人教版八年级上数学全册导学案
八年级数学上册全册导学案(XX新版人教版)
八年级数学上册全册导学案(XX新版人教版)分式方程一、学教目标:1.了解分式方程的概念,和产生增根的原因..掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.二、学教重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.三、学教难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.四、自主探究:前面我们已经学习了哪些方程?是怎样的方程?如何求解?前面我们已经学过了方程。
一元一次方程是方程。
一元一次方程解法步骤是:①去___;②去____;③移项;④合并_____;⑤_____化为1。
如解方程:探究新知:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程:______________________.像这样分母中含未知数的方程叫做分式方程。
分式方程与整式方程的区别在哪里?通过观察发现得到这两种方程的区别在于未知数是否在分母上。
未知数在_____的方程是分式方程。
未知数不在分母的方程是____方程。
前面我们学过一元一次方程的解法,但是分式方程中分母含有未知数,我们又将如何解?解分式方程的基本思路是将分式方程转化为方程,具体的方法是去分母,即方程两边同乘以最简公分母。
如解方程:=……………………①去分母:方程两边同乘以最简公分母_____________,得00=60……………………②解得V=_______.观察方程①、②中的v的取值范围相同吗?①由于是分式方程v≠_______,②而②是整式方程v可取_____实数。
这说明,对于方程①来说,必须要求使方程中各分式的分母的值均不为0.但变形后得到的整式方程②则没有这个要求。
如果所得整式方程的某个根,使原分式方程中至少有一个分式的分母的值为0,也就是说,使变形时所乘的整式的值为0,它就不适合原方程,即是原分式方程的增根。
新人教版八年级数学上册导学案
数学导学案八年级备课组课题11.1全等三角形的判定(一)(1)一、 学习目标1、掌握全等形、全等三角形及相关概念和全等三角形性质。
2、理解“平移、翻折、旋转”前后的图形全等。
3、熟练 确定全等三角形的对应元素。
二、 自学指导自学课本P2-3页,完成下列要求:1、理解并背诵全等形及全等三角形的定义。
2、注意全等中对应点位置的书写。
3、理解并记忆全等三角形的性质。
4、自学后完成展示的内容,20分钟后,进行展示。
三、展示内容:1、________相同的图形放在一起能够____。
这样的两个图形叫做____。
2、能够_____的两个三角形叫做全等三角形。
3、一个图形经过__、__、__后位置变化了,但形状‘大小都没有改变,即平移、翻折‘旋转前后的图形____。
4、______叫做对应顶点。
_______叫做对应边。
_____叫做对应角。
5、全等三角形的对应边__。
____相等。
6、课本P4练习1、27、如图1,△ABC ≌△DEF ,对应顶点是__________,对应角是____________,对应边是___________________。
878、如图2,△ABC≌△CDA,AB和CD,BC和DA是对应边,写出其他对应边及对应角_____________________________9、如图3,△ABN≌△ACM,∠B=∠C,AC=AB,则BN=____,∠BAN=______,_____=AN,_____= ∠AMC.10910、如图,△ABC≌△DEC,CA和CD,CB和CE是对应边,∠ACD和∠BCE相等吗?为什么?课后反思:1.2三角形全等的判定(2)一、学习目标1、掌握三角形全等的判定(SSS)2、初步体会尺规作图3、掌握简单的证明格式二、自学指导认真阅读课本P6-8页,完成下列要求:1、小组讨论探究1。
(1)满足一个或两个条件的两个三角形是否全等。
(2)满足3个条件时,两个三角形是否全等。
最新人教版八年级数学上册导学案
新人教版八年级数学上导学案(全册)第十一章三角形11.1 与三角形有关的线段课题 11.1.1三角形的边【教学目标】1、通过观察、操作、想像、推理、交流等活动,发展空间观念、推理能力和表达能力;2、通过具体实例,进一步认识三角形的概念及其基本要素;3、学会三角形的表示及掌握对边与对角的关系;4、掌握三角形三条边之间关系.【重点难点】重点:了解三角形定义、三边关系。
难点:理解"首尾相连"等关键语句。
【教学准备】教师:课件、三角尺、屋顶架结构图等。
学生:三角尺、铅垂纸、小刀。
【教学过程】一、提出问题展示实物,播放课件,特别突出屋顶结构图,问题:1、请仔细观察实物与课件,找出不同的三角形。
2、与同伴交流各自找到的三角形。
3、这些三角形有什么特点?设计意图:通过观察课件,尤其是屋顶的框架结构图实例,使学生经历从现实世界抽象出几何模型的过程,认识三角形要素。
二、探究质疑1、三角形的概念:(1)通过学生间交流,师生共同得出,由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)三角形有哪些基本要素,师生共同得出:边、角、顶点.2、三角形表示:(1) 教师强调,为了简单起见:三角形用符号"△"表示,如图2的三角形ABC就表示成△ABC,三个顶点为:A,B、C,三边分别为:AB,BC,AC。
通常顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C 所对的边AB用。
(2)请同学们找出图3中的三角形,并用符号表示出来,同时说出各个三角形要素,并指出AD是哪些三角形的边。
3、动手操作:请小组同学们画一个△ABC,分别图3量出AB,BC,AC的长,并比较下列各式大小:AB+BC_AC; AB+AC_BC; AC+ BC AB,从中你有何启发?小组合作后,对你们的结论加以解释。
师生共同得出结论:三角形任意两边之和大于第三边。
设计意图:在识别中加深认识,巩固对三角形概念及三角形要素的理解,更加深刻理解三角形表示的必要性.三、巩固新知1、指出图4中有几个三角形并用符号来表示2、有两根长度分别为5 cm, 8 cm的木棒,用长度为2 cm的木棒与它们能摆成三角形吗?为什么?长度为13 cm的木棒呢?设计意图:(1)是巩固三角形的表示方法;(2)渗透反证法思想,借助小组操作讨论,得出组成三角形的条件。
新人教版八年级数学上册全册导学案(104页)
新人教版八年级数学上册全册导学案11.1 与三角形有关的线段一.学习目标1.了解三角形的性质;学会按边划分三角形。
2.应用已掌握的三角形知识解决生活中的实际问题。
3.培养学生热爱数学,热爱生活的情感。
二.学习重难点三角形的性质和分类及应用三.学习过程第一课时三角形的边(一)构建新知1.阅读教材2~4页(1)三角形由_____条线段_____相连组成的几何图形。
(2)长度分别是1.2,3,4,5,6的6根木条能组成_____个不同的三角形。
(3)一根6米长的铁丝围成的三角形,若每边均为整数值,可以围城的三角形有_____________________;若是9米的铁丝呢?(二)合作学习1.已知△ABC的周长为21cm,边AB=xcm,边BC比AB的2倍长3cm。
(1)用含x的代数式表示AC的长。
(2)求x的取值范围。
(3)x求何值时是等腰三角形。
(三)课堂检查1.若一个三角形三边长分别为2,3,x,则x的值可以为 ____(只需填一个整数)。
2.设a,b,c为三角形的三边长度,则|a+b-c|+|a-b-c|=________。
3.若等腰三角形的两条边长分别为23cm和10cm,那么第三边的长为 ____cm。
4.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的三角形有()。
A.三边不等的三角形 B.只两边相等的三角形C.三边相等的三角形 D.不等边三角形和等腰三角形5.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为()。
A.5 B.6 C.7 D.106.已知△ABC的两边长(3-x),第三边长为2x,若△ABC的边长均为整数,试判断此三角形的形状。
BCA(四)学习评价 (五)课后练习 1.学习指要 1~2页2.教材8~9页 1题,2题,6题,7题第二课时三角形的高、中线与角平分线(一)构建新知 1.阅读教材4~5页(1)如图,在△ABC 中,作BC 边上的高AD 和中线AE ;并作∠A 的角平分线AF 。
八年级上册数学全册导学案人教版
八年级上册数学全册导学案(人教版)八年级上数学导学案12.1轴对称(一)学习目标:1、理解什么是轴对称图形;2、理解什么是“两个图形关于一条直线对称”;3、能够说出轴对称与轴对称图形的区别与联系。
