《最新6套汇总》漳州市名校2019-2020学年中考数学第一次模试卷
(3份试卷汇总)2019-2020学年漳州市名校中考数学达标测试试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.2DE=EB C.3DE=DO D.DE=OB2.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个B.2个C.3个D.4个3.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )A.6 B.8C.10 D.124.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A .B .C .D .5.如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB =14,BC =1.则∠BDC 的度数是( )A .15°B .30°C .45°D .60°6.下列调查中,调查方式选择合理的是( )A .为了解襄阳市初中每天锻炼所用时间,选择全面调查B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C .为了解神舟飞船设备零件的质量情况,选择抽样调查D .为了解一批节能灯的使用寿命,选择抽样调查7.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件才能按时交货,则x 应满足的方程为( )A .72072054848x -=+ B .72072054848x +=+ C .720720548x -= D .72072054848x -=+ 9.已知5a =27b =,且a b a b +=+,则-a b 的值为( )A .2或12B .2或12-C .2-或12D .2-或12-10.某商品价格为a 元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为( )A .0.96a 元B .0.972a 元C .1.08a 元D .a 元二、填空题(本题包括8个小题)11.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是12.已知A(x 1,y 1),B(x 2,y 2)都在反比例函数y =6x的图象上.若x 1x 2=﹣4,则y 1⋅y 2的值为______. 13.等腰ABC ∆中,AD 是BC 边上的高,且12AD BC =,则等腰ABC ∆底角的度数为__________. 14.如图,已知圆锥的底面⊙O 的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为 .15.如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 .16.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.17.Rt △ABC 中,∠ABC=90°,AB=3,BC=4,过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.18.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C ,A’B’交AC 于点D ,若∠A’DC=90°,则∠A= °.三、解答题(本题包括8个小题)19.(6分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.20.(6分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?21.(6分)如图,在ABC ∆中,D 是BC 的中点,过点D 的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,ED DF ⊥交AB 于点E ,连接EG 、EF .求证:BG CF =;请你判断BE CF +与EF 的大小关系,并说明理由.22.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表. 组别分数段 频次 频率 A60≤x <70 17 0.17 B70≤x <80 30 a C80≤x <90 b 0.45 D 90≤x <100 8 0.08请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B 组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.23.(8分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?24.(10分)如图,建筑物AB 的高为6cm ,在其正东方向有个通信塔CD ,在它们之间的地面点M (B ,M ,D 三点在一条直线上)处测得建筑物顶端A 、塔项C 的仰角分别为37°和60°,在A 处测得塔顶C 的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3=1.73,精确到0.1m)25.(10分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.26.(12分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.求该型号自行车的进价和标价分别是多少元?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【详解】解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,故选D.2.A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.3.D【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF AB==2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.GF GD【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF AB==2,GF GD∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴AG DG==1,GE CG∴AG=GE故选:D .【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF 的长度是解题的关键.4.B【解析】【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】∵a <0,∴抛物线的开口方向向下,故第三个选项错误;∵c <0,∴抛物线与y 轴的交点为在y 轴的负半轴上,故第一个选项错误;∵a <0、b >0,对称轴为x=2b a>0, ∴对称轴在y 轴右侧,故第四个选项错误.故选B .5.B【解析】【分析】只要证明△OCB 是等边三角形,可得∠CDB=12∠COB 即可解决问题. 【详解】如图,连接OC ,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB 是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°, 故选B .【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.6.D【解析】【详解】A .为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A 不符合题意;B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B 不符合题意;C .为了解神舟飞船设备零件的质量情况,选普查,故C 不符合题意;D .为了解一批节能灯的使用寿命,选择抽样调查,故D 符合题意;故选D .7.A【解析】【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111SAB y a b h ah bh k k 42222=⋅=-=-=-=,即可求出12k k 8-=. 【详解】AB//x 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=, 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.8.D【解析】【详解】因客户的要求每天的工作效率应该为:(48+x )件,所用的时间为:72048x+,根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048x +, 可以列出方程:72072054848x-=+. 故选D .9.D【解析】【详解】 根据a =5,2b =7,得a 5,b 7=±=±,因为a b a b +=+,则a 5,b 7=±=,则-a b =5-7=-2或-5-7=-12. 故选D.10.B【解析】【分析】提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可.【详解】第一次降价后的价格为a×(1-10%)=0.9a 元,第二次降价后的价格为0.9a×(1-10%)=0.81a 元,∴提价20%的价格为0.81a×(1+20%)=0.972a 元,故选B .【点睛】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.二、填空题(本题包括8个小题)11.k≥,且k≠1【解析】试题解析:∵a=k ,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,解得:k≥-,∵原方程是一元二次方程,∴k≠1.考点:根的判别式.12.﹣1.【解析】 【分析】 根据反比例函数图象上点的坐标特征得到121266,y y x x ==, 再把它们相乘,然后把124x x =-代入计算即可.【详解】根据题意得121266,y y x x ==, 所以1212126636369.4y y x x x x =⋅===-- 故答案为:−1.【点睛】考查反比例函数图象上点的坐标特征,把点,A B 的坐标代入反比例函数解析式得到121266,,y y x x ==是解题的关键.13.75︒,45︒,15︒【解析】【分析】分三种情况:①点A 是顶角顶点时,②点A 是底角顶点,且AD 在△ABC 外部时,③点A 是底角顶点,且AD 在△ABC 内部时,再结合直角三角形中,30°的角所对的直角边等于斜边的一半即可求解.【详解】①如图,若点A 是顶角顶点时,∵AB=AC ,AD ⊥BC ,∴BD=CD ,∵12AD BC =, ∴AD=BD=CD ,在Rt △ABD 中,∠B=∠BAD= ()118090=452︒︒︒﹣;②如图,若点A 是底角顶点,且AD 在△ABC 外部时,∵12AD BC =,AC=BC , ∴12AD AC =, ∴∠ACD=30°,∴∠BAC=∠ABC=12×30°=15°; ③如图,若点A 是底角顶点,且AD 在△ABC 内部时,∵12AD BC =,AC=BC , ∴12AD AC =, ∴∠C=30°,∴∠BAC=∠ABC=12(180°-30°)=75°; 综上所述,△ABC 底角的度数为45°或15°或75°;故答案为75︒,45︒,15︒.【点睛】本题考查了等腰三角形的性质和直角三角形中30°的角所对的直角边等于斜边的一半的性质,解题的关键是要分情况讨论.14.15π.【解析】试题分析:∵OB=12BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:12×6π×5=15π.故答案为15π.考点:圆锥的计算.15.10【解析】【分析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【详解】如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴2268+=10,故PB+PE的最小值是10.故答案为10.16.6.【解析】分析: 设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.详解: 设扇形的半径为r,根据题意得:60r=2 180ππ,解得:r=6故答案为6.点睛: 此题考查弧长公式,关键是根据弧长公式解答.17.3.1或4.32或4.2【解析】【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB=22AB BC+=5,S△ABC=12AB•BC=1.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=APAC•S△ABC=35×1=3.1;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD=·342.45AB BCAC⨯==,∴AD=DP=223 2.4-=1.2,∴AP=2AD=3.1,∴S等腰△ABP=APAC •S△ABC=3.65×1=4.32;③当CB=CP=4时,如图3所示,S等腰△BCP=CPAC•S△ABC=45×1=4.2;综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为:3.1或4.32或4.2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.18.55.【解析】【详解】试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.三、解答题(本题包括8个小题)19.(1)1(2)10%.【解析】试题分析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;(2)设平均每次降价的百分率为y ,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可.试题解析:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x-80)元,根据题意得 6000480080x x =-, 解得x=1.经检验,x=1是原方程的根.答:每张门票的原定票价为1元;(2)设平均每次降价的百分率为y ,根据题意得1(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去).答:平均每次降价10%.考点:1.一元二次方程的应用;2.分式方程的应用.20.(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】【分析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元; (2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.【详解】(1)设购买一个甲种足球需要x 元,则购买一个乙种篮球需要(x+2)元, 根据题意得:20001400220x x =⨯+, 解得:x =50,经检验,x =50是原方程的解,且符合题意,∴x+2=1.答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.(2)设可购买m 个乙种足球,则购买(50﹣m )个甲种足球,根据题意得:50×(1+10%)(50﹣m )+1×(1﹣10%)m≤2910,解得:m≤2.答:这所学校最多可购买2个乙种足球.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.21.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)利用平行线的性质和中点的定义得到,BGD CFD BD CD ∠=∠= ,进而得到三角形全等,从而求证结论;(2)利用中垂线的性质和三角形的三边关系进行判断即可.【详解】证明:(1)∵BG ∥AC∴BGD CFD ∠=∠∵D 是BC 的中点∴BD CD =又∵BDG CDF ∠=∠∴△BDG ≌△CDF∴BG CF =(2)由(1)中△BDG ≌△CDF∴GD=FD,BG=CF又∵ED DF ⊥∴ED 垂直平分DF∴EG=EF∵在△BEG 中,BE+BG>GE,∴BE CF +>EF【点睛】本题考查平行线性质的应用、全等三角形的判定和性质的应用及三角形三边关系,熟练掌握相关知识点是解题关键.22.(1)0.3 ,45;(2)108°;(3)16. 【解析】【分析】(1)首先根据A 组频数及其频率可得总人数,再利用频数、频率之间的关系求得a 、b ;(2)B 组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a=30100=0.3,b=100×0.45=45(人). 故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.【解析】【分析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【详解】(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y 为整数,∴y 最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.24.通信塔CD 的高度约为15.9cm .【解析】【分析】过点A 作AE ⊥CD 于E ,设CE=xm ,解直角三角形求出AE ,解直角三角形求出BM 、DM ,即可得出关于x 的方程,求出方程的解即可.【详解】过点A 作AE ⊥CD 于E ,则四边形ABDE 是矩形,设CE=xcm ,在Rt △AEC 中,∠AEC=90°,∠CAE=30°,所以AE=330CE tan =︒xcm , 在Rt △CDM 中,CD=CE+DE=CE+AB=(x+6)cm , DM=)36603x CD tan +=︒cm , 在Rt △ABM 中,BM=63737AB tan tan =︒︒cm , ∵AE=BD , ∴)3663373x x tan +=+︒,解得:,∴(cm),答:通信塔CD的高度约为15.9cm.【点睛】本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键.25.足球单价是60元,篮球单价是90元.【解析】【分析】设足球的单价分别为x元,篮球单价是1.5x元,列出分式方程解答即可.【详解】解:足球的单价分别为x元,篮球单价是1.5x元,可得:24002250151.5x x-=,解得:x=60,经检验x=60是原方程的解,且符合题意,1.5x=1.5×60=90,答:足球单价是60元,篮球单价是90元.【点睛】本题考查分式方程的应用,利用题目等量关系准确列方程求解是关键,注意分式方程结果要检验.26.(1)进价为1000元,标价为1500元;(2)该型号自行车降价80元出售每月获利最大,最大利润是26460元.【解析】分析:(1)设进价为x元,则标价是1.5x元,根据关键语句:按标价九折销售该型号自行车8辆的利润是1.5x×0.9×8-8x,将标价直降100元销售7辆获利是(1.5x-100)×7-7x,根据利润相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x,再解方程即可得到进价,进而得到标价;(2)设该型号自行车降价a元,利润为w元,利用销售量×每辆自行车的利润=总利润列出函数关系式,再利用配方法求最值即可.详解:(1)设进价为x元,则标价是1.5x元,由题意得:1.5x×0.9×8-8x=(1.5x-100)×7-7x,解得:x=1000,1.5×1000=1500(元),答:进价为1000元,标价为1500元;(2)设该型号自行车降价a 元,利润为w 元,由题意得:w=(51+20a ×3)(1500-1000-a ), =-320(a-80)2+26460, ∵-320<0, ∴当a=80时,w 最大=26460,答:该型号自行车降价80元出售每月获利最大,最大利润是26460元.点睛:此题主要考查了二次函数的应用,以及元一次方程的应用,关键是正确理解题意,根据已知得出w 与a 的关系式,进而求出最值.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若x=-2 是关于x的一元二次方程x2-52ax+a2=0的一个根,则a的值为()A.1或4 B.-1或-4 C.-1或4 D.1或-42.如图,在Rt△ABC中,∠C=90°, BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是()A.63B.63C.6 D.43.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形4.第24 届冬奥会将于2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是()A.15B.25C.12D.355.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是()A.B.C.D.6.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°7.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°8.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是( )A.m<1 B.m>﹣1 C.m>1 D.m<﹣19.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.10000x﹣90005x-=100 B.90005x-﹣10000x=100C.100005x-﹣9000x=100 D.9000x﹣100005x-=10010.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(本题包括8个小题)11.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=5,tan∠BOC=12,则点A′的坐标为_____.12.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____cm.13.正多边形的一个外角是72o,则这个多边形的内角和的度数是___________________.14.请写出一个比2大且比4小的无理数:________.15.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为_____.16.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.17.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB 于G,连接EF,则线段EF的长为_____.18.已知A(x1,y1),B(x2,y2)都在反比例函数y=6x的图象上.若x1x2=﹣4,则y1⋅y2的值为______.三、解答题(本题包括8个小题)19.(6分)边长为6的等边△ABC 中,点D ,E 分别在AC ,BC 边上,DE∥AB,EC =23如图1,将△DEC 沿射线EC 方向平移,得到△D′E′C′,边D′E′与AC 的交点为M ,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.如图2,将△DEC 绕点C 旋转∠α(0°<α<360°),得到△D ′E′C,连接AD′,BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP ,当AP 最大时,求AD′的值.(结果保留根号)20.(6分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.求一次函数与反比例函数的解析式;根据所给条件,请直接写出不等式kx+b>的解集;过点B作BC⊥x轴,垂足为C,求S△ABC.21.(6分)解不等式组:2(2)3{3122x xx+>-≥-,并将它的解集在数轴上表示出来.22.(8分)解不等式组:3(1)72323x x x x x --<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来. 23.(8分)先化简代数式22321(1)24a a a a -+-÷+-,再从-2,2,0三个数中选一个恰当的数作为a 的值代入求值.24.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(02t ≤≤ ),B 类(24t <≤),C 类(46t <≤),D 类(68t <≤),E 类(8t >),绘制成尚不完整的条形统计图如图11.根据以上信息,解答下列问题:E 类学生有 人,补全条形统计图;D 类学生人数占被调查总人数的 %;从该班做义工时间在04t ≤≤的学生中任选2人,求这2人做义工时间都在24t <≤ 中的概率.25.(10分)如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x=的图象于点B ,AB=32.求反比例函数的解析式;若P (1x ,1y )、Q (2x ,2y )是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.26.(12分)小明遇到这样一个问题:已知:1b c a -=. 求证:240b ac -≥. 经过思考,小明的证明过程如下:∵1b c a-=,∴b c a -=.∴0a b c -+=.接下来,小明想:若把1x =-带入一元二次方程20ax bx c ++=(a ≠0),恰好得到0a b c -+=.这说明一元二次方程20ax bx c ++=有根,且一个根是1x =-.所以,根据一元二次方程根的判别式的知识易证:240b ac -≥.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目: 已知:42a c b+=-. 求证:24b ac ≥.请你参考上面的方法,写出小明所编题目的证明过程.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】【详解】试题分析:把x=﹣2代入关于x 的一元二次方程x 2﹣52ax+a 2=0 即:4+5a+a 2=0解得:a=-1或-4,故答案选B .考点:一元二次方程的解;一元二次方程的解法.2.C【解析】【分析】由角平分线的定义得到∠CBE=∠ABE ,再根据线段的垂直平分线的性质得到EA=EB ,则∠A=∠ABE ,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC ,即AE=2EC ,由AE+EC=AC=9,即可求出AC .【详解】解:∵BE 平分∠ABC ,∴∠CBE=∠ABE ,∵ED 垂直平分AB 于D ,∴EA=EB ,∴∠A=∠ABE ,∴∠CBE=30°,。
【附5套中考模拟试卷】福建省漳州市2019-2020学年中考第一次质量检测数学试题含解析
A.3cm,4cm,8cm B.8cm,7cm,15cm
C.13cm,12cm,20cm D.5cm,5cm,11cm
11.把8a3﹣8a2+2a进行因式分解,结果正确的是()
A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)2
福建省漳州市2019-2020学年中考第一次质量检测数学试题
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列运算正确的是( )
A.x3+x3=2x6B.x6÷x2=x3C.(﹣3x3)2=2x6D.x2•x﹣3=x﹣1
2.若代数式 在实数范围内有意义,则x的取值范围是(两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tanA的值为_______.
18.如图所示,数轴上点A所表示的数为a,则a的值是____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图1,点 为正 的 边上一点( 不与点 重合),点 分别在边 上,且 .
(3)比赛规定,三位评委中至少有两位给出“通过”的结论,则小选手可入围进入复赛,问琪琪进入复赛的概率是多少?
25.(10分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?
(1)求抛物线的解析式;
(2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;
漳州市名校联考2019-2020学年中考数学模拟检测试题
漳州市名校联考2019-2020学年中考数学模拟检测试题一、选择题1.顺次连接菱形ABCD 各边中点所得到的四边形一定是( ) A.菱形B.正方形C.矩形D.对角线互相垂直的四边形2.小明记录了昆明市年月份某一周每天的最高气温,如表:最高气温A.,B.,C.,D.,3.若规定,则sin15°=( )A.B.C.D.4.2018年安徽省生产总值首次突破3万亿元大关,工业增加直增速创近1年新高居全国第四位、中部第一位(数据来源:安微信息网).其中数据3万亿用科学记数法表示正确的是( ) A .3×104B .3×108C .3×1012D .3×10135.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( )A .1B .2C .3D .46.在直角坐标平面内,已知点M(4,3),以M 为圆心,r 为半径的圆与x 轴相交,与y 轴相离,那么r的取值范围为( ) A .0r 5<< B .3r 5<<C .4r 5<<D .3r 4<<7.如图,PA 切⊙O 于点A ,割线PBC 经过圆心O ,OB =PB =1,OA 绕点O 逆时针方向旋转60°到OD ,则PD 的长为( )AB C D .8.某课外小组的同学们在社会实践活动中调查了20户家庭莱月的用电量,如表所示:A .180,160,164B .160,180;164C .160,160,164D .180,180,1649.|-3|的值等于( ) A.3B.-3C.±3D.10.下列说法正确的是( )A.为了解航天员视力的达标情况应采用抽样调查方式B.一组数据3,6,7,6,9的中位数是7C.正方体的截面形状一定是四边形D.400人中一定有两个人的生日在同一天是必然事件11.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大小和尚各几人?设大、小和尚各有x、y人,则可以列方程组()A.131003100x yx y⎧+=⎪⎨⎪+=⎩B.11003100x yx y⎧+=⎪⎨⎪+=⎩C.33100100x yx y+=⎧⎨+=⎩D.1110033100x yx y⎧+=⎪⎨⎪+=⎩12.如图,在菱形ABCD中,∠A=60°,AD=4,点F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A'E'F',设点P、P'分别是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.B.C.D.4二、填空题13x的取值范围是______.14.若关于x的方程(a+3)x|a|-1﹣3x+2=0是一元二次方程,则a的值为________.15是同类二次根式,那么a=________。
福建省漳州市名校2019-2020学年中考数学模拟检测试题
福建省漳州市名校2019-2020学年中考数学模拟检测试题一、选择题1.如图,在平行四边形ABCD 中,AB 4=,BAD ∠的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG AE ⊥,垂足为G ,若DG 1=,则AE 的边长为( )A .B .C .4D .82.如图,在△ABC 中,∠B 的平分线为BD ,DE ∥AB 交BC 于点E ,若AB =9,BC =6,则CE 长为( )A.185B.165C.145D.1253.如图,在平面直角坐标系中,矩形ABCD 的面积为定值,它的对称中心恰与原点重合,且AB ∥y 轴,CD 交x 轴于点M ,过原点的直线EF 分别交AD 、BC 边于点E 、F ,以EF 为一边作矩形EFGH ,并使EF 的对边GH 所在直线过点M ,若点A 的横坐标逐渐增大,图中矩形EFGH 的面积的大小变化情况是( )A.一直减小B.一直不变C.先减小后增大D.先增大后减小4.在某次数学测验中,随机抽取了10份试卷,其成绩如下:73,78,79,81,81,81,83,83,85,91,则这组数据的众数、中位数分别为( )A.81,82B.83,81C.81,81D.83,82524a =5===;④= )A .①B .②C .③D .④6.如图,水平的讲台上放置的圆柱笔筒和长方体形粉笔盒,它的俯视图是( )A .B .C .D .70,-1,π这四个数中,最大的数是( )A B .π C .0 D .-18.如图,嘉淇一家驾车从A 地出发,沿着北偏东30°的方向行驶30公里到达B 地游玩,之后打算去距离A 地正东30公里处的C 地,则他们行驶的方向是( )A .南偏东60°B .南偏东30°C .南偏西60°D .南偏西30°9.如图,点P 是正方形ABCD 内一点,连接AP 并延长,交BC 于点Q .连接DP .将△ADP 绕点A 顺时针旋转90°至△ABP'.连结PP',若AP=1,,,则正方形的边长为( )ABCD 10.四位同学在研究函数2y ax bx c =++(a ,b ,c 是常数)时,甲发现当x=-1时函数的最小值为-1;乙发现4a-2b+c=0成立;丙发现当x<1时,函数值y 随x 的增大而增大;丁发现当x=5时,y=-4.已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁11.下面的图案中既是轴对称图形又是中心对称图形的是( )A .B .C .D .12.下列说法正确的是( )A .一组数据2,5,5,3,4的众数和中位数都是5B .“掷一次骰子,向上一面的点数是1”是必然事件C .掷一枚硬币正面朝上的概率是12表示每抛硬币2次就有1次正面朝上 D .计算甲组和乙组数据,得知x 甲=x 乙=10,2S 甲=0.1,2S 乙=0.2,则甲组数据比乙组数据稳定二、填空题13.如图,180280384∠=︒∠=︒∠=︒,,,则4∠=______.14.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是21,则每个支干长出_____.15.如图所示的图形由4个等腰直角形组成,其中直角三角形(1)的腰长为1cm ,则直角三角形(4)的斜边长为______.16.请写出一个图象经过点(1,1),且函数值随着自变量的增大而减小的一次函数解析式:______17.为了解某校九年级学生每天的睡眠时间,随机调查了其中20名学生,将所得数据整理并制成如表,那么这些测试数据的中位数是______小时.作1C ,它与x 轴交于点O ,1A ,将1C 绕点1A 旋转180°得2C ,2C 与x 轴交于另一点2A .请继续操作并探究:将2C 绕点2A 旋转180°得3C ,与x 轴交于另一点3A ;将3C 绕点3A 旋转180°得4C ,与x 轴交于另一点4A ,这样依次得到x 轴上的点1A ,2A ,3A ,…,n A ,…,及抛物线1C ,2C ,…,n C ,…则n C 的顶点坐标为_____.三、解答题19.(1)将6﹣4x+x 2减去﹣x ﹣5+2x 3,把结果按x 的降幂排列.(2)已知关于x 的方程4x ﹣20=m (x+1)﹣10无解,求代数式27164m m -的值. 20.如图,在平面直角坐标系中,圆心为P (x ,y )的动圆经过点A (1,2)且与x 轴相切于点B.(1)当x=2是,求⊙P的半径;(2)求y关于x的函数解析式,在图②中画出此函数图像;(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图像进行定义:此函数图像可以看成是到的距离等于到的距离的所有点的集合;(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,则cos∠APD= .21.(2014湖南怀化)两个城镇A、B与两条公路ME、MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离相等,到两条公路ME、MF的距离也必须相等,且在∠FME的内部.(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C(不写已知、求作、作法,只保留作图痕迹);MN=km,在M处测得点C位于点M的北偏东60°(2)设AB的垂直平分线交ME于点N,且1)方向,在N处测得点C位于点N的北偏西45°方向,求点C到公路ME的距离.22.如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,连接AC,AE.(1)若∠D=78°,求∠EAC的度数.(2)若∠EAC=α,则∠B的度数为(直接用含α的式子表示)23.如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E,F,AM与CN分别是∠BAE与∠DCF的平分线,AM交BE于点M,CN交DF于点N,连接AN,CM.求证:四边形AMCN是平行四边形.24.如图,在矩形ABCD中,点E在BC上,且AE=CE,请仅用一把无刻度的直尺按要求画出图形.(1)在图(1)中,画出∠DAE的角平分线;(2)在图(2)中,以AE为边画一个菱形.25.自习课上小明在准备完成题目:化简:(x2+6x+8)-(6x+8x2+2)发现系数“ ” 印刷不清楚、(1)他把“ ”猜成6,请你帮小明完成化简:(6x2+6x+8)-(6x+8x2+2);(2)小明同桌看到他化简的结果说:“你猜错了,我看到该题标准答案的结果是常数。
