孟德尔遗传定律的特殊性状分离比分析
性状分离操作实验报告
一、实验目的通过性状分离实验,了解孟德尔遗传定律的实质,掌握基因分离和自由组合的规律,培养学生的实验操作能力和分析问题、解决问题的能力。
二、实验原理性状分离是指杂合子自交后代中,显性性状和隐性性状的比例为3:1的现象。
这一现象反映了孟德尔遗传定律中的基因分离和自由组合规律。
在减数分裂过程中,等位基因随着同源染色体的分离而分离,分别进入不同的配子中,从而产生两种比例相等的配子。
当这些配子随机结合时,就会产生3:1的性状分离比。
三、实验材料与仪器1. 实验材料:豌豆种子、剪刀、镊子、放大镜、显微镜、培养皿、标签纸、水、蒸馏水、酒精、碘液、淀粉、小试管、滴管等。
2. 实验仪器:实验台、实验架、实验显微镜、培养皿架、酒精灯、碘液瓶、滴瓶等。
四、实验步骤1. 准备实验材料:将豌豆种子浸泡在水中,待其吸水膨胀后,用剪刀剪去豌豆种子的一端,露出胚珠。
2. 择优观察:用放大镜观察豌豆种子的胚珠,选取具有明显显性性状和隐性性状的胚珠。
3. 混合配子:将具有显性性状的胚珠和具有隐性性状的胚珠分别放入培养皿中,用标签纸标记。
4. 模拟受精:用滴管吸取蒸馏水,将蒸馏水滴入培养皿中,使胚珠充分吸水。
5. 观察现象:用显微镜观察胚珠,观察受精后的胚珠发育情况。
6. 记录数据:记录胚珠发育成植株的数量,统计显性性状和隐性性状的比例。
7. 分析结果:根据实验数据,分析性状分离比是否符合孟德尔遗传定律。
五、实验结果与分析1. 实验结果:经过实验观察,发现胚珠受精后,大部分发育成植株,其中显性性状植株和隐性性状植株的比例约为3:1。
2. 结果分析:实验结果与孟德尔遗传定律相符,即杂合子自交后代中,显性性状和隐性性状的比例为3:1。
这表明基因分离和自由组合规律在自然界中普遍存在。
六、实验结论通过性状分离实验,我们验证了孟德尔遗传定律的实质,掌握了基因分离和自由组合的规律。
实验结果表明,在自然界中,杂合子自交后代中,显性性状和隐性性状的比例为3:1,这一现象符合孟德尔遗传定律。
易错点04 孟德尔定律、伴性遗传及人类遗传病(解析版)
易错点04 孟德尔定律、伴性遗传及人类遗传病 易错总结 (1)基因型为Aa 的杂合子产生的雌配子(或雄配子)有2种,且A∶a=1∶1,但雌雄配子的数量比不相等,一般来说,同一种生物产生的雄配子数远远多于雌配子数。
(2)符合基因分离定律并不一定就会出现特定性状分离比。
∶F 2中3∶1的结果必须在统计大量子代后才能得到;子代数目较少,不一定符合预期的分离比。
∶某些致死基因可能导致遗传分离比变化,如隐性致死、纯合致死、显性致死等。
(3)自交不等于自由交配。
∶自交强调的是相同基因型个体的交配,如基因型为AA 、Aa 和aa 的个体的自交,即AA×AA 、Aa×Aa 、aa×aa 。
∶自由交配强调的是群体中所有个体进行随机交配,如在基因型为AA 、Aa 的群体中,自由交配是指AA×AA 、Aa×Aa 、AA(♀)×Aa(♂)、Aa(♀)×AA(♂)。
(4)鉴定某生物个体是纯合子还是杂合子,不一定都选测交法。
当被测个体是动物时,常采用测交法;当被测个体是植物时,测交法、自交法均可以,但自交法较简单。
(5)看清是探究性实验还是验证性实验,验证性实验不需要分情况讨论,直接写结果或结论,探究性实验需要分情况讨论。
(6)看清题目中给定的亲本情况,确定用自交法还是测交法。
自花受粉的植物,自交只需要一个亲本即可,基因型相同的两个同种异性亲本交配,也为自交;而测交则需要两个亲本。
(7)不能用分离定律的结果证明基因是否符合自由组合定律。
因为两对等位基因不管是分别位于两对同源染色体上,还是位于一对同源染色体上,在单独研究时都符合分离定律,都会出现3∶1或1∶1的比例,无法确定基因的位置,也就无法证明是否符合自由组合定律。
(8)重组类型的含义:重组类型是指F 2中表现型与亲本不同的个体,而不是基因型与亲本不同的个体。
(9)含两对相对性状的纯合亲本杂交,F 2中重组类型所占比例并不都是6/16。
生物《性状分离比的模拟实验》教案
生物《性状分离比的模拟实验》教案
一、实验目的
1、了解孟德尔基因遗传规律
2、掌握基于孟德尔遗传规律进行的基因型和表型的推算
3、学习使用傅里叶分析仪等科学实验仪器
二、实验原理
本实验采用傅里叶分析仪对小麦和豌豆的基因型进行检测。
小麦和豌豆都受到孟德尔遗传规律的支配,因此能够通过一定的实验操作推算出它们的相关性状分离比。
三、实验步骤
1、准备实验装置:约定几个beaker或透明杯,在杯内放入种子(豌豆或小麦),在部分杯子内加入特殊培养液。
2、将小麦或豌豆植株移植到特定的杯子中,并在一些杯子中添加特殊的处理液体,以探究相关性状的基因型。
3、应用傅里叶分析仪对大约10ml的植株样本进行检测,从而确定对应性状的基因型和表型。
4、根据模拟实验结果,计算此交配的相关性状的分离比。
四、实验结果分析