自学指导1、自学29 页,重点掌握___________,完成30页练习;2、自学课本30页,图121-3是____个图形,关系。
请找出图中A、B、C的对称点A′、B′、C′3、轴对称图形与轴对称的区别与联系展示内容1、如果一个图形沿一条直线折叠,直线两旁的部分能够________,这个图形就叫做___________,这条直线就是它的_________。
2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形________,那么就说这两个图形____________________。
3、教材P30练习与P31练习。
4、教材P30与P31的思考,找同学回答。
5、教材P36习题12.1的1、2.12.1 轴对称学习目标1、识记线段垂直平分线的定义2、理解轴对称图形的性质3、掌握并会用线段垂直平分线的性质二、自学指导(15分钟)认真阅读P31页思考-P32页探究前的内容(1)思考部分可在课本上沿MN对折或用测量的方法进行探究(2)探究部分要动手操作,找出你发现的规律:P1A =__,P2A=__,(特别注意l与线段AB的关系)由此可得到线段垂直平分线的性质:____________三、展示内容1、如图,△ABC中,AD垂直平分BC,AB=5,则AC =__2、△ABC与△A,B,C,关于直线l对称,且AB=4cm,则A,B,=__3、如图△ABC与△DEF关于直线MN对称,直线MN 与线段AD的关系是____4、如图△ABC中BC的垂直平分线交AB于E,若△ABC的周长为10,BC=4,则△ACE周长为___5、如图AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB、CE的长度有什么关系,AB+BD与DE有什么关系?课题:12.1轴对称 (三)学习目标:1、掌握线段垂直平分线的判定2、熟练运用线段垂直平分线的性质和判定解决实际问题。
人教版数学八年级上册全册课时导学案
人教版数学八年级上册全册导学案第一学时:11.1.1三角形的边一、学习目标1.认识三角形,•能用符号语言表示三角形,并把三角形分类.2.知道三角形三边不等的关系.3.懂得判断三条线段能否构成一个三角形的方法,•并能用于解决有关的问题二、重点:知道三角形三边不等关系.难点:判断三条线段能否构成一个三角形的方法.三、合作探究知识点一:三角形概念及分类1、学生自学教科书内容,并完成下列问题:(1)三角形概念:由不在同一直线上的三条线段___________________所组成的图形叫做三角形。
如图,线段____、______、______是三角形的边;点A 、B 、C 是三角形的______; _____、 ______、_______是相邻两边组成的角,叫做三角形的内角,简称三角形的角。
图中三角形记作__________。
(2)三角形按角分类可分为_____________、______________、_________________。
(3)三角形按边分类可分为 _____________三角形 _____________——————— _____________(4)如图1,等腰三角形ABC 中,AB=AC,腰是__________,底是_________,顶角指_______,底角指_____________.等边三角形DEF 是特殊的_______三角形,DE=____=_____.图1四、练习一:1、如图.下列图形中是三角形的有_______________?A B C D E F A B C2、图3中有几个三角形?用符号表示这些三角形.知识点二:知道三角形三边的不等关系,并判断三条线段能否构成三角形1、探究:请同学们画一个△ABC,分别量出AB,BC,AC的长,并比较下列各式的大小:AB+BC_____AC AB+ AC _____ BC AC +BC _____ AB从中你可以得出结论:三角形任意两边的和大于第三边,任意两边的差小于第三边。
人教版数学八年级上全册导学案(81页)
第一课时三角形的边一、新课导入1、三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?2、对于三角形,你了解了哪些方面的知识?你能画一个三角形吗?二、学习目标1、三角形的三边关系。
2、用三边关系判断三条线段能否组成三角形。
三、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
研读一、认真阅读课本(P63至P64“探究”前,时间:5分钟)要求:知道三角形的定义;会用符号表示三角形,了解按边角关系对三角形进行分类。
一边阅读一边完成检测一。
研读二、认真阅读课本( P64“探究”,时间:3分钟)要求:思考“探究”中的问题,理解三角形两边的和大于第三边;游戏:用棍子摆三角形。
检测练习二、6、在三角形ABC中,AB+BC AC AC+BC AB AB+AC BC7、假设一只小虫从点B出发,沿三角形的边爬到点C,有路线。
路线最近,根据是:,于是有:(得出的结论)。
8、下列下列长度的三条线段能否构成三角形,为什么?(1)3、4、8 (2)5、6、11 (3)5、6、10研读三、认真阅读课本认真看课本( P64例题,时间:5分钟)要求:(1)、注意例题的格式和步骤,思考(2)中为什么要分情况讨论。
(2)、对这例题的解法你还有哪些不理解的?(3)、一边阅读例题一边完成检测练习三。
检测练习三、9、一个等腰三角形的周长为28cm.①已知腰长是底边长的3倍,求各边的长;②已知其中一边的长为6cm,求其它两边的长.(要有完整的过程啊!)解:(三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结(一)这节课我们学到了什么?(二)你认为应该注意什么问题?五、强化训练【A】组1、下列说法正确的是(1)等边三角形是等腰三角形(2)三角形按边分类课分为等腰三角形、等边三角形、不等边三角形(3)三角形的两边之差大于第三边(4)三角形按角分类应分锐角三角形、直角三角形、钝角三角形其中正确的是()A 、1个B 、2个C 、3个D 、4个2、一个不等边三角形有两边分别是3、5另一边可能是( )A 、1B 、2C 、3D 、43、下列长度的各边能组成三角形的是( )A 、3cm 、12cm 、8cmB 、6cm 、8cm 、15cm 、3cm 、5cm D 、6.3cm 、6.3cm 、12cm 【B 】组4、已知等腰三角形的一边长等于4,另一边长等于9,求这个三角形的周长。
人教版八年级数学上册导学案全册
11.1.1 三角形的边自主学习、课前诊断一、温故知新1.你能用不同的方法表示下图中的线段和角吗?aA2.如图,一只小虫从点B 出发,沿三角形的边爬到点C ,有 条路线.路线______最近,根据是 .二、设问导读阅读课本P 2-4,回答下列问题. 1.任意画一个三角形,并思考: (1)你画的三角形是由几条线段组成的?这几条线段在同一直线上吗?这几条线段之间有什么特殊的关系? (2)观察你画的三角形,请你用符号表示出它的边、顶点与角.(3)你画的三角形可以记作________,读作_________.2.三角形的三条边是否相等?都有哪些可能情况?请你画出所有可能的情况.你能把它归类吗?3. 三角形的三边关系:(1)思考:一小虫沿三角形的边从B 爬到C ,它有两条路可走,一条路是沿折线______,另一条路是沿线段____.为了尽快爬到点C ,小虫应选择______.由此可得不等式AB+AC____BC; (2)类比:类比以上结论,还可以得到不等式: ; . (3)迁移:将上述3中不等式进行移项..变形,可得到相应的哪些不等式? (4)总结:根据你对三角形的三边关系的理解可以得出哪些结论?三、自学检测1.下列图形符合三角形特征的是( )A B C D2.如图,图中有________个三角形,用符号表示这些三角形为________,其中以AD 为边的三角形有________,∠ADE 是________的一个内角。
若AD=AE,则 △_____是等腰三角形,该三角形的对角是______.互动学习、问题解决一、导入新课二、交流展示学用结合、提高能力一、巩固训练1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形吗?为什么?(1)5,9,13(2)3,4,7(3)5,3,12.已知一个三角形的两边长分别是3cm 和4cm,则第三边长x的取值范围是 .若x是奇数,则x的值是 .3.一个等腰三角形的一边是4cm,另一边是9cm ,则这个三角形的周长是cm.4.两根木棒的长分别是12cm和5 cm,现要你选择第3根木棒,将它们钉成一个三角形(第三边为整数).(1)若选择的木棒长度是7的倍数,则第三根木棒的长为多少cm?(2)若想钉成一个等腰三角形,则第三根木棒的长为多少cm?(3)若想钉成一个周长为偶数的三角形,则第三根木棒的长为多少cm?(4)求钉成三角形的周长范围. 二、当堂检测1.判断下列线段能否组成三角形:①4,5,6 ②1,2,3③2,2,6 ④8,8,22.下列说法:(1)三角形按边分类可分为不等边三角形等腰三角形和等边三角形;(2)等边三角形一定是等腰三角形;(3)有两边相等的三角形一定是等腰三角形。
