初三中考数学格点问题
中考数学总复习第38课 网格型问题
点评:(1)本题给出一段资料,提供网格作为探索问题的工具,主要考查直角三角形斜边中
线、高的性质以及特
较大.
(2)理解λA 的意义,根据题目要求画出图象是解题的关键.
解析:(1)如解图 10,作 BC 边上的中线 AD.∵AC⊥DC,∴λA=CBDD=1.
边上的高和中线,点
D
是垂足,点
E
是
BC
的中点,规定:λA
=DE.特别地, BE
当点 D,E 重合时,规定:λA=0.另外,对λB,λC 作类似的规定.
(1)如图 38-10②,在△ABC 中,∠C=90°,∠A=30°,求λA,λC;
(2)在每个小正方形边长均为 1 的 4×4 的方格纸上,画一个△ABC,使其顶点
4aa++kk==30,,解得
a=-1, k=4,
∴y=-(x-2)2+4=-x2+4x.
向右平移 1 个单位,向上平移 1 个单位可得到另一条符合题
意的抛物线,
可平移 6 次,
∴一共有 7 条抛物线.
同理:开口向上的抛物线也有 7 条.
∴满足上述条件且对称轴平行于 y 轴的抛物线条数是 7+7=14.故选 C.
名师点拨
与图形变换有关的网格型问题,常常会考查网格中的 画图、图形描述或图形操作、运动轨迹的路径(面积)、以 及利于网格进行图案或方案设计等方面,一般而言,这类 问题常常会以我们学过的平移、旋转与对称的知识为基 础,难度不大,掌握图形变换的本质特征是解题的关键.
【预测演练 3-1】 如图 38-8,8×8 方格纸上的两条对称轴 EF ,MN 交于中心点 O,对△ABC 分别作下列变换:①先以点 A 为中心顺时针 方向旋转 90°,再向右平移 4 格,向上平移 4 格; ②先以点 O 为中心 作中心对称图形,再以点 A 的对应点为中心逆时针方向旋转 90°;③ 先以直线 MN 为轴作轴对称图形,再向上平移 4 格,再以点 A 的对应 点为中心顺时针方向旋转 90°.其中能将△ABC 变换成△PQR 的是
与格点相关的数学中考题
●
・ 9: :9 ・
●
捞美蜘
◎徐 慧 ( 苏省 灌 云 县 四 队 中学 江 2 23 ) 2 2 4
数
解析 () 立 平 面 直 角 坐标 系如 图 5所 示 . 1建
( )根 据 网格 的特 征 及 等 腰 角 形 的 有 关 知 识 易 得 , 2 以
利 于 数 学 知识 的 考查 . 别 以 , 分 曰为 圆心 . 径都 为 、 1 画 半 /0
圆 . 圆 的 交 点 即 为 所 求 的 点 , 发 现 “ 藏 ” 的 坐 标 是 两 易 宝 点 ( , ) ( ,2 , 选 C 5 2 或 1一 )故 .
五、 与格 点 相 关 的 面 积 问题 例 5 ( 龙 江 省 哈 尔 滨 市 ) 7、 8、 9 是 三 张 形 状 、 黑 图 囹 图 大 小 完全 相 同 的 方格 纸 , 格 纸 中 的每 个 小 正 方形 的边 长 均 方
图形 各 顶 点 必 须 与 方 格纸 中 的小 正 方 形 顶 点 重合 . ( ) 一个 底 边 长 为 4 面 积 为 8的 等腰 三 角 形 ; 1画 ,
( )画 面 积 为 1 2 0的 等腰 直 角 三角 形 ;
D, 画 出 以 A, C, 为 顶 点 的 四边 形 , 其 为 轴 对 称 图形 并 B, D 使
A. A 点 B 点 B .
所示两个标志点A(,)B 4一 )这两 2 1 、( ,1, 一_’ t 。 + _ 一’ ÷
个标 志 点 到 “ 宝藏 ” 的 距 离 都 是 x m . 点 /
则“ 宝藏 ” 的坐 标 是 ( ) 点 .
, 则其旋转 中心 可能是 ( ) .
一
中考中的格点图形问题
教案
图1
图2
二、格点中的画图问题
(黑龙江鸡西市)如图3,在网格中有一个四边形图案.
)请你画出此图案绕点O顺时针方向旋转900,1800,2700的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;
图3
)若网格中每个小正方形的边长为l,旋转后点
这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.
的正方形网格中有一只可爱的小狐狸,算算看画面中由实线组
L
D
E
P 2012•温州)(本题8分)如图,在方格纸中,△PQR 的三个顶A,B,C,D,E 五个点都在小方格的顶点上,现以A,B,C,D,E 个顶点为顶点画三角形,
)在图甲中画出一个三角形与△PQR 全等;
点上.
A.(1.4,﹣1)B.(1.5,2)
,
坐标为(
都在小方格的
在图甲中画出示意图;
落在旋转后的三角形内部,
的内心,外心,
个单位长度的小正方形组成的两格中,点A、B、C都是格点.
的网格中,点A、B、C均落在格点上.
请你在如图所示的网格中,用直尺和三角尺,过点A画PC的平行线,与BC 相交得点E,分别过点D、E画PC的平。
初中数学中的格点问题ppt课件
1.“格点”是什么?
y
数学上把在平面直角坐标系中 横纵坐标均为整数的点称为格 点或整点。
·A
2 1
0 12
隐藏掉坐标轴后,左边便是 由水平线和垂直线组成的方 x 格,我们同样把水平线和垂 直线的交点称为“格点”。
2
2.“格点线段”、“格点三角形”、“格点多边形” 是什么?
A1 A2
A3
An A7 A6
(3)5
bcaΒιβλιοθήκη a2 b2 c2∴ c a2 b2 5
练习.已知网格中的每个小正方形的边长均为1,请画以格点
为顶点且三边长分别是 4、10、3 2 的△ABC
C
A
B
6
例2.如图所示,在网格中有一线段AB和点P,请你画出过 点P且平行线段AB的直线a,并说明理由。
练习:你还能画出过点P垂直线段AB的直线b吗?