继续通过傅里叶分析仪检测得到每个植物的基因型和表型,以生成性状分离比。
通过这些数据,计算出性状分离比,为遗传学家提供有关相关性状遗传规律的详细信息。
五、实验总结
本实验利用了傅里叶分析仪等科学仪器,并基于孟德尔遗传规律进行了相关性状分离比的模拟实验,从而揭示出相关性状的生物学遗传规律。
本次实验对了解基因遗传规律的理解和掌握实验技能都极为重要。
第三章孟德尔式遗传分析
一、分离现象
孟德尔的豌豆杂交实验7对性状的结果
豌豆表型 F1 圆形 黄色 紫花 鼓胀 绿色 腋生 高植株 5474圆 6022黄 705紫 882鼓 428绿 651腋生 787高 F2 1850皱 2001绿 224白 299瘪 152黄 207顶生 277矮 F2比例 2.96:1 3.01:1 3.15:1 2.95:1 2.82:1 3.14:1 2.84:1
稳定的,可以区分的性状
严格自花授粉:没有外界花粉的污染
二、易栽培,生长周期短
人工授粉也能结实
三、后代多,便于收集数据
单株可产生大量种子
四、正确的方法
按系谱记载,研究性状在家系中的传递
P(亲本) ♀(母本) × ♂(父本)
F1(杂种第一代) (自交)
F2 (杂种第二代)
四、正确的方法
三、 非等位基因间互作
抑制作用 :在两对独立基因中,其中一对显性基因, 本身并不控制性状的表现。但对另一对基因的表现有抑 制作用,称这对基因为显性抑制基因.F2的分离比例为 13:3。
四、多因一效与一因多效现象
多因一效:许多基因影响同一单位性状的现象 称为“多因一效 。在生物界,多因一效现象很 普遍,如:玉米糊粉层的颜色涉及7对等位基因; 玉米叶绿素的形成至少涉及50对等位基因;果 蝇眼睛的颜色受40多对基因的控制。
四、多因一效与一因多效现象
一因多效:一个基因也可以影响许多性状的发 育的现象称为一因多效 。如豌豆中控制花色的 基因也控制种皮的颜色和叶腋有无黑斑。红花 豌豆的种皮有色,叶腋有大黑斑
The end
七、孟德尔学说的核心
遗传因子的颗粒性体现在以下几点:
实验01性状分离比的模拟实验
实验01 性状分离比的模拟实验目的要求通过模拟实验认识和理解“基因的分离和随机结合”与“生物性状”之间的数量关系,为进一步学习基因分离定律的实质打下一定的基础。
实验原理由于进行有性杂交的亲本,在形成配子时等位基因会发生分离;受精时,雌雄配子又会随机结合成合子。
因此,杂合子杂交后发育成的个体,一定会发生性状分离。
本实验就是通过模拟雌雄配子随机结合的过程,来探讨杂种后代性状的分离比材料用具小塑料桶2个,2种色彩的小球各20个。
实验步骤1.分别摇动甲、乙小桶,使桶小球充分混合。
2.分别从两个桶随机抓取一个小球,这表示让雌配子与雄配子随机结合成合子。
每次抓取后,记录下这两个小球的字母组合。
3.将抓取的小球放回原来的小桶,按上述方法重复做50~100次(重复的次数越多,结果越准确)。
4.统计小球组合分别为DD、Dd和dd的数量,并将统计结果填写在《实验报告册》上。
5.计算小球组合DD、Dd和dd之间的数量比,以及含有小球D 的组合与dd组合之间的数量比,(1)同一个小桶内两种不同颜色的彩球数量必须相等。
因为母本(杂合子Dd)产生的D雌配子与d雌配子的数量是相等的,父本(杂合子Dd)产生的D雄配子与d雄配子的数量也是相等的。
(2)不同小桶内的彩球数量不必一定相等。
因为对于大多数生物来说,父本产生的雄配子数量远远多于母本产生的雌配子数量。
(3)抓球时应双手同时进行,或由两位同学同时抓取,而且要闭眼进行,以避免主观因素的干扰,减少人为误差,保证抓取的随机性。
(4)多重复几次模拟实验,重复次数越多,结果越准确。
(4)实验结果为小组统计和全班综合统计相结合。
1.(2021·浙江·统考高考真题)某同学用红色豆子(代表基因B)和白色豆子(代表基因b)建立人群中某显性遗传病的遗传模型,向甲乙两个容器均放入10颗红色豆子和40颗白色豆子,随机从每个容器内取出一颗豆子放在一起并记录,再将豆子放回各自的容器中并摇匀,重复100次。
微专题——分离定律中的特殊分离比(20张PPT)
F1
高茎
①P具有一对 相对 性状
②F1全部表现为
显性 性状
F2 高茎 矮茎 比例 3 : 1
③F2出现 性状分离 现象,分离比 为显性:隐性≈3:1
(2)分析问题,提出假说
P
DD
高茎
dd 矮茎
配子 F1
D
d
Dd 高茎
F2
雄配子 1/2D 1/2d
雌配子
1/2D
1/4DD 1/4Dd 高茎 高茎
1/2d
下列说法错误的是( C )
A.小鼠毛色的黄色和黑色性状中,黄色为显性性状 B.小鼠毛色的遗传遵循基因的分离定律 C.黄色鼠和黑色鼠交配,后代全为黄色鼠或黄色鼠:黑色鼠=1: 1 D.黄色鼠均为杂合体,纯合的黄色鼠在胚胎发育过程中死亡
1/3AA、2/3Aaຫໍສະໝຸດ 已知某环境条件下某种动物的AA和Aa个体全部存活,aa个体在出生前会
AA × aa 红花 白花
是否符合分离定律?
