形;② 画出△043绕点O 旋转180°后的三角形;③ 画出△O4B 沿y 轴翻折后的图形.19. 如图,在平面直角坐标系中,己知△ ABC 的三个顶点的坐标分别为A (-1, 1), B (—3,1), C ( — 1, 4).(1)画出△ ABC 关于y 轴对•称的AA/C ;(2)将4ABC 绕着点B 顺时针旋转90。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于高级初中中学数学
网格作图题
集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]
专题复习(三)网格作图题
1.(2016·合肥模拟)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点),按要求画出四边形AB1C1D1和四边形AB2C2D2.
(1)以A为旋转中心,将四边形ABCD顺时针旋转90°,得到四边形AB1C1D1;
(2)以A为位似中心,将四边形ABCD作位似变换,且放大到原来的两倍,得到四边形AB2C2D2.
2.(2016·蜀山区二模)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).
(1)画出△ABC关于x轴对称的△A1B1C1,写出B1点的坐标;
(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,写出B2点的坐标.
3.(2016·安徽二模)如图,已知A(2,3),B(1,1),C(4,1)是平面直角坐标系中的三点.
(1)请画出△ABC关于y轴对称的△A1B1C1;
(2)画出△A1B1C1向下平移3个单位得到的△A2B2C2;
(3)若△ABC中有一点P坐标为(x,y),请直接写出经过以上变换后△A2B2C2中点P的对应点P2的坐标.
解:(1)如图所示,△A1B1C1即为所求.
(2)如图所示,△A2B2C2即为所求.
(3)根据题意,可得P的对应点P2的坐标为(-x,y-3).
4.(2016·芜湖模拟)如图,在9×7的小正方形网格中,△ABC的顶点A,B,C在网格的格点上.将△ABC向左平移3个单位,再向上平移3个单位得到△A′B′C′.再将△ABC按一定规律依次旋转:第1次,将△ABC绕点B顺时针旋转90°得到△A1BC1;第2次,将△A1BC1绕点A1顺时针旋转90°得到△A1B1C2;第3次,将△A1B1C2绕点C2顺时针旋转90°得到△A2B2C2;第4次,将△A2B2C2绕点B2顺时针旋转90°得到△A3B2C3,依次旋转下去.
(1)在网格中画出△A′B′C′和△A2B2C2;
(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.
解:(1)△A′B′C′和△A2B2C2的图象如图所示.
(2)通过画图可知,△ABC至少在第8次旋转后得到△A′B′C′.
5.如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.
(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;
(2)请画出△A 2B 2C 2,使△A 2B 2C 2和△ABC 关于点O 成中心对称;
(3)在(1)、(2)中所得到的△A 1B 1C 1与△A 2B 2C 2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.
解:(1)如图所示,△A 1B 1C 1,即为所求.
(2)如图所示,△A 2B 2C 2,即为所求.
(3)如图所示,△A 1B 1C 1与△A 2B 2C 2成轴对称,直线a ,b 即为所求.
6.(2016·阜阳校级二模)如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A ,B ,C 在小正方形的顶点上.将△ABC 向下平移2个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点C 1顺时针旋转90°得到△A 2B 2C 1.
(1)在网格中画出△A 1B 1C 1和△A 2B 2C 1;
(2)计算线段AC 在变换到A 2C 1的过程中扫过区域的面积.(重叠部分不重复计算)
解:(1)如图,△A 1B 1C 1和△A 2B 2C 1为所作.
(2)线段AC 在变换到A 2C 1的过程中扫过区域的面积S =2×2+90·π·(22)2
360
=4+2π.
7.(2016·昆明)如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1;
(2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;
(3)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.
解:(1)如图所示.
(2)如图所示.
(3)找出A 关于x 轴的对称点A′(1,-1),连接BA′,与x 轴交点即为P.如图所示,点P 坐标为(2,0).
8.(2016·濉溪县模拟)如图,已知△ABC 的三个顶点的坐标分别为A(3,3),B(-1,0),C(4,0).
(1)经过平移,可使△ABC 的顶点A 与坐标原点O 重合,请直接写出此时点C 的对应点C 1坐标;(不必画出平移后的三角形)
(2)将△ABC 绕点B 逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;
(3)以点A 为位似中心放大△ABC,得到△AB 2C 2,使放大前后的面积之比为1∶4,请你在网格内画出△AB 2C 2.
解:(1)∵经过平移,可使△ABC的顶点A与坐标原点O重合,∴A点向下平移3个单位再向左平移3个单位,故C1坐标为(1,-3).
(2)如图所示,△A′BC′即为所求,A′点的坐标为(-4,4).
(3)如图所示,△AB2C2即为所示.。