形的边长为1. 以A、B、C为顶点的三角形为等腰三角形的所
有格点C的位置有 3
个;并在图中标出。
·C ·C
·C
13
例7.在6×6的正方形网格中,以点D、E为两个顶点作位置不 同的格点三角形,使所作的格点三角形与△ABC全等,这样
的格点三角形最多可以有 4 个
··
··
14
练习.如图,在长方形网格中,每个小长方形的长为2,宽为1, A、B两点在网格点上。若点C也在网格点上,以A、B、C为顶
9
练习.如图是一个经过改造的台球桌面的示意图。图中四个角 上的阴影部分分别表示四个入球孔,如果一个球按图中所示
的方向被击出(球可以经过多次反射),则该球最后将落入
的球袋是2号袋
光的反射规律
入射角 反射角
法线
平面镜
中考数学专题复习格点作图题
中考数学专题复习格点作图题学校:___________姓名:___________班级:___________考生__________评卷人得分一、解答题1.图①,图①,图①都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图①中已画出线段AB,在图①中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图①中,以格点为顶点,AB为一边画一个正方形;(3)在图①中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.2.图①、图①、图①都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图①中,以AB为边画一个平行四边形,且另外两个顶点在格点上.3.图①、图①均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON 的端点均在格点上.在图①、图①给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.4.如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是什么对称图形;(3)求所画图形的周长(结果保留π).5.图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A B C D E F、、、、、均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图①中以线段AB为边画一个ABM∆,使其面积为6.(2)在图②中以线段CD为边画一个CDN∆,使其面积为6.(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且090EFG∠=.6.图①,图①均为44⨯的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB ,在图①中已画出线段CD ,其中A B C D 、、、均为格点,按下列要求画图:①在图①中,以AB 为对角线画一个菱形AEBF ,且,E F 为格点;①在图①中,以CD 为对角线画一个对边不相等的四边形CGDH ,且,G H 为格点,090CGD CHD ∠=∠=.7.如图①、图①、图①都是33⨯的正方形网格,每个小正方形的顶点称为格点.A ,B ,C 均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB 重合的线段MN ,使MN 与AB 关于某条直线对称,且M ,N 为格点.(2)在图①中,画一条不与AC 重合的线段PQ ,使PQ 与AC 关于某条直线对称,且P ,Q 为格点.(3)在图①中,画一个DEF ∆,使DEF ∆与ABC ∆关于某条直线对称,且D ,E ,F 为格点.8.图①、图①、图①均是33⨯的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB为边画ABC.要求:(1)在图①中画一个钝角三角形,在图①中画一个直角三角形,在图①中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等;(3)点C在格点上.9.图①、图①、图①均是44⨯的正方形网格,每个小正方形的边长均为1.每个小正方形的顶点称为格点,点A、B、C均为格点,只用无刻度的直尺,分别在给定的网格中找一格点M,按下列要求作图:(1)在图①中,连结MA、MB,使MA MB=.(2)在图①中,连结MA、MB、MC,使MA MB MC==.(3)在图①中,连结MA、MC,使2AMC ABC∠=∠.10.图①、图2均是44的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A,点B均在格点上,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图①中,以点A,B,C为顶点画一个等腰三角形;(2)在图①中,以点A,B,D,E为顶点画一个面积为3的平行四边形.参考答案:1.(1)作图见解析;(2)作图见解析;(3)作图见解析.【解析】【详解】试题分析:(1)根据勾股定理,结合网格结构,作出两边分别为5的等腰三角形即可;(2)根据勾股定理逆定理,结合网格结构,作出边长为5的正方形;(3)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.试题解析:(1)如图①,符合条件的C点有5个:;(2)如图①,正方形ABCD即为满足条件的图形:;(3)如图①,边长为10的正方形ABCD的面积最大..考点:作图—应用与设计作图.2.(1)见解析;(2)见解析.【解析】【分析】(1)根据等腰三角形的定义作图可得;(2)根据平行四边形的判定作图可得.【详解】(1)如图①、①所示,①ABC和①ABD即为所求;(2)如图①所示,①ABCD即为所求.【点睛】本题考查了等腰三角形的判定、等边三角形的性质、平行四边形的判定,正确分析网格特点是解题的关键.3.作图见解析.【解析】【详解】【分析】结合网格特点以及轴对称图形的定义进行作图,然后用全等四边形的定义判断即可得符合题意的图形.【详解】如图所示:【点睛】本题考查了作图﹣轴对称变换,以及全等形的判定,熟练掌握各自的性质是解本题的关键.4.(1)点D→D1→D2→D经过的路径如图所示见解析;(2)轴对称;(3)周长为8π.【解析】【分析】(1)利用旋转变换的性质画出图象即可;(2)根据轴对称图形的定义即可判断;(3)利用弧长公式计算即可.【详解】解:(1)点D→D1→D2→D经过的路径如图所示:(2)观察图象可知图象是轴对称图形,(3)周长=4×904180π⨯⨯=8π.故答案为(1)点D→D1→D2→D经过的路径如图所示见解析;(2)轴对称;(3)8π.【点睛】本题考查作图——旋转变换、轴对称图形等知识,解题的关键是理解题意,正确画出图形. 5.(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)直接利用三角形的面积的计算方法得出符合题意的图形;(2)直接利用三角形面积求法得出答案;(3)根据矩形函数三角形的面积的求法进而得出答案.【详解】解:(1)如图①所示,ABM∆即为所求;(2)如图①所示,CDN∆即为所求;(3)如图①所示,四边形EFGH即为所求;【点睛】考核知识点:作三角形和四边形.利用三角形面积公式求解是关键.6.(1)见解析;(2)见解析.【解析】【分析】(1)根据菱形的定义画出图形即可(答案不唯一).(2)利用数形结合的思想解决问题即可.【详解】解:(1)如图,菱形AEBF即为所求.(2)如图,四边形CGDH即为所求.【点睛】本题考查作图-应用与设计,菱形的判定和性质,直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.(1)图见解析;(2)图见解析;(3)图见解析.【解析】【分析】⨯的正方形网格的对称轴,根据对称性即可在图①中,描出点AB的对(1)先画出一条33称点MN,它们一定在格点上,再连接MN即可.(2)同(1)方法可解;(3)同(1)方法可解;【详解】⨯的正方形网格的对称轴l,描出点AB关于直线l的对称点MN,连解:(1)如图①,33接MN即为所求;(2)如图①,同理(1)可得,PQ即为所求;(3)如图①,同理(1)可得,DEF∆即为所求.【点睛】本题考查了作图-轴对称变换,解决本题的关键是找到图形对称轴的位置.8.见详解(答案不唯一)【解析】【分析】因为点C在格点上,故可将直尺的一角与线段AB点A重合,直尺边长所在直线经过33⨯正方形网格左上角第一个格点,继而以点A为旋转中心,逆时针旋转直尺,当直尺边长所在直线与正方形格点相交时,确定点C的可能位置,顺次连接A、B、C三点,按照题目要求排除不符合条件的C点,作图完毕后可根据三角形面积公式判断其面积是否相等.【详解】经计算可得下图中:图①面积为12;图①面积为1;图①面积为32,面积不等符合题目要求(2),且符合题目要求(1)以及要求(3).故本题答案如下:【点睛】本题考查三角形的分类及其作图,难度较低,按照题目要求作图即可.9.(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)由勾股定理可求得AM=BM=5,即可得点M的位置;(2)由勾股定理可求得AB=BC=10,AC=25,即可得22220AB BC AC+==,再由勾股定理的逆定理可判定①ABC为等腰直角三角形,点M即为斜边AC的中点,由此可得点M的位置;(3)作出AB、AC的垂直平分线,交点即为M,M即为①ABC外接圆的圆心,连接AM,CM,根据圆周角定理可得2AMC ABC∠=∠,由此即可确定点M的位置.【详解】(1)如图①所示,点M即为所求.(2)如图①所示,点M即为所求.(3)如图①所示,点M即为所求.【点睛】本题考查了基本作图,解决第(3)题时,确定①ABC外接圆的圆心是解决问题的关键.10.(1)见解析;(2)见解析【解析】【分析】(1)根据等腰三角形的定义画出图形即可:如以B为顶点,AC为底边,即可做出等腰三角形;(2)作底为1,高为3的平行四边形即可.【详解】解:(1)如图①中,此时以B为顶点,AC为底边,该ABC即为所求(答案不唯一).(2)如图①中,此时底1AE=,高3h=,因此四边形ABDE即为所求.【点睛】本题考查了等腰三角形的性质和平行四边形的性质,解题的关键掌握等腰三角形和平行四边形的基本性质.。
全国181套中考数学试题分类汇编33网格问题
全国181套中考数学试题分类汇编33⽹格问题33⽹格问题⼀、选择题1.(浙江⾈⼭、嘉兴3分)如图,点A、B、C、D、O都在⽅格纸的格点上,若△COD是由△AOB 绕点O按逆时针⽅向旋转⽽得,则旋转的⾓度为(A)30°(B)45°(C)90°(D)135°【答案】C。
【考点】旋转的性质,勾股定理的逆定理。
【分析】△COD是由△AOB绕点O按逆时针⽅向旋转⽽得,由图可知,∠AOC为旋转⾓,可利⽤△AOC的三边关系解答:设⼩⽅格的边长为1,从图知,=AC=4。
从⽽OA,OC,AC满⾜OC2+OA2=AC2,∴△A OC是直⾓三⾓形,∴∠AOC=90°。
故选C。
2.(浙江⾦华、丽⽔3分)如图,在平⾯直⾓坐标系中,过格点A,B,C作⼀圆弧,点B与下列格点的连线中,能够与该圆弧相切的是A、点(0,3)B、点(2,3)C、点(5,1)D、点(6,1)【答案】 C。
【考点】切线的性质;坐标与图形性质;勾股定理;垂径定理。
【分析】如图,根据垂径定理的性质得出圆⼼所在位置O(2,0),再根据切线的性质得出∠OBD+∠EBF=90°时,BF与圆相切,∴当△BOD≌△FBE时,∴EF=BD=2,F点的坐标为:(5,1)。
故选C。
3.(⼴西贺州3分)如图,在⽅格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格,B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针⽅向90o旋转,再右平移6格D.把△ABC绕着点A逆时针⽅向90o旋转,再右平移6格【答案】D。
【考点】平移和旋转变换。
【分析】根据平移和旋转变换的特点,直接得出结果。
故选D。
4.(⼴西南宁3分)在边长为1的⼩正⽅形组成的⽹格中,有如图所⽰的A 、B 两点,在格点中任意放置点C ,恰好能使△A BC 的⾯积为1的概率为A .3 25 B .4 25 C . 1 5 D . 625【答案】D 。
中考中的格点图形问题
教案
图1
图2
二、格点中的画图问题
(黑龙江鸡西市)如图3,在网格中有一个四边形图案.