粉红花 Aa
红花 AA 1
粉红花Aa 白花 aa :2:1
已知红毛马的基因组成为BB,白毛马的基因组成为bb,基因组成为Bb
的马表现为混色毛。现有两匹混色毛马杂交,其后代的性状表现有
( C ) 种可能。
A.1
B.2
C.3
D.4
二、复等位基因
在同源染色体上相同位点上,存在3个或3个以上的等位基因。 一对性状—3个以上基因
(3)写出上述B、C两个杂交组合的遗传图解。
谢谢
人的i、IA、IB基因可以控制血型。在一般情况下基因 型ii表现为O型血,IAIA或IAi为A型血,IBIB或IBi为B型血, IAIB为AB型血。判断下列叙述是否正确。
× 1、子女之一为A型血时,双亲至少有一方一定是A型血 √ 2、双亲之一为AB型血时,不能生出O型血的孩子
遗传学-第三章 孟德尔遗传
1 F2各类表现型、基因型及其自交结果推测 • 4种表现型:只有1种的基因型唯一,所有后代 无不发生性状分离; • 9种基因型: – 4种不会发生性状分离,两对基因均纯合; – 4种会发生3:1的性状分离,一对基因杂合; – 1种会发生9:3:3:1的性状分离,双杂合基因 型。
孟德尔所作的试验结果,完全符合预定的推论,现摘列如下: F2 F3 38株(1/16)YYRR→ 全部为黄、圆,没有分离 35株(1/16)yyRR→ 全部为绿、圆,没有分离 28株(1/16)YYrr→ 全部为黄、皱,没有分离 30株(1/16)yyrr→ 全部为绿、皱,没有分离 65株(2/16)YyRR→ 全部为圆粒,子叶颜色分离3黄:1绿 68株(2/16)Yyrr→ 全部为皱粒,子叶颜色分离3黄:1绿 60株(2/16)YYRr→ 全部为黄色,籽粒形状分离3圆:1皱 67株(2/16)yyRr→ 全部为绿色,籽粒形状分离3圆:1皱 138株(4/16)YyRr→ 分离9黄、圆:3黄、皱:3绿、圆:1绿、 皱 从F2群体基因型的鉴定,也证明了独立分配规律的正确性。
以红花×白花为例: P 红花(♀)× 白花(♂) 白花 (♀) × 红花(♂) ↓ ↓ F1 红花 红花 ↓ ↓ F2 红花 白花 红花 白花 株数 705 224 比例 3 : 1 约3 : 1 (正交、反交结果一致) F1 的红花(♀)×白花 (♂) ↓ 测交后代:红花 白花 1 : 1 F1 的红花 (♀)×白花 (♂) ↓ 红花 白花 1 : 1
示例: 玉米籽粒:糯性、非糯性;受一对等位基因控制的,分 别控制着籽粒及其花粉粒中的淀粉性质 非糯性:直链淀粉,Wx,遇碘呈蓝黑色 糯性:支链淀粉,wx,遇碘呈红棕色 在显微镜下观察,若称蓝黑色的花粉粒的数目=呈红棕 色的花粉粒的数目,则说明F1的杂合体在减数分裂形成 配子时,控制相对性状的非糯性与糯性这一对基因Wx与 wx发生了分离,比例为1:1,从而验证了分离规律的正 确性。
孟德尔遗传定律的特殊性状分离比规律总结
孟德尔遗传定律的特殊性状分离比规律孟德尔遗传定律是现代基因学的基石之一,它描述了在性状遗传中基因转移的规律。
孟德尔通过对豌豆植物进行实验,发现了性状的分离和组合规律,并提出了三条遗传定律。
其中最为重要的一个规律是“特殊性状分离比规律”,它在遗传学研究中有着广泛的应用。
本文将对这一规律进行详细的解析和。
特殊性状分离比规律的定义孟德尔的实验中,他以豌豆植物的花色性状为案例研究对象。
豌豆植物花的颜色有两种,一种是紫色,一种是白色。
实验中发现,杂交得到的第一代(F1代)豌豆植物全部为紫色。
而在第二代(F2代)中,紫色花和白色花的数量比例为3:1。
这样的结果看似是随机的,但孟德尔却发现了其中的规律。
孟德尔把花色这一性状分成两种类型:紫色性状和白色性状,称之为特殊性状。
在第一代杂交中,只有紫色性状表现出来了。
这时,孟德尔提出了特殊性状分离比规律,即特殊性状中的一种在第二代杂交中表现比例为3:1。
特殊性状分离比规律的意义与应用孟德尔的发现极大地推动了遗传学的发展,并为后代科学家提供了研究工具和理论基础。
特殊性状分离比规律是遗传学研究的重要规律之一,对于有性生殖生物的遗传实验有着广泛的应用。
特殊性状分离比规律的解释与原因孟德尔的实验中,第二代的质量在遗传学中被称作“后代分布”。
孟德尔的发现表明,在后代分布中,特殊性状遗传分别控制着性状的表现。
比例3:1中的3代表了在后代中出现的得到特殊性状的个体数量。
例如,在第二代中,有三个细胞有紫色花色的基因和一个细胞有白色花色基因,所以遗传规律得出的比例为3:1。
特殊性状分离比规律的应用特殊性状分离比规律在有性生殖生物的遗传实验中被广泛应用。
其具体应用包括统计遗传部分的基因分布情况、预测群体中特殊性状的占比以及进行单倍体重组等。
孟德尔遗传定律的意义孟德尔遗传定律等对模拟遗传实验的数据分析提供了框架。
仅基于这几个基本遗传单位的简单组合就能最终描述出比机器学习、深度学习、数据挖掘等技术更为精确的产物。
孟德尔式遗传分析
反遗应传规学上范将基因型对环境反应的幅度称为反应规范
(Norm of Reaction),也可以说是同一基因型在不
同环境中所显示出的表型变化范围。
基因与环境
表现度
具有特定基因型又表现出该基因型所控制的性 状的个体,对于该性状的表现程度称为表现度 (Expressivity)。
Mendel定律的扩展
1
基因与环境
2
等位基因间的关系
3
非等位基因间的相互作用
Mendel定律的扩展
1
基因与环境
2
等位基因间的关系
3
非等位基因间的相互作用
聊城大学生命科学学院
基因与环境
基因型 环境
表现型
多一一因因种一性多状效效的发育受多对基因影响的现象称为多因一效
(Multigenic effect)。
当n=4,则代入二项式展开为:( Nhomakorabeap
+q)n
=
1 2
+
14 2
14 2
4
1
3
2
1 2
43 2!