2021—2022学年人教版数学八年级上册 全册导学案
2021—2022学年人教版数学八年级上册全册导学案一、总体信息•课本名称:人教版数学八年级上册•出版社:人民教育出版社•学年:2021-2022二、教材概览数学八年级上册共包括以下八个单元:1.复习与认识2.整式的基本概念和性质3.一元二次方程的解法4.平面直角坐标系5.一次函数的初步研究6.相交线与平行线7.图形的对称性8.统计图及其应用每个单元的内容涵盖整合知识、概念解释、例题讲解、习题练习等方面。
三、导学教学目标及重点1.科学思考:培养学生的科学思维和解决实际问题的能力。
2.知识传授:掌握数学的基本概念、基础方法和技能,积累精选数学例题,掌握数学学科知识,并联合生活与实际中的问题进行深入探究。
3.技能训练:培养学生的做题方法、技巧,掌握常用的运算技能,提高计算的准确性。
4.交际拓展:在交际中形成良好的合作意识和集体协作能力,增强探究问题、解决问题的信心和自信。
四、单元内容介绍1. 复习与认识本单元主要是对七年级的复习和一些知识的介绍。
重点包括:整数、分数、小数及有理数的概念、化简带有多项式的复合分数、坐标系的概念与使用、正负数在图形中的应用、小数转分数、小数的意义等。
2. 整式的基本概念和性质本单元主要介绍整式的基本概念、常见整式的运算法则及其基本性质。
包括多项式的概念、同类项与合并同类项、多项式的加减法、多项式的乘法、因式分解、差的平方公式和完全平方公式等。
3. 一元二次方程的解法本单元主要介绍一元二次方程,包括方程的概念、一元二次方程的一般形式及求解方法,特别是通过因式分解法和配方法解一元二次方程,以及求解实际问题中的一元二次方程。
4. 平面直角坐标系本单元主要介绍平面直角坐标系,包括平面直角坐标系及其要素、点的坐标、直线的斜率、不等式和坐标系等知识,强调掌握直线的斜率与性质、直线方程的求法等。
5. 一次函数的初步研究本单元主要介绍一次函数的初步研究,包括一次函数的概念、函数图象、方程及其特点、斜率及其意义和应用等知识,重点突出函数的斜率和函数图象之间的关系。
人教版八年级数学上册全册导学案
人教版八年级数学上册全册导学案第一单元有理数导学目标- 掌握有理数的概念和表示方法;- 理解有理数的大小比较规则;- 能够进行有理数的加法和减法运算。
导学内容1. 有理数的概念:有理数是一种可以表示为分数形式的数,包括整数和分数。
2. 有理数的表示方法:- 整数可以用正负号和数字表示,如正整数用"+"表示,负整数用"-"表示;- 分数可以用分子和分母表示,分子表示分数的数值,分母表示分数的单位。
3. 有理数的大小比较规则:- 两个有理数大小比较时,可以先化为相同分母的分数,然后比较分子的大小;- 同号的有理数比较大小,绝对值大的数更大;异号的有理数比较大小,正数更大。
4. 有理数的加法和减法运算:- 加法:同号有理数相加,先相加后保持原符号;异号有理数相加,先相减后取绝对值较大的符号;- 减法:减去一个有理数等于加上它的相反数。
导学步骤1. 引入话题:通过举例子和学生互动引入有理数的概念。
2. 讲解表示方法:介绍整数和分数的表示方法,结合练让学生掌握如何表示有理数。
3. 比较大小规则:通过例题引导学生理解有理数的大小比较规则。
4. 运算操练:设计一些加法和减法的练题,让学生运用所学的规则进行计算。
5. 总结归纳:请学生总结有理数的概念、表示方法和运算规则,并进行相互讨论。
导学评价本节导学案主要介绍了有理数的概念、表示方法以及大小比较规则和运算规则。
通过学生的活动参与和练习题的操练,可以评价学生是否掌握了有关内容。
可以在课堂上进行小组讨论和个别辅导,帮助学生消化和理解所学内容。
人教版八年级数学上册全册导学案
人教版八年级数学上册全册导学案11.1.1 三角形的边11.1.2 三角的高、中线与角平分线11.1.3 三角形的稳定性11.2.1 三角形的内角11.2.2 三角形的外角11.3.1 多边形11.3.2 多边形的内角和12.1 全等三角形12.2 第1课时“边边边”12.2 第2课时“边角边”12.2 第3课时“角边角”“角角边”12.2 第4课时“斜边、直角边”12.3 第1课时角平分线的性质12.3 第2课时角平分线的判定13.1.1 轴对称13.1.2 第1课时线段的垂直平分线的性质和判定13.1.2 第2课时线段的垂直平分线的有关作图13.2 第1课时画轴对称图形13.2 第2课时用坐标表示轴对称13.3.1 第1课时等腰三角形的性质13.3.1 第2课时等腰三角形的判定13.3.2 第1课时等边三角形的性质与判定13.3.2第2课时含30°角的直角三角形的性质13.4 课题学习最短路径问题14.1.1 同底数幂的乘法14.1.2 幂的乘方14.1.3 积的乘方14.1.4第1课时单项式与单项式、多项式相乘14.1.4第2课时多项式与多项式相乘14.1.4第3课时整式的除法14.2.1 平方差公式14.2.2 完全平方公式14.3.1 提公因式法14.3.2 第1课时运用平方差公式因式分解14.3.2 第2课时运用完全平方公式因式分解15.1.1 从分数到分式15.1.2 分式的基本性质15.2.1 第1课时分式的乘除15.2.1 第2课时分式的乘方15.2.2 第1课时分式的加减15.2.2 第2课时分式的混合运算15.2.3 整数指数幂15.3 第1课时分式方程及其解法15.3 第2课时分式方程的应用11.1 与三角形有关的线段11.1.1 三角形的边学习目标:1、通过观察、操作、想象、推理、交流等活动,发掌空间观念、推理能力和有条理地表达能力;2、结合具体实例,进一步认识三角形的概念及其基本要素,掌握三角形三边之间的不等关系.学习重点:三角形三边之间的不等关系.学习难点:应用三角形的三边之间的不等关系判断三条线段能否组成三角形 教学过程: 一、学前准备1.三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?2.能从右图中找出4个不同的三角形吗?二、探究新知: 1、你所知道的三角形的定义是什么?问题:根据你的理解,下列的图形是三角形吗?三角形的定义: 2、三角形的有关概念:①边: 。
人教版八年级数学上册导学案(全-有答案)
第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。
2、能判断一个图形是否是轴对称图形。
3、理解两个图形关于某条直线成轴对称的意义。
4、正确区分轴对称图形与两个图形关于某条直线成轴对称。
5、理解并能应用轴对称的有关性质。
教学重点:1、能判断一个图形是否是轴对称图形。
2、轴对称的有关性质。
难点:1、判断一个图形是否是轴对称图形。
2、正确区分轴对称图形与两个图形关于某条直线成轴对称。
教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。
学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。
教师巡回指导、点评。
2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。
3、教师给出轴对称图形的定义。
问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。
⑴指形状相同,大小相等。
⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。
⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。
4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。
5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。
8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。
新人教版八年级数学上册全册导学案(137页)