)请你画出此图案绕点O顺时针方向旋转900,1800,2700的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;
图3
)若网格中每个小正方形的边长为l,旋转后点
这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.
的正方形网格中有一只可爱的小狐狸,算算看画面中由实线组
L
D
E
P 2012•温州)(本题8分)如图,在方格纸中,△PQR 的三个顶A,B,C,D,E 五个点都在小方格的顶点上,现以A,B,C,D,E 个顶点为顶点画三角形,
)在图甲中画出一个三角形与△PQR 全等;
点上.
A.(1.4,﹣1)B.(1.5,2)
,
坐标为(
都在小方格的
在图甲中画出示意图;
落在旋转后的三角形内部,
的内心,外心,
个单位长度的小正方形组成的两格中,点A、B、C都是格点.
的网格中,点A、B、C均落在格点上.
请你在如图所示的网格中,用直尺和三角尺,过点A画PC的平行线,与BC 相交得点E,分别过点D、E画PC的平。
初中网格中的数学问题赏析
初中网格中的数学问题赏析在正方形的网格中,每个小正方形的边长都是相等的,每个小正方形的顶点叫做格点,我们把以格点的连线为边的图形叫格点图形.近年来,各地的中考试卷中频频出现这类与格点有关的数学问题,由于这类与网格有关的中考题大部分具有开放性,设计又新颖,能很好地考查学生的思维水平和思维能力,故很受命题者的青睐.但课本、作业本中这类问题的例题和习题却并不多见,在此,特作梳理,与大家一起赏析.一、网格中的三角形1. (2010·湖南)如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是().A. 6 B. 7 C. 8 D. 9分析根据题意,结合图形,分两种情况讨论(如下图):① AB为等腰△ABC 底边,符合条件的C点有4个;② AB为等腰△ABC其中的一条腰,符合条件的C点有4个.故选C.本题考查了等腰三角形的判定,解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.本题是利用网格提供的相等线段来构图.2. 在如图的方格纸中,每个小方格都是边长为1的正方形,点A、B是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C使△ABC 的面积为2个平方单位,则满足条件的格点C的个数是().A. 5B. 4C. 3D. 2分析 A、B两点的垂直距离为2,那么,只要保证水平距离为2即可使△ABC的面积为2个平方单位;A、B两点的水平距离为1,那么,只要保证垂直距离为4,即可使△ABC的面积为2个平方单位.符合条件的点坐标分别为:C(3,1),C(0,3),C(4,3),C(1,5).本题考查三角形面积的求法,注意分水平距离和垂直距离两种情况,数学分类思想是一种重要的数学思想.二、网格与三角函数1. (2010·贵州)在正方形网格中,△ABC的位置如图所示,则cos∠B的值为 .分析过点C向上作垂线与AB相交于点D,则∠B是Rt△BCD的一个内角,邻边和斜边均由图可知,所以很容易求出cos∠B的值.或是过点A作垂线交BC的延长线于D,也可求出.本题主要考查了余弦函数的定义,正确理解定义是解题的关键.本题是利用网格提供的垂线,构建直角三角形.2. (2010·四川)如图,∠D的正切值等于 .分析根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形边的比的问题.先利用同弧所对圆周角相等,得出∠D=∠A,然后利用正切等于对边比上邻边即可求出.本题考查圆周角的性质及锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.从网格中很容易找到相关的直角三角形.三、网格与面积1. (2006·苏州)如图,直角坐标系中,△ABC的顶点都在网格点上,其中A点坐标为(2,-1),则△ABC的面积为平方单位.分析根据图形,可以直接写出点A的坐标是(2,-1).分别过A、B、C三点作垂线,形成一个大矩形,求出大矩形的面积,用大矩形的面积减去三个直角三角形的面积,剩余的面积即为△ABC的面积.此类题要求学生要能够把不规则图形的面积转化为规则图形的面积.有关面积的割补法是解决不规则图形面积的常用方法.本题充分利用网格的特点,构建规则图形.2. (2009·吉林)如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是 .分析先用大正方形的面积减去三个直角三角形的面积得到△ABC的面积,△ABC的面积又等于AC乘以AC边上的高的一半,按这一等量关系列出方程,解出方程即可得出AC边上的高.四、网格与相似如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)?摇判断△ABC和△DEF是否相似,并说明理由;(2)?摇P,P,P,P,P,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连结相应线段,不必说明理由).分析答案为:△DPP、△DPP、△DPP.本题主要考查学生识图、构图能力和对三角形相似判定知识的理解,对学生的观察力有一定的挑战性.网格中的相等线段以及相等的角对构图起到关键性的作用.五、网格与圆1. (2010· 河北)如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么这条圆弧所在圆的圆心是 .分析连接BC,弦AB、BC垂直平分线的交点即为圆心.本题主要考察学生对垂径定理的理解,和残圆确定圆心的方法.本题是由网格特点直接看出线段的垂直平分线.2. (2010·江苏).如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB的弧长等于(结果保留根号及π).分析连接AB、AC,分别作它们的垂直平分线,两线交点即为圆心.利用勾股定理求出圆的半径,由图可知扇形OAB圆心角为90°,利用弧长公式即可求出弧长.本题考查了勾股定理及弧长公式的应用.解题的关键是正确地求出扇形的圆心角及半径.3. 如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B(-2,-2)、C(4,-2),则△ABC外接圆半径的长度为 .分析先求出线段AB、 AC、 BC的长度,再利用余弦定理求角A的余弦值,从而得到角A的正弦值.再利用正弦定理,即可求得直径.半径为2.连接OC因为C(4,-2),利用勾股定理得半径的长等于根号下,等于,化简为2.六、网格中的运动(2010·江苏)如图在网格图中,⊙A的半径为2个单位长度,⊙B的半径为1个单位长度,要使运动的⊙B与静止的⊙A相内切,应将⊙B由图示位置向左平移个单位长度.分析⊙B与⊙A可以在右边相内切,也可以在左边相内切.当⊙B与⊙A在右边相内切,移动距离为4个单位长度,当⊙B与⊙A在左边相内切,移动距离为6个单位长度.故答案为:4或6.本题主要通过圆的移动来考查圆与圆的位置关系;题目中小圆向左移动,通过观察,可知两圆内切的两种情况,分别求出移动的距离.七、网格与图形的变换1. (2010·辽宁)如图,在边长为1的小正方形组成的网格中,△ABC的顶点均在格点上,请按要求完成下列各题:(1)以直线BC为对称轴作△ABC的轴对称图形,得到△ABC,再将△ABC绕着点B逆时针旋转90°得到△ABC,请依此画出△ABC、△ABC;(2)求线段BC旋转到BC过程中所扫过的面积(计算结果用π表示);(3)求点C旋转过程所经过的路径长.分析(1)根据对称的性质,画出图形;(2)BC旋转到BC的过程中,旋转角为90°,半径为4,由弧长公式计算即可.所以B点所经过的路线长度是2π.本题考查了学生画一个图形的对称图形以及弧长公式的应用的能力.2. (2010·湖北)如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为().A. (5,2)B. (2,5)C. (2,1)D. (1,2)分析连接AD、CF,再做这两线段的垂直平分线,交点就是点P.根据点A、点B 的坐标建立平面直角坐标系,然后写出点P的坐标.此题属于中等难度题,主要考查的知识点是旋转及其相关的性质,旋转的中心在连接对应点的垂直平分线上,做出两条垂直平分线,它们的交点就是旋转的中心点.3. (2010· 甘肃)如图均为7×6的正方形网格,点A、B、C在格点(小正方形的顶点)上.