12 2
12 2
432 3!
1 2
1
3
2
1
4
2
1 4显性 4 3显性 6 2显性 4 1显性 1 0显性
16
16
16
16
16
21
求YyRr 自交后代中3显性和1隐性基因个体出现的概
率?
n! prqn-r r!(n-r)!
1 4
n
3 4
n
n
3 4
n1
高考提分微课(三) 孟德尔遗传定律异常分离比分析
关闭
纯合红花(RR)与纯合白花(rr)杂交,F1杂合子全表现为粉红花,即表现出双
亲的中间性状,说明R基因对r基因表现为不完全显性,D项正确。
关闭
D
解析 答案
-6-
典例2某玉米品种含一对等位基因A和a,其中a基因纯合的植株花
粉败育,即不能产生花粉,含A基因的植株完全正常。现有基因型为
Aa 的玉米若干,每代均为自由交配,直至F2。F2植株中正常植株与 花粉败育植株的比例是( )
-20-
典例5(2018北京海淀期末)鳟鱼的眼色和体色分别由两对等位基
因控制。以红眼黄体鳟鱼和黑眼黑体鳟鱼为亲本,进行正交和反交,
实验结果相同,如下图所示。下列叙述正确的是( )
P
红眼黄体 × 黑眼黑体
关闭
设眼色和体色分别由两对↓等位基因A/a、B/b决定,根据题干条件,以红眼
黄体F1鳟鱼和黑眼黑体黑鳟眼鱼黄为体亲本,进行正交和反交, ↓
a(或 b)成对存在时 9∶3∶4
1∶1∶2
表现双隐性性状, A_bb 和 aabb 的表现型相同(或 aaB_和 aabb 的
其余正常表现
表现型相同)
-14-
条件
自交后代性状分离比 测交后代性状分离比
只要存在显性基 15∶1
3∶1
因(A 或 B)就表现
为同一种性状,其 A_B_、A_bb 和 aaB_的表现型相同 余正常表现
-12-
二、基因自由组合定律的拓展 1.9∶3∶3∶1的拓展变式 (1)自由组合定律中的特殊分离比成因 9∶3∶3∶1是独立遗传的决定两对相对性状的两对等位基因自 由组合时出现的表现型比例,题干中如果出现附加条件,则可能出 现9∶3∶4、9∶6∶1、15∶1、9∶7等一系列的特殊分离比。当后 代的比例为9∶3∶3∶1或其变式时,则亲本必为双显性性状,且亲本 必为双杂合子,这是解答此类问题的基本出发点。
孟德尔遗传定律知识点总结
孟德尔遗传定律知识点总结孟德尔定律由奥地利帝国遗传学家格里哥·孟德尔在1865年发表并催生了遗传学诞生的著名定律。
他揭示出遗传学的两个基本定律——分离定律和自由组合定律,统称为孟德尔遗传规律。
下面小编给大家分享一些孟德尔遗传定律知识点,希望能够帮助大家,欢迎阅读!孟德尔遗传定律知识点11、基因的分离定律相对性状:同种生物同一性状的不同表现类型,叫做相对性状。
显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做显性性状。
隐性性状:在遗传学上,把杂种F1中未显现出来的那个亲本性状叫做隐性性状。
性状分离:在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象,叫做性状分离。
显性基因:控制显性性状的基因,叫做显性基因。
一般用大写字母表示,豌豆高茎基因用D表示。
隐性基因:控制隐性性状的基因,叫做隐性基因。
一般用小写字母表示,豌豆矮茎基因用d表示。
等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做等位基因。
(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。
显性作用:等位基因D和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。
等位基因分离:D与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。
D∶d=1∶1;两种雌配子D∶d=1∶1。
) 非等位基因:存在于非同源染色体上或同源染色体不同位置上的控制不同性状的不同基因。
表现型:是指生物个体所表现出来的性状。
基因型:是指与表现型有关系的基因组成。
纯合体:由含有相同基因的配子结合成的合子发育而成的个体。
可稳定遗传。
杂合体:由含有不同基因的配子结合成的合子发育而成的个体。
不能稳定遗传,后代会发生性状分离。
2、基因的自由组合定律基因的自由组合规律:在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这一规律就叫基因的自由组合规律。
对自由组合现象解释的验证:F1(YyRr)X隐性(yyrr)→(1YR、1Yr、1yR、1yr)Xyr →F2:1YyRr:1Yyrr:1yyRr:1yyrr。
孟德尔遗传定律总结
孟德尔遗传定律一.基因的分离定律的理解1.细胞学基础:同源染色体分离2.作用时间:有性生殖形成配子时(减数第一次分裂的后期)3.出现特定分离比的条件①所研究的每一对相对性状只受一对等位基因控制,且相对性状为完全显性②每一代不同类型的配子都能发育良好,且不同配子结合机会相等③所有后代都处于比较一致的环境中,且存活率相同④供实验的群体要大,个体数量足够多二.分离定律中的分离比异常的现象①不完全显性②隐性纯合致死③显性纯合致死④配子致死三.基因的自由组合定律的理解1.细胞学基础:非同源染色体上的非等位基因自由组合2.作用时间:有性生殖形成配子时(减数第一次分裂的后期)3.适用范围:两对或更多对等位基因分别位于两对或更多对同源染色体上(基因不连锁)4.自由组合定律中的特殊分离比①9:3:3:1是独立遗传的两对相对性状自由组合出现的表现型比,题干中如果出现附加条件,则可能出现9:3:4、9:6:1等一系列的特殊分离比。