漳州市名校联考2019-2020学年中考数学模拟试卷
漳州市名校联考2019-2020学年中考数学模拟试卷一、选择题1.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B ,下列结论中不一定成立的是( )A .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP2.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有36枚图钉可供选用,则最多可以展示绘画作品( )A.22张B.23张C.24张D.25张3.如图,直线y =﹣x+b 与双曲线(0)ky x x=> 交于A 、B 两点,连接OA 、OB ,AM ⊥y 轴于点M ,BN ⊥x 轴于点N ,有以下结论:①S △AOM =S △BON ;②OA =OB ;③五边形MABNO 的面积22MABNO b S 五边形;④若∠AOB=45°,则S △AOB =2k ,⑤当AB 时,ON ﹣BN =1;其中结论正确的个数有( )A .5个B .4个C .3个D .2个4.使得关于x 的不等式组22141x m x m >-⎧⎨-+≥-⎩有解,且使分式方程1222m xx x --=--有非负整数解的所有的m 的和是( ) A .﹣1B .2C .﹣7D .05.下表是某学习小组一次数学测验的成绩统计表:A .80分B .85分C .90分D .80分和90分6.一副三角板按如图所示方式叠放在一起,则图中∠α等于( )A .105B .115C .120D .1357.如图,幼儿园计划用30m 的围栏靠墙围成一个面积为100m 2的矩形小花园(墙长为15m ),则与墙垂直的边x 为( )A .10m 或5mB .5m 或8mC .10mD .5m8.如图,菱形ABCD 的边AB=5,面积为20,∠BAD <90°,⊙O 与边AB 、AD 都相切,AO=2,则⊙O 的半径长等于( )A B C D 9.不等式组次33015x x x->⎧⎨-≥-⎩的解集在数轴上表示正确的是( )A .B .C .D .10.下列运算结果正确的是( ) A .()322x x x x x x -+÷=- B .()236aaa -⋅=C .236(2x )8x -=-D .2224a (2a)2a -=11.下列计算正确的是( ). A .426a a a +=B .3412a a a ⋅=C .632a a a ÷=D .()326a a -=-12.下面几何图形是中心对称图形的是( ) A .等腰三角形 B .直角三角形C .菱形D .正五边形二、填空题 13.分式方程3512x x =++的解为_____. 14.分解因式:23m m -=________.15.函数y=11x-x 的取值范围是_____. 16.如图,已知点A 是一次函数y =23x(x≥0)图象上一点,过点A 作x 轴的垂线l ,B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数y =kx(x >0)的图象过点B ,C ,若△OAB 的面积为5,则△ABC 的面积是________.17.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.18的平方根为_____.三、解答题19.已知:如图,在△ABC中,BC=AC,以BC为直径的☉O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与☉O的位置关系,并证明你的结论;(3)若☉O的直径为18,cosB=13,求DE的长.20.如图1,△ACB为等腰直角三角形,△EDF为非等腰直角三角形,∠ACB=∠EDF=90°,且AB=EF.(1)如图2,将两个直角三角形按如图2将斜边重叠摆放.当AB=EF=6,①DA=______;②求DC的长.(2)若将题中两个直角三角形的斜边重叠摆放,那么线段CD、AD、BD之间存在怎样的数量关系?请直接写出答案.21.如图.在平行四边形ABCD中,过点B作BM⊥AC于点E,交CD于点M,过点D作DN⊥AC于点F,交AB于点N.(1)求证:四边形BMDN是平行四边形;(2)已知AF=5,EM=3,求AN的长.22.如图,点B在DC上,BE平分∠ABD,∠ABE=∠C,求证:BE∥AC.23.192728xx--=24.如图,在平面直角坐标系xOy中,过点A(﹣6,0)的直线l1与直线l2:y=2x相交于点B(m,6)(1)求直线l1的表达式(2)直线l1与y轴交于点M,求△BOM的面积;(3)过动点P(m,0)且垂于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D下方时,写出n 的取值范围.25.如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为32.3°,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,女生楼在男生楼墙面上的影高为DA.已知CD=42m.求楼间距AB的长度为多少米?(参考数据:sin32.3°=0.53,cos32.3°=0.85,tan32.3°=0.63,sin55.7°=0.83,cos55.7°=0.56,tan55.7°=1.47)【参考答案】***一、选择题13.1 214.(3)m m15.x≥﹣2且x≠116.5 317.1218.±2三、解答题19.(1)见解析;(2)DE是☉O的切线,见解析;(3).【解析】【分析】1)连接CD,由BC为直径可知CD⊥AB,又BC=AC,由等腰三角形的底边“三线合一”证明结论;(2)连接OD,则OD为△ABC的中位线,OD∥AC,已知DE⊥AC,可证DE⊥OC,证明结论;(3)连接CD,在Rt△BCD中,已知BC=18,cosB=13,求得BD=6,则AD=BD=6,在Rt△ADE中,已知AD=6,cosA=cosB=13,可求AE,利用勾股定理求DE.【详解】解:(1)证明:连接CD,∵BC为☉O的直径,∴CD⊥AB,又∵AC=BC,∴AD=BD,即点D是AB的中点.(2)DE是☉O的切线.证明:如上图,连接OD,则DO是△ABC的中位线, ∴DO∥AC,又∵DE⊥AC,∴DE⊥DO,即DE是☉O的切线.(3)∵AC=BC,∴∠B=∠A,∴cosB=cosA=13,∵cosB=BDBC=13,BC=18,∴BD=6, ∴AD=6,∵cosA=AEAD=13,∴AE=2,在Rt△AED中【点睛】本题考查了切线的判定与性质,勾股定理,圆周角定理,解直角三角形的运用,关键是作辅助线,将问题转化为直角三角形,等腰三角形解题20.(1) ①CD,【解析】【分析】(1)直接用勾股定理即可求出DA,在AD上截取AE=BD,连接CE,可证△ACE≌△BCD(SAS),从而判断出∠E CD=90°,在Rt△CDE中,由勾股定理可得出DE的值,即可求解.(2)由(1)题②中的过程可直接求得.【详解】解:(1)①在Rt△ABD中,∠ADB=90°,由勾股定理,得==②在AD上截取AE=BD,连接CE,如图∵∠ACB=∠ADB=90°∴∠CAE+∠CFA=∠DBA+∠DFB∵∠CFA=∠DFB∴∠CAE=∠DBC在△ACE和△BCD中AC BCCAE CBDAE BD=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△BCD(SAS)∴∠ACE=∠BCD,CE=CD∵∠ACE+∠ECB=90°∴∠ECD=∠ECB+∠BCD=∠ACE+∠ECB=90°在Rt△CDE中,由勾股定理,得==∴CD ==(AD-AE )=2=⎝⎭.(2)CD ,理由:在AD 上截取AE=BD ,如图,连接CE ,由(1)题②中可知CD ,∴CD ,即CD . 【点睛】此题主要考查等腰直角三角形,在运用勾股定理的过程中,关键在于利用辅助线构建直角三角形.21.(1)详见解析;(2【解析】 【分析】(1)只要证明DN ∥BM ,DM ∥BN 即可;(2)只要证明△CEM ≌△AFN ,可得FN =EM =3,在Rt △AFN 中,根据勾股定理AN 解决问题. 【详解】(1)∵四边形ABCD 是平行四边形, ∴CD ∥AB , ∵BM ⊥AC ,DN ⊥AC , ∴DN ∥BM ,∴四边形BMDN 是平行四边形; (2)∵四边形BMDN 是平行四边形, ∴DM =BN , ∵CD =AB ,CD ∥AB , ∴CM =AN ,∠MCE =∠NAF , ∵∠CEM =∠AFN =90°, ∴△CEM ≌△AFN , ∴FN =EM =3,在Rt △AFN 中,AN ==【点睛】本题考查平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 22.见解析. 【解析】 【分析】欲证BE ∥AC ,在图中发现BE 、AC 被直线AB 所截,且已知BE 平分∠ABD ,∠ABE =∠C ,故可按同位角相等,两直线平行进行判断. 【详解】 ∵BE 平分∠ABD , ∴∠DBE =∠ABE ; ∵∠ABE =∠C , ∴∠DBE =∠C ,本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行. 23.545x =- 【解析】 【分析】根据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1即可解答. 【详解】192728x x --= 去分母得:45692x x -=- 移项、合并同类项得:554x -= 系数化为1得:545x =- 【点睛】本题考查的是解一元一次方程,掌握一元一次方程的解题步骤是关键.注意:单个的数字或字母去分母时不要漏乘. 24.(1)y =23x+4;(2)6;(3)m >3. 【解析】 【分析】(1)先求出B 点,再将将点A 与B 代入y =kx+b 即可求解; (2)求出M 点坐标,S △BOM =12×4×3; (3)当点C 位于点D 下方时,即y 1<y 2, 【详解】解:(1)将点B (m ,6)代入y =2x , ∴m =3, ∴B (3,6);设直线l 1的表达式为y =kx+b , 将点A 与B 代入,得6306k bk b =+⎧⎨=-+⎩, ∴234k b ⎧=⎪⎨⎪=⎩, ∴243y x =+; (2)M (0,4), ∴S △BOM =12×4×3=6; (3)当点C 位于点D 下方时,【点睛】本题考查一次函数的图象和性质;熟练掌握待定系数法求解析式,数形结合求不等式是解题的关键.25.50m.【解析】【分析】如图,作CM⊥PB于M,DN⊥PB于N.则AB=CM=DN,设EM=xm,AB=DN=CM=ym.根据题中所给角度的正切构建方程即可解决问题.【详解】解:如图,作CM⊥BE于M,DN⊥BE于N.则四边形CDNM是矩形,设EM=xm,AB=DN=CM=ym.在Rt△CEM中,∵tan∠ECM=EMCM=0.63,∴xy=0.63 ①,在Rt△DEN中,∵tan∠EDN=ENDN=1.47,∴42xy=1.47 ②,由①②可得y=50,答:楼间距AB的长度为50m.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程组解决问题,属于中考常考题型.。
2019-2020年漳州市初三中考数学一模模拟试卷【含答案】
2019-2020年漳州市初三中考数学一模模拟试卷【含答案】一、单项选择题(本大题共12个小题,每小题3分,共36分)1.(3分)下列实数为无理数的是()A.B.C.D.02.(3分)2019年“五一”小长假有四天假期,长沙市共接待游客356万人次,称为新晋“网红城市”,356万人用科学记数法表示为()A.3.56×106人B.35.6×105人C.3.6×105人D.0.356×107人3.(3分)下列各式正确的是()A.(a2)3=a5B.2a2+2a3=2a5C.D.(x﹣1)(x+1)=x2﹣14.(3分)下列手机屏幕手势解锁图案中,是轴对称图形的是()A.B.C.D.5.(3分)在下列说法中不正确的是()A.两条对角线互相垂直的矩形是正方形B.两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形6.(3分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()A.B.C.D.7.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.8.(3分)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3B.a>3C.a<﹣3D.a>﹣3.9.(3分)将抛物线y=5x2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为()A.y=5(x+3)2+2B.y=5(x+3)2﹣2C.y=5(x﹣3)2+2D.y=5(x﹣3)2﹣210.(3分)如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于()A.72°B.68°C.64°D.62°11.(3分)如图,考古队在A处测得古塔BC顶端C的仰角为45°,斜坡AD长10米,坡度i=3:4,BD长12米,请问古塔BC的高度为()米.A.25.5B.26C.28.5D.20.512.(3分)如图,在边长为1的正方形ABCD中,动点F、E分别以相同的速度从D、C两点同时出发向C、B运动(任何一个点到达即停止),BF、AE交于点P,连接CP,则线段CP的最小值为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)分解因式:3a2﹣12=.14.(3分)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O 为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E 的坐标是.15.(3分)在不透明的盒子中装有6个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是.16.(3分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为.17.(3分)如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为.18.(3分)如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=27,则三角形ACD的面积等于.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分,解答时写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:﹣2sin45°+||﹣()﹣2+()0.20.(6分)先化简,然后从﹣2≤a≤2的范围内选取一个你认为合适的整数作为a的值代入求值.21.(8分)某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,一共抽取了名学生;(2)补全条形统计图;(3)估计全校所有学生中有多少人乘坐公交车上学?(4)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的,求小明在上学路上到第二个路口时第二次遇到红灯的概率,(请用“画树状图”或“列表”的方法写出分析过程)22.(8分)如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠DGB=60°,GC=4,求菱形DGCE的面积.23.(9分)某工厂,甲负责加工A型零件,乙负责加工B型零件.已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工x个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求每天甲、乙加工两种零件所获得的总利润y(元)与m(元/件)的函数关系式,并求总利润y的最大值和最小值.24.(9分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H连接C.过弧BD上一点,过E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE (1)求证:EG是⊙O的切线;(2)求证:GF2=GD•GC;(3)延长AB交GE的延长线于点M.若tan G=,HC=4,求EM的值.25.(10分)如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD 与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交千点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.26.(10分)在平面直角坐标系中,若点A、C同时在某函数的图象上(点A在点C的左侧),以AC为对角线作矩形ABCD,若矩形ABCD的各边都分别与坐标轴乘直,则称矩形ABCD 为该函数图象的“雅垂矩形”,如图1,矩形ABCD为直线l的“雅垂矩形”(1)若某正比例函数图象的“雅垂矩形”的两邻边比为1:4,则下列函数:①y=4x;②y=﹣4x;③y=2x;④y=x中,符合条件的是(只填写序号)(2)若二次函数y=x2﹣2x图象的“雅垂矩形”ABCD的顶点C的横坐标是顶点A横坐标的3倍,设顶点A的横坐标为m(0<m<0.5),矩形ABCD的周长为L,求L的最大值.(3)若二次函数y=x2﹣2nx的图象的“雅垂矩形”ABCD的顶点A、C的横坐标分别为﹣2,1,分别作点A、C关于此二次函数图象对称轴的对称点A、C,连接A'C',是否存在这样的一个n,使得线段A'C'将矩形ABCD两部分图形的面积比为2:7的两部分?若存在,请求出n的值;若不存在,请说明理由.参考答案与试题解析一、单项选择题(本大题共12个小题,每小题3分,共36分)1.(3分)下列实数为无理数的是()A.B.C.D.0【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=2是整数,是有理数,故选项不符合题意;B、是分数,是有理数,故选项不符合题意;C、是无理数,故选项符合题意;D、0是整数,是有理数,故选项不符合题意.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)2019年“五一”小长假有四天假期,长沙市共接待游客356万人次,称为新晋“网红城市”,356万人用科学记数法表示为()A.3.56×106人B.35.6×105人C.3.6×105人D.0.356×107人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:356万=3.56×106.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列各式正确的是()A.(a2)3=a5B.2a2+2a3=2a5C.D.(x﹣1)(x+1)=x2﹣1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a6,不符合题意;B、原式不能合并,不符合题意;C、原式=a3,不符合题意;D、原式=x2﹣1,符合题意,故选:D.【点评】此题考查了平方差公式,合并同类项,以及幂的乘方与积的乘方,熟练掌握公式及法则是解本题的关键.4.(3分)下列手机屏幕手势解锁图案中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(3分)在下列说法中不正确的是()A.两条对角线互相垂直的矩形是正方形B.两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形【分析】根据既是矩形又是菱形的四边形是正方形进行判断.【解答】解:A、两条对角线互相垂直的矩形是正方形,故选项不符合题意;B、两条对角线相等的菱形是正方形,故选项不符合题意;C、两条对角线垂直且相等的平行四边形是正方形,故选项不符合题意;D、应是两条对角线垂直且相等的平行四边形是正方形,故选项符合题意.故选:D.【点评】本题考查了正方形的判定,通过这道题可以掌握正方形和矩形,菱形的关系.6.(3分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是3个小正方形,第二层右边2个小正方形,第三层右边2个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.7.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:不等式组整理得:,∴不等式组的解集为x<1,故选:A.【点评】此题考查了解一元一次方程组,熟练掌握运算法则是解本题的关键.8.(3分)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3B.a>3C.a<﹣3D.a>﹣3.【分析】先根据一次函数的性质得出关于a的不等式,再解不等式即可求出a的取值范围.【解答】解:∵一次函数y=(3﹣a)x+3,函数值y随自变量x的增大而增大,∴3﹣a>0,解得a<3.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此题的关键.9.(3分)将抛物线y=5x2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为()A.y=5(x+3)2+2B.y=5(x+3)2﹣2C.y=5(x﹣3)2+2D.y=5(x﹣3)2﹣2【分析】根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】解:∵y=5x2先向右平移3个单位,再向上平移2个单位后的顶点坐标为(3,2),∴所得的抛物线的解析式为y=5(x﹣3)2+2.故选:C.【点评】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式求解更简便.10.(3分)如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于()A.72°B.68°C.64°D.62°【分析】连接OA,OB.根据圆周角定理和四边形内角和定理求解即可.【解答】解:连接OA,OB,∵CA、CB切⊙O于点A、B,∴∠CAO=∠CBO=90°,∵∠C=56°,∴∠AOB=360°﹣∠CAO﹣∠CBO﹣∠C=360°﹣90°﹣90°﹣56°=124°.由圆周角定理知,∠D=∠AOB=62°,故选:D.【点评】本题考查了切线的性质、圆周角定理、以及四边形的内角和为360度.熟练掌握:圆心与切点的连线垂直切线;过圆心垂直于切线的直线必过切点;过圆外一点引圆的两条切线,切线长相等等知识是解题的关键.11.(3分)如图,考古队在A处测得古塔BC顶端C的仰角为45°,斜坡AD长10米,坡度i=3:4,BD长12米,请问古塔BC的高度为()米.A.25.5B.26C.28.5D.20.5【分析】作AE⊥BC,AF⊥BD,由i=3:4,可设AF=3x,DF=4x,结合AD=10,利用勾股定理可求得x的值,解直角三角形即可得到结论.【解答】解:如图,过点A作AE⊥BC于点E,过点A作AF⊥BD,交BD延长线于点F,由i=3:4,可设AF=3x,DF=4x,∵AD=10,∴9x2+16x2=100,解得:x=2(负值舍去),则AF=BE=6,DF=8,∴AE=DF+BD=8+12=20,∵∠CAE=45°,∴CE=AE=20,则BC=CE+BE=20+6=26,故选:B.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,解题的关键是能根据题意构造直角三角形并结合图形利用三角函数解直角三角形.12.(3分)如图,在边长为1的正方形ABCD中,动点F、E分别以相同的速度从D、C两点同时出发向C、B运动(任何一个点到达即停止),BF、AE交于点P,连接CP,则线段CP的最小值为()A.B.C.D.【分析】首先判断出△ABE≌△BCF,即可判断出∠BAE=∠CBF,再根据∠BAE+∠BEA =90°,可得∠CBF+∠BEA=90°,所以∠APB=90°;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值为多少.【解答】解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故选:A.【点评】此题还考查了全等三角形的判定和性质的应用,正方形的性质和应用,直角三角形的性质和应用,以及勾股定理的应用,解答此题的关键是判断出什么情况下,CP的长度最小.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)分解因式:3a2﹣12=3(a+2)(a﹣2).【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣12=3(a+2)(a﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后要继续利用平方差公式进行因式分解,分解因式要彻底,直到不能再分解为止.14.(3分)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O 为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E 的坐标是(,).【分析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【解答】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,∴OA:OD=2:3,∵点A的坐标为(1,0),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案是:(,).【点评】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.15.(3分)在不透明的盒子中装有6个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是24.【分析】设盒子中白色棋子有x个,根据概率公式列出关于x的方程,解之可得.【解答】解:设盒子中白色棋子有x个,根据题意,得:=,解得:x=24,经检验:x=24是原分式方程的解,所以白色棋子有24个,故答案为:24.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为216°.【分析】利用勾股定理计算出母线长=15,设该扇形薄纸板的圆心角为n°,利用弧长公式得到2π•9=,解得n=216.【解答】解:母线长==15,设该扇形薄纸板的圆心角为n°,所以2π•9=,解得n=216,即该扇形薄纸板的圆心角为216°.故答案为216°.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.(3分)如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为﹣5<x<3.【分析】先根据抛物线的对称性得到A点坐标(3,0),由y=ax2+bx+c>0得函数值为正数,即抛物线在x轴上方,然后找出对应的自变量的取值范围即可得到不等式ax2+bx+c >0的解集.【解答】解:根据图示知,抛物线y=ax2+bx+c图象的对称轴是x=﹣1,与x轴的一个交点坐标为(﹣5,0),根据抛物线的对称性知,抛物线y=ax2+bx+c图象与x轴的两个交点关于直线x=﹣1对称,即抛物线y=ax2+bx+c图象与x轴的另一个交点与(﹣5,0)关于直线x=﹣1对称,∴另一个交点的坐标为(3,0),∵不等式ax2+bx+c>0,即y=ax2+bx+c>0,∴抛物线y=ax2+bx+c的图形在x轴上方,∴不等式ax2+bx+c>0的解集是﹣5<x<3.故答案为:﹣5<x<3.【点评】此题主要考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,本题锻炼了学生数形结合的思想方法.18.(3分)如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=27,则三角形ACD的面积等于45.【分析】先证明△ADF∽△CEF,可知=,然后根据相似三角形的性质可知=()2,再根据,从而可求出三角形ACD的面积.【解答】解:在▱ABCD中,AD∥CE,AD=BC∴△ADF∽△CEF,∴,∵CE=2EB,∴CE=BC=AD,∴=,∴=()2=,∴S△CEF=12,∵,∴S△CFD=18,∴S△ACD=S△AFD+S△CDF=27+18=45,故答案为:45【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分,解答时写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:﹣2sin45°+||﹣()﹣2+()0.【分析】原式利用二次根式性质,特殊角的三角函数值,绝对值的代数意义,以及零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=2﹣2×+2﹣﹣4+1=﹣1.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.20.(6分)先化简,然后从﹣2≤a≤2的范围内选取一个你认为合适的整数作为a的值代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣2≤a≤2的范围内选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:===,当a=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.(8分)某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,一共抽取了80名学生;(2)补全条形统计图;(3)估计全校所有学生中有多少人乘坐公交车上学?(4)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的,求小明在上学路上到第二个路口时第二次遇到红灯的概率,(请用“画树状图”或“列表”的方法写出分析过程)【分析】(1)由给的图象解题,根据自行车所占比例为30%,而频数分布直方图知一共有24人骑自行车上学,从而求出总人数;(2)由扇形统计图知:步行占20%,而由(1)总人数已知,从而求出步行人数,补全频数分布直方图;(3)自行车、步行、公交车、私家车、其他交通工具所占比例之和为100%,再由直方图具体人数来相减求解.(4)画树状图列出所有等可能结果,从中找到到第二个路口时第二次遇到红灯的结果数,根据概率公式计算可得.【解答】解:(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人).故答案为:80;(2)被抽到的学生中,步行的人数为80×20%=16人,直方图:(3)被抽到的学生中,乘公交车的人数为80﹣(24+16+10+4)=26,∴全校所有学生中乘坐公交车上学的人数约为×2400=780人.(4)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第二次遇到红灯的结果数为1,所以到第二个路口时第二次遇到红灯的概率为.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠DGB=60°,GC=4,求菱形DGCE的面积.【分析】(1)由角平分线的性质和中垂线性质可得∠EDC=∠DCG=∠ACD=∠GDC,可得CE∥DG,DE∥GC,DE=EC,可证四边形DGCE是菱形;(2)过点D作DH⊥BC,由锐角三角函数可求DH的长,即可求菱形DGCE的面积.【解答】证明:(1)∵CD平分∠ACB,∴∠ACD=∠DCG,∵EG垂直平分CD∴DG=CG,DE=EC,∴∠DCG=∠GDC,∠ACD=∠EDC∴∠EDC=∠DCG=∠ACD=∠GDC∴CE∥DG,DE∥GC∴四边形DECG是平行四边形,且DE=EC∴四边形DGCE是菱形(2)如图,过点D作DH⊥BC,∵四边形DGCE是菱形,∴DE=DG=GC=4,DG∥EC在Rt△DGH中,∠DGB=60°∴DH=DG cos30°=2∴菱形DGCE的面积=GC×DH=8【点评】本题考查了菱形的判定和性质,线段垂直平分线的性质,熟练掌握菱形的判定是关键.23.(9分)某工厂,甲负责加工A型零件,乙负责加工B型零件.已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工x个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求每天甲、乙加工两种零件所获得的总利润y(元)与m(元/件)的函数关系式,并求总利润y的最大值和最小值.【分析】(1)根据题意,易得,解可得x的值,进而可得答案;(2)根据题意,可得关系式y=15m+20(m﹣1),化简可得y=35m﹣20,根据一次函数的性质分析可得答案.【解答】解:(1)根据题意,每天甲、乙两人共加工35个零件,设甲每天加工x个,则乙每天加工35﹣x;根据题意,易得,解得x=15,经检验,x=15是原方程的解,且符合题意.35﹣15=20,答:甲每天加工15个,乙每天加工20个;(2)y=15m+20(m﹣1),即y=35m﹣20,∵在y=35m﹣20中,y是m的一次函数,k=35>0,y随m的增大而增大,又由已知得:3≤m≤5,∴当m=5时,y最大值=155,当m=3时,y最小值=85.【点评】此题主要考查了分式方程的应用,能根据题意,列出关系式,进而结合一次函数的性质得到结论或求解方程是解题关键.24.(9分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H连接C.过弧BD上一点,过E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE (1)求证:EG是⊙O的切线;(2)求证:GF2=GD•GC;(3)延长AB交GE的延长线于点M.若tan G=,HC=4,求EM的值.【分析】(1)连接OE,证明∠GEO=90°,即GE⊥OE,于是EG是⊙O的切线;(2)连接DE,易得△GDE∽△GEC,得到GE2=GC•GD,又GF=GE,所以GF2=GC •GD;(3)如图,连接OC.设⊙O的半径为r.在Rt△AHC中,,,在Rt△HOC中,由勾股定理得,由△AHC∽△MEO,所以.【解答】解:(1)证明:如图,连接OE,∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠F AH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线;(2)连接DE,易得△GDE∽△GEC,∴,∴GE2=GC•GD,又∵GF=GE,∴GF2=GC•GD;(3)如图,连接OC.设⊙O的半径为r.在Rt△AHC中,,∵,∴,在Rt△HOC中,∵OC=r,,,∴,∴,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴.【点评】本题考查了圆,熟练运用圆的切线定理、相似三角形的性质以及勾股定理是解题的关键.25.(10分)如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD 与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交千点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.【分析】(1)△ADC与△ABC关于AC所在的直线对称,则CD=BC=2,∠ACD=∠ACB =30°,过点D作DE⊥BC于点E,∠DCE=60°,则,即可求解;(2)求出A,D坐标,两个点在同一反比例函数上,则,即可求解;(3)分P为直角顶点、D为直角顶点,两种情况分别求解即可.【解答】解:(1)∵△ADC与△ABC关于AC所在的直线对称,∴CD=BC=2,∠ACD=∠ACB=30°,过点D作DE⊥BC于点E,∵∠DCE=60°,∴,∵OC=2,∴OE=3,∴;(2)设OC=m,则OE=m+1,OB=m+2在Rt△ABC中,∠ACB=30°,BC=2,∴,∴,∵A,D在同一反比例函数上,∴,解得:m=1,∴OC=1;(3)由(2)得:∴,∵四边形A1B1C1D1由四边形ABCD平移得到,∴,∵D1在反比例函数上,∴同理:,,∴,∴,∵x P=x A=﹣3,P在反比例函数上,∴,①若P为直角顶点,则A1P⊥DP,过点P作l1⊥y轴,过点A1作A1F⊥l1,过点D作DG⊥l1,则△A1PF~△PDG,,解得:;②若D为直角顶点,则A1D⊥DP,过点D作l2⊥x轴,过点A1作A1H⊥l2,则△A1DH~△DPG,,,解得:k=0(舍),综上:存在.【点评】本题考查的是反比例函数综合运用,涉及到一次函数、三角形相似等知识点,此类题目的关键是,通过设线段长度,确定图象上点的坐标,进而求解.26.(10分)在平面直角坐标系中,若点A、C同时在某函数的图象上(点A在点C的左侧),以AC为对角线作矩形ABCD,若矩形ABCD的各边都分别与坐标轴乘直,则称矩形ABCD 为该函数图象的“雅垂矩形”,如图1,矩形ABCD为直线l的“雅垂矩形”(1)若某正比例函数图象的“雅垂矩形”的两邻边比为1:4,则下列函数:①y=4x;②y=﹣4x;③y=2x;④y=x中,符合条件的是①②④(只填写序号)(2)若二次函数y=x2﹣2x图象的“雅垂矩形”ABCD的顶点C的横坐标是顶点A横坐标的3倍,设顶点A的横坐标为m(0<m<0.5),矩形ABCD的周长为L,求L的最大值.(3)若二次函数y=x2﹣2nx的图象的“雅垂矩形”ABCD的顶点A、C的横坐标分别为﹣2,1,分别作点A、C关于此二次函数图象对称轴的对称点A、C,连接A'C',是否存在这样的一个n,使得线段A'C'将矩形ABCD两部分图形的面积比为2:7的两部分?若存在,请求出n的值;若不存在,请说明理由.【分析】(1)由“雅垂矩形”的两邻边比为1:4可以得出正比例函数的系数k的值,从而得出答案;(2)由题意知A(m,m2﹣2m),C(3m,9m2﹣6m).由0<m<0.5知CD=3m﹣m=2m,BC=m2﹣2m﹣(9m2﹣6m)=4m2﹣8m,从而得L=2(CD+BC)=﹣16m2﹣12m=﹣16(m﹣0.375)2+2.25,据此可得答案;。