(1)在图中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为轴对称图形;(2)在图中确定格点E,并画出一个以A、B、C、E为顶点的四边形,使其为中心对称图形.分析第(1)题可以将点A向下平移四格得到点D,或是将点A向右平移两格得到点D.第(2)题可以将点A向右平移一格得到点E,两题方法均不唯一,此题比较灵活地考查了等腰梯形、平行四边形、矩形的对称性,是道好题.八、网格与概率一只蚂蚁在如图所示的图案内任意爬动一段时间后停下,蚂蚁停在阴影内的概率为 .分析先确定黑色区域的面积与总面积的比值,此比值即为所求的概率.本题主要考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.网格对化不规则图形为规则图形提供了帮助,方便学生求出阴影部分的面积.九、网格与规律(2006·温州)在边长为l的正方形网格中,按下列方式得到“L”形图形,第1个“L”形图形的周长是8,第2个“L”形图形的周长是,第三个“L”形图形的周长是,则第n个“L”形图形的周长是 .分析第1个“L”形图形的周长是8=4+4,第2个“L”形图形的周长是12=4+2×4,第3个“L”形图形的周长是16=4+3×4,……,第n个“L”形图形的周长是4+n×4,即4n+4.本题也可以这样来分析:平移“L”形的上面和右下的两边,第1个“L”形图形周长变成一个正方形周长加上4,即4+4,第2个“L”形图形周长为4+2×4,第3个“L”形图形周长为4+3×4,第n个“L”形图形的周长是4+n×4.用整式描述几何图形的规律在近几年的中考题中经常出现,这类题目把几何和整式结合起来考查,使试题难度增大.它既考查学生的识图能力,又考查学生的判断推理能力.通过以上分析,我们不难发现:网格中的数学问题,往往是把网格的特点与数学问题有机结合起来.网格可以提供相等的线段、相等的角、垂线、平行线、化不规则图形为规则图形等.还能够很方便地进行图形的翻折、平移、旋转等.同学们在解决这类问题时,既要有札实的数学基础,灵活运用相关数学知识,还要注意结合网格的特点来分析和解决问题.。
格点问题
B A G
C F
D E
C1 C A B A1 B
图1
F
1
D E
图2
练1:正方形网格中,每个小正方形的边长为1, 则网格上的三角形ABC中,边长为无理数的 边数是( )(06年江西省中考题) A、 0 B 、 1 C、2 D、3
A
C
B
练2、 已知图1和图2中的每个小正方形的边长都是1个单位. (1)将图1中的格点△ABC,先向右平移3个单位,再向上 平移2个单位,得到△A1B1C1,请你在图1中画出△A1B1C1. (2)在图2中画出一个与格点△DEF相似但相似比不等于1 的格点三角形.
解答: 点评:此题给学生广阔的思维空间,体现数形 结合思想,学生可从边或角两个角度探求直角, 画出符合要求的直角三角形。本题考查学生发 散思维的能力、运用知识解决问题的能力及数 形结合思想。
答案一
答案二
答案三
三、网格与面积 如图1-3,方格纸中每个小方格都是边长为1的正方形,我 们把以格点连线为边的多边形称为“格点多边形”.如图 (一)中四边形ABCD就是一个“格点四边形”. (1)求图(一)中四边形ABCD的面积; (2)在图(二)方格纸中画一个格点三角形EFG,使 △EFG的面积等于四边形ABCD的面积且为轴对称图形.
A
B C
D
图1-3
例4、(04重庆市B是方格纸中的 两个格点(即正方形的顶点),在这个5×5的 方格纸中,找出格点C使△ABC的面积为2个平 方单位,则满足条件的格点C的个数是( A )
.
.
(A) 5 (B )4 (C )3 (D )2
.
. .
中考专题 通往中考的捷径
在近几年的数学中考试卷中,作为考查学生 数形结合思想方法的运用能力和动手操作能 力的载体,许多省市采用了一些网格型、分 割型试题,这些试题答案往往不惟一,且有 较强的开放性,有利于培养学生的探究意识 和创新精神。 一般思路: 平面直角坐标系, 直角三角形(勾股定理及其逆 定理), 相似三角形(判定与性质), 面积计算(等积变换)等。
中考数学复习15 格点问题
格点问题【第一部分】格点问题中的三角函数及三角形1.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA=______________.2.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是.3.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是_________.4.如图,在正方形网格中,△ABC的顶点都在格点上,则tan∠ACB的值为.5.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.6.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为_________.7. 如图1是由边长为1的小正方形组成的网格,点A 、B 、C 、D 都在网格的格点上,AC 、BD 相交于点O .(一)探索发现(1)如图1,当AB=2时,连接AD ,则∠ADO=90°,BO=2DO ,AD=2,BO=232,tan ∠AOD=_________. 如图2,当AB=3时,画AH ⊥BD 交BD 的延长线于H ,则AH=223, BO=________,tan ∠AOD=________. 如图3,当AB=4时,tan ∠AOD=__________.(2)猜想:当AB=n (n >0)时,tan ∠AOD=______________.(结果用含n 的代数式表示),请证明你的猜想. (二)解决问题(3)如图,两个正方形的一边CD 、CG 在同一直线上,连接CF 、DE 相交于点O ,若tan ∠COE=1317,求正方形ABCD 和正方形CEFG 的边长之比.【第二部分】 格点问题中的尺规作图【找中点】例一、做出BC 中点P①根据长方形性质找中点 ②根据平行四边形性质找中点【找三等分点】例二、①在BC上找点P,使PB:PC=2:1 ②在BC上找点P,使PC:PB=2:1总结:构造线段n等分点:①在一组平行线里找到线段两端;②在平行线上找到1与(n-1)长度的线段;③连接端点与已知线段交点即为所求。
初三数学专题复习-格点问题研究
初中数学中与格点有关的问题格点中的作图常常结合角平分线的性质、线段垂直平分线的性质等进行作图,仅用不含刻度的直尺作线段中点、中垂线、角平分线、等分线段等,往往需要通过格点图中的全等或相似,或利用正方形网格的对称性或45°特殊角来证明,是数形结合的灵活运用.格点的作用①测量长度例1.已知网格中的每个小正方形的边长均为1,请画下面两个端点都在格点上的线段。
(预备知识:勾股定理)5)1(13)2(5)3(2已知网格中的每个小正方形的边长均为1,请画以格点为顶点边长分别是23104、、的△ABC3使三角形为边长都为无理数的钝角三角形且面积为4.如图,在6×6的方格纸中,每个小正方形的边长都为1,顶点都在网格线交点处的三角形称为格点三角形,△ABC 是一个格点三角形.(1)如图①,判断△ABC与△DEF是否相似,并说明理由.(2)在图②中以点O为位似中心,再画一个格点三角形,使它与△ABC的位似比为2△1 .(3)在图③中画出三个与△ABC相似,且有一条公共边和一个公共角的格点三角形.格点的作用②测量角度------构造垂直、平行例2.如图所示,1:在网格中有一线段AB和点P,请你画出过点P且平行线段AB的直线a,并说明理由。