新人教版八年级数学上册全册导学案第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数结合具体情境体会二次函数的意义,理解二次函数的有关概念;能够表示简单变量之间的二次函数关系.重点:能够表示简单变量之间的二次函数关系.难点:理解二次函数的有关概念.一、自学指导.(10分钟)自学:自学课本P28~29,自学“思考”,理解二次函数的概念及意义,完成填空.总结归纳:一般地,形如y=ax2+bx+c(a,b,c是常数,且a≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为a,b,c.现在我们已学过的函数有一次函数、二次函数,其表达式分别是y=ax+b(a,b为常数,且a≠0)、y=ax2+bx+c(a,b,c为常数,且a≠0).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列函数中,是二次函数的有__A,B,C__.A.y=(x-3)2-1B.y=1-2x2C.y=13(x+2)(x-2)D.y=(x-1)2-x22.二次函数y=-x2+2x中,二次项系数是__-1__,一次项系数是__2__,常数项是__0__.3.半径为R的圆,半径增加x,圆的面积增加y,则y与x之间的函数关系式为y=πx2+2πRx(x≥0).点拨精讲:判断二次函数关系要紧扣定义.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1若y=(b-2)x2+4是二次函数,则__b≠2__.探究2某超市购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个,如果超市将篮球售价定为x元(x>50),每月销售这种篮球获利y元.(1)求y与x之间的函数关系式;(2)超市计划下月销售这种篮球获利8000元,又要吸引更多的顾客,那么这种篮球的售价为多少元?解:(1)y=-10x2+1400x-40000(50<x<100).(2)由题意得:-10x2+1400x-40000=8000,化简得x2-140x+4800=0,∴x1=60,x2=80.∵要吸引更多的顾客,∴售价应定为60元.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.如果函数y=(k+1)xk2+1是y关于x的二次函数,则k的值为多少?2.设y=y1-y2,若y1与x2成正比例,y2与1x成反比例,则y与x的函数关系是(A)A.二次函数B.一次函数C.正比例函数D.反比例函数3.已知,函数y=(m-4)xm2-m+2x2-3x-1是关于x的函数.(1)m为何值时,它是y关于x的一次函数?(2)m为何值时,它是y关于x的二次函数?点拨精讲:第3题的第(2)问,要分情况讨论.4.如图,在矩形ABCD中,AB=2 cm,BC=4 cm,P是BC上的一动点,动点Q仅在PC或其延长线上,且BP=PQ,以PQ为一边作正方形PQRS,点P从B点开始沿射线BC方向运动,设BP=x cm,正方形PQRS与矩形ABCD重叠部分面积为y cm2,试分别写出0≤x≤2和2≤x≤4时,y与x之间的函数关系式.点拨精讲:1.二次函数不要忽视二次项系数a≠0.2.有时候要根据自变量的取值范围写函数关系式.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)22.1.2二次函数y=ax2的图象和性质1.能够用描点法作出函数的图象,并能根据图象认识和理解其性质.2.初步建立二次函数表达式与图象之间的联系,体会数形的结合与转化,体会数学内在的美感.重点:描点法作出函数的图象.难点:根据图象认识和理解其性质.一、自学指导.(7分钟)自学:自学课本P30~31“例1”“思考”“探究”,掌握用描点法作出函数的图象,理解其性质,完成填空.(1)画函数图象的一般步骤:取值-描点-连线;(2)在同一坐标系中画出函数y=x2,y=12x2和y=2x2的图象;点拨精讲:根据y≥0,可得出y有最小值,此时x=0,所以以(0,0)为对称点,对称取点.(3)观察上述图象的特征:形状是抛物线,开口向上,图象关于y轴对称,其顶点坐标是(0,0),其顶点是最低点(最高点或最低点);(4)找出上述三条抛物线的异同:______.(5)在同一坐标系中画出函数y=-x2,y=-12x2和y=-2x2的图象,找出图象的异同.点拨精讲:可从顶点、对称轴、开口方向、开口大小去比较寻找规律.总结归纳:一般地,抛物线的对称轴是y 轴,顶点是(0,0),当a>0时,抛物线的开口向上,顶点是抛物线的最低点.a 越大,抛物线的开口越小;当a<0时,抛物线的开口向下,顶点是抛物线的最高点,a 越大,抛物线的开口越大.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.教材P 41习题22.1第3,4题.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 填空:(1)函数y =(-2x)2的图象形状是______,顶点坐标是______,对称轴是______,开口方向是______.(2)函数y =x 2,y =12x 2和y =-2x 2的图象如图所示,请指出三条抛物线的解析式. 解:(1)抛物线,(0,0),y 轴,向上;(2)根据抛物线y =ax 2中,a 的值来判断,在x 轴上方开口小的抛物线为y =x 2,开口大的为y =12x 2,在x 轴下方的为y =-2x 2. 点拨精讲:解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y =ax 2中,a>0时,开口向上;a<0时,开口向下;|a|越大,开口越小.探究2 已知函数y =(m +2)xm 2+m -4是关于x 的二次函数.(1)求满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求这个最低点;当x 为何值时,y 随x 的增大而增大?(3)m 为何值时,函数有最大值?最大值为多少?当x 为何值时,y 随x 的增大而减小?解:(1)由题意得⎩⎪⎨⎪⎧m 2+m -4=2,m +2≠0.解得⎩⎪⎨⎪⎧m =2或m =-3,m ≠-2.∴当m =2或m =-3时,原函数为二次函数. (2)若抛物线有最低点,则抛物线开口向上,∴m +2>0,即m>-2,∴只能取m =2. ∵这个最低点为抛物线的顶点,其坐标为(0,0),∴当x>0时,y 随x 的增大而增大.(3)若函数有最大值,则抛物线开口向下,∴m +2<0,即m<-2,∴只能取m =-3.∵函数的最大值为抛物线顶点的纵坐标,其顶点坐标为(0,0),∴m =-3时,函数有最大值为0.∴x>0时,y 随x 的增大而减小.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.二次函数y =ax 2与y =-ax 2的图象之间有何关系?2.已知函数y =ax 2经过点(-1,3).(1)求a 的值;(2)当x<0时,y 的值随x 值的增大而变化的情况.3.二次函数y =-2x 2,当x 1>x 2>0,则y 1与y 2的关系是__y 1<y 2__.4.二次函数y =ax 2与一次函数y =-ax(a ≠0)在同一坐标系中的图象大致是( B )点拨精讲:1.二次函数y =ax 2的图象的画法是列表、描点、连线,列表时一般取5~7个点,描点时可描出一侧的几个点,再根据对称性找出另一侧的几个点,连线将几个点用平滑的曲线顺次连接起来,抛物线的两端要无限延伸,要“出头”;2.抛物线y =ax 2的开口大小与|a|有关,|a|越大,开口越小,|a|相等,则其形状相同.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3 二次函数y =a (x -h )2+k 的图象和性质(1)1.会作函数y=ax2和y=ax2+k的图象,能比较它们的异同;理解a,k对二次函数图象的影响,能正确说出两函数图象的开口方向、对称轴和顶点坐标.2.了解抛物线y=ax2上下平移规律.重点:会作函数的图象.难点:能正确说出两函数图象的开口方向、对称轴和顶点坐标.一、自学指导.(10分钟)自学:自学课本P32~33“例2”及两个思考,理解y=ax2+k中a,k对二次函数图象的影响,完成填空.总结归纳:二次函数y=ax2的图象是一条抛物线,其对称轴是y轴,顶点是(0,0),开口方向由a的符号决定:当a>0时,开口向上;当a<0时,开口向__下__.当a>0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.抛物线有最__低__点,函数y有最__小__值.当a<0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.抛物线有最__高__点,函数y有最__大__值.抛物线y=ax2+k可由抛物线y=ax2沿__y__轴方向平移__|k|__单位得到,当k>0时,向__上__平移;当k<0时,向__下__平移.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.在抛物线y=x2-2上的一个点是(C)A.(4,4)B.(1,-4)C.(2,2) D.(0,4)2.抛物线y=x2-16与x轴交于B,C两点,顶点为A,则△ABC的面积为__64__.点拨精讲:与x轴的交点的横坐标即当y等于0时x的值,即可求出两个交点的坐标.3.