2020漳州市名校中考数学达标测试试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()A. B.C.D.2.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是()A.∠1=50°,∠1=40°B.∠1=40°,∠1=50°C.∠1=30°,∠1=60°D.∠1=∠1=45°3.如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.60cm2B.50cm2C.40cm2D.30cm24.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m5.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.宜晶游C.爱我宜昌D.美我宜昌6.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为()A .100°B .80°C .50°D .20°7.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数ky x= (x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .128.如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为( )A .13B .22C .24D .2239.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。
漳州市名校2020中考数学达标测试试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC 的度数是()A.55°B.60°C.65°D.70°2.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>33.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°4.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.1000100030x x-+=2 B.1000100030x x-+=2C.1000100030x x--=2 D.1000100030x x--=25.已知a35a等于()A.1 B.2 C.3 D.46.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;A .1个B .2个C .3个D .4个7.下列计算正确的是( )A .235+=B .a a a +=222C .(1)x y x xy +=+D .236()mn mn =8.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a ﹣b ,x ﹣y ,x+y ,a+b ,x 2﹣y 2,a 2﹣b 2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x 2﹣y 2)a 2﹣(x 2﹣y 2)b 2因式分解,结果呈现的密码信息可能是( )A .我爱美B .宜晶游C .爱我宜昌D .美我宜昌9.将抛物线y =x 2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为( )A .y =x 2+3x+6B .y =x 2+3xC .y =x 2﹣5x+10D .y =x 2﹣5x+410.如右图,⊿ABC 内接于⊙O ,若∠OAB=28°则∠C 的大小为( )A .62°B .56°C .60°D .28°二、填空题(本题包括8个小题)11.计算:|﹣3|+(﹣1)2= .12.如图,已知正六边形ABCDEF 的外接圆半径为2cm ,则正六边形的边心距是__________cm .13.若一个反比例函数的图象经过点A(m ,m)和B(2m ,-1),则这个反比例函数的表达式为______ 14.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心,EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin ∠EAB 的值为 .15.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.16.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长____cm.17.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是_____.18.如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90°的∠EDF,与半圆交于点E,F,则图中阴影部分的面积是____.三、解答题(本题包括8个小题)19.(6分)如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=12 OB.求证:AB是⊙O的切线;若∠ACD=45°,OC=2,求弦CD的长.20.(6分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+,则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:184467440737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值.21.(6分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,22.(8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.23.(8分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y与x 之间的函数表达式;求小张与小李相遇时x的值.24.(10分)如图,AB是⊙O的直径,BC交⊙O于点D,E是弧BD的中点,AE与BC交于点F,∠C=2∠EAB.求证:AC是⊙O的切线;已知CD=4,CA=6,求AF的长.25.(10分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.26.(12分)如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.求证:△ADE∽△MAB;求DE的长.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.2.B【解析】试题分析:观察图象可知,抛物线y=x2+bx+c与x轴的交点的横坐标分别为(﹣1,0)、(1,0),所以当y<0时,x的取值范围正好在两交点之间,即﹣1<x<1.故选B.考点:二次函数的图象.1061443.A【解析】分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选:A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.4.A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.【分析】1,进而得出答案.【详解】∵a∴a=1.故选:B .【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.6.C【解析】【分析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C .【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.7.C【解析】解:A 、不是同类二次根式,不能合并,故A 错误;B .23a a a += ,故B 错误;C .1x y x xy +=+() ,正确; D .2326mn m n =(),故D 错误.故选C .试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.考点:因式分解.9.A【解析】【分析】先将抛物线解析式化为顶点式,左加右减的原则即可.【详解】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A.【点睛】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;10.A【解析】【详解】连接OB.在△OAB中,OA=OB(⊙O的半径),∴∠OAB=∠OBA(等边对等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=12∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠C=62°;故选A【解析】【详解】|﹣3|+(﹣1)2=4,故答案为4.12.3【解析】连接OA,作OM⊥AB于点M,∵正六边形ABCDEF的外接圆半径为2cm∴正六边形的半径为2 cm,即OA=2cm在正六边形ABCDEF中,∠AOM=30°,∴正六边形的边心距是OM= cos30°×OA=3232⨯=(cm) 故答案为3.13.4 yx =【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=kx,由题意得:m2=2m×(-1),解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=4x,故答案为y=4 x .【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是14.35. 【解析】试题分析:设正方形的边长为y ,EC=x ,由题意知,AE 2=AB 2+BE 2,即(x+y )2=y 2+(y-x )2,由于y≠0,化简得y=4x ,∴sin ∠EAB=3355BE y x x AE y x x -===+. 考点:1.相切两圆的性质;2.勾股定理;3.锐角三角函数的定义15.1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.16.13【解析】试题解析:因为正方形AECF 的面积为50cm 2,所以10AC cm ==,因为菱形ABCD 的面积为120cm 2, 所以21202410BD cm ⨯==,所以菱形的边长13.cm == 故答案为13.17.5【解析】【详解】如图,过点O作OC⊥AB的延长线于点C,则AC=4,OC=2,在Rt△ACO中,22224225AC OC+=+=,∴sin∠OAB=525OCOA==.5.18.π﹣1.【解析】【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【详解】连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=1,四边形DMCN是正方形,2.则扇形FDE的面积是:2902360π⨯=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵DMG DNHGDM HDNDM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=1.则阴影部分的面积是:π﹣1.故答案为π﹣1.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.三、解答题(本题包括8个小题)19.(1)见解析;(2)+【解析】【分析】(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.【详解】(1)直线AB是⊙O的切线,理由如下:连接OA.∵OC=BC,AC=12 OB,∴OC=BC=AC=OA,∴△ACO是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切线.(2)作AE⊥CD于点E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt △ACE 中,;∵∠D=30°,∴.【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(1)3;(2)1312n +-;(3)1218,95N N == 【解析】【分析】()1设塔的顶层共有x 盏灯,根据题意列出方程,进行解答即可.()2参照题目中的解题方法进行计算即可.()3由题意求得数列的每一项,及前n 项和S n =2n+1-2-n ,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n 消去即可,分别分别即可求得N 的值【详解】()1设塔的顶层共有x 盏灯,由题意得01234562222222381x x x x x x x ++++++=.解得3x =,∴顶层共有3盏灯.()2设13927...3n S =+++++,133927...,33n n S +=+++++()()133927...3313927...3n n n S S +∴-=++++-++++++,即:1231,n S +=-1312n S +-=. 即13113927...3.2n n+-+++++=()3由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n−1第n 项,根据等比数列前n 项和公式,求得每项和分别为:12321,21,21,,21n ---⋯-,每项含有的项数为:1,2,3,…,n , 总共的项数为1(1)232n n N n +=+++⋯+=, 所有项数的和为123:21212121,n n S -+-+-+⋯+-()1232222,n n =+++⋯+-()221,21n n -=--122n n +=--,由题意可知:12n +为2的整数幂,只需将−2−n 消去即可,则①1+2+(−2−n)=0,解得:n=1,总共有()111232+⨯+=,不满足N>10, ②1+2+4+(−2−n)=0,解得:n=5,总共有()1553182+⨯+=, 满足:10100N <<, ③1+2+4+8+(−2−n)=0,解得:n=13,总共有()113134952+⨯+=, 满足:10100N <<, ④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有()1292954402+⨯+=, 不满足100N <, ∴1218,95N N ==【点睛】 考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.21.(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】【分析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元; (2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.【详解】(1)设购买一个甲种足球需要x 元,则购买一个乙种篮球需要(x+2)元, 根据题意得:20001400220x x =⨯+,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+2=1.答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.(2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,解得:m≤2.答:这所学校最多可购买2个乙种足球.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.22.【解析】【详解】试题分析:(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数,求出八年级的作文篇数,补全条形统计图即可;(2)设四篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文,用画树状法即可求得结果.试题解析:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×35100=126°;100﹣20﹣35=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.画树状图法:共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,∴P (七年级特等奖作文被选登在校刊上)=61122= . 考点:1.条形统计图;2.扇形统计图;3.列表法与画树状图法.23.(1)300米/分;(2)y=﹣300x+3000;(3)7811分. 【解析】【分析】(1)由图象看出所需时间.再根据路程÷时间=速度算出小张骑自行车的速度.(2)根据由小张的速度可知:B (10,0),设出一次函数解析式,用待定系数法求解即可.(3)求出CD 的解析式,列出方程,求解即可.【详解】解:(1)由题意得:240012003004-=(米/分), 答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B (10,0),设直线AB 的解析式为:y=kx+b ,把A (6,1200)和B (10,0)代入得:10061200,k b k b +=⎧⎨+=⎩解得:3003000,k b =-⎧⎨=⎩∴小张停留后再出发时y 与x 之间的函数表达式;3003000y x =-+;(3)小李骑摩托车所用的时间:24003,800= ∵C (6,0),D (9,2400),同理得:CD 的解析式为:y=800x ﹣4800,则80048003003000x x -=-+, 7811x = 答:小张与小李相遇时x 的值是7811分.【点睛】考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.24.(1)证明见解析(2)26【解析】【分析】(1)连结AD ,如图,根据圆周角定理,由E 是BD 的中点得到2DAB EAB ∠=∠,由于2ACB EAB ∠=∠,则ACB DAB ∠=∠,,再利用圆周角定理得到90ADB ,∠=︒则90DAC ACB ∠+∠=︒,所以90DAC DAB ∠+∠=︒,于是根据切线的判定定理得到AC 是⊙O 的切线; ()2先求出DF 的长,用勾股定理即可求出.【详解】解:(1)证明:连结AD ,如图,∵E 是BD 的中点,∴2DAB EAB ∠=∠,∵2ACB EAB ∠=∠,∴ACB DAB ∠=∠,∵AB 是⊙O 的直径,∴90ADB ,∠=︒∴90DAC ACB ∠+∠=︒,∴90DAC DAB ∠+∠=︒, 即90BAC ∠=︒,∴AC 是⊙O 的切线;(2)∵9090EAC EAB DAE AFD EAD EAB ∠+∠=︒∠+∠=︒∠=∠,,,∴62EAC AFD CF AC DF ,,.∠=∠∴==∴= ∵222226420AD AC CD =-=-=,∴AF===【点睛】本题考查切线的判定与性质,圆周角定理,属于圆的综合题,注意切线的证明方法,是高频考点. 25.112.1【解析】试题分析:(1)根据题意即可求得y与x的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<11;(2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.试题解析:解:(1)y=30﹣2x(6≤x<11).(2)设矩形苗圃园的面积为S,则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.26.(1)证明见解析;(2)24 5.【解析】试题分析:利用矩形角相等的性质证明△DAE∽△AMB. 试题解析:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB.(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M是边BC的中点,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=245.2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3) B .(1,﹣3) C .(2,2) D .(5,﹣1)2.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )A .18B .16C .14D .123.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A .60050x -=450x B .60050x +=450x C .600x =45050x + D .600x=45050x - 4.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x 个零件,依题意下面所列方程正确的是( )A .2402008x x =- B .2402008x x =+ C .2402008x x =+ D .2402008x x =- 5.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )A .y =﹣2(x+1)2+1B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x+1)2﹣1 6.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2m,则树高为( )米A 5B 3C 5D .37.已知圆锥的侧面积为10πcm 2,侧面展开图的圆心角为36°,则该圆锥的母线长为( )A .100cmB 10cmC .10cmD 108.如图,AB 是O 的直径,弦CD AB ⊥,CDB 30∠=,CD 23= )A.2πB.πC.π3D.2π39.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数kyx=(x>0)的图象经过顶点B,则k的值为A.12 B.20 C.24 D.3210.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.50二、填空题(本题包括8个小题)11.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为_____.12.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是___________.13.若2a﹣b=5,a﹣2b=4,则a﹣b的值为________.14.若点(a,1)与(﹣2,b)关于原点对称,则b a=_______.15.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______.16.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.17.某厂家以A 、B 两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B 原料;乙产品每袋含2千克A 原料、1千克B 原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A 原料和B 原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.18.如图,点G 是ABC 的重心,AG 的延长线交BC 于点D ,过点G 作GE //BC 交AC 于点E ,如果BC 6=,那么线段GE 的长为______.三、解答题(本题包括8个小题)19.(6分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+,则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:184467440737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题: ()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值.20.(6分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.试确定周销售量y (包)与售价x (元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w (元)与售价x (元/包)之间的函数关系式,并直接写出售价x 的范围;当售价x (元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w (元)最大?最大利润是多少?21.(6分)如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF=∠GAC .求证:△ADE ∽△ABC ;若AD=3,AB=5,求的值.22.(8分)计算:(﹣1)2018+(﹣12)﹣2﹣|212 |+4sin60°; 23.(8分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.24.(10分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为 ;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.25.(10分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?26.(12分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.这组成绩的众数是;求这组成绩的方差;若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.。
福建省漳州市2019-2020学年中考数学第一次调研试卷含解析
福建省漳州市2019-2020学年中考数学第一次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,以O为圆心的圆与直线y x3=-+交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为()A.23πB.πC.23πD.13π2.如图,在平面直角坐标系xOy中,△A B C'''由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(1,-1)C.(0,-1)D.(1,0)3.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.4.如图,AD∥BC,AC平分∠BAD,若∠B=40°,则∠C的度数是()A.40°B.65°C.70°D.80°5.不论x、y为何值,用配方法可说明代数式x2+4y2+6x﹣4y+11的值()A.总不小于1 B.总不小于11C.可为任何实数D.可能为负数6.若等式(-5)□5=–1成立,则□内的运算符号为()A.+ B.–C.×D.÷7.(2011•黑河)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0 ②a >0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A、2个B、3个C、4个D、5个8.一组数据:6,3,4,5,7的平均数和中位数分别是( )A.5,5 B.5,6 C.6,5 D.6,69.如图,在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,AB=10,BC=8,DE=4.5,则△DEF的周长是()A.9.5 B.13.5 C.14.5 D.1710.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°118-1的值在()A.0到1之间B.1到2之间C.2到3之间D.3至4之间12.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知点A(a,y1)、B(b,y2)在反比例函数y=3x的图象上,如果a<b<0,那么y1与y2的大小关系是:y1__y2;14.方程组538389x yx y-=⎧⎨+=⎩的解一定是方程_____与_____的公共解.15.已知4360{24140x y z x y z --=+-=(x 、y 、z≠0),那么22222223657x y z x y z++++的值为_____. 16.用一张扇形纸片围成一个圆锥的侧面(接缝处不计),若这个扇形纸片的面积是90πcm 2,围成的圆锥的底面半径为15cm ,则这个圆锥的母线长为_____cm .17.若x ,y 为实数,y =22441x x -+-+,则4y ﹣3x 的平方根是____. 18.一组数据7,9,8,7,9,9,8的中位数是__________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为A 、B 、C 、D 四个等级,并把测试成绩绘成如图所示的两个统计图表. 七年级英语口语测试成绩统计表成绩x(分) 等级人数 x 90≥ A12 75x 90≤< Bm 60x 75≤< Cn x 60<D 9请根据所给信息,解答下列问题:本次被抽取参加英语口语测试的学生共有多少人?求扇形统计图中 C 级的圆心角度数;若该校七年级共有学生640人,根据抽样结课,估计英语口语达到 B 级以上(包括B 级)的学生人数.20.(6分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?21.(6分)已知抛物线23y ax bx =+-经过点(1,1)A -,(3,3)B -.把抛物线23y ax bx =+-与线段AB围成的封闭图形记作G .(1)求此抛物线的解析式;PQ y轴,交线段AB于点Q.当(2)点P为图形G中的抛物线上一点,且点P的横坐标为m,过点P作//V为等腰直角三角形时,求m的值;APQ(3)点C是直线AB上一点,且点C的横坐标为n,以线段AC为边作正方形ACDE,且使正方形ACDE 与图形G在直线AB的同侧,当D,E两点中只有一个点在图形G的内部时,请直接写出n的取值范围.22.(8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:()1这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______;()2将条形统计图补充完整;()3该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.23.(8分)已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.(1)求∠AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.24.(10分)解不等式组:()()3x1x382x11x132⎧-+--<⎪⎨+--≤⎪⎩并求它的整数解的和.25.(10分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?26.(12分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为()4,5-,(1,3)-.请在如图所示的网格平面内作出平面直角坐标系;请作出ABC∆关于y轴对称的'''A B C∆;点'B的坐标为.ABC∆的面积为.27.(12分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3=1.73,精确到0.1m)。
福建省漳州市2019-2020学年中考一诊数学试题含解析