2:你还能画出过点P垂直线段AB的直线b吗?练习网格中有一条线段AB,点A、B都在格点上,网格中的每个小正方形的边长为1.(1)在图①中画出格点△ABC,使△ABC是等腰三角形;(2)以AB为斜边作Rt△ABC(见图②),在图②中找出所有格点D,作锐角△ADC,且使得∠ADC=∠B.图①图②格点的作用②测量角度------构造中线、中垂线、角平分线如图,在5×4的正方形网格中,A,B,C均在格点上.(1)利用无刻度的直尺在图①中画△ABC的中线BE和重心G.(2)在图②中标注出△ABC的外心O,并画出外接圆及切线CP.如图,已知方格纸中的每个小方格都是相同的正方形,∠AOB画在方格纸上,请在小方格的顶点上标一个点P,使点P落在∠AOB的平分线上按要求作图,不要求写作法,但要保留作图痕迹.①如图②,在▱ABCD中,E为CD的中点,作出BC的中点F.②如图③,在由小正方形组成的网格中,△ABC的顶点都在小正方形的顶点上,作出△ABC的高线AH.格点的作用③寻找n等分点已知线段AB上有一点P (1)点P为AB中点(2)点P为AB三等分点(3)点P为AB三等分点(4)你还可以做AB的几等分点?1如图1,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC 向右平移3个单位后得到的△A 1B 1C 1,再画出将△A 1B 1C 1绕点B 1按逆时针方向旋转90°后所得到的△A 2B 1C 2;(2)求线段B 1C 1旋转到B 1C 2的过程中,点C 1所经过的路径长.2如图2,在边长为1个单位长度的小正方形组成的两格中,点A 、B 、C 都是格点. (1)将△ABC 向左平移6个单位长度得到得到△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.3如图,将△ABC 放在每个小正方形的边长为1的网格中,点A 、B 、C 均落在格点上.(△)△ABC 的面积等于 6 ;(△)若四边形DEFG 是△ABC 中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明) 取格点P ,连接PC ,过点A 画PC 的平行线,与BC 交于点Q ,连接PQ 与AC 相交得点D ,过点D 画CB 的平行线,与AB 相交得点E ,分别过点D 、E 画PC 的平行线,与CB 相交得点G ,F ,则四边形DEFG 即为所求 .6.在每个小正方形的边长为1的方格纸中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,Rt △ABC 是6×6方格纸中的格点三角形,则该图中所有与Rt △ABC 相似的格点三角形中,面积最大的三角形的斜边长是 .7.下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)在图①中画一个一条直角边长为4,面积为6的直角三角形.(2)在图②中画一个底边长为4,面积为8的等腰三角形.(3)在图③中画一个面积为5的等腰直角三角形.(4)在图④中画一个一条边长为22,面积为6的等腰三角形. 图1图2。
中考数学中格点问题评析
中考数学中格点问题评析近年来,有关格点问题在中考试卷中频频出现。
格点问题题型新颖、题材丰富、构思巧妙,利用格点可以讨论三角形全等与相似,进行图形的平移、旋转与翻折,计算图形的面积,探索有关的规律和结论等。
总之,有关格点问题形式多样,能考察学生多方面知识的整合和运用,已逐步成为中考试卷中的一个亮点。
在解决这些问题时,要求学生认真观察,综合运用所学的知识,探索规律和寻找突破口,从而正确地解题。
下面就有关题型加以归类,仅供参考。
一、利用格点求三角函数值解决这类问题时,关键观察角在格点中的位置,找到有关角所在的直角三角形,运用勾股定理计算出相关边的长度,再运用三角函数的定义便可进行求解。
例1(2007宿迁市)如图△abc的顶点都是正方形网格中的格点,则sin∠abc等于……………………()abcd评析:解题时我们要打破思维定势,可辟开讨论斜△abc。
而要找到含∠abc的一个直角三角形,即可求出sin∠abc的值。
由于含∠abc的直角三角形对边是2,斜边是,故选c。
二、利用格点讨论三角形全等与相似解决这类问题时,关键要熟练掌握三角形全等和相似的判定定理,观察三角形在格点中的位置,可运用勾股定理计算出有关边的长度,并结合有关的特殊角,再运用三角形全等与相似的判定定理,即可进行求解。
例2在5×5的正方形网格点中,△abc的三个顶点在网格点上。
⑴在网格上画一个顶点在格点上,且与△abc相似的面积最大的△a`b`c`并求出它的面积。
⑵计算点c`到a`b`的距离。
评析:本题把讨论三角形相似与探讨最值问题有机地结合在一起。
考查了学生观察猜想能力和灵活运用知识的能力。
在问题⑴中,若要使与△abc相似且面积最大,则要让最大的边a`b`最好为5×5的正方形网格的对角线,再由相似三角形对应边成比例运用勾股定理可算出a`b`=,b`c`=,a`c`=,从而可作出△a`b`c`,在问题⑵中,学生结合问题⑴中所作图形,通过细心观察,由△a`b`c`在网格中的位置可知,点c`到a`b`的距离即为一个小正方形的对角线。
中考数学专题复习格点作图题(三)
中考数学专题复习格点作图题(三)学校:___________姓名:___________班级:___________考生__________评卷人得分 一、解答题1.已知:△ABC 在平面直角坐标系内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是__________;(2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1;四边形AA 2C 2C 的面积是__________平方单位.2.如图,已知△ABC(1)以△ABC 为基本图案,借助旋转、平移或轴对称在图1中设计一个图形,使它是中心对称图形,但不是轴对称图形.(2)以△ABC 为基本图案,借助旋转、平移或轴对称在图1中设计一个图形,使它既是轴对称图形又是中心对称图形.3.(1)图1是44⨯的正方形网格,请在其中选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形;(2)如图2,在正方形网格中,以点A 为旋转中心,将ABC ∆按逆时针方向旋转90︒,画出旋转后的11AB C ∆;(3)如图3,在边长为1个单位长度的小正方形组成的网格中,点A 、B 、C 、O 都是格点,作ABC ∆关于点O 的中心对称图形111A B C ∆.4.如图,网格中每个小正方形的边长均为1,线段AB、线段EF的端点均在小正方形的顶点上.(1)在图中以AB为边画Rt△BAC,点C在小正方形的顶点上,使△BAC=90°,tan△ACB=23;(2)在(1)的条件下,在图中画以EF为边且面积为3的△DEF,点D在小正方形的顶点上,连接CD、BD,使△BDC是锐角等腰三角形,直接写出△DBC的正切值.5.图△,图△均是边长为1的小正方形组成的4×3的网格,每个小正方形的顶点称为格点,△ABC的顶点均在格点上,请用无刻度直尺按要求作图.(1)在图1中,作△ABC的中线CD;(2)在图2中,作△ABC的高线AH.6.图①、图②均是66⨯的正方形网格,每个小正方形的顶点称为格点,ABC 的顶点均在格点上,点D 为边AC 的中点.分别在图①、图②中ABC 的边AB 上确定点,P 并作出直线DP ,使ADP △与ABC 相似.要求:(1)图①、图②中的点P 位置不同.(2)只用无刻度的直尺,保留适当的作图痕迹.7.如图△、图△、图△均是66⨯的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,ABC 的顶点、、A B C 均在格点上仅用无刻度的直尺在给定的网格中按要求画图,只保留作图痕迹,不要求写出画法.(1)在图△中,找一个格点,D 使以点A B C D 、、、为顶点的四边形是平行四边形;(2)在图△中,画出线段,EF 使EF 垂直平分,AB 且点E F 、在格点上;(3)在图△中,在边AC 上确定一点,P 使ABC 被BP 分成的两个三角形的面积比为1:2.8.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形.(1)使三角形三边长为3,8,5;(2)使平行四边形有一锐角为45︒,且面积为6.9.图△、图△、图△均是8⨯8的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C均在格点上.在图△、图△、图△中,只用无刻度的直尺,在给定的网格中按要求画图,不要求写出画法,保留作图痕迹.(1)在图△中画出ABC的中线BD.(2)在图△ABC的边AB上找到一点E,将AB分成2:3两部分.(3)在图△ABC的边BC上找到一点F,使:2:3ABF ACFS S∆∆=10.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.已知点A在格点,请在给定的网格中按要求画四边形,使四边形的四个顶点都在格点.(1)以A为顶点在图甲中画一个面积为21的中心对称图形且满足72tanA=;(2)以A为顶点在图乙中画一个周长为20、面积为15的四边形,使其既是轴对称图形,又是中心对称图形.参考答案:1.(1)画图见解析,(2,–2);(2)画图见解析,7.5.