②利用“合并同类项”妙解特殊分离比的解题步骤:看后代可能的配子组合种类,若组合方式是16种,不管以什么样的比例呈现,都符合基因的自由组合定律。
写出正常的分离比,然后对照题中所给信息进行归类例1:水稻的非糯性(A)对糯性(a)为显性,抗锈病(T)对染病(t)为显性,花粉粒长形(D)对圆形(d)为显性,三对等位基因分别位于三对同源染色体上,非糯性花粉遇碘液变蓝,糯性花粉遇碘液变棕色。
现在四种纯合子基因型分别为:①AATTdd ②AAttDD ③AAttdd ④aattdd ,下列说法正确的是()A.若采用花粉鉴定法验证基因的分离定律,应该用①和③杂交所得F1代的花粉B.若采用花粉鉴定法验证基因的自由组合定律,可以观察①和②杂交所得F1代的花粉C.若培育糯性抗病优良品种,应选用①和④亲本杂交D.将②和④杂交后所得的F1的花粉凃在载玻片上,加碘液染色后,均为蓝色例2藏犬毛色黑色基因A对白色基因a为显性,长腿基因B对短腿基因b为显性。
孟德尔遗传定律(共43张PPT)
CHENLI
17
• (2)据子代性状分离比判断
• ①具一对相对性状的亲本杂交,若子代性状 • 分离比为3:1,则分离比为3的性状为显性性状。
• ②具两对相对性状的亲本杂交,若子代性状分 • 离比为9:3:3:1,则分离比为9的两性状都为显性性状。
CHENLI
19
• 2、纯合子、杂合子的鉴定
• 表现为隐性性状的肯定是隐性纯合子。表现为显性性状的 则既可能是纯合子,也可能是杂合子。
• ⑴自交:让某性状的个体进行自交, 若后代无性状 分离,则为纯合子;若后代出现性状分离,则为杂合子。
• 和摩尔根在验证基因位于染色体上的过程中,均
• 使用到“假说—演绎法”,这是现代科学研究中 常
• 用的一种科学方法。全过程如下(以孟德尔的总
• 结过程为例):CHENLI
10
CHENLI
11
• 例1. 下列有关孟德尔的“假说—演绎法”的叙述中不正确的是( ) • A.在“一对相对性状的遗传实验”中提出了等位基因的说法 • B.“测交实验”是对推理过程及结果进行的检验 • C.“生物性状是由遗传因子决定的;体细胞中遗传因子成对存 • 在;配子中遗传因子成单存在;受精时,雌雄配子随机结合” • 属于假说内容 • D.“F1能产生数量相等的两种配子”属于推理内容
• A.生物的性状是遗传因子决定的
• B.由F2出现了“3∶1”推测,生物体产生配子时 成对遗传因子彼此分离
• C.若F1产生配子时成对遗传因子分离,则测交后 代会出现两种性状,比例接近1∶1
• D.若F1产生配子时成对遗传因子分离,则F2中三 种基因个体比接近1∶2∶1
孟德尔遗传定律相对性状分离比例外原因可能性分析
孟德尔遗传定律相对性状分离比特例原因可能性分析河南省镇平县雪枫中学袁新波(474250)孟德尔遗传定律在近几年高考试题中被反复考查,这是大家熟知的,但在2008年高考试题中又采取常规考查和特例考查相结合的方式,考查考生对孟德尔遗传定律的相关知识的理解和掌握情况。
下面就孟德尔遗传定律相对性状分离比特例原因的可能性进行一些举例分析,以提高学生对孟德尔遗传定律的全面理解和应用。
一、一对相对性状的特例1.如果一个杂合子Aa自交后代有三种表现型,比例为1:2:1,这种情况可能的原因是不完全显性遗传。
在完全显性情况下:2. 如果一个杂合子Aa的自交后代有两种表现型,比例为2:1,这种情况可能的原因是显性纯合致死。
(在一些性状的遗传中,具有某种基因型的合子不能完成胚胎发育,导致后代中不存在该基因型的个体,从而使性状的分离比例发生变化)例1. (08年北京理综第4小题)无尾猫是一种观赏猫。
猫的无尾、有尾是一对相对性状,按基因的分离定律遗传。
为了选育纯种的无尾猫,让无尾猫自交多代,但发现每一代中总会出现约1/3的有尾猫,其余均为无尾猫。
由此推断正确的是A.猫的有尾性状是由显性基因控制的B.自交后代出现有尾猫是基因突变所致C.自交后代无尾猫中既有杂合子又有纯合子D.无尾猫与有尾猫杂交后代中无尾猫约占1/2解析:无尾猫自交后代有两种表现型:即有尾和无尾两种。
因此可以判断出猫的无尾性状是由显性基因控制的。
后代出现有尾猫是性状分离的结果。
假设有尾、无尾是由一对等位基因(A或a)控制,无尾猫自交,发现每一代中总会出现约1/3的有尾猫,说明显性纯合致死,因此自交后代无尾猫中只有杂合子。
无尾猫(Aa)与有尾猫(aa)杂交后代中:1/2为Aa(无尾),1/2为aa(有尾)。
3. 如果一个杂合子Aa的自交后代只有一种表现型,这种情况可能的原因是隐性纯合致死(例如在植物中的隐性白苗致死突变型在纯合情况下幼苗缺乏合成叶绿素的能力,子叶中的养料耗尽就会死亡。
1-1 第2课时 孟德尔对分离现象解释的验证和分离定律
知识概览
一、性状分离比的模拟实验 1.实验目的:通过模拟实验,理解遗传因子的分离、配子的 随机结合与性状之间的数量关系,体验孟德尔的假说。
2.实验装置 (1)甲、乙两个小桶,分别代表 雌、雄生殖器官;甲、乙小桶内 的彩球分别代表雌、雄配子 (D球与d球分别代表显性遗传 因子和隐性遗传因子)。 (2)用不同彩球的随机组合,模拟生物在生殖过程中雌、雄 配子的随机结合。