福建省漳州市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若实数m满足22210⎛⎫++=⎪⎝⎭mm,则下列对m值的估计正确的是()A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<22.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC 的度数是()A.85°B.105°C.125°D.160°3.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×1074.在反比例函数1kyx-=的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1D.k<15.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为()A.1.21×103B.12.1×103C.1.21×104D.0.121×1056.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180方差 3.6 3.6 7.4 8.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A.甲B.乙C.丙D.丁7.2017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为()A.7.49×107B.74.9×106C.7.49×106D.0.749×1078.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:23B.2:3:4 C.13 2 D.1:2:39.3-的倒数是( ) A .13-B .3C .13D .13±10.下列各式属于最简二次根式的有( ) A .8B .21x +C .3yD .1211.111112233499100++++++++L 的整数部分是( )A .3B .5C .9D .612.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .三棱锥C .圆柱D .圆锥二、填空题:(本大题共6个小题,每小题4分,共24分.)13.把一张长方形纸条按如图所示折叠后,若∠AOB′=70°,则∠B′OG =_____.14.函数2xy x =-中,自变量x 的取值范围是______. 15.如图1,在平面直角坐标系中,将▱ABCD 放置在第一象限,且AB ∥x 轴,直线y =﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么ABCD 面积为_____.16.计算:(π﹣3)0+(﹣13)﹣1=_____. 17.半径是6cm 的圆内接正三角形的边长是_____cm .18.如图,在矩形ABCD 中,E 、F 分别是AD 、CD 的中点,沿着BE 将△ABE 折叠,点A 刚好落在BF上,若AB=2,则AD=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC内接于⊙O,CD是⊙O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且∠B=2∠P.(1)求证:PA是⊙O的切线;(2)若PD=3,求⊙O的直径;(3)在(2)的条件下,若点B等分半圆CD,求DE的长.20.(6分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70︒方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37︒方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.21.(6分)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.(1)试判断CD与圆O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.22.(8分)在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a 2+b 2=c 2的三个正整数a ,b ,c 成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P 1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A ,B ,C ,D 表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P 2,并指出她与嘉嘉抽到勾股数的可能性一样吗?23.(8分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人? (2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?24.(10分)九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设x (分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为1y 千米,骑自行车学生骑行的路程为2y 千米,12y y 、关于x 的函数图象如图所示.(1)求2y关于x的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?25.(10分)初三(5)班综合实践小组去湖滨花园测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是湖滨花园的小路,小东同学进行如下测量,B点在A点北偏东60°方向,C点在B点北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(3≈1.732,2≈1.414,结果精确到0.01米)26.(12分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s 0 1 2 3 …滑行距离y/m 0 4 12 24 …(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.27.(12分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题解析:∵222(1)0mm++=,∴m2+2+4m=0,∴m2+2=-4m,∴方程的解可以看作是函数y=m2+2与函数y=-4m,作函数图象如图,在第二象限,函数y=m2+2的y值随m的增大而减小,函数y=-4m的y值随m的增大而增大,当m=-2时y=m2+2=4+2=6,y=-4m=-42-=2,∵6>2,∴交点横坐标大于-2,当m=-1时,y=m2+2=1+2=3,y=-4m=-41-=4,∵3<4,∴交点横坐标小于-1,∴-2<m<-1.故选A.考点:1.二次函数的图象;2.反比例函数的图象.2.C【解析】【分析】首先求得AB与正东方向的夹角的度数,即可求解.【详解】根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【点睛】本题考查了方向角,正确理解方向角的定义是关键.3.B【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.000000823=8.23×10-1.故选B.点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.A【解析】【分析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.【详解】解:根据题意,在反比例函数1kyx-=图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.【点评】本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x 的增大而增大.5.C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.详解:1.21万=1.21×104,故选:C.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.A【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵x甲=x丙>x乙=x丁,∴从甲和丙中选择一人参加比赛,∵2S甲=2S乙<2S丙<2S丁,∴选择甲参赛,故选A.【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定. 7.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】7490000=7.49×106. 故选C. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 8.D 【解析】试题分析:图中内切圆半径是OD ,外接圆的半径是OC ,高是AD ,因而AD=OC+OD ; 在直角△OCD 中,∠DOC=60°,则OD :OC=1:2,因而OD :OC :AD=1:2:1, 所以内切圆半径,外接圆半径和高的比是1:2:1.故选D .考点:正多边形和圆. 9.A 【解析】 【分析】 【详解】解:3-的倒数是13-. 故选A . 【点睛】本题考查倒数,掌握概念正确计算是解题关键. 10.B 【解析】 【分析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可. 【详解】A 822=A 选项错误;B 21x +是最简二次根式,故B 选项正确;C 3y y y =D 11222=D 选项错误;故选:B.【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.11.C【解析】﹣1=,∴原式﹣=﹣1+10=1.故选C.12.A【解析】【分析】侧面为长方形,底面为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故本题选择A.【点睛】会观察图形的特征,依据侧面和底面的图形确定该几何体是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.55°【解析】【分析】由翻折性质得,∠BOG=∠B′OG,根据邻补角定义可得.【详解】解:由翻折性质得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=12(180°﹣∠AOB′)=12(180°﹣70°)=55°.故答案为55°.【点睛】考核知识点:补角,折叠.14.2x≠【解析】【分析】根据分式有意义的条件是分母不为2;分析原函数式可得关系式x−1≠2,解得答案.根据题意得x−1≠2,解得:x≠1;故答案为:x≠1.【点睛】本题主要考查自变量得取值范围的知识点,当函数表达式是分式时,考虑分式的分母不能为2.15.1【解析】【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是1时经过B,则AB=1-4=4,当直线经过D点,设其交AB与E,则DE=22,作DF⊥AB于点F.利用三角函数即可求得DF即平行四边形的高,然后利用平行四边形的面积公式即可求解【详解】解:由图象可知,当移动距离为4时,直线经过点A,当移动距离为7时,直线经过点D,移动距离为1时,直线经过点B,则AB=1﹣4=4,当直线经过点D,设其交AB于点E,则DE=22,作DF⊥AB于点F,∵y=﹣x于x轴负方向成45°角,且AB∥x轴,∴∠DEF=45°,∴DF=EF,∴在直角三角形DFE中,DF2+EF2=DE2,∴2DF2=1∴DF=2,那么ABCD面积为:AB•DF=4×2=1,故答案为1.【点睛】此题主要考查平行四边形的性质和一次函数图象与几何变换,解题关键在于利用好辅助线【解析】【分析】先计算0指数幂和负指数幂,再相减. 【详解】(π﹣3)0+(﹣13)﹣1,=1﹣3,=﹣1,故答案是:﹣1.【点睛】考查了0指数幂和负指数幂,解题关键是运用任意数的0次幂为1,a-1=1 a .17.63【解析】【分析】根据题意画出图形,作出辅助线,利用垂径定理及等边三角形的性质解答即可.【详解】如图所示,OB=OA=6,∵△ABC是正三角形,由于正三角形的中心就是圆的圆心,且正三角形三线合一,所以BO是∠ABC的平分线;∠OBD=60°×12=30°,BD=cos30°×6=6×33根据垂径定理,BC=2×3,故答案为3.【点睛】本题主要考查了正多边形和圆,正三角形的性质,熟练掌握等边三角形的性质是解题的关键,根据圆的内接正三角形的特点,求出内心到每个顶点的距离,可求出内接正三角形的边长. 18.22 【解析】 如图,连接EF ,∵点E 、点F 是AD 、DC 的中点, ∴AE=ED ,CF=DF=12CD=12AB=1, 由折叠的性质可得AE=A′E , ∴A′E=DE ,在Rt △EA′F 和Rt △EDF 中,EA EDEF EF ='⎧⎨=⎩, ∴Rt △EA′F ≌Rt △EDF (HL ), ∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3, 在Rt △BCF 中,22223122BF CF -=-= ∴2 .点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF ,证明Rt △EA′F ≌Rt △EDF ,得出BF 的长,再利用勾股定理解答即可.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)证明见解析;(2)23(3)33; 【解析】 【分析】(1)连接OA 、AD ,如图,利用圆周角定理得到∠B=∠ADC ,则可证明∠ADC=2∠ACP ,利用CD 为直径得到∠DAC=90°,从而得到∠ADC=60°,∠C=30°,则∠AOP=60°, 于是可证明∠OAP=90°,然后根据切线的判断定理得到结论;(2)利用∠P=30°得到OP=2OA ,则3PD OD ==O 的直径;(3)作EH ⊥AD 于H ,如图,由点B 等分半圆CD 得到∠BAC=45°,则∠DAE=45°,设DH=x ,则DE=2x ,HE AH HE ===,,所以)1x = 然后求出x 即可得到DE 的长. 【详解】(1)证明:连接OA 、AD ,如图, ∵∠B=2∠P ,∠B=∠ADC , ∴∠ADC=2∠P , ∵AP=AC , ∴∠P=∠ACP , ∴∠ADC=2∠ACP , ∵CD 为直径, ∴∠DAC=90°,∴∠ADC=60°,∠C=30°, ∴△ADO 为等边三角形, ∴∠AOP=60°, 而∠P=∠ACP=30°, ∴∠OAP=90°, ∴OA ⊥PA , ∴PA 是⊙O 的切线;(2)解:在Rt △OAP 中,∵∠P=30°, ∴OP=2OA ,∴PD OD ==∴⊙O 的直径为(3)解:作EH ⊥AD 于H ,如图, ∵点B 等分半圆CD , ∴∠BAC=45°, ∴∠DAE=45°, 设DH=x ,在Rt △DHE 中,DE=2x ,HE =,在Rt △AHE 中,AH HE ,==∴)1AD x x =+=,即()313x +=,解得33.2x -=∴233DE x ==-.【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理. 20.还需要航行的距离BD 的长为20.4海里. 【解析】分析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD 中,由三角函数得出CD=27.2海里,在直角三角形BCD 中,得出BD ,即可得出答案. 详解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD∴=,27.2CD ∴=(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD∴=,20.4BD ∴=(海里).答:还需要航行的距离BD 的长为20.4海里.点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD 的长度是解决问题的关键.21.(1)CD 与圆O 的位置关系是相切,理由详见解析;(2) AD=92. 【解析】 【分析】(1)连接OC ,求出OC 和AD 平行,求出OC ⊥CD ,根据切线的判定得出即可;(2)连接BC ,解直角三角形求出BC 和AC ,求出△BCA ∽△CDA ,得出比例式,代入求出即可. 【详解】(1)CD 与圆O 的位置关系是相切, 理由是:连接OC ,∵OA=OC , ∴∠OCA=∠CAB , ∵∠CAB=∠CAD , ∴∠OCA=∠CAD , ∴OC ∥AD , ∵CD ⊥AD , ∴OC ⊥CD , ∵OC 为半径,∴CD 与圆O 的位置关系是相切; (2)连接BC ,∵AB 是⊙O 的直径, ∴∠BCA=90°, ∵圆O 的半径为3, ∴AB=6, ∵∠CAB=30°, ∴133332BC AB AC BC ====,, ∵∠BCA=∠CDA=90°,∠CAB=∠CAD , ∴△CAB ∽△DAC , ∴,AC ABAD AC= 3333=∴92 AD=.【点睛】本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.22.(1)34;(2)淇淇与嘉嘉抽到勾股数的可能性不一样.【解析】试题分析:(1)根据等可能事件的概率的定义,分别确定总的可能性和是勾股数的情况的个数;(2)用列表法列举出所有的情况和两张卡片上的数都是勾股数的情况即可.试题解析:(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=34;(2)列表法:由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2=61 122=,∵P1=34,P2=12,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.23.(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析【解析】分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;(2)根据学校总人数乘以骑自行车所占的百分比,可得答案.详解:(1)乘公交车所占的百分比60360=16, 调查的样本容量50÷16=300人, 骑自行车的人数300×120360=100人, 骑自行车的人数多,多100﹣50=50人; (2)全校骑自行车的人数2400×120360=800人, 800>600,故学校准备的600个自行车停车位不足够.点睛: 本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.24.20.24y x =﹣;(2)骑自行车的学生先到达百花公园,先到了10分钟.【解析】 【分析】(1)根据函数图象中的数据可以求得2y 关于x 的函数解析式;(2)根据函数图象中的数据和题意可以分别求得步行学生和骑自行车学生到达百花公园的时间,从而可以解答本题. 【详解】解:(1)设2y 关于x 的函数解析式是2y kx b +=,200404k b k b +=⎧⎨+=⎩,得0.24k b =⎧⎨=-⎩, 即2y 关于x 的函数解析式是20.24y x=﹣; (2)由图象可知,步行的学生的速度为:4400.1÷=千米/分钟,∴步行同学到达百花公园的时间为:60.160÷=(分钟), 当28y =时, 60.24x =﹣,得50x =,605010﹣=,答:骑自行车的学生先到达百花公园,先到了10分钟. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 25.AD =38.28米.【解析】【分析】过点B作BE⊥DA,BF⊥DC,垂足分别为E、F,已知AD=AE+ED,则分别求得AE、DE的长即可求得AD的长.【详解】过点B作BE⊥DA,BF⊥DC,垂足分别为E,F,由题意知,AD⊥CD∴四边形BFDE为矩形∴BF=ED在Rt△ABE中,AE=AB•cos∠EAB在Rt△BCF中,BF=BC•cos∠FBC∴AD=AE+BF=20•cos60°+40•cos45°=20×12+40×22=10+202=10+20×1.414=38.28(米).即AD=38.28米.【点睛】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.26.(1)20s;(2)2511 222 y x⎛⎫=+-⎪⎝⎭【解析】【分析】(1)利用待定系数法求出函数解析式,再求出y=840时x的值即可得;(2)根据“上加下减,左加右减”的原则进行解答即可.【详解】解:(1)∵该抛物线过点(0,0),∴设抛物线解析式为y=ax2+bx,将(1,4)、(2,12)代入,得:44212a b a b +=⎧⎨+=⎩, 解得:22a b =⎧⎨=⎩,所以抛物线的解析式为y =2x 2+2x , 当y =840时,2x 2+2x =840, 解得:x =20(负值舍去),即他需要20s 才能到达终点; (2)∵y =2x 2+2x =2(x+12)2﹣12, ∴向左平移2个单位,再向下平移5个单位后函数解析式为y =2(x+2+12)2﹣12﹣5=2(x+52)2﹣112.【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律. 27.(1)答案见解析;(2)13. 【解析】 【分析】(1)k 可能的取值为-1、-2、-3,b 可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b 经过一、二、四象限时k 、b 的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b 经过一、二、四象限的概率. 【详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b 的图象经过一、二、四象限时,k <0,b >0,情况有4种, 则P=412= 13.。
漳州市2019-2020学年上学期九年级华师大版数学试卷试卷及答案
2019-2020学年上学期教学质量抽测九年级数学试卷(华师大版)(考试时间:120分钟满分:150分)友情提示:请把所有答案填写(涂)到答题纸上!请不要错位、越界答题!注意:在解答题中,凡是涉及到画图,可先用铅笔画在答题纸上,然后必须用黑色签字....笔.重描确认,否则无效.一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题..纸.的相应位置填涂.1.若二次根式x 的取值范围是A .x ≤2B .x ≥2C .x <2D .x >22.若两个相似五边形的相似比为3:5,则它们的面积比为A .3:5B .5:3C .9:25D .25:93.下列四组线段中,成比例线段的是A .1cm 、2cm 、2cm 、4cmB .1cm 、2cm 、3cm 、5cmC .4cm 、2cm 、1cm 、3cmD .3cm 、4cm 、5cm 、6cm4.一元二次方程23520x x -+=根的情况是A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根5.抛物线225y x =-通过平移,得到抛物线22y x =,则平移方式正确的是A .向左平移5个单位B .向右平移5个单位C .向上平移5个单位D .向下平移5个单位6.已知命题“关于x 的一元二次方程x 2+nx +1=0必有两个实数根”,则能说明该命题是假命题的n 的一个值可以是A .1B .2C .3D .47.如图,一艘船向东航行,上午8时到达A 处,测得一灯塔B 在船的北偏东30°方向,且距离船48海里;上午11时到达C 处,测得灯塔在船的正北方向.则这艘船航行的速度为A .B .C .24海里/时D .8海里/时8.某市“菜篮子工程”蔬菜基地2018年产量为100吨,预计到2020年产量可达121吨.设该基地蔬菜产量的年平均增长率为x ,则可列方程为A .100(1+x )2=121B .121(1-x )2=100C .100(1+2x )=121D .100(1+x 2)=1219.如图,在4×4的正方形网格中,小正方形的顶点称为格点.若△ABC的顶点都在格点上,则cos ∠ABC 的值是A .13B .12C .5D .510.如图是抛物线2y ax bx c =++的部分图象,其对称轴为直线x =-1,且与x 轴的一个交点为A (-3,0),则下列结论:①240b ac ->;②2a +b =0;③a -b +c >0;④当-3<x <0时,y 随x 的增大而增大.其中正确的个数是A .1B .2C .3D .4二、填空题:本题共6小题,每小题4分,共24分.请将答案填入答题..纸.的相应位置.11.化简的结果是.12.如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的坡度3:1=i ,则坡角α为度.13.已知x =1是方程220x bx +-=的一个根,则方程的另一个根是.14.如图,在平面直角坐标系中,△ABC 与△DEF 关于原点O 成位似关系,且相似比k =13.若B (2,1),则点E 的坐标是.15.一元二次方程x 2-2x+m =0配方后得(x -1)2=n ,则m+n 的值是.16.若方程2210x kx k -+-=的两根分别为12,x x ,且1201x x <<<,则k 的取值范围是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.请在答.题.纸.的相应位置解答.17.(8分)计算:2sin 45︒-.解一元二次方程:x 2-2x =0.19.(本小题满分8分)《孙子算经》是中国古代重要的数学著作,成书于约1500年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意思是:如图,有一根竹竿OB 不知道有多长,量得它在太阳下的影子BA 长一丈五尺,同时立一根一尺五寸的小标杆''O B ,它的影子''B A 长五寸,问竹竿OB 的长度为多少尺?(注:1丈=10尺,1尺=10寸)20.(本小题满分8分)求证:相似三角形对应边上的高的比等于相似比.(要求:画出图形,写出已知和求证,并给出证明)21.(本小题满分8分)如图,直升飞机在隧道BD 上方A 点处测得B 、D 两点的俯角分别为45°和31°.若飞机此时飞行高度AC 为1208m ,且点C 、B 、D 在同一条直线上,求隧道BD 的长.(精确到1m )(参考数据:sin 310.52,cos310.86,tan 310.60︒︒︒≈≈≈)如图,在Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D.(1)在AC边上求作一点E,使得△ADE∽△ABC;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若AC=15,BC=10,求DE的长.23.(本小题满分10分)某网店销售一种人工智能早教陪伴学习机器人,每个进价为20元.调查发现,当销售价为25元时,平均每天可售出250个;而当销售价每增加1元时,平均每天的销售量将减少10个.该网店要求每个机器人的利润不低于10元且不高于17元.(1)网店若希望平均每天获利2250元,则每个机器人的定价应为多少元?(2)网店决定每销售1个机器人,就捐赠a(1<a≤4)元给希望工程,帮助困难学生.若平均每天扣除捐赠后可获得最大利润为1690元,求a的值.如图,在四边形ABCD 中,∠ACB =∠ADC =90°,AC 平分∠BAD ,过点C 作CE ∥AD 交AB 于点E ,连接DE 交AC 于点F .(1)求证:AC 2=AB ·AD ;(2)若AB =AD =EF 的长.25.(本小题满分14分)抛物线26 y ax bx a =+-与x 轴交于A ,B 两点,且A (-2,0),抛物线的顶点为P .(1)求点P 的坐标;(用只含a 的代数式表示)(2)若-8≤a ≤-5,求△ABP 面积的最大值;(3)当a =1时,把抛物线26 y ax bx a =+-位于x 轴下方的部分沿x 轴向上翻折,其余部分保持不动,得到新的函数图象.若直线y =-x +t 与新的函数图象至少有3个不同的交点,求t 的取值范围.2019-2020学年下学期教学质量抽测九年级数学试卷(华师大版)参考答案及评分建议一、选择题:本题共10小题,每小题4分,共40分.二、填空题:本题共6小题,每小题4分,共24分.11.512.3013.-214.(6,3)15.116.102k <<评分建议:第13题答案写30°,不扣分.三、解答题:本题共9小题,共86分.17.(本小题满分8分)解:原式+.……………………………………………………………6分=.………………………………………………………………………8分评分建议:第1步化简,每化简1个正确,得2分.18.(本小题满分8分)解:方法一:x (x -2)=0.…………………………………………………………………4分∴x 1=0,x 2=2.……………………………………………………………8分方法二:a =1,b =-2,c =0.………………………………………………………1分∵∆=(-2)2-4⨯1×0=4>0,………………………………………………3分∴x =1242⨯±.…………………………………………………………6分∴x 1=0,x 2=2.…………………………………………………………8分方法三:x 2-2x +1=1,……………………………………………………………2分(x -1)2=1.………………………………………………………………4分x -1=±1.……………………………………………………………6分∴x 1=0,x 2=2.…………………………………………………………8分题号12345678910答案BCADCADACB19.(本小题满分8分)解:根据题意,得BA =15尺,''O B =1.5尺,''B A =0.5尺.……………………………1分∵太阳光线是平行光线,∴∠OAB =∠'''O A B .……………………………………………2分∵∠OBA ='''O B A ∠=90°,∴△OBA ∽△'''O B A .…………………………………………4分∴''''OB BAO B B A=.………………………………………………5分∴'''' 1.515450.5O B BA OB B A ⋅⨯===.……………………………………………………7分答:竹竿OB 的长为45尺.……………………………………………………………8分20.(本小题满分8分)如图所示.………………………………………………………………………………2分已知:如图,△ABC ∽△C B A ''',相似比为k ,AD ⊥BC 于D ,D A ''⊥C B ''于D '.…………………………4分求证:k D A AD=''.…………………………………5分证明:∵△ABC ∽△C B A ''',∴∠B =∠B '.………………………………6分∵AD ⊥BC ,D A ''⊥C B '',∴∠ADB =∠B D A '''.∴△ADB ∽△B D A '''.……………………7分∴k B A ABD A AD =''=''.…………………………8分21.(本小题满分8分)解:∵AE ∥CD ,∴∠ABC =∠EAB =45°,∠ADC =∠EAD =31°.…………………………………………2分在Rt △ACB 中,BC =AC =1208.……………………4分在Rt △ACD 中,∵tan ∠ADC =ACCD ,1 208 1 2082013.3.tan tan 310.60AC CD ADC ︒∴==≈≈∠……6分∴BD =CD -BC =2013.3-1208≈805.…………………………………………………8分答:隧道BD 的长约为805m .22.(本小题满分10分)解:(1)作法一:如图1.作法二:如图2.………………………………………………3分∴点E就是所求作的点.…………………………………………………………4分(2)根据(1)的作图方法,可知DE∥BC.∴∠EDC=∠BCD.………………………………………………………………5分∵CD平分∠ACB,∴∠ACD=∠BCD.∴∠ACD=∠EDC.………………………………………………………………6分∴CE=DE.………………………………………………………………………7分∵△ADE∽△ABC,∴DE AEBC AC=.…………………………………………………………………8分设DE=x,则CE=x,AE=15-x.∴15.1015x x-=……………………………………………………………………9分解得x=6.∴DE的长为6.……………………………………………………………………10分解:(1)设每个机器人销售价为x 元.………………………………………………………1分根据题意,得[250-10(x -25)](x -20)=2250.………………………………3分整理得27012250x x -+=.解得12x x ==35.……………………………………………………………………4分∴每个机器人的利润为10元,符合题意.∴每个机器人销售价为35元.…………………………………………………5分(2)设平均每天扣除捐赠后可获得利润为y 元,每个机器人销售价为x 元.根据题意,得y =[250-10(x -25)](x -20-a )=-10x 2+(10a +700)x -500a -10000(30≤x ≤37).…………6分∵-10<0,且抛物线的对称轴为直线x =35+12a ,∴当x =35+12a 时,y 取得最大值1690.…………………………………………7分解法一:即()()()()241050010000107001690.410a a ⨯-⋅---+=⨯-…………………………8分整理得2602240a a -+=.解得a 1=4,a 2=56(不合题意,舍去).………………………………………………9分当a =4时,x =35+137,2a =符合题意.∴a =4.………………………………………………………………………………10分解法二:∴[250-10×(35+12a -25)](35+12a -20-a )=1690.…………………………8分整理得()230676a -=.解得a 1=4,a 2=56(不合题意,舍去).………………………………………………9分当a =4时,x =35+137,2a =符合题意.∴a =4.……………………………………………………………………………10分解:(1)∵AC 平分∠BAD ,∴∠1=∠2.…………………………………………1分∵∠ACB =∠ADC =90°,∴△ACB ∽△ADC .………………………………3分∴ACABAD AC =.………………………………………4分∴AC 2=AB AD .……………………………………………………………………5分(2)∵AB =,AD =∴AC =6.∴BC =.…………………………………6分∴BC =12AB .∴∠1=30°,∠2=∠1=30°.………………………………………………………7分∵∠ACB =∠ADC =90°,∴∠B =∠ACD =60°.∵CE ∥AD ,∴∠3=∠2=30°,∠BCE =∠ACB -∠3=60°.∴△BCE 是等边三角形.∴CE =BC =…………………………………………………………………8分在Rt △ADC 中,∠2=30°,∴12CD AC ==3.∵CE ∥AD ,∴∠DCE =180°-∠ADC =90°.∴DE ==…………………………………9分∵CE ∥AD ,∴△CEF ∽△ADF .……………………………………………………………10分∴EF CEDF AD =23=.………………………………………………………11分∴25EF DE =.∵DE ,∴EF .……………………………………………………………………12分1125.(本小题满分14分)解:(1)∵点A (-2,0)在抛物线26 y ax bx a =+-上,∴4a -2b -6a =0,∴b =-a .……………………………………………………………………1分∴221256 24a y ax ax a a x ⎛⎫=--=-- ⎪⎝⎭.………………………………3分∴点P 的坐标为(12,254a -).…………………………………………4分(2)由(1)可知,抛物线的对称轴为直线x =12,∴点B 与点A 关于直线x =12对称,∴B (3,0).∴AB=5.……………………………………………………………5分∵点P 的坐标为(12,254a -),∴△ABP 面积1251255.248a S a -=⨯⨯=…………………………………6分∵-8≤a ≤-5,∴S =-1258a ,S 随a 的增大而减小.…………………………………………7分∴当a =-8时,△ABP 面积的最大值为125.…………………………………8分(3)∵a =1,b =-a ,∴26 y x x =--.……………………………………9分∵2 6 y x x =--与x 轴交于点A (-2,0),B (3,0),∴新函数为y =⎪⎩⎪⎨⎧<<-++--≤≥--).32(6)23(622x x x x x x x ,或……11分①当直线y =-x +t 过点B (3,0)时,直线与新函数的图象有3个不同的交点.即-3+t =0,解得t =3;……………………………………………………12分②当直线y =-x +t 与抛物线26y x x =-++(-2<x <3)有唯一公共点时,直线与新函数的图象有3个不同的交点.即方程26x x -++=-x +t 有两个相等的实数根.整理,得x 2-2x +t -6=0.∴∆=4-4(t -6)=0,解得t =7. (13)分∴t 的取值范围为3≤t ≤7.………………………………………………14分。