画出二次函数y=x2-1,y=x2,y=x2+1的图象,观察图象有哪些异同?点拨精讲:可从开口方向、对称轴、形状大小、顶点、位置去找.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)探究1抛物线y=ax2与y=ax2±c有什么关系?解:(1)抛物线y=ax2±c的形状与y=ax2的形状完全相同,只是位置不同;(2)抛物线y =ax 2向上平移c 个单位得到抛物线y =ax 2+c ;抛物线y =ax 2向下平移c 个单位得到抛物线y =ax 2-c.探究2 已知抛物线y =ax 2+c 向下平移2个单位后,所得抛物线为y =-2x 2+4,试求a ,c 的值.解:根据题意,得⎩⎨⎧a =-2,c -2=4,解得⎩⎪⎨⎪⎧a =-2,c =6. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(13分钟)1.函数y =ax 2-a 与y =ax -a(a ≠0)在同一坐标系中的图象可能是( D )2.二次函数的图象如图所示,则它的解析式为( B )A .y =x 2-4B .y =-34x 2+3 C .y =32(2-x)2 D .y =32(x 2-2) 3.二次函数y =-x 2+4图象的对称轴是y 轴,顶点坐标是(0,4),当x<0,y 随x 的增大而增大.4.抛物线y =ax 2+c 与y =-3x 2的形状大小,开口方向都相同,且其顶点坐标是(0,5),则其表达式为y =-3x 2+5,它是由抛物线y =-3x 2向__上__平移__5__个单位得到的.5.将抛物线y =-3x 2+4绕顶点旋转180°,所得抛物线的解析式为y =3x 2+4.6.已知函数y=ax2+c的图象与函数y=5x2+1的图象关于x轴对称,则a=__-5__,c=__-1__.点拨精讲:1.函数的图象与性质以及抛物线上下平移规律.(可结合图象理解)2.抛物线平移多少个单位,主要看两顶点坐标,确定两顶点相隔的距离,从而确定平移的方向与单位长,有时也可以比较两抛物线上横坐标相同的两点相隔的距离,从而确定平移的方向与单位长.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3二次函数y=a(x-h)2+k的图象和性质(2)1.进一步熟悉作函数图象的主要步骤,会作函数y=a(x-h)2的图象.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.3.掌握抛物线y=a(x-h)2的平移规律.重点:熟悉作函数图象的主要步骤,会作函数y=a(x-h)2的图象.难点:能正确说出图象的开口方向、对称轴和顶点坐标,掌握抛物线y=a(x-h)2的平移规律.一、自学指导.(10分钟)自学:自学课本P33~34“探究”与“思考”,掌握y=a(x-h)2与y=ax2之间的关系,理解并掌握y=a(x-h)2的相关性质,完成填空.画函数y=-12x2、y=-12(x+1)2和y=-12(x-1)2的图象,观察后两个函数图象与抛物线y=-12x2有何关系?它们的对称轴、顶点坐标分别是什么?点拨精讲:观察图象移动过程,要特别注意特殊点(如顶点)的移动情况.总结归纳:二次函数y=a(x-h)2的顶点坐标为(h,0),对称轴为直线x=h.当a>0时,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大,抛物线有最低点,函数y有最小值;当a<0时,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y 随x的增大而减小,抛物线有最高点,函数y有最大值.抛物线y=ax2向左平移h个单位,即为抛物线y =a(x +h)2(h>0);抛物线y =ax 2向右平移h 个单位,即为抛物线y =a(x -h)2(h>0).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟) 1.教材P 35练习题;2.抛物线y =-12(x -1)2的开口向下,顶点坐标是(1,0),对称轴是x =1,通过向左平移1个单位后,得到抛物线y =-12x 2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)探究1在直角坐标系中画出函数y =12(x +3)2的图象. (1)指出函数图象的对称轴和顶点坐标;(2)根据图象回答,当x 取何值时,y 随x 的增大而减小?当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 取最大值或最小值?(3)怎样平移函数y =12x 2的图象得到函数y =12(x +3)2的图象? 解:(1)对称轴是直线x =-3,顶点坐标(-3,0);(2)当x<-3时,y 随x 的增大而减小;当x>-3时,y 随x 的的增大而增大;当x =-3时,y 有最小值;(3)将函数y =12x 2的图象沿x 轴向左平移3个单位得到函数y =12(x +3)2的图象. 点拨精讲:二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点. 探究2 已知直线y =x +1与x 轴交于点A ,抛物线y =-2x 2平移后的顶点与点A 重合.(1)求平移后的抛物线l 的解析式;(2)若点B(x 1,y 1),C(x 2,y 2)在抛物线l 上,且-12<x 1<x 2,试比较y 1,y 2的大小.解:(1)∵y =x +1,∴令y =0,则x =-1,∴A(-1,0),即抛物线l 的顶点坐标为(-1,0),又抛物线l 是由抛物线y =-2x 2平移得到的,∴抛物线l 的解析式为y =-2(x +1)2.(2)由(1)可知,抛物线l 的对称轴为x =-1,∵a =-2<0,∴当x>-1时,y 随x 的增大而减小,又-12<x 1<x 2,∴y 1>y 2. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.不画图象,回答下列问题:(1)函数y=3(x-1)2的图象可以看成是由函数y=3x2的图象作怎样的平移得到的?(2)说出函数y=3(x-1)2的图象的开口方向、对称轴和顶点坐标.(3)函数有哪些性质?(4)若将函数y=3(x-1)2的图象向左平移3个单位得到哪个函数图象?点拨精讲:性质从增减性、最值来说.2.与抛物线y=-2(x+5)2顶点相同,形状也相同,而开口方向相反的抛物线所对应的函数关系式是y=2(x+5)2.3.对于函数y=-3(x+1)2,当x>-1时,函数y随x的增大而减小,当x=-1时,函数取得最大值,最大值y=0.4.二次函数y=ax2+bx+c的图象向左平移2个单位长度得到y=x2-2x+1的图象,则b=-6,c=9.点拨精讲:比较函数值的大小,往往可根据函数的性质,结合函数图象,能使解题过程简洁明了.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3二次函数y=a(x-h)2+k的图象和性质(3)1.进一步熟悉作函数图象的主要步骤,会作函数y=a(x-h)2+k的图象.2.能正确说出y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标.3.掌握抛物线y=a(x-h)2+k的平移规律.重点:熟悉作函数图象的主要步骤,会作函数y=a(x-h)2+k的图象.难点:能正确说出y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,掌握抛物线y=a(x-h)2+k的平移规律.一、自学指导.(10分钟)自学:自学课本P35~36“例3、例4”,掌握y=a(x-h)2+k与y=ax2之间的关系,理解并掌握y=a(x-h)2+k的相关性质,完成填空.总结归纳:一般地,抛物线y =a(x -h)2+k 与y =ax 2的形状相同,位置不同,把抛物线y =ax 2向上(下)向左(右)平移,可以得到抛物线y =a(x -h)2+k ,平移的方向、距离要根据h ,k 的值来决定:当h>0时,表明将抛物线向右平移h 个单位;当k<0时,表明将抛物线向下平移|k|个单位.抛物线y =a(x -h)2+k 的特点是:当a>0时,开口向上;当a<0时,开口向下;对称轴是直线x =h ;顶点坐标是(h ,k).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟 1.教材P 37练习题2.函数y =2(x +3)2-5的图象是由函数y =2x 2的图象先向左平移3个单位,再向下平移5个单位得到的;3.抛物线y =-2(x -3)2-1的开口方向是向下,其顶点坐标是(3,-1),对称轴是直线x =3,当x>3时,函数值y 随自变量x 的值的增大而减小.