压电式传感器 (3)

合集下载

压电式传感器工作原理

压电式传感器工作原理

压电式传感器工作原理压电式传感器是一种将压电效应应用于传感器中的设备,它可以将压力、力、加速度、温度等物理量转换为电信号。

压电效应是指某些晶体在受到外力作用时会产生电荷,这种效应被应用在压电式传感器中,使其能够实现物理量到电信号的转换。

本文将介绍压电式传感器的工作原理及其应用。

1. 压电效应压电效应是指某些晶体在受到外力作用时会产生电荷的现象。

这种效应最早是由法国物理学家居里夫妇在1880年发现的,他们发现某些晶体在受到机械应力时会产生电荷,这种现象被称为正压电效应。

此外,这些晶体在受到电场作用时也会发生形变,这种现象被称为逆压电效应。

这两种效应被应用在压电式传感器中,使其能够实现物理量到电信号的转换。

2. 压电式传感器的结构压电式传感器通常由压电陶瓷、电极、外壳和连接线组成。

压电陶瓷是压电式传感器的核心部件,它是由压电晶体制成的,具有压电效应。

电极用于接收压电陶瓷产生的电荷,并将其转换为电信号。

外壳用于保护压电陶瓷和电极,连接线用于将电信号传输到外部设备。

3. 压电式传感器的工作原理当压电式传感器受到压力、力、加速度或温度等物理量的作用时,压电陶瓷会产生电荷。

这些电荷会被电极接收,并转换为电信号。

这个电信号可以是电压、电流或电荷量,其大小与作用在传感器上的物理量成正比。

通过测量电信号的大小,就可以确定作用在传感器上的物理量的大小。

4. 压电式传感器的应用压电式传感器具有灵敏度高、频率响应快、稳定性好等优点,因此被广泛应用于工业自动化、汽车电子、医疗设备、航空航天等领域。

例如,在工业自动化中,压电式传感器可以用于测量压力、力等物理量,用于控制和监测生产过程。

在汽车电子中,压电式传感器可以用于测量发动机的振动和噪声,用于改善车辆的驾驶舒适性。

在医疗设备中,压电式传感器可以用于测量血压、心率等生理参数,用于诊断和治疗疾病。

在航空航天中,压电式传感器可以用于测量飞机的结构应力和振动,用于确保飞行安全。

压电式传感器_图文

压电式传感器_图文

④温度和湿度稳定性要好:具有较高的居里点、以期望得 到宽的工作温度范围;
⑤时间稳定性:压电特性不随时间蜕变。
返回
上页
下页
6.5 测量电路
6.4.1电压放大器
电压放大器的作用是将压电式传感器的高输 出阻抗经放大器变换为低阻抗输出,并将微 弱的电压信号进行适当放大.因此也把这种 测量电路称为阻抗变换器。 其中
返回
上页
下页
6.3 压电材料
选用合适的压电材料是设计高性能传感器的关键。一般应 考虑以下几个方面:
①转换性能:具有较高的耦合系数或具有较大的压电常数 ;
②机械性能:压电元件作为受力元件,希望它的机械强度 高、机械刚度大。以期获得宽的线性范围和高的固有振动 频率;
③电性能:希望具有高的电阻率和大的介电常数,以期望 减弱外部分布电容的影响并获得良好的低频特性;

相对轴向灵敏度的百分比表
示。
返回
上页
下页
6.2 影响压电式传感器主要因数
定义(用轴向灵敏度的百分比表示): 最大横向灵敏度
Km=(Ky/Kz)100% =tg×100%;
一般横向灵敏度
Kt=(Kt/Kz)100% =tg×cos×100%;
返回
上页
下页
6.2 影响压电式传感器主要因数
产生横向灵敏度的必要条件 (1)伴随轴向作用力的同时,存在横向力; (2)压电元件本身具有横向压电效应。 消除横向灵敏度的技术途径 (1)从设计、工艺和使用诸方面确保力与电轴的
一致; (2)尽量Βιβλιοθήκη 取剪切型的力-电转换方式。一只较好
的压电传感器,最大横向灵敏度不大于5%。
返回
上页
下页

压电式传感器原理及应用

压电式传感器原理及应用
(2)锆钛酸铅Pb(Zr·Ti)O3系压电陶瓷(PZT) 压电系数较高,各项机电参数随温度、时间等外界条件的
变化小,在锆钛酸铅的基方中添加一两种微量元素,可以 获得不同性能的PZT材料。 (3)铌镁酸铅Pb(MgNb)O3-PbTiO3-PbZrO3压电陶瓷(PMN)
具有较高的压电系数,在压力大至700kg/cm2仍能继续 工
产生电荷
02
d11——压 电系数
(C/N)
03
作用力是沿 着机械轴方