福建省漳州市2019-2020学年中考数学模拟试题(1)含解析
福建省漳州市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列四个实数中是无理数的是( )A.2.5 B.C.π D.1.4142.四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。
现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A.34B.1 C.12D.143.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )A.52B.154C.83D.1034.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.60050x-=450xB.60050x+=450xC.600x=45050x+D.600x=45050x-5.如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是()A2B.2C.2 D.36.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <07.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 2018的值为( )A .20151()2B .20162()2C .20152()2D .20161()28.如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O ,AC 8=,BD 6=,DH AB ⊥于点H ,且DH 与AC 交于G ,则OG 长度为( )A .92B .94C .35D .35 9.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >010.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )A .0.1B .0.2C .0.3D .0.411.已知抛物线y=ax 2+bx+c 与x 轴交于(x 1,0)、(x 2,0)两点,且0<x 1<1,1<x 2<2与y 轴交于(0,-2),下列结论:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正确结论的个数为( )A.1个B.2个C.3个D.4个12.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:3ax2﹣3ay2=_____.14.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.15.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是16.因式分解:34-=_______________________.a a17.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_____.18.如图,在平面直角坐标系中,抛物线y=﹣x2+4x与x轴交于点A,点M是x轴上方抛物线上一点,过点M作MP⊥x轴于点P,以MP为对角线作矩形MNPQ,连结NQ,则对角线NQ的最大值为_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)2000tan604tan6042245-+-.20.(6分)如图,一次函数y=kx+b的图象与二次函数y=﹣x2+c的图象相交于A(﹣1,2),B(2,n)两点.(1)求一次函数和二次函数的解析式;(2)根据图象直接写出使二次函数的值大于一次函数的值的x的取值范围;(3)设二次函数y=﹣x2+c的图象与y轴相交于点C,连接AC,BC,求△ABC的面积.21.(6分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.22.(8分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售.(1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;(2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值.23.(8分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tanC.24.(10分)如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.25.(10分)在平面直角坐标系中,已知点A(2,0),点B(0,3,点O(0,0).△AOB绕着O 顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.(I)如图1,若α=30°,求点B′的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).26.(12分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.27.(12分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】本题主要考查了无理数的定义.根据无理数的定义:无限不循环小数是无理数即可求解.解:A、2.5是有理数,故选项错误;B、是有理数,故选项错误;C、π是无理数,故选项正确;D、1.414是有理数,故选项错误.故选C.2.A【解析】∵在:平行四边形、菱形、等边三角形和圆这4个图形中属于中心对称图形的有:平行四边形、菱形和圆三种,∴从四张卡片中任取一张,恰好是中心对称图形的概率=3 4 .故选A.3.A【解析】【分析】过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.【详解】过E作EG∥BC,交AC于G,则∠BCE=∠CEG.∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.∵AC=10,∴3k+5k+4k=10,∴k=56,∴EF=3k=52.故选A.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.4.B【解析】【分析】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【详解】设原计划平均每天生产x 台机器,则实际平均每天生产(x+50)台机器,由题意得:60045050x x =+. 故选B .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.5.C【解析】【分析】连接AC ,交O e 于点,F 设,FN a =则2,NC a =()222,DC a =+()224,AC a =+根据△AMN 的面积为4,列出方程求出a 的值,再计算半径即可.【详解】连接AC ,交O e 于点,FO e 内切于正方形,ABCD MN 为O e 的切线,AC 经过点,,O F FNC V 为等腰直角三角形,2,NC FN = ,CD MN 为O e 的切线,,EN NF =设,FN a =则2,NC a =(222,DC a =+()224,AC a =()223,AF AC CF a ∴=-= △AMN 的面积为4, 则14,2MN AF ⋅⋅= 即()122234,2a a ⋅⋅=解得222,a = ()()()2121222 2.r EC a ==== 故选:C.【点睛】考查圆的切线的性质,等腰直角三角形的性质,三角形的面积公式,综合性比较强.6.B【解析】试题分析:∵一次函数y=kx+b (k 、b 是常数,k≠0)的图象经过第一、二、四象限,∴k <0,b >0,故选B .考点:一次函数的性质和图象7.A【解析】【分析】根据等腰直角三角形的性质可得出2S 2=S 1,根据数的变化找出变化规律“S n =(12)n ﹣2”,依此规律即可得出结论.【详解】如图所示,∵正方形ABCD 的边长为2,△CDE 为等腰直角三角形,∴DE 2+CE 2=CD 2,DE =CE ,∴2S 2=S 1.观察,发现规律:S 1=22=4,S 2=12S 1=2,S 2=12S 2=1,S 4=12S 2=12,…, ∴S n =(12)n ﹣2. 当n =2018时,S 2018=(12)2018﹣2=(12)3. 故选A .【点睛】本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“S n =(12)n ﹣2”. 8.B【解析】 试题解析:在菱形ABCD 中,6AC =,8BD =,所以4OA =,3OD =,在Rt AOD △中,5AD =, 因为11641222ABD S BD OA =⋅⋅=⨯⨯=V ,所以1122ABD S AB DH =⋅⋅=V ,则245DH =,在Rt BHD V 中,由勾股定理得,22222418655BH BD DH⎛⎫=-=-=⎪⎝⎭,由DOG DHBV V∽可得,OG ODBH DH=,即3182455OG=,所以94OG=.故选B.9.C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.故选:C.10.B【解析】∵在5.5~6.5组别的频数是8,总数是40,∴=0.1.故选B.11.A【解析】【分析】【详解】如图,120112x x<<,<<且图像与y轴交于点()0,2-,可知该抛物线的开口向下,即0a<,2c=-①当2x=时,4220y a b=+-<422a b+<21a b+<故①错误.②由图像可知,当1x =时,0y >∴20a b +->∴2a b +>故②错误.③∵120112x x <<,<< ∴1213x x +<<, 又∵12b x x a +=-, ∴13b a-<<, ∴3a b a <<-﹣,∴30a b +<,故③错误;④∵1202x x <<,122c x x a=<, 又∵2c =-,∴1a <-.故④正确.故答案选A.【点睛】本题考查二次函数2y ax bx c =++系数符号的确定由抛物线的开口方向、对称轴和抛物线与坐标轴的交点确定.12.D【解析】【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【详解】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;故选:D.【点睛】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3a(x+y)(x-y)【解析】【详解】解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).【点睛】本题考查提公因式法与公式法的综合运用.14.4.8或64 11【解析】【分析】根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.【详解】①CP和CB是对应边时,△CPQ∽△CBA,所以CPCB=CQCA,即16216t-=12t,解得t=4.8;②CP和CA是对应边时,△CPQ∽△CAB,所以CPCA=CQCB,即16212t-=16t,解得t =6411. 综上所述,当t =4.8或6411时,△CPQ 与△CBA 相似. 【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论. 15.13. 【解析】 【分析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可. 【详解】有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是2163=. 故答案为13【点睛】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比. 16.(2)(2)a a a +- 【解析】 【分析】先提公因式,再用平方差公式分解. 【详解】解:()3244(2)(2)a a a a a a a -=-=+- 【点睛】本题考查因式分解,掌握因式分解方法是关键. 17.13【解析】 【分析】将三个小区分别记为A 、B 、C ,列举出所有情况即可,看所求的情况占总情况的多少即可. 【详解】解:将三个小区分别记为A 、B 、C , 列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种, 所以两个组恰好抽到同一个小区的概率为39=13. 故答案为:13. 【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比. 18.4 【解析】∵四边形MNPQ 是矩形, ∴NQ=MP ,∴当MP 最大时,NQ 就最大.∵点M 是抛物线24y x x =-+在x 轴上方部分图象上的一点,且MP ⊥x 轴于点P ,∴当点M 是抛物线的顶点时,MP 的值最大. ∵224(2)4y x x x =-+=--+,∴抛物线24y x x =-+的顶点坐标为(2,4), ∴当点M 的坐标为(2,4)时,MP 最大=4, ∴对角线NQ 的最大值为4.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.5﹣ 【解析】 【分析】根据特殊角的三角函数值进行计算即可. 【详解】原式=2442--=3﹣43+4﹣2 =5﹣43. 【点睛】本题考查了特殊角的三角函数值,是基础题目比较简单. 20.(1)y=﹣x+1;(2)﹣1<x <2;(3)3; 【解析】 【分析】(1)根据待定系数法求一次函数和二次函数的解析式即可.(2)根据图象以及点A,B 两点的坐标即可求出使二次函数的值大于一次函数的值的x 的取值范围; (3)连接AC 、BC ,设直线AB 交y 轴于点D ,根据ABC ACD BCD S S S =+△△△即可求出△ABC 的面积. 【详解】(1)把A (﹣1,2)代入y=﹣x 2+c 得:﹣1+c=2, 解得:c=3, ∴y=﹣x 2+3,把B (2,n )代入y=﹣x 2+3得:n=﹣1, ∴B (2,﹣1),把A (﹣1,2)、B (2,﹣1)分别代入y=kx+b 得22 1.k b k b -+=⎧⎨+=-⎩解得: 11,k b =-⎧⎨=⎩∴y=﹣x+1;(2)根据图象得:使二次函数的值大于一次函数的值的x 的取值范围是﹣1<x <2; (3)连接AC 、BC ,设直线AB 交y 轴于点D ,把x=0代入y=﹣x 2+3得:y=3, ∴C (0,3),把x=0代入y=﹣x+1得:y=1,∴D (0,1), ∴CD=3﹣1=2,则11212212322ABC ACD BCD S S S =+=⨯⨯+⨯⨯=+=V V V . 【点睛】考查待定系数法求二次函数解析式,三角形的面积公式等,掌握待定系数法是解题的关键. 21.(1)y =-12(x -3)2+5(2)5 【解析】 【分析】(1)设顶点式y=a (x-3)2+5,然后把A 点坐标代入求出a 即可得到抛物线的解析式; (2)利用抛物线的对称性得到B (5,3),再确定出C 点坐标,然后根据三角形面积公式求解. 【详解】(1)设此抛物线的表达式为y =a(x -3)2+5,将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得12a =-, ∴此抛物线的表达式为21(3) 5.2y x =--+ (2)∵A(1,3),抛物线的对称轴为直线x =3, ∴B(5,3). 令x =0,211(3)522y x =--+=,则1(0)2C ,, ∴△ABC 的面积11(51)3 5.22⎛⎫=⨯-⨯-= ⎪⎝⎭ 【点睛】考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.22.(1)y=﹣50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元. 【解析】 【分析】(1)根据题意可以得到y 关于x 的函数解析式,本题得以解决;(2)根据题意可以得到x 的不等式组,从而可以求得x 的取值范围,从而可以得到y 的最大值,本题得以解决. 【详解】(1)由题意可得,y=10×50(30﹣x )+3[100x ﹣50(30﹣x )]=﹣50x+10500,即y与x的函数关系式为y=﹣50x+10500;(2)由题意可得,()()10050301005030200x xx x⎧≥-⎪⎨--≥⎪⎩,得x343≥,∵x是整数,y=﹣50x+10500,∴当x=12时,y取得最大值,此时,y=﹣50×12+10500=9900,30﹣x=18,答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.23.(1)详见解析;(2)2 tan.2C=【解析】【分析】(1)连接OD,根据等边对等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,证得OD∥AC,证得OD⊥DF,从而证得DF是⊙O的切线;(2)连接BE,AB是直径,∠AEB=90°,根据勾股定理得出BE=22AE,CE=4AE,然后在Rt△BEC 中,即可求得tanC的值.【详解】(1)连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)连接BE,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE=2222AB AE AE-=,在RT△BEC中,tanC=22242 BE AECE AE==.24.(1)证明见解析;(1)23.【解析】【分析】(1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=13,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=12BC=1,求出OE=1OF=1,求出菱形的面积即可.【详解】()1证明:CE//ODQ,DE//OC,∴四边形OCED是平行四边形,Q矩形ABCD,AC BD∴=,1OC AC2=,1OD BD2=,OC OD∴=,∴四边形OCED是菱形;()2在矩形ABCD中,ABC90o∠=,BAC30∠=o,AC4=,BC2∴=,AB DC23∴==,连接OE,交CD于点F,Q四边形OCED为菱形,F∴为CD中点,OQ为BD中点,1OF BC 12∴==, OE 2OF 2∴==,OCED 11S OE CD 2232322∴=⨯⨯=⨯⨯=菱形.【点睛】本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.25.(1)B'的坐标为(3,3);(1)见解析 ;(3)3﹣1. 【解析】 【分析】(1)设A'B'与x 轴交于点H ,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°, 由∠BOB'=α=30°推出BO ∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;(1)证明∠BPA'=90︒即可;(3)作AB 的中点M (1,),连接MP ,由∠APB=90°,推出点P 的轨迹为以点M 为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PM ⊥x 轴时,点P 纵坐标的最小值为3﹣1.【详解】(Ⅰ)如图1,设A'B'与x 轴交于点H ,∵OA=1,OB=1,∠AOB=90°,∴∠ABO=∠B'=30°, ∵∠BOB'=α=30°, ∴BO ∥A'B', ∵OB'=OB=1,∴OH=OB'=,B'H=3,∴点B'33);(Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为.如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,).∴当PM⊥x轴时,点P31.【点睛】本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.26.y=2x2+x﹣3,C点坐标为(﹣32,0)或(2,7)【解析】【分析】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,进而求出点C的坐标即可.【详解】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得32 ca b ca b c=-⎧⎪++=⎨⎪-+=-⎩,解得213 abc=⎧⎪=⎨⎪=-⎩,∴抛物线的解析式为y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣32,m2=2,∴C点坐标为(﹣32,0)或(2,7).【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.27.周瑜去世的年龄为16岁.【解析】【分析】设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.根据题意建立方程求出其值就可以求出其结论.【详解】设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.由题意得;10(x﹣1)+x=x2,解得:x1=5,x2=6当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为16岁,完全符合题意.答:周瑜去世的年龄为16岁.【点睛】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键.。
福建省漳州市2019-2020学年中考数学一月模拟试卷含解析
福建省漳州市2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手 1 2 3 4 5 6 7 8 9 10 时间(min) 129 136 140 145 146 148 154 158 165 175由此所得的以下推断不正确...的是()A.这组样本数据的平均数超过130B.这组样本数据的中位数是147C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好2.下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.3.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE 和正方形ACFG,则图中阴影部分的最大面积为()A.6 B.9 C.11 D.无法计算4.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25°B.50°C.60°D.30°5.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4 B.4.5 C.5 D.5.56.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个B.2个C.3个D.4个7.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°8.如图,在矩形ABCD中,AB=3,AD=4,点E在边BC上,若AE平分∠BED,则BE的长为()A.35B.938C.7D.4﹣79.下列各数3.1415926,227-,39,π,16,5中,无理数有()A.2个B.3个C.4个D.5个10.如图是一个由4个相同的长方体组成的立体图形,它的主视图是()A.B.C.D.11.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D12.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为()A.1 B.2 C.3 D.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.从一副54张的扑克牌中随机抽取一张,它是K的概率为_____.14.如图,平行线AB、CD被直线EF所截,若∠2=130°,则∠1=_____.15.如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E为边OA上的一个动点,当△CDE的周长最小时,则点E的坐标____________.16.方程31x-=4x的解是____.17.函数y=3x-中自变量x的取值范围是________,若x=4,则函数值y=________.18.如图,AB是⊙O的直径,点E是»BF的中点,连接AF交过E的切线于点D,AB的延长线交该切线于点C,若∠C=30°,⊙O的半径是2,则图形中阴影部分的面积是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)对于平面直角坐标系xOy 中的点()(),0Q x y x ≠,将它的纵坐标y 与横坐标x 的比yx称为点Q 的“理想值”,记作Q L .如()1,2Q -的“理想值”221Q L ==--.(1)①若点()1,Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_______; ②如图,()3,1C,C e 的半径为1.若点Q 在C e 上,则点Q 的“理想值”Q L 的取值范围是_______.(2)点D 在直线33y x =-+上,D e 的半径为1,点Q 在D e 上运动时都有03Q L ≤≤,求点D 的横坐标D x 的取值范围;(3)()()2,0M m m >,Q 是以r 为半径的M e 上任意一点,当022Q L ≤≤时,画出满足条件的最大圆,并直接写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图) 20.(6分)如图,在平面直角坐标系中,函数的图象经过点,直线与x 轴交于点.求的值;过第二象限的点作平行于x 轴的直线,交直线于点C ,交函数的图象于点D .①当时,判断线段PD 与PC 的数量关系,并说明理由;②若,结合函数的图象,直接写出n 的取值范围.21.(6分)在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)ky k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).求该反比例函数和一次函数的解析式;求△AHO 的周长.22.(8分)先化简,再求代数式(222311a a a --+-)÷11a +的值,其中a=2sin45°+tan45°. 23.(8分)解不等式()()41223x x ---> ,并把它的解集表示在数轴上.24.(10分)为了保障市民安全用水,我市启动自来水管改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍.若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成.这项工程的规定时间是多少天?25.(10分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示).()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.26.(12分)如图,直线y=x+2与抛物线y=ax 2+bx+6(a≠0)相交于A (15,22)和B (4,m ),点P 是线段AB 上异于A 、B 的动点,过点P 作PC ⊥x 轴于点D ,交抛物线于点C . (1)B 点坐标为 ,并求抛物线的解析式; (2)求线段PC 长的最大值;(3)若△PAC 为直角三角形,直接写出此时点P 的坐标.27.(12分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).画出△ABC关于x轴对称的△A1B1C1;以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.2.C【解析】分析:根据轴对称图形与中心对称图形的概念求解.详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:C.点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.B【解析】【分析】有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时,S△ABC的面积最大,S△BEI=S△CDF=S△ABC 最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.【详解】把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直线上,且AB为△ACH'的中线,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时,S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以阴影部分面积之和为S△ABC的3倍,又∵AB=2,AC=3,∴图中阴影部分的最大面积为3×12×2×3=9,故选B.【点睛】本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.4.A【解析】如图,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故选A.5.B【解析】试题分析:根据平行线分线段成比例可得AC BDCE DF,然后根据AC=1,CE=6,BD=3,可代入求解DF=1.2.故选B考点:平行线分线段成比例6.C【解析】【分析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C.【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.7.D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.8.D【解析】【分析】首先根据矩形的性质,可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根据AE平分∠BED求得ED=AD;利用勾股定理求得EC的长,进而求得BE的长.【详解】∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,∴∠DAE=∠BEA,∵AE是∠DEB的平分线,∴∠BEA=∠AED,∴∠DAE=∠AED,∴DE=AD=4,再Rt△DEC中,,∴故答案选D.【点睛】本题考查了矩形的性质与角平分线的性质以及勾股定理的应用,解题的关键是熟练的掌握矩形的性质与角平分线的性质以及勾股定理的应用.9.B 【解析】 【分析】根据无理数的定义即可判定求解. 【详解】在3.1415926,227-π4=,3.1415926,227-是有理数,π3个,故选:B . 【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:2ππ,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 10.A 【解析】由三视图的定义可知,A 是该几何体的三视图,B 、C 、D 不是该几何体的三视图. 故选A.点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层. 11.C 【解析】试题解析:A 、由监测点A 监测P 时,函数值y 随t 的增大先减少再增大.故选项A 错误;B 、由监测点B 监测P 时,函数值y 随t 的增大而增大,故选项B 错误;C 、由监测点C 监测P 时,函数值y 随t 的增大先减小再增大,然后再减小,选项C 正确;D 、由监测点D 监测P 时,函数值y 随t 的增大而减小,选项D 错误.故选C . 12.C 【解析】 【详解】∵∠ACD=∠B ,∠A=∠A , ∴△ACD ∽△ABC , ∴12AC AD AB AC ==,。
福建省漳州市2019-2020学年中考数学模拟试题含解析