3.实验过程 (1)在甲、乙两个小桶中放入两种彩球各10个。 (2)摇动两个小桶,使小桶内的彩球充分混合。 (3)分别从两个桶内随机抓取一个小球,组合在一起,记下两 个彩球的字母组合。 (4)将抓取的彩球放回原来的小桶,摇匀。 (5)按步骤(3)和(4)重复做30次以上。 4.实验结果:彩球组合中,DD∶Dd∶dd≈1∶2∶1。
典例剖析 某同学做了性状分离比的模拟实验:在两个小桶 内各装入20个等大的方形积木(红色、蓝色各10个,分别代表 “配子”D、d),分别从两桶内随机抓取1个积木并记录,直至抓 完桶内积木。得到的结果为DD∶Dd∶dd=12∶6∶2,因此他 感到有些失望。下列建议不合理的是( )
A.把方形积木改换为质地、大小相同的小球,以便充分混合 B.每次抓取后,应将抓取的配子放回原桶,保证每种配子被 抓取的概率相等 C.重复抓50~100次,保证实验统计样本数目足够大
一 性状分离比的模拟实验
重难归纳
1.模拟内容及结果、结论
模拟内容
分析结果,得出结论
①甲、乙两个小桶分别代表雌、雄生 殖器官 ②甲、乙小桶内的彩球分别代表雌、 雄配子 ③用不同彩球的随机组合,模拟生物在 生殖过程中,雌、雄配子的随机结合
①彩球组合类型的数量比 为 DD∶Dd∶dd≈1∶2∶1 ②彩球组合代表的显性与 隐性类型的数量比约为 3∶1
专题:孟德尔两大遗传定律和伴性遗传(带答案)
专题孟德尔两大遗传定律和伴性遗传(一)自由组合定律中特殊的分离比1、遗传中的多基因一效现象(9:3:3:1比例的变形)在自由组合定律的应用中,经常会遇到不是绝对的9:3:3:1,而是变形为许多种比例。
如:①9:7;②9:6:1;③12:3:1;④9:3:4;⑤15:1;⑥13:3等,这就是一种多基因一效现象,即由多个基因控制一个表现效果。
解决此类习题的根本方法是审题仔细,抓住题目中限制条件,运用分离定律或自由组合定律。
例1.萝卜的根形是由位于两对同源染色体上两对等位基因决定的。
现用两个纯合的圆形块根萝卜作为亲本进行自交,F1全为扁形块根,F1自交后F2中扁形块根、圆形块根、长形块根的比例为9:6:1,则F2扁形块根中杂合子所占的比例为()A.9/16B.1/2C.8/9D.1/4例2.天竺鼠身体较圆,唇形似兔,是鼠类宠物中最温顺的一种,受到人们的喜爱。
科学家通过研究发现,该鼠的毛色由两对基因控制,这两对基因分别位于两对常染色体上。
现有一批基因型为BbCc的天竺鼠,已知B决定黑色毛,b决定褐色毛,C决定毛色存在,c决定毛色不存在(即白色)。
则这批天竺鼠繁殖后,子代中黑色:褐色:白色的理论比值是()A.9:4:3B.9:3:4C.9:1:6D.9:6:1例3.某种植物的两个开白花的品系AAbb和aaBB杂交,F1自交得到F2中有紫花和白花,且比例为9:7。
则F1的表现型为()A.全部为紫花B.全部为白花C.紫花与白花之比为3:1D.紫花与白花之比为1:1例4.人体消化脂肪的酶有两种,胰脂肪酶和肠脂肪酶,这两种酶分别受两对等位基因控制,控制胰脂肪酶能合成的基因(A)对不能合成胰脂肪酶的基因(a)为显性,控制肠脂肪酶能合成的基因(B)对不能合成胰脂肪酶的基因(b)为显性,由于酶的高效性,人体只要有其中一种酶就能消化脂肪。
现有一对夫妇的基因型为AaBb,则他们生一个不能消化脂肪的孩子的几率是()A.15/16B.9/16C.1/16D.3/1例5.已知具有B基因的狗,皮毛可以呈黑色;具有bb基因的狗,皮毛可以呈褐色。
孟德尔遗传定律的特殊性状分离比规律总结
遗传定律的特殊性状分离比规律1:隐性上位:两对等位基因同时控制某一性状时,其中一对基因的隐性状态对另一对基因起遮盖作用.AaBb自交后代表现型比例:9:3:4,测交后代表现型比例为1:1:2.规律2:积加作用:两对等位基因同时控制某一性状时,当两对基因都为显性时表现一种性状,只有一对基因是显性时表现另一种性状,两对基因均为隐性时表现第三种性状.AaBb自交后代表现型比例为9:6:1,测交后代表现型比例为1:2:1.规律3:累加作用:两基因的作用效果相同,但显性基因积累越多,性状表现得越明显.AaBb 自交后代表现型会有5种情况分别为4个显性基因、3个显性基因、2个显性基因、1个显性基因、0个显性基因,其比例为1:4:6:4:1,测交后代表现型比例为1:2:1.规律4:显性上位:两对等位基因同时控制某一性状时,其中一对基因的显性状态对另一对基因无论显隐性有遮盖作用,即当一对基因为显性时表现一种性状,另一对基因为显性而第一对基因为隐性时,表现另一种性状,两对基因都为隐性时表现第三种性状.AaBb自交后代表现型比例为12:3:1,测交后代表现型比例为2:1:1.规律5:抑制作用:两对等位基因同时控制某一性状时,其中一对基因的显性状态对另一对基因的表现有抑制作用,但其本身并不控制任何性状.AaBb自交后代表现型比例为13:3,测交后代表现型比例为3:1.规律6:显性互补:两对等位基因同时控制某一性状时,当两对基因都为显性时无论纯合还是杂合,表现为一种性状;当只有一对基因是显性无论纯合还是杂合或两对基因都是隐性时,表现为另一种性状.AaBb自交后代表现型比例为9:7,测交后代表现型比例为1:3.规律7:两对等位基因同时控制某一性状时,当两对基因都为显性或一对基因为显性纯合或杂合、另一对基因为隐性时,表现同一种性状;两对基因均为隐性时表现另一种性状.AaBb 自交后代表现型比例为15:1,测交后代表现型比例为3:1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遗传定律的特殊性状分离比遗传学是高考重点考查的内容,同时这部分题目的难度较大,是决定考生生物成绩高低的关键。