一、小组讨论:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 填写下表:解析式 开口方向 对称轴 顶点坐标 y =-2x 2 向下 y 轴 (0,0) y =12x 2+1 向上 y 轴 (0,1) y =-5(x +2)2 向下 x =-2 (-2,0) y =3(x +1)2-4向上x =-1(-1,-4)点拨精讲:解这类型题要将不同形式的解析式统一为y =a(x -h)+k 的形式,便于解答. 探究2 已知y =a(x -h)2+k 是由抛物线y =-12x 2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线.(1)求出a ,h ,k 的值;(2)在同一坐标系中,画出y =a(x -h)2+k 与y =-12x 2的图象;(3)观察y =a(x -h)2+k 的图象,当x 取何值时,y 随x 的增大而增大;当x 取何值时,y 随x 的增大而减小,并求出函数的最值;(4)观察y =a(x -h)2+k 的图象,你能说出对于一切x 的值,函数y 的取值范围吗?解:(1)∵抛物线y=-12x2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线是y=-12(x-1)2+2,∴a=-12,h=1,k=2;(2)函数y=-12(x-1)2+2与y=-12x2的图象如图;(3)观察y=-12(x-1)2+2的图象可知,当x<1时,y随x的增大而增大;x>1时,y随x的增大而减小;(4)由y=-12(x-1)2+2的图象可知,对于一切x的值,y≤2.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.将抛物线y=-2x2向右平移3个单位,再向上平移2个单位,得到的抛物线解析式是y=-2(x-3)2+2.点拨精讲:抛物线的移动,主要看顶点位置的移动.2.若直线y=2x+m经过第一、三、四象限,则抛物线y=(x-m)2+1的顶点必在第二象限.点拨精讲:此题为二次函数简单的综合题,要注意它们的图象与性质的区别.3.把y=2x2-1的图象向右平移1个单位,再向下平移2个单位,得到的新抛物线的解析式是y=2(x-1)2-3.4.已知A(1,y1),B(-2,y2),C(-2,y3)在函数y=a(x+1)2+k(a>0)的图象上,则y1,y2,y3的大小关系是y2<y3<y1.点拨精讲:本节所学的知识是:二次函数y=a(x-h)2+k的图象画法及其性质的总结;平移的规律.所用的思想方法:从特殊到一般.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.4 二次函数y =ax 2+bx +c 的图象和性质(1)1.会画二次函数y =ax 2+bx +c 的图象,能将一般式化为顶点式,掌握顶点坐标公式,对称轴的求法.2.能将一般式化为交点式,掌握抛物线与坐标轴交点坐标的求法. 3.会求二次函数的最值,并能利用它解决简单的实际问题.重点:会画二次函数y =ax 2+bx +c 的图象,能将一般式化为顶点式,掌握顶点坐标公式,对称轴的求法.难点:能将一般式化为交点式,掌握抛物线与坐标轴交点坐标的求法.一、自学指导.(10分钟)自学:自学课本P 37~39“思考、探究”,掌握将一般式化成顶点式的方法,完成填空. 总结归纳:二次函数y =a(x -h)2+k 的顶点坐标是(h ,k),对称轴是x =h ,当a>0时,开口向上,此时二次函数有最小值,当x>h 时,y 随x 的增大而增大,当x<h 时,y 随x 的增大而减小;当a<0时,开口向下,此时二次函数有最大值,当x<h 时,y 随x 的增大而增大,当x>h 时,y 随x 的增大而减小;用配方法将y =ax 2+bx +c化成y =a(x -h)2+k的形式,则h =-b2a ,k =4ac -b 24a;则二次函数的图象的顶点坐标是(-b 2a ,4ac -b 24a ),对称轴是x =-b 2a ;当x =-b2a 时,二次函数y =ax 2+bx +c 有最大(最小)值,当a<0时,函数y 有最大值,当a>0时,函数y 有最小值.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 1.求二次函数y =x 2+2x -1顶点的坐标、对称轴、最值,画出其函数图象. 点拨精讲:先将此函数解析式化成顶点式,再解其他问题,在画函数图象时,要在顶点的两边对称取点,画出的抛物线才能准确反映这个抛物线的特征.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 将下列二次函数写成顶点式y =a(x -h)2+k 的形式,并写出其开口方向、顶点坐标、对称轴.(1)y=14x2-3x+21;(2)y=-3x2-18x-22.解:(1)y=14x2-3x+21=14(x2-12x)+21=14(x2-12x+36-36)+21=14(x-6)2+12∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.(2)y=-3x2-18x-22=-3(x2+6x)-22=-3(x2+6x+9-9)-22=-3(x+3)2+5∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.点拨精讲:第(2)小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.探究2用总长为60 m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?(1)S与l有何函数关系?(2)举一例说明S随l的变化而变化?(3)怎样求S的最大值呢?解:S=l(30-l)=-l2+30l(0<l<30)=-(l2-30l)=-(l-15)2+225画出此函数的图象,如图.∴l =15时,场地的面积S 最大(S 的最大值为225).点拨精讲:二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟) 1.y =-2x 2+8x -7的开口方向是向下,对称轴是x =2,顶点坐标是(2,1);当x =2时,函数y 有最大值,其值为y =1.2.已知二次函数y =ax 2+2x +c(a ≠0)有最大值,且ac =4,则二次函数的顶点在第四象限.3.抛物线y =ax 2+bx +c ,与y 轴交点的坐标是(0,c),当b 2-4ac =0时,抛物线与x 轴只有一个交点(即抛物线的顶点),交点坐标是(-b2a ,0);当b 2-4ac >0时,抛物线与x轴有两个交点,交点坐标是(-b±b 2-4ac2a ,0);当b 2-4ac<0时,抛物线与x 轴没有交点,若抛物线与x 轴的两个交点坐标为(x 1,0),(x 2,0),则y =ax 2+bx +c =a(x -x 1)(x -x 2).点拨精讲:与y 轴的交点坐标即当x =0时求y 的值;与x 轴交点即当y =0时得到一个一元二次方程,而此一元二次方程有无解,两个相等的解和两个不相等的解三种情况,所以二次函数与x 轴的交点情况也分三种.注意利用抛物线的对称性,已知抛物线与x 轴的两个交点坐标时,可先用交点式:y =a(x -x 1)(x -x 2),x 1,x 2为两交点的横坐标.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.4 二次函数y =ax 2+bx +c 的图象和性质(2)能熟练根据已知点坐标的情况,用适当的方法求二次函数的解析式.重难点:能熟练根据已知点坐标的情况,用适当的方法求二次函数的解析式.一、自学指导.(10分钟)自学:自学课本P39~40,自学“探究、归纳”,掌握用待定系数法求二次函数的解析式的方法,完成填空.总结归纳:若知道函数图象上的任意三点,则可设函数关系式为y=ax2+bx+c,利用待定系数法求出解析式;若知道函数图象上的顶点,则可设函数的关系式为y=a(x-h)2+k,把另一点坐标代入式中,可求出解析式;若知道抛物线与x轴的两个交点(x1,0),(x2,0),可设函数的关系式为y=a(x-x1)(x-x2),把另一点坐标代入式中,可求出解析式.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.二次函数y=4x2-mx+2,当x<-2时,y随x的增大而减小;当x>-2时,y随x 的增大而增大,则当x=1时,y的值为22.点拨精讲:可根据顶点公式用含m的代数式表示对称轴,从而求出m的值.2.抛物线y=-x2+6x+2的顶点坐标是(3,11).3.二次函数y=ax2+bx+c的图象大致如图所示,下列判断错误的是(D)A.a<0B.b>0C.c>0D.ac>0第3题图第4题图第5题图4.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为(A)A.0 B.