福建省漳州市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算中,正确的是()A.(ab2)2=a2b4B.a2+a2=2a4C.a2•a3=a6D.a6÷a3=a22.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.3.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m4.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是( )A.AD DEDB BC=B.BF EFBC AD=C.AE BFEC FC=D.EF DEAB BC=5.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<16.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A .3B .4C .5D .67.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差8.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .9.如图,在△ABC 中,过点B 作PB ⊥BC 于B ,交AC 于P ,过点C 作CQ ⊥AB ,交AB 延长线于Q ,则△ABC 的高是( )A .线段PB B .线段BC C .线段CQD .线段AQ10.计算()15-3÷的结果等于( ) A .-5B .5C .1-5D .1511.如图,正比例函数y=x 与反比例函数的图象交于A (2,2)、B (﹣2,﹣2)两点,当y=x 的函数值大于的函数值时,x 的取值范围是( )A .x >2B .x <﹣2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>212.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.AB CBBD CD=D.AD ABAB AC=二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知一元二次方程x2-4x-3=0的两根为m,n,则2m-mn+2n= .14.某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:按上规律推断,S与n的关系是________________________________.15.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA =OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是_________.(填序号)16.二次根式x3-中,x的取值范围是.17.如图,线段AB 的长为4,C 为AB 上一个动点,分别以AC、BC 为斜边在AB 的同侧作两个等腰直角三角形ACD 和BCE,连结DE,则DE 长的最小值是_____.18.数据﹣2,0,﹣1,2,5的平均数是_____,中位数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB.求证:∠ABE=∠EAD;若∠AEB=2∠ADB,求证:四边形ABCD是菱形.20.(6分)如图,把两个边长相等的等边△ABC和△ACD拼成菱形ABCD,点E、F分别是CB、DC延长上的动点,且始终保持BE=CF,连结AE、AF、EF.求证:AEF是等边三角形.21.(6分)某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台) 7 5每台日产量(个) 100 60(1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?22.(8分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE 的长.23.(8分)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.24.(10分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在ABC ∆中,AD 是BC 边上的中线,若AD BD CD ==,求证:90BAC ∠=︒.如图②,已知矩形ABCD ,如果在矩形外存在一点E ,使得AE CE ⊥,求证:BE DE ⊥.(可以直接用第(1)问的结论)在第(2)问的条件下,如果AED ∆恰好是等边三角形,请求出此时矩形的两条邻边AB 与BC 的数量关系.25.(10分)如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a ,b ,c ,d 表示,如图所示.(1)计算:若十字框的中间数为17,则a+b+c+d=______.(2)发现:移动十字框,比较a+b+c+d 与中间的数.猜想:十字框中a 、b 、c 、d 的和是中间的数的______; (3)验证:设中间的数为x ,写出a 、b 、c 、d 的和,验证猜想的正确性; (4)应用:设M=a+b+c+d+x ,判断M 的值能否等于2020,请说明理由.26.(12分)在⊙O 中,弦AB 与弦CD 相交于点G ,OA ⊥CD 于点E ,过点B 作⊙O 的切线BF 交CD 的延长线于点F .(I )如图①,若∠F=50°,求∠BGF 的大小;(II )如图②,连接BD ,AC ,若∠F=36°,AC ∥BF ,求∠BDG 的大小.27.(12分)如图,已知二次函数24y x 49=-的图象与x 轴交于A ,B 两点,与y 轴交于点C ,C e 的半径为5,P 为C e 上一动点.()1点B ,C 的坐标分别为B(______),C(______);()2是否存在点P ,使得PBC V 为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由; ()3连接PB ,若E 为PB 的中点,连接OE ,则OE 的最大值=______.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案. 【详解】解:A 、(ab 2)2=a 2b 4,故此选项正确; B 、a 2+a 2=2a 2,故此选项错误; C 、a 2•a 3=a 5,故此选项错误; D 、a 6÷a 3=a 3,故此选项错误; 故选:A. 【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键. 2.B【解析】 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】 ∵a <0,∴抛物线的开口方向向下, 故第三个选项错误; ∵c <0,∴抛物线与y 轴的交点为在y 轴的负半轴上, 故第一个选项错误; ∵a <0、b >0,对称轴为x=2ba>0, ∴对称轴在y 轴右侧, 故第四个选项错误. 故选B . 3.D 【解析】 【分析】根据三角形的中位线定理即可得到结果. 【详解】解:由题意得AB=2DE=20cm , 故选D. 【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 4.C 【解析】 【分析】根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解. 【详解】 解:∵DE ∥BC , ∴DE BC =ADAB,BD≠BC ,∴ADBD≠DEBC,选项A不正确;∵DE∥BC,EF∥AB,∴BFBC=AEAC,EF=BD,EFAD=BDAD,∵AEAC≠BDAD,∴BFBC≠EFAD,选项B不正确;∵EF∥AB,∴AEEC=BFCF,选项C正确;∵DE∥BC,EF∥AB,∴EFAB=CEAC,DEBC=AEAC,CE≠AE,∴EFAB≠DEBC,选项D不正确;故选C.【点睛】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健.5.C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.6.B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B.7.B【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选:C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.8.C【解析】【分析】根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,但不是中心对称图形.故此选项错误.故选C.【点睛】考点:1、中心对称图形;2、轴对称图形9.C【解析】【分析】根据三角形高线的定义即可解题.【详解】解:当AB为△ABC的底时,过点C向AB所在直线作垂线段即为高,故CQ是△ABC的高,故选C.【点睛】本题考查了三角形高线的定义,属于简单题,熟悉高线的作法是解题关键.10.A【解析】【分析】根据有理数的除法法则计算可得.【详解】解:15÷(-3)=-(15÷3)=-5,故选:A.【点睛】本题主要考查有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.11.D【解析】试题分析:观察函数图象得到当﹣2<x <0或x >2时,正比例函数图象都在反比例函数图象上方,即有y=x 的函数值大于的函数值.故选D .考点:1.反比例函数与一次函数的交点问题;2. 数形结合思想的应用. 12.C 【解析】 【分析】由∠A 是公共角,利用有两角对应相等的三角形相似,即可得A 与B 正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D 正确,继而求得答案,注意排除法在解选择题中的应用. 【详解】 ∵∠A 是公共角,∴当∠ABD=∠C 或∠ADB=∠ABC 时,△ADB ∽△ABC (有两角对应相等的三角形相似),故A 与B 正确,不符合题意要求;当AB :AD=AC :AB 时,△ADB ∽△ABC (两组对应边的比相等且夹角对应相等的两个三角形相似),故D 正确,不符合题意要求;AB :BD=CB :AC 时,∠A 不是夹角,故不能判定△ADB 与△ABC 相似,故C 错误,符合题意要求, 故选C .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1 【解析】试题分析:由m 与n 为已知方程的解,利用根与系数的关系求出m+n=4,mn=﹣3,将所求式子利用完全平方公式变形后,即2m ﹣mn+2n =()2m n +﹣3mn=16+9=1. 故答案为1.考点:根与系数的关系. 14.S=1n-1 【解析】观察可得,n=2时,S=1; n=3时,S=1+(3-2)×1=12; n=4时,S=1+(4-2)×1=18; …;所以,S 与n 的关系是:S=1+(n-2)×1=1n-1. 故答案为S=1n-1.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.15.②③④【解析】试题解析:根据已知条件不能推出OA=OD ,∴①错误;∵AD 是△ABC 的角平分线,DE ,DF 分别是△ABD 和△ACD 的高,∴DE=DF ,∠AED=∠AFD=90°,在Rt △AED 和Rt △AFD 中,AD AD DE DF==⎧⎨⎩, ∴Rt △AED ≌Rt △AFD (HL ),∴AE=AF ,∵AD 平分∠BAC ,∴AD ⊥EF ,∴②正确;∵∠BAC=90°,∠AED=∠AFD=90°,∴四边形AEDF 是矩形,∵AE=AF ,∴四边形AEDF 是正方形,∴③正确;∵AE=AF ,DE=DF ,∴AE 2+DF 2=AF 2+DE 2,∴④正确;∴②③④正确,16.x 3≥.【解析】 根据二次根式被开方数必须是非负数的条件,要使x 3-在实数范围内有意义,必须x 30x 3-≥⇒≥.17.2【解析】试题分析:由题意得,;C 为AB 上一个动点,分别以AC 、BC 为斜边在AB 的同侧作两个等腰直角三角形△ACD 和△BCE ,AD=CD ;CE=BE ;由勾股定理得,解得;而AC+BC=AB=4,,∵=16;,∴,,得出考点:不等式的性质点评:本题考查不等式的性质,会用勾股定理,完全平方公式,不等关系等知识,它们是解决本题的关键18.0.8 0【解析】【分析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】平均数=(−2+0−1+2+5)÷5=0.8;把这组数据按从大到小的顺序排列是:5,2,0,-1,-2,故这组数据的中位数是:0.故答案为0.8;0.【点睛】本题考查了平均数与中位数的定义,解题的关键是熟练的掌握平均数与中位数的定义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证.(2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可.【详解】证明:(1)∵在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD.∵AE=AB,∴∠ABE=∠AEB.∴∠ABE=∠EAD.(2)∵AD∥BC,∴∠ADB=∠DBE.∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB.∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.∴AB=AD.又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.20.见解析【解析】分析:由等边三角形的性质即可得出∠ABE=∠ACF,由全等三角形的性质即可得出结论.详解:证明:∵△ABC和△ACD均为等边三角形∴AB=AC,∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°,∵BE=CF,∴△ABE≌△ACF,∴AE=AF,∴∠EAB=∠FAC,∴∠EAF=∠BAC=60°,∴△AEF是等边三角形.点睛:此题是四边形综合题,主要考查了等边三角形的性质和全等三角形的判定和性质,直角三角形的性质,相似三角形的判定和性质,解题关键是判断出△ABE≌△ACF.21.(1)有3种购买方案①购乙6台,②购甲1台,购乙5台,③购甲2台,购乙4台(2)购买甲种机器1台,购买乙种机器5台,【解析】【分析】(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.【详解】解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台依题意,得7x+5(6-x)≤34解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器l1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台(2)根据题意,100x+60(6-x)≥380解之得x>12 由(1)得x≤2,即12≤x≤2. ∴x 可取1,2俩值. 即有以下两种购买方案: 购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元; 购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元. ∴为了节约资金应选择购买甲种机器1台,购买乙种机器5台,.【点睛】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案. 22.(1)sinB =21313;(2)DE =1. 【解析】【分析】(1)在Rt △ABD 中,利用勾股定理求出AB ,再根据sinB=AD AB 计算即可; (2)由EF ∥AD ,BE=2AE ,可得23EF BF BE AD BD BA ===,求出EF 、DF 即可利用勾股定理解决问题; 【详解】(1)在Rt △ABD 中,∵BD=DC=9,AD=6,∴AB=222296BD AD ++=313,∴sinB==313AD AB =21313. (2)∵EF ∥AD ,BE=2AE ,∴23EF BF BE AD BD BA ===,∴2693EF BF ==,∴EF=4,BF=6, ∴DF=3,在Rt △DEF 中,DE=2222=43EF DF ++=1.考点:1.解直角三角形的应用;2.平行线分线段成比例定理.23.见解析【解析】【分析】(1)可以把要证明相等的线段AE ,CF 放到△AEO ,△BFO 中考虑全等的条件,由两个等腰直角三角形得AO=BO ,OE=OF ,再找夹角相等,这两个夹角都是直角减去∠BOE 的结果,所以相等,由此可以证明△AEO ≌△BFO ;(2)由(1)知:∠OAC=∠OBF ,∴∠BDA=∠AOB=90°,由此可以证明AE ⊥BF【详解】解:(1)证明:在△AEO 与△BFO 中,∵Rt △OAB 与Rt △EOF 等腰直角三角形,∴AO=OB ,OE=OF ,∠AOE=90°-∠BOE=∠BOF ,∴△AEO ≌△BFO ,∴AE=BF ;( 2)延长AE 交BF 于D ,交OB 于C ,则∠BCD=∠ACO由(1)知:∠OAC=∠OBF ,∴∠BDA=∠AOB=90°,∴AE ⊥BF .24.(1)详见解析;(2)详见解析;(3)3BC AB【解析】【分析】(1)利用等腰三角形的性质和三角形内角和即可得出结论;(2)先判断出OE=12AC ,即可得出OE=12BD ,即可得出结论; (3)先判断出△ABE 是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.【详解】(1)∵AD=BD ,∴∠B=∠BAD ,∵AD=CD ,∴∠C=∠CAD ,在△ABC 中,∠B+∠C+∠BAC=180°,∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°∴∠B+∠C=90°,∴∠BAC=90°,(2)如图②,连接AC 与BD ,交点为O ,连接OEQ 四边形ABCD 是矩形 1122OA OB OC OD AC BD ∴===== AE CE ⊥Q90AEC ∴∠=︒12OE AC ∴=12OE BD ∴= 90BED ∴∠=︒BE DE ∴⊥(3)如图3,过点B 做BF AE ⊥于点FQ 四边形ABCD 是矩形AD BC ∴=,90BAD ∠=︒ADE ∆Q 是等边三角形AE AD BC ∴==,60DAE AED ∠=∠=︒由(2)知,90BED ∠=︒30BAE BEA ∴∠=∠=︒2AE AF ∴=Q 在Rt ABF ∆中,30BAE ∠=︒2AB AF ∴=,3AF BF =3AE ∴=AE BC=QBC∴=【点睛】此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD,解(2)的关键是判断出OE=12AC,解(3)的关键是判断出△ABE是底角为30°的等腰三角形,进而构造直角三角形.25.(1)68 ;(2)4倍;(3)4x,猜想正确,见解析;(4)M的值不能等于1,见解析.【解析】【分析】(1)直接相加即得到答案;(2)根据(1)猜想a+b+c+d=4x;(3)用x表示a、b、c、d,相加后即等于4x;(4)得到方程5x=1,求出的x不符合数表里数的特征,故不能等于1.【详解】(1)5+15+19+29=68,故答案为68;(2)根据(1)猜想a+b+c+d=4x,答案为:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,∴a+b+c+d=x-12+x-2+x+2+x+12=4x,∴猜想正确;(4)M=a+b+c+d+x=4x+x=5x,若M=5x=1,解得:x=404,但整个数表所有的数都为奇数,故不成立,∴M的值不能等于1.【点睛】本题考查了一元一次方程的应用.当解得方程的解后,要观察是否满足题目和实际要求再进行取舍.26.(I)65°;(II)72°【解析】【分析】(I)如图①,连接OB,先利用切线的性质得∠OBF=90°,而OA⊥CD,所以∠OED=90°,利用四边形内角和可计算出∠AOB=130°,然后根据等腰三角形性质和三角形内角和计算出∠1=∠A=25°,从而得到∠2=65°,最后利用三角形内角和定理计算∠BGF的度数;(II)如图②,连接OB,BO的延长线交AC于H,利用切线的性质得OB⊥BF,再利用AC∥BF得到BH⊥AC,与(Ⅰ)方法可得到∠AOB=144°,从而得到∠OBA=∠OAB=18°,接着计算出∠OAH=54°,然后根据圆周角定理得到∠BDG的度数.【详解】解:(I)如图①,连接OB,∵BF为⊙O的切线,∴OB⊥BF,∴∠OBF=90°,∵OA⊥CD,∴∠OED=90°,∴∠AOB=180°﹣∠F=180°﹣50°=130°,∵OA=OB,∴∠1=∠A=12(180°﹣130°)=25°,∴∠2=90°﹣∠1=65°,∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;(II)如图②,连接OB,BO的延长线交AC于H,∵BF为⊙O的切线,∴OB⊥BF,∵AC∥BF,∴BH⊥AC,与(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,∵OA=OB,∴∠OBA=∠OAB=12(180°﹣144°)=18°,∵∠AOB=∠OHA+∠OAH,∴∠OAH=144°﹣90°=54°,∴∠BAC=∠OAH+∠OAB=54°+18°=72°,∴∠BDG=∠BAC=72°.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.27.(1)B (1,0),C (0,﹣4);(2)点P 的坐标为:(﹣1,﹣2)或(115,225-﹣4﹣4);(1【解析】 试题分析:(1)在抛物线解析式中令y=0可求得B 点坐标,令x=0可求得C 点坐标;(2)①当PB 与⊙相切时,△PBC 为直角三角形,如图1,连接BC ,根据勾股定理得到BC=5,BP 2的值,过P 2作P 2E ⊥x 轴于E ,P 2F ⊥y 轴于F ,根据相似三角形的性质得到2222P F CP P E BP = =2,设OC=P 2E=2x ,CP 2=OE=x ,得到BE=1﹣x ,CF=2x ﹣4,于是得到FP 2,EP 2的值,求得P 2的坐标,过P 1作P 1G ⊥x 轴于G ,P 1H ⊥y 轴于H ,同理求得P 1(﹣1,﹣2),②当BC ⊥PC 时,△PBC 为直角三角形,根据相似三角形的判定和性质即可得到结论;(1)如图1中,连接AP ,由OB=OA ,BE=EP ,推出OE=12AP ,可知当AP 最大时,OE 的值最大. 试题解析:(1)在2449y x =-中,令y=0,则x=±1,令x=0,则y=﹣4,∴B (1,0),C (0,﹣4); 故答案为1,0;0,﹣4;(2)存在点P ,使得△PBC 为直角三角形,分两种情况:①当PB 与⊙相切时,△PBC 为直角三角形,如图(2)a ,连接BC ,∵OB=1.OC=4,∴BC=5,∵CP 2⊥BP 2,CP 2BP 2=P 2作P 2E ⊥x 轴于E ,P 2F ⊥y 轴于F ,则△CP 2F ∽△BP 2E ,四边形OCP 2B 是矩形,∴2222P F CP P E BP ==2,设OC=P 2E=2x ,CP 2=OE=x ,∴BE=1﹣x ,CF=2x ﹣4,∴324BE x CF x -=- =2,∴x=115,2x=225,∴FP 2=115,EP 2=225,∴P 2(115,﹣225),过P 1作P 1G ⊥x 轴于G ,P 1H ⊥y 轴于H ,同理求得P 1(﹣1,﹣2);②当BC ⊥PC 时,△PBC 为直角三角形,过P 4作P 4H ⊥y 轴于H ,则△BOC ∽△CHP 4,∴44P H P C CH OB OC BC ==,∴CH=5,P 4H=5,∴P 4(5,﹣5﹣4); 同理P 1(﹣5﹣4);综上所述:点P 的坐标为:(﹣1,﹣2)或(115,225-)或(455,﹣35﹣4)或(﹣455,35﹣4); (1)如图(1),连接AP ,∵OB=OA ,BE=EP ,∴OE=12AP ,∴当AP 最大时,OE 的值最大,∵当P 在AC 的延长线上时,AP 的值最大,最大值=55+,∴OE 的最大值为55+.故答案为55+.。
福建省漳州市2019-2020学年中考数学第一次押题试卷含解析
福建省漳州市2019-2020学年中考数学第一次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在ABC ∆中,10 , 8 , 6AB AC BC === ,以边AB 的中点O 为圆心,作半圆与AC 相切,点, P Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A .6B .2131+C .9D .3232.如图,在已知的△ ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 、N ;②作直线MN 交AB 于点D ,连接CD ,则下列结论正确的是( )A .CD+DB=AB B .CD+AD=ABC .CD+AC=ABD .AD+AC=AB3.若抛物线y =x 2-(m -3)x -m 能与x 轴交,则两交点间的距离最值是( )A .最大值2,B .最小值2C .最大值22D .最小值224.某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为( )A .0.286×105B .2.86×105C .28.6×103D .2.86×1045.如图,在平面直角坐标系中,矩形ABOC 的两边在坐标轴上,OB =1,点A 在函数y =﹣2x (x <0)的图象上,将此矩形向右平移3个单位长度到A 1B 1O 1C 1的位置,此时点A 1在函数y =k x(x >0)的图象上,C 1O 1与此图象交于点P ,则点P 的纵坐标是( )A .53B .34C .43D .236.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6πB .3πC .2π-12D .127.已知点M 、N 在以AB 为直径的圆O 上,∠MON=x°,∠MAN= y°, 则点(x ,y)一定在( ) A .抛物线上B .过原点的直线上C .双曲线上D .以上说法都不对 8.已知二次函数(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程2x 3x m 0-+=的两实数根是A .x 1=1,x 2=-1B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=39.按如图所示的方法折纸,下面结论正确的个数( )①∠2=90°;②∠1=∠AEC ;③△ABE ∽△ECF ;④∠BAE =∠1.A .1 个B .2 个C .1 个D .4 个10.如果m 的倒数是﹣1,那么m 2018等于( )A .1B .﹣1C .2018D .﹣201811.正方形ABCD 和正方形BPQR 的面积分别为16、25,它们重叠的情形如图所示,其中R 点在AD 上,CD 与QR 相交于S 点,则四边形RBCS 的面积为( )A .8B .172C .283D .77812.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是( )A.13;13 B.14;10 C.14;13 D.13;14二、填空题:(本大题共6个小题,每小题4分,共24分.)13.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是________小时.14.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(12,﹣2);⑤当x<12时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)15.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,AC的长=_____;BD+12DC的最小值是_____.16.如图,这是一幅长为3m,宽为1m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m1.17.若﹣4x a y+x2y b=﹣3x2y,则a+b=_____.18.如图,矩形ABCD中,BC=6,CD=3,以AD为直径的半圆O与BC相切于点E,连接BD则阴影部分的面积为____(结果保留π)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的45,问甲、乙两公司人均捐款各多少元?20.(6分)如图所示,直线y=12x+2与双曲线y=kx相交于点A(2,n),与x轴交于点C.求双曲线解析式;点P在x轴上,如果△ACP的面积为5,求点P的坐标.21.(6分)如图①是一副创意卡通圆规,图②是其平面示意图,OA是支撑臂,OB是旋转臂.使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径(结果精确到0.01cm);(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器).22.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?23.(8分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为W 元.(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?24.(10分)如图,在平面直角坐标系中,抛物线y=﹣x 2﹣2ax 与x 轴相交于O 、A 两点,OA=4,点D 为抛物线的顶点,并且直线y=kx+b 与该抛物线相交于A 、B 两点,与y 轴相交于点C ,B 点的横坐标是﹣1.(1)求k ,a ,b 的值;(2)若P 是直线AB 上方抛物线上的一点,设P 点的横坐标是t ,△PAB 的面积是S ,求S 关于t 的函数关系式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,当PB ∥CD 时,点Q 是直线AB 上一点,若∠BPQ+∠CBO=180°,求Q 点坐标.25.(10分)如图1,在圆O 中,OC 垂直于AB 弦,C 为垂足,作BAD BOC ∠=∠,AD 与OB 的延长线交于D .(1)求证:AD 是圆O 的切线;(2)如图2,延长BO ,交圆O 于点E ,点P 是劣弧AE 的中点,5AB =,132OB =,求PB 的长 .26.(12分)甲、乙两人分别站在相距6米的A 、B 两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C 处发出一球,乙在离地面1.5米的D 处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.27.(12分)如图,以△ABC的边AB为直径的⊙O分别交BC、AC于F、G,且G是»AF的中点,过点G作DE⊥BC,垂足为E,交BA的延长线于点D(1)求证:DE是的⊙O切线;(2)若AB=6,BG=4,求BE的长;(3)若AB=6,CE=1.2,请直接写出AD的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.【详解】解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=12AC=4,∴P1Q1最小值为OP1-OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是1.故选:C.【点睛】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.2.B【解析】【分析】作弧后可知MN⊥CB,且CD=DB.【详解】由题意性质可知MN是BC的垂直平分线,则MN⊥CB,且CD=DB,则CD+AD=AB.【点睛】了解中垂线的作图规则是解题的关键.3.D【解析】设抛物线与x轴的两交点间的横坐标分别为:x1,x2,由韦达定理得:x1+x2=m-3,x1•x2=-m,则两交点间的距离d=|x1-x2==,∴m=1时,d min.故选D.4.D【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可【详解】28600=2.86×1.故选D.【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键5.C【解析】分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.详解:∵OB=1,AB⊥OB,点A在函数2yx=-(x<0)的图象上,∴当x=−1时,y=2,∴A(−1,2).∵此矩形向右平移3个单位长度到1111A B O C的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数kyx=(x>0)的图象上,∴k=4,∴反比例函数的解析式为4yx=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,43y =, ∴P 4(3,).3故选C. 点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A 的坐标,利用平移的性质求出点A 1的坐标.6.A【解析】【分析】先根据勾股定理得到,再根据扇形的面积公式计算出S 扇形ABD ,由旋转的性质得到Rt △ADE ≌Rt △ACB ,于是S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD .【详解】∵∠ACB=90°,AC=BC=1,∴,∴S 扇形ABD =230=3606ππ⨯,又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD −S △ABC =S 扇形ABD =6π, 故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.7.B【解析】【分析】由圆周角定理得出∠MON 与∠MAN 的关系,从而得出x 与y 的关系式,进而可得出答案.【详解】∵∠MON 与∠MAN 分别是弧MN 所对的圆心角与圆周角,∴∠MAN=12∠MON , ∴12y x = , ∴点(x ,y)一定在过原点的直线上.故选B.【点睛】本题考查了圆周角定理及正比例函数图像的性质,熟练掌握圆周角定理是解答本题的关键.8.B【解析】试题分析:∵二次函数2y x 3x m -+=(m 为常数)的图象与x 轴的一个交点为(1,0),∴213m 0m 2-+=⇒=.∴2212x 3x m 0x 3x 20x 1x 2-+=⇒-+=⇒==,.故选B .9.C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正确;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;∵∠1+∠1=90°,∠1+∠BAE=90°, ∴∠1=∠BAE,又∵∠B =∠C,∴△ABE ∽△ECF.故③,④正确;故选C.10.A【解析】【分析】因为两个数相乘之积为1,则这两个数互为倒数, 如果m 的倒数是﹣1,则m=-1,然后再代入m 2018计算即可.【详解】因为m 的倒数是﹣1,所以m=-1,所以m 2018=(-1)2018=1,故选A.【点睛】本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则. 11.D【解析】【分析】根据正方形的边长,根据勾股定理求出AR ,求出△ABR ∽△DRS ,求出DS ,根据面积公式求出即可.【详解】∵正方形ABCD 的面积为16,正方形BPQR 面积为25,∴正方形ABCD的边长为4,正方形BPQR的边长为5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四边形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴AB AR DR DS=,∴431DS =,∴DS=34,∴∴阴影部分的面积S=S正方形ABCD-S△ABR-S△RDS=4×4-12×4×3-12×34×1=778,故选:D.【点睛】本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR和△RDS的面积是解此题的关键.12.C【解析】【分析】根据统计图,利用众数与中位数的概念即可得出答案.【详解】从统计图中可以得出这一周的气温分别是:12,15,14,10,13,14,11所以众数为14;将气温按从低到高的顺序排列为:10,11,12,13,14,14,15所以中位数为13故选:C.【点睛】本题主要考查中位数和众数,掌握中位数和众数的求法是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】由统计图可知共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),则中位数是1小时.故答案为1.14.①②③⑤【解析】【分析】根据图象可判断①②③④⑤,由x=1时,y<0,可判断⑥【详解】由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=1 , 2∴abc>0,4ac<b2,当12x<时,y随x的增大而减小.故①②⑤正确,∵11,22bxa=-=<∴2a+b>0,故③正确,由图象可得顶点纵坐标小于﹣2,则④错误,当x=1时,y=a+b+c<0,故⑥错误故答案为:①②③⑤【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.15.(Ⅰ)AC=(Ⅱ).【解析】【分析】(Ⅰ)如图,过B作BE⊥AC于E,根据等腰三角形的性质和解直角三角形即可得到结论;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+12DC的值最小,解直角三角形即可得到结论.【详解】解:(Ⅰ)如图,过B作BE⊥AC于E,∵BA=BC=4,∴AE=CE,∵∠A=30°,∴AE=,∴AC=2AE=43;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+12DC的值最小,∵BF=CF=2,∴BD=CD=230COS=433,∴BD+12DC的最小值=23,故答案为:43,23.【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.16.1.4【解析】【分析】由概率估计图案在整副画中所占比例,再求出图案的面积.【详解】估计宣传画上世界杯图案的面积约为3×1×0.4=1.4m1.故答案为1.4【点睛】本题考核知识点:几何概率. 解题关键点:由几何概率估计图案在整副画中所占比例.17.1【解析】【分析】两个单项式合并成一个单项式,说明这两个单项式为同类项.【详解】解:由同类项的定义可知,a=2,b=1,∴a+b=1.故答案为:1.【点睛】本题考查的知识点为:同类项中相同字母的指数是相同的.18.94π. 【解析】【分析】如图,连接OE ,利用切线的性质得OD=3,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD -S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【详解】连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD =CD =3,OE ⊥BC ,∴四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =32﹣2903360π⋅⋅994π=-, ∴阴影部分的面积199369244ππ⎛⎫=⨯⨯--= ⎪⎝⎭, 故答案为94π. 【点睛】 本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.甲、乙两公司人均捐款分别为80元、100元.【解析】试题分析:本题考察的是分式的应用题,设甲公司人均捐款x 元,根据题意列出方程即可.试题解析:设甲公司人均捐款x 元200042000520x x ⨯=+ 解得:80x =经检验,80x =为原方程的根, 80+20=100答:甲、乙两公司人均各捐款为80元、100元.20.