命题的侧重点是遗传学原理的理解和应用,重点考查考生的综合运用能力,分析推理能力。
考查的形式较多,如选择填空简答综合分析实验等。
这就要求同学们熟练掌握遗传学部分的题型解题方法和技巧。
运用遗传规律解决生产生活中的实际问题仍为2011年高考的重点内容。
遗传学家孟德尔,用豌豆作试验材料,最先揭示了遗传的两个基本规律——基因的分离定律和基因的自由组合定律。
下面从一道高考遗传题来看孟德尔比率的变化,掌握好孟德尔遗传定律,在高考中具有重要意义。
以期同学们能从中获得启发。
高考对遗传基本定律的考查,历来是一个重点。
其中对F2特殊性状分离比的考查是近年来的一个热点。
这类试题能够很好地体现学生的理解能力、变通思维能力等。
下面试图对F2特殊性状分离比进行系统地归纳和整理,以期广大师生能从中获得启发。
两对独立遗传的的非等位基因在表达时,有时会因基因之间的相互作用,而使杂交后代的性状分离比偏离9:3:3:1的孟德尔比例,称为基因互作。
基因互作的各种类型中,杂种后代表现型及比例虽然偏离正常的孟德尔遗传,但基因的传递规律仍遵循自由组合定律。
规律1:隐性上位:两对等位基因同时控制某一性状时,其中一对基因的隐性状态对另一对基因起遮盖作用。
F2比例:9 : 3 : 4【例题1】(2010全国新课标高考,32)某种自花受粉植物的花色分为白色、红色和紫色。
现有4个纯合品种:l个紫色(紫)、1个红色(红)、2个白色(白甲和白乙)。
用这4个品种做杂交实验,结果如下:实验1:紫×红,F l表现为紫,F2表现为3紫:1红;实验2:红×白甲,F l表现为紫,F2表现为9紫:3红:4白;实验3:白甲×白乙,F l表现为白,F2表现为白;实验4:白乙×紫,F l表现为紫,F2表现为9紫:3红:4白。
综合上述实验结果,请回答:(1)上述花色遗传所遵循的遗传定律是。
(2)写出实验1(紫×红)的遗传图解(若花色由一对等位基因控制,用A、a表示,若由两对等位基因控制,用A、a和B、b表示,以此类推)。
遗传图解为。
(3)为了验证花色遗传的特点,可将实验2(红×白甲)得到的F2植株自交,单株收获F2中紫花植株所结的种子,每株的所有种子单独种植在一起可得到一个株系,观察多个这样的株系,则理论上,在所有株系中有4/9的株系F3花色的表现型及其数量比为。
【答案】(1)自由组合定律(2)如图或(3)9紫:3红:4白规律2:积加作用:两对等位基因同时控制某一性状时,当两对基因都为显性时表现一种性状,只有一对基因是显性时表现另一种性状,两对基因均为隐性时表现第三种性状。
F2比例:9 : 6 : 1【例题2】(2010全国理综I,33)现有4个纯合南瓜品种,其中2个品种的果形表现为圆形(圆甲和圆乙),1个表现为扁盘形(扁盘),1个表现为长形(长)。
用这4个南瓜品种做了3个实验,结果如下:实验1:圆甲×圆乙,F1为扁盘,F2中扁盘:圆:长= 9 :6 :1实验2:扁盘×长,F1为扁盘,F2中扁盘:圆:长= 9 :6 :1实验3:用长形品种植株的花粉分别对上述两个杂交组合的F1植株授粉,其后代中扁盘:圆:长均等于1 :2 :1。
综合上述实验结果,请回答:(1)南瓜果形的遗传受对等位基因控制,且遵循定律。
(2)若果形由一对等位基因控制用A、a表示,若由两对等位基因控制用A、a和B、b表示,以此类推,则圆形的基因型应为,扁盘的基因型应为,长形的基因型应为。
(3)为了验证(1)中的结论,可用长形品种植株的花粉对实验1得到的F2植株授粉,单株收获F2中扁盘果实的种子,每株的所有种子单独种植在一起得到一个株系。
观察多个这样的株系,则所有株系中,理论上有1/9的株系F3果形均表现为扁盘,有的株系F3果形的表现型及数量比为扁盘:圆= 1 :1 ,有的株系F3果形的表现型及数量比为。
【命题意图】主要考查遗传的基本规律的知识和理解能力。
【解析】第(1)小题,根据实验1和实验2中F2的分离比 9 :6 :1可以看出,南瓜果形的遗传受2对等位基因控制,且遵循基因的自由组合定律。
第(2)小题,根据实验1和实验2的F2的分离比 9 :6 :1可以推测出,扁盘形应为A_B_,长形应为aabb,两种圆形为A_bb和aaB_。
第(3)小题中,F2扁盘植株共有4种基因型,其比例为:1/9AABB、2/9AABb、4/9AaBb和2/9AaBB,测交后代分离比分别为:1/9A_B_;2/9(1/2A_B_:1/2A_bb);4/9(1/4A_B_:1/4Aabb:1/4aaBb:1/4aabb);2/9(1/2A_B_:1/2aaB_)。
【答案】(1)2 基因的自由组合(2)AAbb、Aabb、aaBb、aaBB AABB、AABb、AaBb、AaBB aabb(3)4/9 4/9 扁盘:圆:长 = 1 :2 :1规律3:累加作用:某一类基因积累越多,形状表现的越明显。