【解析】【分析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可;根据四边形的面积等于两个三角形面积之和解答即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,四边形AA2C2C的面积是=1151527.522⨯⨯+⨯⨯=.故答案为(1)(2,﹣2);(2)7.5.【点睛】本题考查了作图﹣位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解答本题的关键.2.(1)详见解析;(2)详见解析【解析】【分析】(1)将△ABC绕着一点旋转180°,即可得到所求的图形;(2)将△ABC进行多次轴对称变换,即可得到所求的图形.【详解】解:(1)如图1所示,由两个三角形组成的图案是中心对称图形,但不是轴对称图形.(2)如图2所示,由四个三角形组成的图案既是轴对称图形,又是中心对称图形.【点睛】本题主要考查了利用旋转变换、轴对称变换或平移变换设计图案,通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可以设计出美丽的图案.利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.3.(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)根据中心对称图形的定义,画出图形,即可;(2)以点A为旋转中心,将ABC∆按逆时针方向旋转90︒的对应点画出来,再顺次连接起来,即可;(3)作ABC∆各个顶点关于点O的中心对称后的对应点,再顺次连接起来,即可得到答案.【详解】(1)如图所示;(2)如图所示;(3)如图所示;【点睛】本题主要考查中心对称图形和图形的旋转变换,掌握中心对称图形的定义,是解题的关键.4.(1)见解析;(2)图见解析,△DBC的正切值=5【解析】【分析】(1)作△BAC=90°,且边AC=32,才能满足条件;(2)根据△BDC是锐角等腰三角形即可确定点D的位置,作出图形即可.【详解】解:(1)如图所示,Rt△BAC即为所求;(2)如图所示,△DEF和△BDC即为所求;△DBC的正切值=CGBG=5.【点睛】本题考查了等腰三角形的定义、勾股定理.三角形的面积、锐角三角函数等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.5.(1)见解析;(2)见解析【分析】(1)如图,利用矩形中心对称的性质得到AB的中点,连接点C和AB的中点即为所求;(2)连接AG,交BC与点H,构造全等三角形,从而得AG△BC,则AH即为所求.【详解】(1)解:如图,(2)解:如图,【点睛】本题主要考查作图﹣应用与设计作图,解题的关键是掌握三角形的高线、中线的定义以及全等三角形的应用.6.答案见解析【解析】【分析】(1)找到格点N、M,连接NM交AB于点P,过P点和D点作直线PD,P点即为所求,理由是:找到格点Q,连接NQ交AB于点T,连接TP,根据三角形相似的判定和性质,得到PT和AP的长,根据勾股定理和中点的性质,计算AD的长,再根据相似三角形的判定方法即可解决.(2)找到格点K、L,连接KL与AB变动边的交点即为所求P点,理由为:根据三角形全等的判定和性质,证明P点为AB边的中点,然后根据中位线的意义和性质,结合三角形相似的判定方法,即可得出△APD△△ABC;解:(1)如图:找到格点N、M,连接NM交AB于点P,过P点和D点作直线PD,此时△APD△△ACB.理由如下:找到格点N、M、Q,连接NM交AB于点P,连接NQ交AB于点T,连接TP,由图可知,△NTP=△NQM,△QNM=△TNP,△△TNP△△QNM,△16TP NTQM NQ==,△16TP=,△113266AP=+=,△222313AC=+=,D为AC的中点,△132AD=,1313236ADAB∴==,13136613APAC==,在△APD和△ACB中,△DAP=△BAC,136AD APAB AC∴==,△△APD△△ACB.(2)如图:找到格点K,L,连接KL,交AB于点P,过P点和D点作直线PD,此时△ABC△△APD.理由如下:找到格点W、G,连接WG,KW,GL,由图可知,KW△GL,△△KPW=△LPG,△KWP=△LGP,又△KW=LG,△△KWG△LGP,△WP=GP,△P为WG的中点,△AW+WP=BG+GP,△AP=BP,△P为AB的中点,△D点为AC的中点,△PD为△ABC的中位线,△PD△BC,△△APD△△ABC.【点睛】(1)本题考查了相似三角形的判定和性质,勾股定理,解决本题的关键是正确理解题意,熟练掌握相似三角形的判定方法,能够根据三角形相似得到相应线段的比例式.(2)本题考查了相似三角形的判定,中位线的意义和性质,三角形全等的判定和性质,解决本题的关键是正确理解题意,熟练掌握相似三角形的判定方法和中位线的性质. 7.(1)如图见解析;(2)如图见解析;(3)如图见解析.【解析】【分析】(1)利用平行四边形的判定解决问题即可.(2)利用线段垂直平分线的判定解决问题即可.(3)利用面积法,数形结合的思想,求出BP的三等分点解决问题即可【详解】解:(1)如图(2)如图.(3)如图.【点睛】此题主要考查了作图-应用与设计,平行四边形的判定,线段的垂直平分线以及三角形面积的求法等知识.8.(1)见解析;(2)见解析【解析】【分析】(1)根据勾股定理分别作出三角形三边,即可得出答案;(2)可先找出一个直角边为2的等腰直角三角形,然后据此即可画出所求的平行四边形.【详解】(1)如图:2222822,521=+=+(2)如图:【点睛】本题主要考查作图,掌握勾股定理是解题的关键.9.(1)见解析;(2)见解析;(3)见解析【解析】【分析】如图△所示找出以AC为对角线的正方形,然后连接此正方形的另一条对角线,两对角线交于点D,根据正方形的性质即可得出结论;如图△所示,找出格点G、H,GH与AB交于点E,证出AGE△BHE,即可得出结论;如图△所示,找到格点M、N,MN与BC 交于点F,证出BNF△CMF,根据相似三角形的性质和等高时,三角形面积比等于底之比即可得出结论.【详解】解:如图△所示,找出以AC为对角线的正方形,然后连接此正方形的另一条对角线,两对角线交于点D,根据正方形的性质,点D即为AC的中点,连接BD,BD即为所求;如图△所示,找出格点G、H,GH与AB交于点E,由图易知AG△BH,AG=2,BH=3△AGE△BHE△23 AE AGBE BH==△点E即为所求;如图△所示,找到格点M、N,MN与BC交于点F,由图易知BN△MC,BN=2,CM=3△BNF△CMF△23BF BN CF CM == △::2:3ABF ACF S S BF CF ∆∆==△点F 即为所求【点睛】 此题考查的是正方形的性质和相似三角形的判定及性质,掌握利用正方形的性质和相似三角形的判定及性质找出所求点是解决此题的关键.10.(1)详见解析;(2)详见解析【解析】【分析】 (1)可画一个底为3,高为7的平行四边形,作法:沿水平格线作AB =3,在AB 上取一点E ,使得AE =2,过点E 作DE △AB ,且使DE =7,再沿水平格线向左作CD =3,连接AD 、BC ,则四边形ABCD 即为所求;(2)可画一个边长为5,高为3的菱形,作法:沿水平格线作AB =5,再将AB 向上平移3各单位,向右平移4个单位得到CD ,连接AC ,BD ,则四边形ABDC 即为所求.【详解】解:(1)(2).【点睛】此题主要考查了应用设计与作图,正确掌握菱形、平行四边形的性质是解题关键.。
中考数学专题复习格点作图题(二)