(1)6yx=;(2)(23-,0)或22,03⎛⎫- ⎪⎝⎭【解析】【分析】(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.【详解】解:(1)把A(2,n)代入直线解析式得:n=3,∴A(2,3),把A坐标代入y=kx,得k=6,则双曲线解析式为y=6x.(2)对于直线y=12x+2,令y=0,得到x=-4,即C(-4,0).设P(x,0),可得PC=|x+4|.∵△ACP面积为5,∴12|x+4|•3=5,即|x+4|=2,解得:x=-23或x=-223,则P坐标为23⎛⎫- ⎪⎝⎭,或223⎛⎫-⎪⎝⎭,.21.(1)3.13cm(2)铅笔芯折断部分的长度约是0.98cm【解析】试题分析:(1)根据题意作辅助线OC⊥AB于点C,根据OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.试题解析:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°,∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;(2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.考点:解直角三角形的应用;探究型.22.羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=1.则100﹣4x=20或100﹣4x=2.∵2>21,∴x2=1舍去.即AB=20,BC=20考点:一元二次方程的应用.23.(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元. 【解析】【分析】(1)直接利用每件利润×销量=总利润进而得出等式求出答案;(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.【详解】(1)根据题意得:(x﹣20)(﹣2x+1)=150,解得:x1=25,x2=35,答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)由题意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,∵a=﹣2,∴抛物线开口向下,当x<30时,y随x的增大而增大,又由于这种农产品的销售价不高于每千克28元∴当x=28时,W最大=﹣2×(28﹣30)2+200=192(元).∴销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.【点睛】此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键.24.(1)k=1、a=2、b=4;(2)s=﹣32t2﹣152t﹣6,自变量t的取值范围是﹣4<t<﹣1;(3)Q(﹣73,53)【解析】【分析】(1)根据题意可得A(-4,0)代入抛物线解析式可得a,求出抛物线解析式,根据B的横坐标可求B点坐标,把A,B坐标代入直线解析式,可求k,b(2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,设出P点坐标,可求出N点坐标,即可以用t表示S.(3)由PB∥CD,可求P点坐标,连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,根据P的坐标,可得∠POA=45°,由OA=OC可得∠CAO=45°则PO⊥AB,根据抛物线的对称性可知R在对称轴上.设Q点坐标,根据△BOR∽△PQS,可求Q点坐标.【详解】(1)∵OA=4∴A(﹣4,0)∴﹣16+8a=0∴a=2,∴y=﹣x2﹣4x,当x=﹣1时,y=﹣1+4=3,∴B(﹣1,3),将A(﹣4,0)B(﹣1,3)代入函数解析式,得340k bk b-+⎧⎨-+⎩==,解得14 kb=⎧⎨=⎩,直线AB的解析式为y=x+4,∴k=1、a=2、b=4;(2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,如图1,由(1)知直线AB是y=x+4,抛物线是y=﹣x2﹣4x,∴当x=t时,y P=﹣t2﹣4t,y N=t+4PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,S△PAB=12PN(AM+BH)=12(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=12(﹣t2﹣5t﹣4)×3,化简,得s=﹣32t 2﹣152t ﹣6,自变量t 的取值范围是﹣4<t <﹣1; ∴﹣4<t <﹣1(3)y=﹣x 2﹣4x ,当x=﹣2时,y=4即D (﹣2,4),当x=0时,y=x+4=4,即C (0,4),∴CD ∥OA∵B (﹣1,3).当y=3时,x=﹣3,∴P (﹣3,3),连接OP ,交AC 于点R ,过P 点作PN ⊥OA 于M ,交AB 于N ,过D 点作DT ⊥OA 于T ,如图2,可证R 在DT 上∴PN=ON=3∴∠PON=∠OPN=45°∴∠BPR=∠PON=45°,∵OA=OC ,∠AOC=90°∴∠PBR=∠BAO=45°,∴PO ⊥AC∵∠BPQ+∠CBO=180,∴∠BPQ=∠BCO+∠BOC过点Q 作QS ⊥PN ,垂足是S ,∴∠SPQ=∠BOR ∴tan ∠SPQ=tan ∠BOR ,可求2,2,设Q 点的横坐标是m ,当x=m 时y=m+4,∴SQ=m+3,PS=﹣m ﹣123122m m +=--,解得m=﹣73. 当x=﹣73时,y=53,Q(﹣73,53).【点睛】本题考查二次函数综合题、一次函数的应用、相似三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线,构造特殊四边形解决问题.25.(1)详见解析;(2)313PB【解析】【分析】(1)连接OA,利用切线的判定证明即可;(2)分别连结OP、PE、AE,OP交AE于F点,根据勾股定理解答即可.【详解】解:(1)如图,连结OA,∵OA=OB,OC⊥AB,∴∠AOC=∠BOC,又∠BAD=∠BOC,∴∠BAD=∠AOC∵∠AOC+∠OAC=90°,∴∠BAD+∠OAC=90°,∴OA⊥AD,即:直线AD是⊙O的切线;(2)分别连结OP、PE、AE,OP交AE于F点,∵BE是直径,∴∠EAB=90°,∴OC∥AE,∵OB=132,∴BE=13∵AB=5,在直角△ABE中,AE=12,EF=6,FP=OP-OF=132-52=4在直角△PEF中,FP=4,EF=6,PE2=16+36=52,在直角△PEB中,BE=13,PB2=BE2-PE2,【点睛】本题考查了切线的判定,勾股定理,正确的作出辅助线是解题的关键.26.53米.【解析】【分析】先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值. 【详解】由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a≠0),则据题意得:421.53661baa b⎧-=⎪⎨⎪=++⎩,解得:12413ab⎧=-⎪⎪⎨⎪=⎪⎩,∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣124x2+13x+1,∵y=﹣124(x﹣4)2+53,∴飞行的最高高度为:53米.【点睛】本题考核知识点:二次函数的应用. 解题关键点:熟记二次函数的基本性质.27.(1)证明见解析;(1)83;(3)1.【解析】【分析】(1)要证明DE是的⊙O切线,证明OG⊥DE即可;(1)先证明△GBA∽△EBG,即可得出ABBG=BGBE,根据已知条件即可求出BE;(3)先证明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根据OG∥BE得出OGBE=DODB,即可计算出AD.【详解】证明:(1)如图,连接OG,GB,∵G是弧AF的中点,∴∠GBF=∠GBA,∵OB=OG,∴∠OBG=∠OGB,∴∠GBF=∠OGB,∴OG∥BC,∴∠OGD=∠GEB,∵DE⊥CB,∴∠GEB=90°,∴∠OGD=90°,即OG⊥DE且G为半径外端,∴DE为⊙O切线;(1)∵AB为⊙O直径,∴∠AGB=90°,∴∠AGB=∠GEB,且∠GBA=∠GBE,∴△GBA∽△EBG,∴AB BG BG BE=,∴224863BGBEAB===;(3)AD=1,根据SAS可知△AGB≌△CGB,则BC=AB=6,∴BE=4.8,∵OG∥BE,∴OG DOBE DB=,即334.86DADA+=+,解得:AD=1.【点睛】本题考查了相似三角形与全等三角形的判定与性质与切线的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质与切线的性质.。
〖汇总3套试卷〗漳州市2019年中考数学第一次阶段模拟试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是:A .B .C .D .【答案】B【解析】由方程2210x x kb ++=-有两个不相等的实数根,可得()4410kb =-+>,解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B.2.已知关于x 的一元二次方程3x 2+4x ﹣5=0,下列说法正确的是( )A .方程有两个相等的实数根B .方程有两个不相等的实数根C .没有实数根D .无法确定【答案】B【解析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.3.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是( )A .①②③④B .②①③④C .③②①④D .④②①③【答案】B【解析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.4.如图,点D 、E 分别为△ABC 的边AB 、AC 上的中点,则△ADE 的面积与四边形BCED 的面积的比为( )A .1:2B .1:3C .1:4D .1:1【答案】B 【解析】根据中位线定理得到DE ∥BC ,DE=12BC ,从而判定△ADE ∽△ABC ,然后利用相似三角形的性质求解. 【详解】解:∵D 、E 分别为△ABC 的边AB 、AC 上的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∴△ADE 的面积:△ABC 的面积=21()2=1:4,∴△ADE 的面积:四边形BCED 的面积=1:3;故选B .【点睛】本题考查三角形中位线定理及相似三角形的判定与性质.5.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A .1,2B .1,3C .4,2D .4,3【答案】A 【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.6.关于x 的一元一次不等式≤﹣2的解集为x≥4,则m 的值为( ) A .14B .7C .﹣2D .2 【答案】D【解析】解不等式得到x≥12m+3,再列出关于m 的不等式求解. 【详解】23m x -≤﹣1, m ﹣1x≤﹣6,﹣1x≤﹣m ﹣6,x≥12m+3, ∵关于x 的一元一次不等式23m x -≤﹣1的解集为x≥4, ∴12m+3=4,解得m=1. 故选D .考点:不等式的解集7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°【答案】B 【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,8.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根【答案】C【解析】解:由题意可知4的算术平方根是2,4的立方根是3434<2, 8的算术平方根是22,2<22<3,8的立方根是2,故根据数轴可知,故选C9.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是()A.26°.B.44°.C.46°.D.72°【答案】A【解析】先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.【详解】解:∵图中是正五边形.∴∠EAB=108°.∵太阳光线互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故选A.【点睛】此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.10.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.13D.13【答案】A【解析】根据负数的绝对值是其相反数解答即可.【详解】|-3|=3,故选A.【点睛】此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.二、填空题(本题包括8个小题)11.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.【答案】240.【解析】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.12.若关于x的一元二次方程x2﹣2x+m=0有实数根,则m的取值范围是.【答案】m≤1.【解析】试题分析:由题意知,△=4﹣4m≥0,∴m≤1.故答案为m≤1.考点:根的判别式.13.圆锥的底面半径为6㎝,母线长为10㎝,则圆锥的侧面积为______cm2【答案】60π【解析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.解:圆锥的侧面积=π×6×10=60πcm1.14.-3的倒数是___________【答案】1 3 -【解析】乘积为1的两数互为相反数,即a的倒数即为1a,符号一致【详解】∵-3的倒数是1 3 -∴答案是13-15.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是.【答案】y3>y1>y2.【解析】试题分析:将A,B,C三点坐标分别代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.考点:二次函数的函数值比较大小.16.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.【答案】9.6×1.【解析】将9600000用科学记数法表示为9.6×1.故答案为9.6×1.17.如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.【答案】15π.【解析】试题分析:∵OB=12BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:12×6π×5=15π.故答案为15π.考点:圆锥的计算.18.在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD相交于M,则AM:BM=__.【答案】5:1【解析】根据题意作出合适的辅助线,然后根据三角形相似即可解答本题.【详解】解:作AE∥BC交DC于点E,交DF于点F,设每个小正方形的边长为a,则△DEF∽△DCN,∴EFCN=DFDN=13,∴EF=13a,∵AF=2a,∴AE=53a,∵△AME∽△BMC,∴AMBM=AEBC=534aa=512,故答案为:5:1.【点睛】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(本题包括8个小题)19.现有一次函数y =mx+n 和二次函数y =mx 2+nx+1,其中m≠0,若二次函数y =mx 2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y =mx+n 经过点(2,0),且图象经过第一、三象限.二次函数y =mx 2+nx+1经过点(a ,y 1)和(a+1,y 2),且y 1>y 2,请求出a 的取值范围.若二次函数y =mx 2+nx+1的顶点坐标为A (h ,k )(h≠0),同时二次函数y =x 2+x+1也经过A 点,已知﹣1<h <1,请求出m 的取值范围.【答案】(1)y =x ﹣2,y=12-x 2+32+1;(2)a <12;(3)m <﹣2或m >1. 【解析】(1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;(2)点(2,1)代入一次函数解析式,得到n =−2m ,利用m 与n 的关系能求出二次函数对称轴x =1,由一次函数经过一、三象限可得m >1,确定二次函数开口向上,此时当 y 1>y 2,只需让a 到对称轴的距离比a +1到对称轴的距离大即可求a 的范围.(3)将A (h ,k )分别代入两个二次函数解析式,再结合对称抽得h =n 2m-,将得到的三个关系联立即可得到11h m =-+,再由题中已知−1<h <1,利用h 的范围求出m 的范围. 【详解】(1)将点(2,1),(3,1),代入一次函数y =mx+n 中,0213m n m n =+⎧⎨=+⎩, 解得12m n =⎧⎨=-⎩, ∴一次函数的解析式是y =x ﹣2,再将点(2,1),(3,1),代入二次函数y =mx 2+nx+1,04211931m n m n =++⎧⎨=++⎩, 解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩, ∴二次函数的解析式是213122y x =-++.(2)∵一次函数y=mx+n经过点(2,1),∴n=﹣2m,∵二次函数y=mx2+nx+1的对称轴是x=n2m -,∴对称轴为x=1,又∵一次函数y=mx+n图象经过第一、三象限,∴m>1,∵y1>y2,∴1﹣a>1+a﹣1,∴a<12.(3)∵y=mx2+nx+1的顶点坐标为A(h,k),∴k=mh2+nh+1,且h=n2m -,又∵二次函数y=x2+x+1也经过A点,∴k=h2+h+1,∴mh2+nh+1=h2+h+1,∴11 hm=-+,又∵﹣1<h<1,∴m<﹣2或m>1.【点睛】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法.20.我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:此次共调查了名学生;扇形统计图中D所在扇形的圆心角为;将上面的条形统计图补充完整;若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.【答案】(1)120;(2)54°;(3)详见解析(4)1.【解析】(1)根据B的人数除以占的百分比即可得到总人数;(2)先根据题意列出算式,再求出即可;(3)先求出对应的人数,再画出即可;(4)先列出算式,再求出即可.【详解】(1)(25+23)÷40%=120(名),即此次共调查了120名学生,故答案为120;(2)360°×10+8120=54°,即扇形统计图中D所在扇形的圆心角为54°,故答案为54°;(3)如图所示:;(4)800×30120=1(人),答:估计对食品安全知识“非常了解”的学生的人数是1人.【点睛】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.21.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.求y与x之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.【答案】(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x <50时,w 随x 的增大而增大,∴x=46时,w 大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x 2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x 1=55,x 2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.22.先化简,再求值:()()()2(2)5x y x y x y x x y ++-+--,其中21x =+,21y =-.【答案】9【解析】根据完全平方公式、平方差公式、单项式乘多项式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】()()()2(2)5x y x y x y x x y ++-+-- 222224455x xy y x y x xy =+++--+9xy =当21x =+,21y =-时, 原式()()92121=+- ()921=⨯-91=⨯9=【点睛】本题考查整式的化简求值,解答本题的关键是明确整式化简求值的方法.23.已知△ABC 在平面直角坐标系中的位置如图所示.分别写出图中点A 和点C 的坐标;画出△ABC 绕点C 按顺时针方向旋转90°后的△A′B′C′;求点A 旋转到点A′所经过的路线长(结果保留π).【答案】(1)()04A ,、()31C ,(2)见解析(3)322【解析】试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A 所经过的路程是以点C 为圆心,AC 长为半径的扇形的弧长.试题解析:(1)A (0,4)C (3,1)(2)如图所示:(3)根据勾股定理可得:AC=32,则903232180n rlπππ⨯===.考点:图形的旋转、扇形的弧长计算公式.24.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.【答案】等腰直角三角形【解析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.【详解】解:∵a2c2-b2c2=a4-b4,∴a4-b4-a2c2+b2c2=0,∴(a4-b4)-(a2c2-b2c2)=0,∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2+b2-c2)(a2-b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC为直角三角形或等腰三角形或等腰直角三角形.考点:勾股定理的逆定理.25.如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求证:四边形ABCD是菱形;过点D 作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.【答案】(1)详见解析;(2)1.【解析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE22BE BD-6,于是得到结论.【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE22BE BD=6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.26.某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.【答案】(1)不可能;(2)1 6 .【解析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21 126.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式mn计算事件A或事件B的概率.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.计算6m 3÷(-3m 2)的结果是( )A .-3mB .-2mC .2mD .3m 【答案】B【解析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.【详解】6m 3÷(﹣3m 2)=[6÷(﹣3)](m 3÷m 2)=﹣2m .故选B.2.在△ABC 中,∠C =90°,sinA =45,则tanB 等于( ) A .43 B .34C .35D .45【答案】B 【解析】法一,依题意△ABC 为直角三角形,∴∠A+∠B=90°,∴cosB=45,∵22cos sin 1B B +=,∴sinB=35,∵tanB=sin cos B B =34故选B 法2,依题意可设a=4,b=3,则c=5,∵tanb=34ba 故选B 3.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,则下列结论: ① abc <0;② 2a +b =0; ③ b 2-4ac <0;④ 9a+3b+c >0; ⑤ c+8a <0.正确的结论有( ).A .1个B .2个C .3个D .4个【答案】C 【解析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2b a=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0.∴abc <0, ①正确;2a+b=0,②正确;由图知:抛物线与x轴有两个不同的交点,则△=b2-4ac>0,故③错误;由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误;观察图象得当x=-2时,y<0,即4a-2b+c<0∵b=-2a,∴4a+4a+c<0即8a+c<0,故⑤正确.正确的结论有①②⑤,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.4.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+【答案】D【解析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.5.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:23B.2:3:4 C.13:2 D.1:2:3【解析】试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:1,所以内切圆半径,外接圆半径和高的比是1:2:1.故选D.考点:正多边形和圆.6.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查【答案】D【解析】A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D.7.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C.D.【答案】A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.8.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定【答案】D【解析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.【点睛】解答此题要明确概率和事件的关系:()P A 0=①,为不可能事件;()P A 1=②为必然事件;()0P A 1③<<为随机事件.9.一、单选题在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的( ) A .平均数B .众数C .中位数D .方差 【答案】C【解析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【详解】由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.故选C .【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 10.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根 【答案】C【解析】解:由题意可知4的算术平方根是2,43434<2, 8的算术平方根是22 2<22,8的立方根是2,故根据数轴可知,故选C二、填空题(本题包括8个小题)11.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线21y x k 2=+与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .【答案】-2<k <12。
漳州市名校联考2020届数学中考模拟试卷
漳州市名校联考2020届数学中考模拟试卷一、选择题1.如图,在四边形ABCD 中,∠B=90°,AC=4,AB∥CD,DH 垂直平分AC,点H 为垂足,设AB=x,AD=y,则y 关于x 的函数关系用图象大致可以表示为 ( )A. B. C. D.2.如图,在平面直角坐标系中,矩形ABCD 的边BC 在x 轴上,点D 的坐标为(﹣2,6),点B 是动点,反比例函数y =kx(x <0)经过点D ,若AC 的延长线交y 轴于点E ,连接BE ,则△BCE 的面积为( )A.3B.5C.6D.73.已知二次函数y =ax 2+bx+c 的图象如图所示,在以下四个结论中,正确的是( )A.abc >0B.4a+2b+c <0C.a ﹣b+c >0D.a+b >04.如图,正的边长为2,过点的直线,且与关于直线对称,为线段上一动点,则的最小值是( )A. B.2C.D.45.下列运算中正确的是( ) A .236x x x ⋅= B .238()x x =C .222()xy x y -=- D .633x x x ÷=6.如图,在△ABC 中,D 、F 分别是AB 、BC 上的点,且DF ∥AC ,若S △BDF :S △DFC =1:4,则S △BDF :S △DCA =( )A .1:16B .1:18C .1:20D .1:247.由个大小相同的正方形搭成的几何体,被小颖拿掉两个后,得到如图 所示的几何体,如图是原几何体的三视图,请你判断小颖拿掉的两个正方体原来放在( )A .4号的左右B .3号的前后C .1号的前后D .2号的前后8.如图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点(13,0)A ,直线12y kx =+与O 交于B 、C 两点,则弦BC 长的最小值( )A .24B .10C .8D .259.如图,在△ABC 中,D ,E 分别在边AC 与AB 上,DE ∥BC ,BD 、CE 相交于点O ,13EO OC =,AE =1,则EB 的长为( )A .1B .2C .3D .410.下列计算正确的是( ) A .3x ﹣x =3B .a 3÷a 4=1aC .(x ﹣1)2=x 2﹣2x-1D .(﹣2a 2)3=﹣6a 6 11.已知a ,b ,c 为三角形的三边,则关于代数式a 2﹣2ab+b 2﹣c 2的值,下列判断正确的是( )A .大于0B .等于0C .小于0D .以上均有可能12.如图,在△ABC 中,AC =BC =25,AB =30,D 是AB 上的一点(不与A 、B 重合),DE ⊥BC ,垂足是点E ,设BD =x ,四边形ACED 的周长为y ,则下列图象能大致反映y 与x 之间的函数关系的是( )A. B.C. D.二、填空题2x x 的结果等于__________.13.计算4314.如图,正方形ABCD E、F分别为边AD、CD上一点,将正方形分别沿BE、BF折叠,点A的对应点M恰好落在BF上,点C的对应点N给好落在BE上,则图中阴影部分的面积为__________;15.如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°,则图中阴影部分的面积是______16.张老师对本校参加体育兴趣小组的情况进行调查,如左图右图分是收集数据后绘制的两幅不完整统计图.已知参加体育兴趣小组的学生共有80名,其中每名学生只参加一个兴趣小组.根据图中提供的信息,可知参加排球兴趣小组的人数占参加体育兴趣小组总人数的百分数是______.17.已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k的值为___.18.两组数据:3,a,8,5与a,6,b的平均数都是6,若将这两组教据合并为一组,用这组新数据的中位为_______.三、解答题19.已知关于x的方程x2﹣2x+m﹣2=0有两个不相等的实数根.(1)求m的取值范围;(2)如果m为正整数,且该方程的根都是整数,求m的值.20.如图窗户边框的上部分是由4个全等扇形组成的半圆,下部分是矩形,现在制作一个窗户边框的材料总长度为6米.(π取3)(1)若设扇形半径为x,请用含x的代数式表示出AB.并求出x的取值范围.(2)当x为何值时,窗户透光面积最大,最大面积为多少?(窗框厚度不予考虑)21.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A处,测得条幅顶端D 的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知测点A.B和C 离地面高度都为1.44米,求条幅顶端D点距离地面的高度(计算结果精确到0.1米,≈1.732)22.(2014湖南怀化)两个城镇A、B与两条公路ME、MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离相等,到两条公路ME、MF的距离也必须相等,且在∠FME的内部.(1)那么点C 应选在何处?请在图中,用尺规作图找出符合条件的点C (不写已知、求作、作法,只保留作图痕迹);(2)设AB 的垂直平分线交ME 于点N ,且1)MN =km ,在M 处测得点C 位于点M 的北偏东60°方向,在N 处测得点C 位于点N 的北偏西45°方向,求点C 到公路ME 的距离.23.我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有 人,补全条形统计图; (2)求扇形统计图中a 的值;(3)估计该校全体学生中喜爱“实验实践”的人数.24.数学实践课小明利用树影测量树高,如图(1),已测出树AB 的影长AC 为18米,并测出此时太阳光线与地面成30°夹角.(结果保留根号) (1)求出树高AB ;(2)因水土流失,此时树AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变(用图(2)解答) ①求树与地面成45°角时的影长; ②求树的最大影长.25.先化简,再求值: 32221644m m m m m-⋅+-,其中m 【参考答案】*** 一、选择题二、填空题13.72x14.615.6π16.25%17.﹣2.18.6三、解答题19.(1)m<3;(2)m=2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m﹣2)>0.∴m<3;(2)∵m<3 且 m为正整数,∴m=1或2.当 m=1时,原方程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;当 m=2时,原方程为 x2﹣2x=0.∴x(x﹣2)=0.∴x1=0,x2=2.符合题意.综上所述,m=2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解此题的关键.20.(1)0<x<35;(2)当x=617时,S最大=1817.【解析】【分析】(1)根据2AB+7半径+弧长=6列出代数式即可;(2)设面积为S,列出关于x的二次函数求得最大值即可.【详解】解:(1)根据题意得:2AB+7x+πx=2AB+10x=6,整理得:AB=3﹣5x;根据3﹣5x>0,所以x的取值范围是:0<x<35;(2)设面积为S,则S=222317176182(35)62221717x x x x x x⎛⎫-+=-+=--+⎪⎝⎭,当x=617时,S最大=1817.【点睛】本题考查的是二次函数的实际应用等知识,解题的关键是理解题意,学会构建二次函数解决最值问题,会用方程的思想思考问题,属于中考常考题型. 21.1m 【解析】 【分析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形Rt △BCD 、Rt △ACD,应利用其公共边DC 构造方程关系式,进而可解即可求出答案 【详解】在Rt △BCD 中,tan45°=1CDBC= ,∴CD=BC.