【例题3】(2009年上海生物,29)牡丹花的花色种类多种多样,其中白色的是不含花青素,深红色的含花青素最多,花青素含量的多少决定着花瓣颜色的深浅,由两对独立遗传的基因(A和a、B和b)所控制;显性基因A和B可以使花青素量增加,两者增加的量相等,并且可以累加。
若一深红色的牡丹同一白色的牡丹杂交,就能得到中等红色的个体,若这些个体自交其子代将出现的花色的种类和比例分别是A.3种9:6:1 B.4种9:3:3:1C.5种1:4:6:4:1 D.6种1:4:3:3:4:1【命题意图】考查对自由组合定律的理解及灵活运用能力。
【解析】由题干叙述可知,中等红色的个体基因型为AaBb,自交后代的基因型及比例为:分别为AABB:AaBB:AABb:AaBb:AAbb :Aabb:aaBB:aaBb:aabb=1:2:2:4:1:2:1:2:1。
因显性基因A和B可以使花青素量增加,两者增加的量相等,并且可以累加,所以后代的基因组合会有5种情况,分别为4个显性基因、3个显性基因、2个显性基因、1个显性基因、0个显性基因,共有5种表现型,其比例为1:4:6:4:1。
规律4:显性上位:两对等位基因同时控制某一性状时,其中一对基因的显性状态对另一对基因(无论显隐性)有遮盖作用,即当一对基因为显性时表现一种性状,另一对基因为显性而第一对基因为隐性时,表现另一种性状,两对基因都为隐性时表现第三种性状。
F2比例:12 : 3: 1【例题4】燕麦的颖色受两对基因控制。
已知黑颖(用字母A表示)对黄颖(用字母B表示)为显性,且只要A存在,植株就表现为黑颖。
双隐性则出现白颖。
现用纯种黄颖与纯种黑颖杂交,F1全为黑颖,F l自交产生的F2中,黑颖:黄颖:白颖=12:3:1。
请回答下面的问题:(1)F2的性状分离比说明基因A(d)与B(b)的遗传遵循基因的定律。
F2中白颖的基因型为,黄颖占所有非黑颖总数的比例是。
(2)请用遗传图解的方式表示出题目所述杂交过程(包括亲本、F1及F2各代的基因型和表现型)。
【命题意图】考查基因自由组合定律的知识。
【解析】由题可知黄颖的基因型为aaBB或aaBb,由F2的比例可知基因A(a)与B(b)的遗传遵循基因的自由组合规律。
【答案】(1)自由组合aabb 3/4规律5:抑制作用:两对等位基因同时控制某一性状时,其中一对基因的显性状态对另一对基因的表现有抑制作用,但其本身并不控制任何性状。
F2比例:13 : 3【例题5】蚕的黄色茧(Y)对白色茧(y)是显性,抑制黄色出现的基因(I)对黄色出现的基因(i)是显性。
现用杂合白色茧(IiYy)蚕相互交配,后代中白色茧对黄色茧的分离比是A.3:1 B.13:3 C.1:1 D.15:1【命题意图】考查基因自由组合定律的知识和理解能力。
【解析】根据题意可知:只有基因型为iiY _的个体才表现为黄色茧,而基因型为I_Y _、I_ yy和iiyy 的个体都表现为白色茧。
当杂合白色茧(IiYy)蚕相互交配时,后代中白色茧:黄色茧=13:3。
规律6:显性互补:两对等位基因同时控制某一性状时,当两对基因都为显性时(无论纯合还是杂合),表现为一种性状;当只有一对基因是显性,或两对基因都是隐性时,表现为另一种性状。
F2比例:9 : 7【例题6】(2008年宁夏,29Ⅰ)某植物的花色由两对自由组合的基因决定。
显性基因A和B同时存在时,植株开紫花,其他情况开白花。
请回答:开紫花植株的基因型有种,其中基因型是的紫花植株自交,子代表现为紫花植株:白花植株=9:7。
基因型为和的紫花植株各自自交,子代表现为紫花植株:白花植株=3:1。
基因型为的紫花植株自交,子代全部表现为紫花植株。
【命题意图】考查基因自由组合定律的基础知识和分析推理能力。
【解析】由题意可知,A B开紫花,其他(A bb、aa B、aabb)都开白花。
故开紫花的基因型有AaBb、AaBB、AABb、AABB四种情况。
基因型为AaBb的植株自交,子代开紫花的植株所占的比例为:3/4×3/4=9/16,由此可推知子代中紫花植株:白花植株=9:7。
基因型为AaBB的植株自交,产生A BB 和aaBB的比例为3:1;同理,基因型为AABb的植株自交,产生AAB和AAbb的比例为3:1,子代表现为紫花植株:白花植株=3:1。
基因型为AABB的紫花植株自交子代全部是AABB,表现为紫花植株。
【答案】 4 AaBb AaBB AABb AABB【专项训练1】香豌豆中紫花与白花是一对相对性状,由非同源染色体上的两对基因共同控制,只有当同时存在两个显性基因(A和B)时,花中的紫色素才合成。
下列说法正确的是A.AaBb的紫花香豌豆自交,后代中紫花和白花之比为9:7B.若杂交后代性状分离比为3:5,则亲本基因型只能是AaBb和aaBbC.紫花香豌豆自交,后代中紫花和白花的比例一定是比3:1D.白花香豌豆与白花香豌豆相交,后代不可能出现紫花香豌豆【命题意图】考查基因自由组合定律的知识和分析解决实际问题的能力。
【解析】A项正确:基因型为AaBb紫花香豌豆自交,由于Aa×Aa→3/4A_、1/4aa;Bb×Bb→3/4B_、1/4bb,子代中紫花出现(A_ B_)的概率为:3/4×3/4=9/16;白花出现的概率为:1-9/16,紫花:白花=9:7。
B项错误:杂交后代性状分离比为3:5,则亲本基因型还可能是AaBb和Aabb(运用对称思想)。
C项错误:紫花香豌豆的基因型为A_ B_,共有4种,不同基因型紫花香豌豆自交,后代中紫花和白花出现的情况比较复杂,并不一定是比3:1。