-1 C.1 D.2点拨精讲:根据二次函数图象的对称性得知图象与x轴的另一交点坐标为(-1,0),将此点代入解析式,即可求出a-b+c的值.5.如图是二次函数y=ax2+3x+a2-1的图象,a的值是-1.点拨精讲:可根据图象经过原点求出a的值,再考虑开口方向.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3),求函数的关系式和对称轴.解:设函数解析式为y =ax 2+bx +c ,因为二次函数的图象经过点A(3,0),B(2,-3),C(0,-3),则有⎩⎪⎨⎪⎧9a +3b +c =0,4a +2b +c =-3,c =-3.解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.∴函数的解析式为y =x 2-2x -3,其对称轴为x =1.探究2 已知一抛物线与x 轴的交点是A(3,0),B(-1,0),且经过点C(2,9).试求该抛物线的解析式及顶点坐标.解:设解析式为y =a(x -3)(x +1),则有 a(2-3)(2+1)=9, ∴a =-3,∴此函数的解析式为y =-3x 2+6x +9,其顶点坐标为(1,12).点拨精讲:因为已知点为抛物线与x 轴的交点,解析式可设为交点式,再把第三点代入即可得一元一次方程,较之一般式得出的三元一次方程组简单.而顶点可根据顶点公式求出.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟) 1.已知一个二次函数的图象的顶点是(-2,4),且过点(0,-4),求这个二次函数的解析式及与x 轴交点的坐标.2.若二次函数y =ax 2+bx +c 的图象过点(1,0),且关于直线x =12对称,那么它的图象还必定经过原点.3.如图,已知二次函数y =-12x 2+bx +c 的图象经过A(2,0),B(0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.点拨精讲:二次函数解析式的三种形式:1.一般式y=ax2+bx+c;2.顶点式y=a(x-h)2+k;3.交点式y=a(x-x1)(x-x2).利用待定系数法求二次函数的解析式,需要根据已知点的情况设适当形式的解析式,可使解题过程变得更简单.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)22.2二次函数与一元二次方程(1)1.理解二次函数与一元二次方程的关系.2.会判断抛物线与x轴的交点个数.3.掌握方程与函数间的转化.重点:理解二次函数与一元二次方程的关系;会判断抛物线与x轴的交点个数.难点:掌握方程与函数间的转化.一、自学指导.(10分钟)自学:自学课本P43~45.自学“思考”与“例题”,理解二次函数与一元二次方程的关系,会判断抛物线与x轴的交点情况,会利用二次函数的图象求对应一元二次方程的近似解,完成填空.总结归纳:抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根.二次函数的图象与x轴的位置关系有三种:当b2-4ac>0时,抛物线与x轴有两个交点;当b2-4ac=0时,抛物线与x轴有一个交点;当b2-4ac<0时,抛物线与x轴有0个交点.这对应着一元二次方程ax2+bx+c=0根的三种情况:有两个不等的实数根,有两个相等实数。
八年级数学上导学案全册(新人教版)
EDCBADCB ADCBAED CBAFE DCB A EDCBA11.1全等三角形一、导学自习看教材1-2页,并解决下列问题:(聚焦学习目标1)1.找出各图中形状、大小完全相同的图形.2.举出现实生活中能够完全重合的图形的例子? 3.什么是全等形?什么是全等三角形?看教材P 3第一个“思考”及下面的两段,并解决下列问题:(聚焦学习目标2)1.一个图形经过平移、翻转、旋转后,位置变化了,但 和 都没有改变。
即平移、翻转、旋转前后的图形 .2.全等三角形的记法.如下图,△ABC 与△A 1B 1C 1全等,记作,“≌”读作 .3.指出上图中全等三角形的对应顶点、对应边和对应角.温馨提示:书写全等式时要求把对应顶点字母写在 的位置上. 看教材P 3第二个“思考”,并解决下列问题:(聚焦学习目标3) 全等三角形具有什么性质? 文字语言: 几何语言:二、研习展评(一)问题探究(一)(聚焦学习目标2) 1.在找全等三角形的对应元素时一般有什么规律?(二)问题探究(二)(聚焦学习目标3)2.如图,△ABC ≌△AED,AB 是△ABC 的最大边,AE 是△AED 的最大边, ∠BAC 与∠ EAD 对应角,且∠BAC=25°, ∠B=35°,AB=3cm,BC=1cm,求出∠E, ∠ ADE 的度数和线段DE,AE 的长度。
∠BAD 与∠EAC 相等吗?为什么?(三)学习体会(从知识、方法和思想等方面谈收获和体会)(四)检测反馈1.教材P 4练习1、2题.(做在书上)2.教材P 4习题11.1 1、2、3题(做在书上)3.如图△ABC ≌ △ADE,若∠D=∠B , ∠C= ∠AED ,则∠DAE= ; ∠DAB= . 4.判断题1B 1ABA 1ED CBADCBAEDCBA1)全等三角形的对应边相等,对应角相等.( ) 2)全等三角形的周长相等,面积也相等. ( ) 3)面积相等的三角形是全等三角形. ( ) 4)周长相等的三角形是全等三角形. ( ) 4.如图△ABD ≌ △EBC ,AB=3cm,BC=5cm,求DE 的长. 11.2 三角形全等的判定 (1) 一、导学自习1.复习:什么是全等三角形?全等三角形有些什么性质? 如图,△ABC ≌△A ′B ′C ′那么相等的边是: 相等的角是:2.(聚焦学习目标2)讨论三角形全等的条件(动手画一画并回答下列问题)(1)只给一个条件:一组对应边相等(或一组对应角相等),•画出的两个三角形一定全等吗? (2) 给出两个条件画三角形,有 种情形.按下面给出的两个条件,画出的两个三角形一定全等吗?①一组对应边相等和一组对应角相等 ②两组对应边相等 ③两组对应角相等(3) 给出三个条件画三角形,有 种情形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 三角形11.1.1 三角形的边 导学案【学习目标】1.认识三角形,•能用符号语言表示三角形,并把三角形分类.2.知道三角形三边不等的关系.3.懂得判断三条线段能否构成一个三角形的方法,•并能用于解决有关的问题【学习重点】知道三角形三边不等关系.【学习难点】 判断三条线段能否构成一个三角形的方法. 【学习过程】 一、学前准备回忆你所学过或知道的三角形的有关知识。
并写出来。
二、探索思考知识点一:三角形概念及分类1、学生自学课本2-3页探究之前内容,并完成下列问题:(1)三角形概念:由不在同一直线上的三条线段___________________所组成的图形叫做三角形。
如图,线段____、______、______是三角形的边;三角形的边,有时也用小写字母 来表示。
点A 、B 、C 是三角形的______;____、____、____是相邻两边组成的角,叫做三角形的内角,简称三角形的角。
上图中三角形记作__________。
读作 (2)三角形按角分类可分为_____________、______________、_________________。
(3)我们知道,一般的三角形三边都不相等,也就是常说的不等边三角形。
如果三边都相等的三角形叫做 ,其中只有两边相等的三角形叫做 。
如图1,等腰三角形ABC 中,AB=AC,腰是__________,底是_________,顶角指_______,底角指_____________. 等边三角形DEF 是特殊的_______三角形,DE=____=_____.图1故三角形按边分类可分为 _____________三角形 _____________ ——————— _____________1、下列图形中是三角形的有_______________?2、图3中有几个三角形?用符号表示这些三角形.知识点二:知道三角形三边的不等关系,并判断三条线段能否构成三角形 阅读第3页探究:请同学们画一个△ABC ,分别量出AB ,BC ,AC 的长,并比较下列各式的大小:AB+BC____AC , AB+ AC ____ BC , AC +BC ____ AB 从中你可以得出结论:__________________________________________。
1、下列长度的三条线段能否组成三角形?为什么? (1)3,4,8; (2)5,6,11; (3)5,6,102、有四根木条,长度分别是12cm 、10cm 、8cm 、4cm ,选其中三根组成三角形,能组成三角形的个数是_______个。
3、如果三角形的两边长分别是3和5,那么第三边长可能是( )A 、1B 、9C 、3D 、104、认真阅读课本第3页例题,仿照例题解法完成下面这个问题:一个三角形有两条边相等,周长为20cm ,三角形的一边长6cm ,求其他两边长。