中考数学专题复习格点作图题(二)学校:___________姓名:___________班级:___________考生__________评卷人得分一、解答题1.如图,在6×8的方格纸中有直线l,点A、B、C都在格点上.按要求画四边形,使它的顶点都在格点上,点A、B、C在它的边上(包括顶点).(1)在图①中画一个轴对称图形,使直线l是对称轴;(2)在图①中画一个中心对称图形,使直线l平分它的面积.2.图①、图①均为44⨯的正方形网格,线段AB、BC的端点均在格点上,按要求在图①、图①中作图并计算其面积.(1)在图①中画一个四边形ABCD,使四边形ABCD有一组对角相等,S四边形ABCD=;(2)在图①中画一个四边形ABCE,使四边形ABCE有一组对角互补,S四边形ABCE=.3.如图均是66⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,ABC∆的顶点均在格点上.只用无刻度的直尺,在给定的网格中,分别按下列要求画图,保留适当的作图痕迹.(1)在图中的线段AB上找一点D,连结CD,使BCD BDC∠=∠.(2)在图中的线段AC上找一点E,连结BE,使ABE BAE∠=∠.(3)在图中的线段AC上找一点F,连结BF,使CBF CFB∠=∠.4.图①、图①、图①都是44⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段AB的端点都在格点上,在给定的网格中,只用无刻度的直尺,在图①、图①、图①中,按下列要求画图,只保留作图痕迹,不要求写出画法,所画的图形的顶点均在格点上.(1)在图①中画一个ABC,使其面积为2.(2)在图①中画一个ABD△,使其面积为4.(3)在图①中画一个四边形ABEF,使其面积为5.5.如图,网格中有一条线段AB,点A、B都在格点上,网格中的每个小正方形的边长为1.请在图①和图①中各画出一个格点ABC,使ABC是直角三角形,且90ACB∠=︒,并满足以下要求:(1)在图①中画出的三角形的两条直角边的长度均为有理数(画出一个即可).(2)在图①中画出的三角形的两条直角边的长度均为无理数(画出一个即可).(3)满足(1)、(2)的ABC共有个.6.如图,在66⨯的方格纸中,每个小正方形的边长为1,每个小正方形的顶点称为格点,请按要求画出格点三角形与格点四边形.(1)在图1中以线段AB为边画一个格点ABC∆,使2AB BC=;(2)在图2中以线段AB为边画一个格点四边形ABCD,使其面积为7,且90BAD∠=︒.7.在6×6的正方形网格中,①ABC的顶点均在格点上,请用无刻度直尺画图.(保留必要的画图痕迹)(1)在图1中,画一个与①BAC相等的①BDC,且点D在格点上.(2)在图2中,画一个与①ABC面积相等,且以BC为边的平行四边形BCDE,D、E均在格点上.(3)在图3中,在AC上找一点D,连接BD,使①ABD的面积是①BCD面积的4倍.参考答案:1.(1)作图见解析;(2)作图见解析.【解析】(1)根据轴对称图形的定义画出图形即可.(2)根据中心对称图形作出图形即可.【详解】解:(1)轴对称图形如图所示(答案不唯一).(2)中心对称图形如图所示(答案不唯一).【点睛】本题考查作图-旋转变换,轴对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2.(1)6;(2)92.【解析】【分析】(1)过C画AB的平行线,过A画BC的平行线,两线交于一点D,根据平行四边形的判定定理可得四边形ABCD是平行四边形,由平行四边形的性质可知①CBA=①CDA,然后用用割补法求出面积即可;(2)根据图中正方形网格和①B的特点,作出①E与①B互补,然后用割补法求面积即可.【详解】解:(1)如图,S四边形12223422622ABCD ⨯⨯=⨯-⨯-⨯=, (2)如图,S 四边形12221193322222ABCE ⨯⨯⨯=⨯-⨯--=. 【点睛】此题主要考查了应用设计作图.首先要理解题意,弄清问题中对所作图形的要求,然后利用割补法求面积.3.(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据等腰三角形的性质,在AB 上取一点D 使得3BD BC ==即可;(2)根据矩形的性质,可以得到点E 的位置;(3)由题意可知,利用三角形相似的性质,对AC 进行分段,使得3CF =.【详解】解:(1)取格点D ,连接CD 即可,如下图:(2)取格点P ,连接BP ,交AC 于点E ,如下图:则ABE BAE ∠=∠;(3)如图,取格点H 、N ,连接HN ,交AC 于点F ,连接BF ,①CH ①AB ,①ANF CHF △∽△,3CH =、2AN =,①23AN AF CH CF ==,则CF =35AC , ①AB =4,BC =3,①AC =22435+=,①CF =35AC =3, ①CF =BC =3,①CBF CFB ∠=∠.①点F 即为所求作.【点睛】此题主要考查了等腰三角形、矩形、相似三角形等有关性质,熟练掌握和应用有关知识的性质是解题的关键.4.(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)取格点C ,连接AC 、BC ,利用三角形的面积的计算方法得出符合题意的图形;(2)在(1)的基础上作点A关于BC的对称点D即可;(3)在(2)的基础上增加一个面积为1的三角形即可.【详解】(1)取格点C,连接AC、BC,如图所示,①ABC即为所求:①AC=2,BC=22,AB=221310+=,由于()()()22222210+=,①222AC BC AB+=,①△ABC是直角三角形,且①ACB=90°,①11222222ABCS AC BC=⨯=⨯⨯=;(2)如图所示,①ABD即为所求;(3)如图所示,四边形ABEF即为所求;.【点睛】本题考查了作图-应用与设计,勾股定理,勾股定理的逆定理,三角形面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.5.(1)见解析;(2)见解析;(3)6.【解析】【分析】(1)根据要求作出图形即可,有两种情形,任意一种即可;(2)根据要求作出图形即可,有四种情形,任意一种即可;(3)根据(1)(2)的图形即可解答.【详解】解:(1)点C的位置如图①所示,①ABC、①ABC1中任意一个即为所求;(2)点C的位置如图①所示,①ABC、①ABC1、①ABC2、①ABC中任意一个即为所求;(3)如图可得:满足(1)的ABC共有2个,满足(2)的ABC有4个,则满足(1)、(2)的ABC共有共有6个.【点睛】本题主要考查了基本作图、无理数、直角三角形等知识,掌握数形结合的思想成为解答本题的关键.6.(1)图见详解;(2)图见详解【解析】【分析】(1)由图及题意易得10AB,进而可得5BC=,然后问题可求解;(2)根据题意及旋转的性质可先作出90BAD∠=︒,然后再利用割补法进行作图即可.【详解】解:(1)由题意得:10AB,①2AB BC=,①5BC=,则以线段AB 为边画一个格点ABC ,如图所示:(2)由题意可得如图所示:【点睛】本题主要考查勾股定理及旋转的性质,熟练掌握勾股定理及旋转的性质是解题的关键. 7.(1)见解析(2)见解析(3)见解析【解析】【分析】(1)如图,根据网格的特点以及对称性找到点D ,连接,BD DC ,则BDC BAC ∠=∠; (2)根据题意,与①ABC 面积相等,且以BC 为边的平行四边形BCDE ,则平行四边形BC 边上的高等于ABC 中,BC 边上高的一半,根据网格的特点,在格点上找到点D ,E ,连接,,CD DE EB 即可;(3)根据勾股定理求得5AC =,找到5FC =,根据网格的特点作GH AF ∥,根据平行线分线段成比例可得14CD DA =,即找到符合题意的点D . (1)如图所示,BDC BAC ∠=∠且D 在格点上,(2)如图,(3)如图,22345AC =+=作AF GH ∥14CD CH DA FH ∴== ∴①ABD 的面积是①BCD 面积的4倍.则点D 即为所求.【点睛】本题考查了作轴对称图形,作平行四边形,平行线分线段成比例,掌握以上知识是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国100份试卷分类汇编格点问题1、(泰安)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC 上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,﹣1)B.(1.5,2)C.(1.6,1)D.(2.4,1)考点:坐标与图形变化-旋转;坐标与图形变化-平移.分析:根据平移的性质得出,△ABC的平移方向以及平移距离,即可得出P1坐标,进而利用中心对称图形的性质得出P2点的坐标.解答:解:∵A点坐标为:(2,4),A1(﹣2,1),∴点P(2.4,2)平移后的对应点P1为:(﹣1.6,﹣1),∵点P1绕点O逆时针旋转180°,得到对应点P2,∴P2点的坐标为:(1.6,1).故选:C.点评:此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键.2、(•宜昌)如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)考点:相似三角形的性质;坐标与图形性质.分析:根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.