电荷仍在与 X轴垂直的
平面
a
a
Qx d12bFy d11bFy
04 此时,
返回
d12 d11
上一页
下一页
切片上电荷的符号与受力方向的关系
图(a)是在X轴方向受压力, 图(b)是在X轴方向受拉力, 图(c)是在Y轴方向受压力, 图(d)是在Y轴方向受拉力。
返回
上一页
下一页
2.压电式传感器的信号调节电路
压电式传感器要求负载电阻RL必须有很大的数值,才能使测量误差小到一定数值以 内。
因此常先接入一个高输入阻抗的前置放大器,然后再接一般的放大电路及其它电路。
测量电路关键在高阻抗的前置放大器。
前置放大器两个作用:
○ 把压电式传感器的微弱信号放大; ○ 把传感器的高阻抗输出变换为低阻抗输出。
作,可作为高温下的力传感器。
返回
上一页
下一页
1
等效电路及信号变换电路
2
一.压电元件的等效电路 二.压电式传感器的信号调节
电路
1.压电元件的等效电路
Ca
s
h
r0s
h
U Q Ca
返回
上一页
下一页

压电式传感器的原理及应用

压电式传感器的原理及应用

压电式传感器的原理及应用压电式传感器是一种应用了压电效应的传感器,通过将压电材料置于受力区域,当被测物体发生变形或受力时,压电材料发生形变,从而产生电荷信号,利用该信号来测量被测量的变化情况。

一、压电效应的原理压电效应是一种物理现象,指在压力或拉伸下,某些晶体(通常是晶体的极性方向)会产生电位差。

这种效应被广泛应用于各种传感器中,特别是在加速度计、其它惯性传感器、压力传感器和液位传感器等方面。

二、压电式传感器的原理压电式传感器通常由压电晶体和测量电路组成。

当被测物体发生形变或受力时,压电材料中的极性方向的晶体产生压电效应,导致产生电荷的位移,并与电荷电容匹配的放大器或其他电路连接。

由于被测量的变化(压力,成形,位移等)与电荷位移之间存在特定关系,所以可以根据电荷电荷读数来确定被测物体发生变化的精确程度。

三、压电式传感器的应用由于压电效应具有高灵敏度、高频响应、耐腐蚀、抗干扰等优点,压电式传感器在各种领域得到广泛应用。

1.压力测量:压电式传感器常用于压力传感器的制造,用于测量汽车轮胎、气缸、油压和空气压力等。

2.振动测量:压电式传感器还可以用于测量机器和车辆的振动水平,以便定位有问题的部件。

3.流量测量:压电式传感器在流量测量中应用广泛,例如在医疗方面测量血流,工业方面可以应用于计算液体的流量。

4.力学测试:压电式传感器的高灵敏度和高频响应特性,在体育、自然科学和工程学中用于测量冲击、震动和变形等量。

5.地震观测:压电式传感器还可以用于地震观测,以便在监测过程中测量地震的振动率。

压电式传感器在上述应用领域中具有重要作用,并与其他类型的传感器如压阻式传感器、光电式传感器、磁性传感器等合作,实现了各种领域的数据测量工作,体现了良好的应用前景。

第3章 压电式传感器

第3章 压电式传感器

图3-1 天然结构的石英晶体示意图
第3章 压电式传感器
从晶体上沿着轴线切下的一片压电元件称为压电晶片,当晶片在沿X 轴方向有作用力Fx作用时,会在与X轴方向垂直的表面产生电荷,其大小 为: q x d11Fx (电荷极性由力的方向决定)
当晶片在沿Y轴方向有作用力Fy作用时,会在与Y轴方向垂直的表面产 生电荷,其大小为: q y d11 a Fy (电荷极性由力的方向决定) b L 从以上两式可以看出,纵向压电效应与元件尺寸无关,而横向压电效 应与元件尺寸有关;且从式中的负号可以看出,两者产生电荷的极性相反。 综上所述,晶体切片上电荷的符号与受力方向的关系可用图3-2表示。
1—基座;2—压电片;3—质 量块;4—弹簧;5—壳体
第3章 压电式传感器
图3-12是一种振动加速度传感器的测量电路。电路中,利用传感 器将被测加速度转换成电压输出,经过运放741和阻容元件组成的二 阶低通滤波器将53Hz以上的振荡频率衰减,再经IC2(3521)和阻容元 件组成的高通滤波器滤去低于1Hz的振荡频率。IC3与IC4组成交流放大 积分器,可以将IC2的输出转换成速度输出。IC5与IC6又可以将速度积 分成位移输出。由于加速度、速度、位移幅度的不同,为了都能送至 同一片MC14433做A/D转换,电路中配备了未标阻值的三个串联分压器, 可以根据需要设计选择。图中IC7是反相器。
第3章 压电式传感器
图3-12 振动加速度传感器测量电路图
第3章 压电式传感器
3.4.3 电子气压计 用气压表监测大气压力,对于预报天气具有重要的意义。传统的气压 计是玻璃管式的气压表,在使用之前,需要调节刻度盘指针位置,经较 长时间才能测量出气压的变化,而且由于机械磨擦的影响,会带来很大 的测量误差。这里介绍的电子气压计,是用压电片作为压力传感器,用