三、当堂反馈1、 课本4页1、2题2、 一个等腰三角形的两边长分别是2和5,则它的周长是( )A 、7B 、9C 、12D 、9或123、若三角形的周长是60cm ,且三条边的比为3:4:5,则三边长分别为___________.4、(选做)若△ABC 的三边长都是整数,周长为11,且有一边长为4,则这个三角形可能的最大边长是___________.5、(选做)已知线段3cm,5cm,xcm,x 为偶数,以3,5,x 为边能组成______个三角形。
四、课堂小结:本节课你学到了那些知识?DE FABCA五、课后反思11.1.2 三角形的高、中线与角平分线 导学案【学习目标】1.认识并会画出三角形的高线,利用其解决相关问题;2.认识并会画出三角形的中线,利用其解决相关问题;3.认识并会画出三角形的角平分线,利用其解决相关问题;【学习重点】 认识三角形的高线、中线与角平分线,并会画出图形 【学习难点】 画出三角形的高线、中线与角平分线. 【学习过程】 一、学前准备1、三角形按边分可分为什么? 按角分可分为什么?2、下列长度的三个线段能否组成三角形?为什么?(1)3,6,8 (2)1,2,3 (3)6,8,2 二、探索思考知识点一:认识并会画三角形的高线,利用其解决相关问题 自学课本4页三角形的高并完成下列各题: 1、作出下列三角形三边上的高:2、上面第1个图中,AD 是△ABC 的边BC 上的高,则∠ADC=∠ = °3、由作图可得出如下结论:(1)三角形的三条高线所在的直线相交于 点;(2)锐角三角形的三条高相交于三角形的 ;(3)钝角三角形的三条高所在直线相交于三角形的 ;(4)直角三角形的三条高相交三角形的 ;(5)交点我们叫做三角形的垂心。
练习一:如图所示,画△ABC 的一边上的高,下列画法正确的是( ).知识点二:认识并会画三角形的中线,利用其解决相关问题 自学课本4页三角形的中线并完成下列各题: 1、 作出下列三角形三边上的中线2、AD 是△ABC 的边BC 上的中线,则有BD = =21, 3、由作图可得出如下结论:(1)三角形的三条中线相交于 点; (2)锐角三角形的三条中线相交于三角形的 ;(3)钝角三角形 的三条中线相交于三角形的 ;(4)直角三角形的三条中线相交于三角形的 ; (5)三条中线的交点我们叫做三角形的 。
练习二:如图,D 、E 是边AC 的三等分点,图中有 个三角形,BD 是三角形 中 边上的中线,BE 是三角形 中________上的中线;知识点三:认识并会画三角形的角平分线,利用其解决相关问题 自学课本5页三角形的角平分线并完成下列各题: 1、作出下列三角形三角的角平分线:2、AD 是△ABC 中∠BAC 的角平分线,则∠BAD=∠ =21∠ 3、由作图可得出如下结论:(1)三角形的三条角平分线相交于 点;(2)锐角三角形的三条角平分线相交三角形的 ;(3)钝角三角形的三条角平分线相交三角形的 ;(4)直角三角形的三条角平分线相交三角形的 ;(5)三条角平分线的交点我们叫做三角形的内心。
练习三:如图,已知∠1=21∠BAC ,∠2 =∠3,则∠BAC 的平分线为 ,∠ABC 的平分线为 .总结:三角形的高、中线、角平分线都是一条线段。
三、当堂反馈1.课本5页练习第1、2题。
2.三角形的角平分线是( ).A .直线B .射线C .线段D .以上都不对3.下列说法:①三角形的角平分线、中线、高线都是线段;•②直角三角形只有一条高线;③三角形的中线可能在三角形的外部;④三角形的高线都在三角形的内部,并且相交于一点,其中说法正确的有( ).A .1个B .2个C .3个D .4个 4.如图,过点A 画BC 边的高AD 、角平分线AE 和中线AF ,写出图中所有相等的角和相等的线段。
5.(选做)在△ABC 中,AB=AC ,AC 边上的中线BD 把三角形的周长分为12cm 和15cm 两部分,求三角形各边的长.四、课堂小结 本节课你学到了那些知识?A CB A CB ACB ACB A CB AC B A BC五、课后反思11.1.3 三角形的稳定性导学案【学习目标】1.认识三角形的稳定性,并会用其解决一些实际问题;2、通过练习进一步巩固三角形的边和相关线段。
【学习重点】三角形的稳定性【学习难点】三角形的稳定性的理解【学习过程】一、学前准备找找生活中的引用三角形和四边形的例子,写出来。
二、探索思考知识点一:三角形的稳定性自学课本6-7页内容,回答下列问题:1、通过观察,你发现生活中哪些物体的结构是三角形?实际动手做一做1、用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?2、用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?4、如图4所示,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?5、想一想:在实际生活中还有哪些地方利用了“三角形的稳定性”来为我们服务?“四边形易变形”是优点还是缺点?生活中又有哪些应用?1.如图,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条,这样做的数学道理是;2.⑴下列图中哪些具有稳定性?。
⑵对不具稳定性的图形,请适当地添加线段,使之具有稳定性。
3.造房子的屋顶常用三角结构,从数学角度来看,是应用了______________,而活动接架则应用了四边形的_______________。
知识点二:通过练习进一步巩固三角形的边和相关线段三、当堂反馈1.如图:(1)在△ABC中,BC边上的高是________(2)在△AEC中,AE边上的高是________(3)在△FEC中,EC边上的高是_________(4)若AB=CD=2cm,AE=3cm,则=_______,CE=_______。
2.以下列各组线段长为边,能组成三角形的是 ( )A.1cm,2cm,4cm;B.8cm,6cm,4cmC.12cm,5cm,6cm;D.2cm,3cm,6cm3.已知等腰三角形的两边长分别为6cm和3cm,则该等腰三角形的周长是( )A.9cmB. 12cmC. 12cm或15cmD. 15cm4.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米5、如图,点D是BC边上的中点,如果AB=3厘米,AC=4厘米,则△ABD和△ACD的周长之差为________,面积之差为__________。
6、请将课本第8页习题11.1第1、2、3、4、5做在书上,第6、7、8、9做在作业本上。
四、课堂小结本节课你学到了那些知识?AOBAB DCAECs△_F_A_D_C_B_E123456五、课后反思 11.1 与三角形有关的线段练习 导学案【学习目标】通过练习进一步巩固三角形的边和相关线段。
【学习重点】巩固三角形的边和相关线段; 【学习难点】 三角形三边不等关系的运用 【学习过程】 一、学前准备 1、什么叫做三角形?2、三角形按边可分为什么?按角可分为什么?3、三角形三边不等关系是什么?4、三角形的高、中线、角平分线各有什么特征?5、三角形具有_______性,四边形具有_________性。
二、达标检测:1.如图1,图中所有三角形的个数为 ,在△ABE 中,AE 所对的角是 ,∠ABC 所对的边是 ,在△ADE 中,AD 是∠ 的对边,在△ADC 中,AD 是∠ 的对边;2.如图2,已知∠1=21∠BAC ,∠2 =∠3,则∠BAC 的平分线为 ,∠ABC 的平分线为 ;3.如图3,D 、E 是边AC 的三等分点,图中有 个三角形,BD 是三角形 中 边上的中线,BE 是三角形 中 边上的中线;图1 图2 图34.若等腰三角形的两边长分别为7和8,其周长为 ;若两边长分别为4和8,其周长为_____.5. 一个三角形的三边之比为2∶3∶4,周长为36cm ,则此三角形三边的长分别为____________.6.已知△ABC 中,AD 为BC 边上的中线,AB=10cm ,AC=6cm ,则△ABD 与△ACD 的周长之差为_______. 7.如右图,图中共有三角形 ( )A 、4个B 、5个C 、6个D 、8个 8.下列长度的三条线段中,能组成三角形的是 ( )A 、 3cm ,5cm ,8cmB 、8cm ,8cm ,18cmC 、0.1cm ,0.1cm ,0.1cmD 、3cm ,40cm ,8cm 9.如果线段a ,b ,c 能组成三角形,那么,它们的长度比可能是 ( ) A 、1∶2∶4 B 、1∶3∶4 C 、3∶4∶7 D 、2∶3∶410.如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为 ( ) A 、5 B 、6 C 、7 D 、8 11.如图,分别画出三角形过顶点A 的中线、角平分线和高。