在R △ACD 中,tan30°=3CD AC =∴3CD AB BC =+∴10CD CD =+∴+∴5CD ===≈13.66(米)∴条幅顶端D 点距离地面的高度为13.66+1.4=15.1(米) 【点睛】此题考查解直角三角形的应用-仰角俯角问题,解题关键在于利用其公共边DC 构造方程关系式 22.(1)答图如图见解析;(2)点C 到公路ME 的距离为2km . 【解析】 【分析】(1)到城镇A 、B 距离相等的点在线段AB 的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的角平分线上,分别作出垂直平分线与角平分线,它们的交点即为所求作的点C .(2)作CD ⊥MN 于点D ,由题意得:∠CMN =30°,∠CND =45°,分别在Rt △CMD 中和Rt △CND 中,用CD 表示出MD 和ND 的长,从而求得CD 的长即可. 【详解】 (1)答图如图:(2)作CD ⊥MN 于点D ,由题意得:∠CMN =30°,∠CND =45°,∵在Rt △CMD 中,CDMD=tan ∠CMN , ∴MD;∵在Rt △CND 中,CDDN=tan ∠CNM ,∴ND =1CD =CD ;∵MN =2+1)km ,∴MN =MD+DN ==2+1)km , 解得:CD =2km .故点C 到公路ME 的距离为2km . 【点睛】本题考查了解直角三角形的应用及尺规作图,正确的作出图形是解答本题的关键,难度不大. 23.(1)80;图见解析;(2)20;(3)360. 【解析】 【分析】(1)用阳光体艺的人数除以对应的百分比即可得到接受调查的总人数. 用总人数减去其余各人数可得课堂演讲的人数,据此补全条形统计图. (2)根据样本中总人数及课堂演讲的人数即可求a 的值.(3)求出样本中学生中喜爱“实验实践”的人数的百分比,乘以学校总人数即可. 【详解】(1)32÷40%=80(人), 故答案为80,课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人) 补图如下(2)16100%20%a%80⨯==, 所以a =20;(3)根据题意得:161800100%36080⨯⨯=(人), 答:该校全体学生中喜爱“实验实践”的人数约为360人. 【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键. 24.(1)(2)①②【解析】【分析】(1)在直角△ABC中,已知∠ACB=30°,AC=12米.利用三角函数即可求得AB的长;(2)①在△AB1C1中,已知AB1的长,即AB的长,∠B1AC1=45°,∠B1C1A=30°.过B1作AC1的垂线,在直角△AB1N中根据三角函数求得AN,BN;再在直角△B1NC1中,根据三角函数求得NC1的长.即可求解;②当树与地面成60°角时影长最大,根据三角函数即可求解.【详解】(1答:树高(2)作B1N⊥AC1于N.①如图(2),B1N=AN=AB1sin45°=2=NC1=NB1tan60°==.AC1=AN+NC1=(米).答:树与地面成45°角时的影长为米.②如图(2),当树与地面成60°角时影长最大AC2(或树与光线垂直时影长最大或光线与半径为AB的⊙A相切时影长最大)AC2=2AB2=答:树的最大影长为【点睛】一般三角形的计算可以通过作高线转化为直角三角形的问题.25.6【解析】【分析】直接将分子与分母分解因式,进而化简即可.【详解】解:原式=32m m+m-m m+m-(4)(4)(4)(4)=2m2,2=6.【点睛】此题主要考查了分式的化简求值,正确分解因式是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年数学中考模拟试卷一、选择题1.安居物业管理公司对某小区一天的垃圾进行了分类统计,如图是分类情况的扇形统表,若一天产生的垃圾的为300kg ,估计该小区一个月(按30天计)产生的可回收垃圾重量约是( )A.900kgB.105kgC.3150kgD.5850kg2.用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A cmB .cmC .cmD .4cm3.如图,正方形ABCD 中,E 、F 分别为BC 、CD 的中点,AF 与DE 交与点G .则下列结论中:①AF ⊥DE ;②AD =BG ;③GE+GF ;④S △AGB =2S 四边形ECFG .其中正确的是( )A.1个B.2个C.3个D.4个4.如图,正方形ABCD .AB =4,点E 为BC 边上点,连接AE 延长至点F 连接BF ,若tan ∠FAB =tan ∠EBF =13,则AF 的长度是( )A .2B .5C D 5.如图,在△ABC 中,∠ACB =90°,分别以点A 和点C 为圆心,以相同的长(大于AC )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .下列结论错误的是( )A.AD =CDB.∠A =∠DCBC.∠ADE =∠DCBD.∠A =∠DCA6.下列运算正确的是( )A .232a a a +=B .326(a )a -=C .222(a b)a b -=-D .326(2a )4a -=-7.计算正确的是( )A.()020190-= B.623x x x ÷= C.()423812a b a b -=-D.45326a a a ⋅=8.为选拔一名选手参加全国中学生男子百米比赛,我市四名中学生参加了训练,他们成绩的平均数x 及其方差s 2如表所示:A .甲B .乙C .丙D .丁9.若一个直角三角形的两条直角边长分别为5和12,则其第三边长( )A .13B C .5D .1510.在体育模拟考中,某6人小组的1000米长跑得分(单位:分)分别为:10,9,8,10,10,9,则这组数据的众数和中位数分别是( ) A .9分,8分B .9分,9.5分C .10分,9分D .10分,9.5分11.下列运算正确的是( ) A .()336x x =B .325x x x ?C .33x x -=D .426x x x +=12.已知,⊙O 的半径是一元二次方程x 2﹣5x ﹣6=0的一个根,圆心O 到直线l 的距离d =4,则直线l 与⊙O 的位置关系是( ) A .相交 B .相切C .相离D .平行二、填空题 13.分式方程3512x x =++的解为_____. 14.将多项式24x +加上一个整式,使它成为完全平方式,试写出满足上述条件的三个整式: _______,________,_______.15.如图,圆内接四边形ABCD 的边AB 过圆心O ,过点C 的切线与边AD 所在直线垂直于点M ,若∠ABC =65°,则∠ACD =_____°.16.已知反比例函数y =的图象经过点(2,﹣1),则k =_____. 17.计算的结果为____.18.如图所示,在Rt ABC ∆中,90ACB ∠=︒,CM 是斜边AB 上的中线,E F 、分别为MB BC 、的中点,若1EF =,则AB =_____.三、解答题19.(1)计算)0-4cos60°+(13)-1. (2)先化简,再求值:(2-43-3x x x +-13x -)·(22-21-32x x x x ++-2-2x ),其中x=4.20.阅读下面材料:在数学课上,老师给同学们布置了一道尺规作图题: 小丽的作法如下:已知:如图,正比例函数和反比例函数的图象分别交于MN 两点, 要求:在y 轴上求作点P,使得∠MPN 为直角老师说:“小丽的作法正确.”如图,以点O 为圆心,以OM 长为半径作⊙O ,⊙O 与y 轴交于点P 1和P 2两点,则P 1,P 2即为所求.请回答:小丽这样作图的依据是_____.21.我国古代的优秀数学著作《九章算术》有一道“竹九节”问题,大意是说:现有﹣一根上细下粗共九节的竹子,自上而下从第2节开始,每一节与前一节的容积之差都相等,且最上面三节的容积共9升,最下面三节的容积共45升,求第五节的容积,及每一节与前一节的容积之差. 请解答上述问题.22.计算﹣1|12)﹣2+(π﹣3)023.解不等式组()5x+33x-113x+46-x 22⎧>⎪⎨≤⎪⎩①②,请结合题意填空,完成本题的解答, I.解不等式①,得_________; II.解不等式②,得________;III.把不等式①和②的解集在数轴上表示出来:IV.原不等式组的解集为_________.24.化简:2416222a a a a -⎛⎫-+÷⎪--⎝⎭. 25.如图,A 、D 、B 、E 四点在同一条直线上,AD =BE ,BC ∥EF ,BC =EF .(1)求证:AC =DF ;(2)若CD 为∠ACB 的平分线,∠A =25°,∠E =71°,求∠CDF 的度数.【参考答案】*** 一、选择题13.1214.4x -4x -4 15.40 16.-2 17.2 18.4 三、解答题19.(1);(2)x-2,2.【分析】(1)先根据二次根式的性质、绝对值的意义、零指数幂、特殊角的三角函数值及负整数指数幂的意义逐项化简,再合并同类项或同类二次根式即可;(2)先根据分式的运算法则将所给代数式化简,再把x=4代入计算即可. 【详解】解:(1)原式4×12+3(2)原式=2-43-3x x x +1-3x ·2(-1)(-1)(-2)x x x -2-2x=2(-2)-3x x ·-1-2x x -2-2x=2(-2)-3x x ·-3-2x x=x-2,当x=4时,原式=4-2=2. 【点睛】本题考查了实数的混合运算,分式的化简求值,熟练掌握特殊角的三角函数值、负整数指数幂的意义及分式的运算法则是解答本题的关键. 20.半圆或直径所对的圆周角是直角. 【解析】 【分析】根据半圆(或直径)所对的圆周角是直角可知,以MN 为直径作圆即可. 【详解】解:连接P 1M ,P 1N ,P 2M ,P 2N 因为M 、N 关于原点O 对称,以点O 为圆心以OM 为半径的⊙O 过点N 所以MN 是⊙O 的直径 因为点P 1、P 2都在⊙O 上, 半圆或直径所对的圆周角是直角, 所以∠MP 1N ,∠MP 2N 都是直角.故答案为:半圆或直径所对的圆周角是直角. 【点睛】本题考查考查反比例函数与一次函数的交点,圆的有关性质等知识,解题的关键是熟练应用所学知识解决问题,属于基础题.21.第五节的容积9升,每一节与前一节的容积之差2升. 【解析】 【分析】从题目中可知,第2节开始相邻两节的容积差相等设为y ,第5节的容积直接设为x ,然后根据第5节和容积差建立等量关系:第1节容积+第2节容积+第3节容积=9,第7节容积+第8节容积+第9节容积=45构建二元一次方程组求解.解:设第五节的容积为x 升,每一节与前一节的空积之差为y 升,依题意得:(4)(3)(2)9(2)(3)(4)45x y x y x y x y x y x y -+-+-=⎧⎨+++++=⎩, 解得:92x y =⎧⎨=⎩,答:第五节的容积9升,每一节与前一节的容积之差2升. 【点睛】本题考查了二元一次方程组在古典数学中的应用,突出了我国古人在数学方面的成就.难点是用第5节容积和相邻容积来表示竹子各节的容积. 22.-2 【解析】 【分析】分别根据数的立方法则,零指数幂,负指数幂的运算法则及绝对值的性质、特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可. 【详解】12412--+=-. 【点睛】本题考查的是实数的运算,熟知数的立方法则,零指数幂的运算法则及绝对值的性质,特殊角的三角函数值是解答此题的关键.23.(Ⅰ)x 3>-;(Ⅱ).x 1≤;(Ⅲ)数轴表示见解析;(Ⅳ)3x 1-<≤. 【解析】 【分析】(Ⅰ)先去括号、移项,两边同时除以2即可得答案;(Ⅱ)移项,整理,两边同时除以2即可得答案;(Ⅲ)根据不等式解集的表示方法解答即可;(Ⅳ)根据数轴,找出不等式①②的公共解集即可. 【详解】(Ⅰ)5x+3>3(x-1) 去括号得:5x+3>3x-3 移项得:2x>-6 解得:x>-3. 故答案为:x>-3 (Ⅱ)12x+4≤6-32x 移项得:2x≤2 解得x≤1. 故答案为:x≤1(Ⅲ)不等式①和②的解集在数轴上表示如图所示:由数轴可得①和②的解集的公共解集为-3<x≤1, ∴原不等式组的解集为-3<x≤1, 故答案为:-3<x≤1 【点睛】本题考查了解一元一次不等式,解一元一次不等式组,在数轴上表示不等式的解集的应用,能根据不等式的解集求出不等式组的解集是解此题的关键. 24.4a a + 【解析】 【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果. 【详解】 原式=()()()()()()2244222442444a a a a a a a a a a a a a -----⋅=⋅=-+--+-+.【点睛】此题考查分式的混合运算,掌握运算法则是解题关键 25.(1)详见解析;(2)42°. 【解析】 【分析】(1)根据平行线的性质得到∠ABC =∠DEF ,再结合题意根据SAS 判断△ABC ≌△DEF ,根据全等三角形的性质即可得到答案;(2)根据全等三角形的性质得到∠ABC =∠E =71°,∠A =∠FDE =25°,再根据角平分线的性质进行计算即可得到答案. 【详解】证明:(1)∵AD =BE ∴AB =DE ∵BC ∥EF∴∠ABC =∠DEF ,且AB =BE ,BC =EF ∴△ABC ≌△DEF (SAS ) ∴AC =DF(2)∵△ABC ≌△DEF∴∠ABC =∠E =71°,∠A =∠FDE =25° ∴∠ACB =180°﹣∠A ﹣∠ABC =84° ∵CD 为∠ACB 的平分线 ∴∠ACD =42°=∠BCD∵∠CDB =∠A+∠ACD =∠CDF+∠EDF ∴∠CDF =42° 【点睛】本题考查全等三角形的判定(SAS )和性质、平行线的性质,解题的关键是掌握全等三角形的判定(SAS )和性质、平行线的性质的综合运用.2019-2020学年数学中考模拟试卷一、选择题1.某商品价格为a元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.0.96a元B.0.972a元C.1.08a元D.a元2x的取值范围在数轴上表示正确的是()A.B.C.D.3.如图,点A所表示的数的绝对值是()A.3B.﹣3C.13D.13-4.若关于x的方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.﹣5 B.﹣1 C.1 D.55.数据1、10、6、4、7、4的中位数是().A.9B.6C.5D.46.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是()A.94B.95分C.95.5分D.96分7.如图,四边形ABCD是正方形,直线l1、l2、l3分别通过A、B、C三点,且l1∥l2∥l3,若l1与l2的距离为6,正方形ABCD的面积等于100,l2与l3的距离为()A.8 B.10 C.9 D.78.如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是()A.3cmB.4cmC.5cmD.6cm9.若a b,则实数a,b的大小关系为()A .a >bB .a <bC .a =bD .a≥b10.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是11x-=﹣1,﹣1的差倒数为11(1)--=12,现已知x 1=13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2019的值为( ) A .﹣13B .﹣2C .3D .411.如图,一段抛物线293y x x =-+(-3≤≤)为1C ,与x 轴交于0A ,1A 两点,顶点为12D D ;将1C 绕点1A 旋转180°得到2C ,顶点为2D ;1C 与2C 组成一个新的图象.垂直于y 轴的直线l 与新图象交于点111()P x y ,,222()P x y ,,与线段12D D 交于点333()Px y ,,且1x ,2x ,3x 均为正数,设123t x x x =++,则t 的最大值是( )A .15B .18C .21D .24 12.若一个多边形的内角和为1440°,则这个多边形的边数是( )A .8B .10C .12D .14二、填空题13.用48m 长的篱笆在空地上围成一个正六边形的绿化场地,则其面积为______2m14.将点P (﹣3,y )向下平移3个单位,向左平移2个单位后得到点Q (x ,﹣1),则x+y =_____.15x 的取值范围是_______. 16.如图,AB ∥CD ,∠DCE=118°,∠AEC 的角平分线EF 与GF 相交于点F ,∠BGF=132°,则∠F 的度数是__.17.把多项式ax 2+2a 2x+a 3分解因式的结果是_____.18.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.三、解答题19.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一条直线上.已知纸板的两条边DE =70cm ,EF =30cm ,测得AC =78m ,BD =9m ,求树高AB .20.在女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数关系分別如图中线段OA 和折线OBCD 所示.(1)谁先到终点,当她到终点时,另一位同学离终点多少米?(请直接写出答案) (2)起跑后的60秒内谁领先?她在起跑后几秒时被追及?请通过计算说明.21.先化简:2222111211x x x x x x +-⎛⎫-÷⎪--++⎝⎭然后解答下列问题: (1)当x =2时,求代数式的值(2)原代数式的值能等于0吗?为什么?22.水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚,对市场最为关注的产量和产量的稳定性进行了抽样调查,过程如下:收集数据从甲、乙两个大棚中分别随机收集了相同生产周期内25株秧苗生长出的小西红柿的个数: 甲:26,32,40,51,44,74,44,63,73,74,81,54,62,41,33,54,43,34,51,63,64,73,64,54,33乙:27,35,46,55,48,36,47,68,82,48,57,66,75,27,36,57,57,66,58,61,71,38,47,46,71整理数据按如下分组整理样本数据:个为产量优秀)分析数据两组样本数据的平均数、众数和方差如下表所示:(1)补全上述表格;(2)可以推断出大棚的小西红柿秩苗品种更适应市场需求,理由为(至少从两个不同的角度说明推断的合理性);(3)估计乙大棚的300株小西红柿秧苗中产量优秀的有多少株?23.(111|2|2cos453-︒⎛⎫-+-⎪⎝⎭;(2)解分式方程:2133xx x=++24.为顺利通过“国家文明城市”验收,市政府拟对城区部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?25.某市在地铁施工期间,交管部门计划在施工路段设高为3米的矩形路况警示牌BCEF(如图所示BC=3米)警示牌用立杆AB支撑,从侧面D点测到路况警示牌顶端C点和底端B点的仰角分别是60°和45°,求立杆AB的长度(结果精确到整数,≈1.41)【参考答案】***一、选择题13.14.﹣3.15.x≤2且x≠016.11°.17.a(x+a)218.12三、解答题19【解析】 【分析】先判定△DEF 和△DBC 相似,然后根据相似三角形对应边成比例列式求出BC 的长,再加上AC 即可得解. 【详解】解:在直角△DEF 中,DE =70cm ,EF =30cm ,则由勾股定理得到DF ==在△DEF 和△DBC 中,∠D =∠D ,∠DEF =∠DCB ,∴△DEF ∽△DCB , ∴DF EFDB BC=, 又∵EF =30cm ,BD =9m ,∴BC =EF DB DF ⋅==(m ) ∵78AC m =,∴AB =AC+BC =78+=m . 【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质,比较简单,判定出△DEF 和△DBC 相似是解题的关键.20.(1)小莹比小梅先到终点,此时小梅距离终点200米;(2)小梅在起跑后5407秒时被追及. 【解析】 【分析】(1)小莹比小梅先到终点,此时小梅距离终点200米;(2)根据图象可以知道跑后的60秒内小梅领先,根据线段的交点坐标可以求出小梅被追及时间. 【详解】(1)小莹比小梅先到终点,此时小梅距离终点200米; (2)根据图象可以知道跑后的60秒内小梅领先, 小莹的速度为:800401809= (米/秒), 故线段OA 的解析式为:y =409x , 设线段BC 的解析式为:y =kx+b ,根据题意得:60300180600k b k b +=⎧⎨+=⎩,解得k 2.5b 150=⎧⎨=⎩, ∴线段BC 的解析式为y =2.5x+150, 解方程40 2.51509x x =+,得5407x =, 故小梅在起跑后5407秒时被追及. 【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一. 21.(1)11x x +-;(2)见解析. 【解析】 【分析】(1)将x =2代入化简后的式子即可解答本题;(2)先判断,然后令化简的结果等于0,求出x 的值,再将所得的x 的值代入化简后的式子,看是否使得原分式有意义即可解答本题. 【详解】 解:2222111211x x x x x x +-⎛⎫-÷⎪--++⎝⎭22(1)11(1)(1)(1)1x x x x x x ⎡⎤+-+=-⋅⎢⎥+--⎣⎦ 21(1)11x x x ⎛⎫=-⋅+ ⎪--⎝⎭1(1)1x x =⋅+- 11x x +=- (1)当x =2时,原式=2121+-=3; (2)原代数式的值不等等于0, 理由:令11x x +-=0,得x =﹣1, 当x =﹣1时,原分式无意义, 故原代数式的值不等等于0. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 22.(1)5,5,6,54;(2)乙,乙的方差较小,众数比较大;(3)84株 【解析】 【分析】(1)利用划计法统计即可.(2)从平均数,众数,方差三个方面分析即可. (3)利用样本估计总体的思想解决问题即可. 【详解】(1)甲:35≤x<45时,小西红柿的株数为5,55≤x<65时,小西红柿的株数为5.甲的众数为54,乙:45≤<55时,小西红柿的株数为6. 故答案为:5,5,6,54. (2)选:乙.理由:乙的方差较小,众数比较大. 故答案为:乙,乙的方差较小,众数比较大. (3)300725⨯=84(株) 答:估计乙大棚的300株小西红柿秧苗中产量优秀的有84株.【点睛】本题考查了方差,众数,平均数,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(11;(2)23x=.【解析】【分析】(1)原式利用二次根式性质,绝对值的代数意义,负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)原式=23212+-⨯=;(2)去分母得:3x=2,解得:23x=,经检验23x=是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24.15,30.【解析】【分析】等量关系为:甲工效+乙工效=110,甲(乙)的工效×甲(乙)的工作时间=甲(乙)的工作量;【详解】设甲工程队单独完成此项工程需x天,则乙工程队单独完成此工程需2x天.由题意,得10×(112x x+)=1解得:x=15.经检验,x=15是原方程的根.∴2x=30.答:甲、乙两个工程队单独完成此项工程分别需15天和30天.【点睛】考查了工程问题,题目相对复杂.分析题意,找到合适的等量关系是解决本题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.25.立杆AB的长度约为4米.【解析】【分析】设AB=x米,由∠BDA=45°知AB=AD=x米,再根据tan∠ADC=ACAD建立关于x的方程,解之可得答案.【详解】设AB=x米,在Rt △ABD 中,∵∠BDA =45°, ∴AD =AB =x 米,在Rt △ACD 中,∵∠ADC =60°,∴tan ∠ADC =AC AD,即3x x +=解得:x ≈4(米), 答:立杆AB 的长度约为4米. 【点睛】此题考查解直角三角形的应用,仰角俯角问题,解题关键在于求出∠ADC =60°2019-2020学年数学中考模拟试卷一、选择题1.如图,有一平行四边形ABCD 与一正方形CEFG ,其中E 点在AD 上.若∠ECD=35°,∠AEF=15°,则∠B 的度数为何?( )A .50B .55C .70D .75 2.下列计算正确的是( )A .a 4+a 3=a 7B .a 4•a 3=a 12C .(a 4)3=a 7D .a 4÷a 3=a3.方程的两个根为( )A.,B.,C.,D.,4.下列命题中,正确的是( ) A .两条对角线相等的四边形是平行四边形 B .两条对角线相等且互相垂直的四边形是矩形 C .两条对角线互相垂直平分的四边形是菱形 D .两条对角线互相平分且相等的四边形是正方形5.如果y ,那么(﹣x )y的值为( )A.1B.﹣1C.±1D.06.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:A .6,5B .6,6C .5,5D .5,67.如图,在∆ABC 中,AC=BC ,过C 作CD//AB .若AD 平分∠CAB ,则下列说法错误的是( )A .BC=CDB .BO :OC=AB :BC C .△CDO ≌△BAOD .::AOC CDO S S AB BC ∆∆=8.王爷爷上午8:00从家出发,外出散步,到老年阅览室看了一会儿报纸,继续以相同的速度散步一段时间,然后回家.如图描述了王爷爷在散步过程中离家的路程s (米)与所用时间t (分)之间的函数关系,则下列信息错误的是( )A.王爷爷看报纸用了20分钟B.王爷爷一共走了1600米C.王爷爷回家的速度是80米/分D.上午8:32王爷爷在离家800米处9.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠ADC的度数是()A.120°B.130°C.140°D.150°10.计算a2•(a2)3的结果是()A.a7B.a10C.a8D.a1211.如图,▱ABCD中,AB=4,BC=8,∠A=60°,动点P沿A﹣B﹣C﹣D匀速运动,运动速度为2cm/s,同时动点Q从点A向点D匀速运动,运动速度为1cm/s,点Q到点D时两点同时停止运动,设点Q走过的路程为x(s),△APQ的面积为y(cm2),能大致刻画y与x的函数关系的图象是()A.B.C.D.12.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.二、填空题13.如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是_____.14.观察下面三行数:﹣1,2,﹣3,4,﹣5,…3,﹣6,9,﹣12,15,…﹣1,8,﹣27,64,﹣125,…(1)第一行的第7个数是_____,第二行的第8个数是_____,第三行的第6个数是_____;(2)取每行数的第10个数,这三个数的和为_____.15.如图,AB切⊙O于C,AO交⊙O于D,AO的延长线交⊙O于E,若∠A=α,则∠ECB=_____(用含α的式子表示).16.截止2018年底,中国互联网用户达8.29亿.数据8.29亿用科学记数法表示为_____________. 17.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限内作正方形ABCD,点D在双曲线(k≠0)上,将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是____.18.在矩形ABCD中,AB=6,AD=3,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF沿直线EF折叠,点A的对应点为点A',当点E、A'、C三点在一条直线上时,DF的长度为_____.三、解答题19.2019年初,电影《流浪地球》和《绿皮书》陆续热播,为了解某大学1800名学生对两部电影的喜爱程度,调查小组随机抽取了该大学20名学生对两部电影打分,过程如下.收集数据20名大学生对两部电影的打分结果如下:《流浪地球》78 75 99 98 79 67 88 78 76 98 88 79 97 91 78 80 93 90 99 99《绿皮书》88 79 68 97 85 74 96 84 92 97 89 81 91 75 80 85 91 89 97 92整理、描述数据绘制了如下频数分布直方图和统计表,请补充完整.(说明:60≤x<70表示一般喜欢,70≤x<80表示比较喜欢,80≤x<90表示喜欢,90≤x<100表示超级喜欢)(1)估计该大学超级喜欢电影《绿皮书》的有人;(2)你认为观众更喜欢这两部电影中的(填《流浪地球》或《绿皮书》),理由是.20.如图,在▱ABCD中,过A、B、C三点的⊙O交AD于点E,连接BE、CE,BE=BC.(1)求证:△BEC∽△CED;(2)若BC=10,DE=3.6,求⊙O的半径.21.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.(1)被调查的学生中,最喜爱体育节目的有人,这些学生数占被调查总人数的百分比为%.(2)被调查学生的总数为人,统计表中m的值为,统计图中n的值为.(3)在统计图中,E类所对应扇形圆心角的度数为.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.22.某商店第一个月以每件100元的价格购进200件衬衫,以每件150元的价格售罄.由于市场火爆,该商店第二个月再次购进一批衬衫,与第一批衬衫相比,这批衬衫的进价和数量都有一定的提高,其数量的增长率是进价增长率的2.5倍,该批衬衫仍以每件150元销售.第二个月结束后,商店对剩余的50件衬衫以每件120元的价格一次性清仓销售,商店出售这两批衬衫共盈利17500元.设第二批衬衫进价的增长率为x.(1)第二批衬衫进价为元,购进的数量为件.(都用含x的代数式表示,不需化简)(2)求x的值.23.车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.24.已知,平面直角坐标系中,关于x的二次函数y=x2﹣2mx+m2﹣2(1)若此二次函数的图象过点A(﹣1,﹣2),求函数的表达式;(2)若(x1,y1),(x2,y2)为此二次函数图象上两个不同点,且x1+x2=4时y1=y2,试求m的值;(3)点P(﹣2,y3)在抛物线上,求y3的最小值.25.如图,△ABC内接于⊙O,BC为直径,∠BAC的平分线与BC和⊙O分别相交于D和E,P为CB延长线上一点,PB=5,PA=10,且∠DAP=∠ADP.(1)求证:PA与⊙O相切;(2)求sin∠BAP的值;(3)求AD•AE的值.【参考答案】***一、选择题1314.﹣7、﹣24、 216; 980α15.45°+216.88.2910 17.2 18.1或11 三、解答题19.补全统计图与统计表见解析;(1)720;(2)见解析. 【解析】 【分析】(1)根据题干中所给数据,整理可补全直方图;再根据众数和中位数的定义可得; (2)答案不唯一,合理即可. 【详解】(1)补全《流浪地球》的分布直方图如下:填统计表如下:估计该大学超级喜欢电影《绿皮书》的有1800×20=720(名), 故答案为:720; (2)答案不唯一,喜欢《绿皮书》理由:在被调查者中,喜欢《绿皮书》的中位数高于喜欢的《流浪地球》中位数; 为《绿皮书》打分在80分以上的有16人,而为《流浪地球》打分在以上的只有12人.故答案为:《绿皮书》,在被调查者中,喜欢《绿皮书》的中位数高于喜欢的《流浪地球》中位数. 【点睛】此题考查了条形统计图,用样本估计总体,以及统计表,弄清题中的数据是解本题的关键.20.(1)见解析; (2【解析】 【分析】(1)证明两个等腰三角形相似,证明一个底角对应相等即可;(2)利用直径构造直角三角形,从而涉及到半径(直径),再利用垂径定理即可解决问题. 【详解】(1)证明:∵BE =BC , ∴∠BEC =∠BCE∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD.∴∠BCE=∠DEC,∠A+∠D=180°.∴∠BEC=∠DEC∵四边形ABCD内接于⊙O,∴∠A+∠BCE=180°.∴∠BCE=∠D∴△BEC∽△CED即得证.(2)过点O作OF⊥CE,垂足为F,连接OC,如下图.∴CF=12 CE,∴直线OF垂直平分CE,∵BE=BC,∴直线OF经过点B,∵△BEC∽△CED,又由(1)可知CE=CD,∴BC CE CE DE=,∵BC=10,DE=3.6,∴CE=CD=6∴CF=12CE=3,设⊙O的半径为r,可得BF=OF r,在Rt△OCF中,OF2+CF2=OC2,r)2+9=r2∴r=91,即圆的半径为91【点睛】本题考查的是相似三角形的判定与性质,尤其是对两个等腰三角形的判定更为特殊,利用直径构造直角三角形是相关问题中的常用思路.21.(1)30,20;(2)150,45,36;(3)21.6°;(4)160【解析】【分析】(1)观察图表体育类型即可解决问题;(2)根据“总数=B类型的人数÷B所占百分比”可得总数;用总数减去其他类型的人数,可得m的值;根据百分比=所占人数/总人数可得n的值;(3)根据圆心角度数=360°×所占百分比,计算即可;(4)用学生数乘以最喜爱新闻节目所占百分比可估计最喜爱新闻节目的学生数.【详解】(1)最喜爱体育节目的有 30人,这些学生数占被调查总人数的百分比为 20%.故答案为30,20;(2)总人数=30÷20%=150人,m=150﹣12﹣30﹣54﹣9=45,n%=54150×100%=36%,即n=36,故答案为150,45,36.(3)E类所对应扇形的圆心角的度数=360°×9150=21.6°,故答案为21.6°;(4)估计该校最喜爱新闻节目的学生数为2000×12150=160人,答:估计该校最喜爱新闻节目的学生数为160人.【点睛】本题考查统计表、扇形统计图、样本估计总体等知识没解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(1)100(1+x),200(1+2.5x).(2)20%.【解析】【分析】(1)根据增长率的定义以及数量的增长率是进价增长率的2.5倍即可得到结果;(2)根据利润等于第一次售罄的利润+(第二次-50件所得利润)+清仓销售的50件的利润,列出方程并求解即可.【详解】解:(1)第二批衬衫进价为100(1+x)元,购进的数量为200(1+2.5x)件,.(2)根据题意,得200×(150-100)+[150-100(1+x)][200(1+2.5x)-50]+50[120-100(1+x)]=17500.化简,得50x2-5x-1=0.解这个方程,得x1=15,x2=110(不合题意,舍去).所以x的值是20%.【点睛】本题主要考查了一元二次方程与销售问题,根据题意找到等量关系并列出方程是解题关键,注意要舍去不合题意的解.23.(1)14;(2)34【解析】【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【详解】解:(1)选择A通道通过的概率=1 4故答案为:14;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率=123 164.【点睛】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.24.(1)y=x2+2x﹣1;(2)m=2;(3)当m=﹣2时,y3有最小值是﹣2.【解析】【分析】(1)将点(﹣1,﹣2)直接代入二次函数,解出m即可;(2)因为y1=y2,所以x12﹣2mx1+m2﹣2=x22﹣2mx2+m2﹣2,得到(x1+x2)(x1﹣x2)=2m(x1﹣x2),又因x1+x2=4,所以m=2;(3)点P(﹣2,y3)在抛物线上,得到y3=4+4m+m2﹣2=(m+2)2﹣2,所以当m=﹣2时,y3有最小值是﹣2.【详解】解:(1)∵函数图象过点(﹣1,﹣2),∴将点代入y=x2﹣2mx+m2﹣2,解得m=﹣1,∴函数的表达式为y=x2+2x﹣1;(2)∵(x1,y1)(x2,y2)为此二次函数图象上两个不同点,∴x1≠x2,∵y1=y2,∴x12﹣2mx1+m2﹣2=x22﹣2mx2+m2﹣2,∴(x1+x2)(x1﹣x2)=2m(x1﹣x2),∵x1+x2=4,∴m=2;(3)∵点P(﹣2,y3)在抛物线上,∴y3=4+4m+m2﹣2=(m+2)2﹣2,∴当m=﹣2时,y3有最小值是﹣2.【点睛】本题考查二次函数的简单应用,第二问的关键在于能够把y1=y2得到的方程进行变形,整体代入x1+x2=4.25.(1)详见解析;(23)90.【解析】【分析】。