解答:解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意;故选B.点评:本题考查了相似三角形的判定,难度中等.牢记判定定理是解题的关键.3、(广州市)在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格 分析:根据题意,结合图形,由平移的概念求解解:观察图形可知:从图1到图2,可以将图形N 向下移动2格.故选D .点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位置.4、(山东青岛、8)如图,△ABO 缩小后变为O B A ''△,其中A 、B 的对应点分别为''B A 、,''B A 、均在图中格点上,若线段AB 上有一点),(n m P ,则点P 在''B A 上的对应点'P 的坐标为( )A 、),2(n mB 、),(n mC 、)2,(n mD 、)2,2(nm答案:D解析:因为AB =25,''5A B =,所以,''12A B AB =,所以点P (m ,n )经过缩小变换后点'P 的坐标为5、(•郴州)在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A 2B 2C 2是由△A 1B 1C 1经过怎样的平移得到的?考点:作图-轴对称变换;作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.解答:解:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).点评:本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置以及变化情况是解题的关键.6、(•温州)如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.考点:作图-旋转变换;作图-平移变换.专题:图表型.分析:(1)根据网格结构,把△ABC向右平移后可使点P为三角形的内部的三个格点中的任意一个;(2)把△ABC绕点C顺时针旋转90°即可使点P在三角形内部.解答:解:(1)平移后的三角形如图所示;(2)如图所示,旋转后的三角形如图所示.点评:本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构是解题的关键.7、(•绥化)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向右平移3个单位后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2;(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.考点:作图-旋转变换;作图-平移变换.分析:(1)根据平移的性质得出对应点位置以及利用旋转的性质得出对应点位置画出图形即可;(2)根据弧长计算公式求出即可.解答:解:(1)如图所示:(2)点C1所经过的路径长为:=2π.点评:此题主要考查了图形的旋转与平移变换以及弧长公式应用等知识,根据已知得出对应点位置是解题关键.8、(•孝感)如图,已知△ABC和点O.(1)把△ABC绕点O顺时针旋转90°得到△A1B1C1,在网格中画出△A1B1C1;(2)用直尺和圆规作△ABC的边AB,AC的垂直平分线,并标出两条垂直平分线的交点P (要求保留作图痕迹,不写作法);指出点P是△ABC的内心,外心,还是重心?考点:作图-旋转变换;作图—复杂作图.分析:(1)分别得出△ABC绕点O顺时针旋转90°后的对应点坐标,进而得到△A1B1C1,(2)根据垂直平分线的作法求出P点即可,进而利用外心的性质得出即可.解答:解:(1)△A1B1C1如图所示;(2)如图所示;点P是△ABC的外心.点评:此题主要考查了复杂作图,正确根据垂直平分线的性质得出P点位置是解题关键.9、(哈尔滨)如图。
在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A、B、M、N均在小正方形的顶点上.(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C;(2)请直接写出四边形ABCD的周长.考点:轴对称图形;勾股定理;网格作图;分析:(1)根据轴对称图形的性质,利用轴对称的作图方法来作图,(2)利用勾股定理求出AB 、BC、CD、AD四条线段的长度,然后求和即可最解答:(1)正确画图(2) 255210、(•淮安)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.考点:作图-旋转变换;作图-平移变换.分析:(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;(2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A2B2C2.解答:解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.点评:此题主要考查了图形的平移和旋转,根据已知得出对应点坐标是解题关键.11、(•钦州)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.考点: 作图-旋转变换;作图-轴对称变换.分析: (1)分别找出A 、B 、C 三点关于x 轴的对称点,再顺次连接,然后根据图形写出A点坐标;(2)将△A 1B 1C 1中的各点A 1、B 1、C 1绕原点O 旋转180°后,得到相应的对应点A 2、B 2、C 2,连接各对应点即得△A 2B 2C 2.解答: 解:(1)如图所示:点A 1的坐标(2,﹣4);(2)如图所示,点A 2的坐标(﹣2,4).点评: 本题考查图形的轴对称变换及旋转变换.解答此类题目的关键是掌握旋转的特点,然后根据题意找到各点的对应点,然后顺次连接即可.12、(佛山市)网格图中每个方格都是边长为1的正方形.若A ,B ,C ,D ,E ,F 都是格点, 试说明△ABC ∽△DEF .分析:利用图形与勾股定理可以推知图中两个三角形的三条对应边成比例,由此可以证得△ABC ∽△DEF .A B C D E F 第17题图解:证明:∵AC=,BC==,AB=4,DF==2,EF==2,ED=8,∴===2,∴△ABC∽△DEF.点评:本题考查了相似三角形的判定、勾股定理.相似三角形相似的判定方法有:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;这是判定三角形相似的一种基本方法.相似的基本图形可分别记为“A”型和“X”型,如图所示在应用时要善于从复杂的图形中抽象出这些基本图形;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.、(安徽省8分、17)如图,已知A(—3,—3),B(—2,—1),C(—1,—2)是直角坐标平面上三点。
(1)请画出ΔABC关于原点O对称的ΔA1B1C1,(2)请写出点B关天y轴对称的点B2的坐标,若将点B2向上平移h个单位,使其落在ΔA1B1C1内部,指出h的取值范围。
14、(•天津)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(Ⅰ)△ABC的面积等于6;(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB 的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.考点:作图—相似变换;三角形的面积;正方形的性质.专题:计算题.分析:(Ⅰ)△ABC以AB为底,高为3个单位,求出面积即可;(Ⅱ)作出所求的正方形,如图所示,画图方法为:取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求解答:解:(Ⅰ)△ABC的面积为:×4×3=6;(Ⅱ)如图,取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.故答案为:(Ⅰ)6;(Ⅱ)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求点评:此题考查了作图﹣位似变换,三角形的面积,以及正方形的性质,作出正确的图形是解本题的关键.。