压电式压力传感器原理及应用

压电式压力传感器原理及应用

压电式压力传感器原理及应用自动化研1302班王民军压电式压力传感器是工业实践中最为常用的一种传感器。

而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也叫压电式压电传感器。

压电式压力传感器可以用来测量发动机内部燃烧压力的测量与真空度的测量。

也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。

它既可以用来测量大的压力,也可以用来测量微小的压力。

一、压电式传感器的工作原理1、压电效应某些离子型晶体电介质(如石英、酒石酸钾钠、钛酸钡等)沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。

当外力去掉后,它又会重新回到不带电的状态,此现象称为“压电效应”。

压电式传感器的原理是基于某些晶体材料的压电效应。

2、压电式压力传感器的特点压电式压力传感器是基于压电效应的传感器。

是一种自发电式和机电转换式传感器。

它的敏感元件由压电材料制成。

压电材料受力后表面产生电荷。

此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。

压电式压力传感器用于测量力和能变换为力的非电物理量,如压力、加速度等(见压电式压力传感器、加速度计)。

压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。

由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系:Q=k*S*p。

式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。

通过测量电荷量可知被测压力大小。

压电式压力传感器的工作原理与压电式加速度传感器和力传感器基本相同,不同的是弹性元件是由膜片等把压力转换成集中力,再传给压电元件。

为了保证静态特性及稳定性,通常多采用压电晶片并联。

在压电式压力传感器中常用的压电材料有石英晶体和压电陶瓷,其中石英晶体应用得最为广泛。

二、压电压力传感器等效电路和测量电路在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。

压电式传感器实验报告

压电式传感器实验报告

压电式传感器实验报告压电式传感器实验报告引言压电式传感器是一种常见的传感器类型,利用压电效应来测量物理量。

本实验旨在通过实际操作和数据分析,探索压电式传感器的工作原理和应用。

实验目的1. 了解压电效应的基本原理;2. 掌握压电式传感器的工作原理;3. 学习使用实验仪器和测量设备;4. 分析压电式传感器在不同应用场景下的特点和限制。

实验器材与方法1. 实验器材:压电式传感器、信号放大器、示波器、电源等;2. 实验方法:将压电式传感器与信号放大器和示波器连接,通过施加外力或改变环境条件,观察传感器输出信号的变化。

实验过程与结果1. 实验一:压力测量将压电式传感器连接到信号放大器和示波器,施加不同的压力到传感器上,并记录示波器上的输出信号。

结果显示,当施加压力时,传感器输出的电压信号随之增加,表明压电式传感器能够准确测量外部压力。

2. 实验二:温度测量将压电式传感器暴露在不同温度环境下,记录示波器上的输出信号。

结果显示,传感器输出的电压信号随温度的升高而增加,说明压电式传感器对温度变化敏感,并可用于温度测量。

3. 实验三:振动测量将压电式传感器固定在振动源上,记录示波器上的输出信号。

结果显示,传感器输出的电压信号随振动频率和振幅的变化而变化,表明压电式传感器能够测量振动的特征。

讨论与分析1. 压电效应是压电式传感器工作的基础,其原理是施加压力或改变温度会使压电材料产生电荷分离和极化,进而产生电压信号。

2. 压电式传感器的优点包括高灵敏度、快速响应和广泛的应用领域。

然而,它也存在一些限制,如温度和湿度对传感器性能的影响,以及易受机械冲击和振动的干扰。

3. 在实际应用中,压电式传感器可用于压力、温度、振动等物理量的测量,如工业自动化、医疗设备、环境监测等领域。

结论通过本实验,我们深入了解了压电式传感器的工作原理和应用。

压电式传感器具有广泛的应用前景,但在实际使用中需要考虑其特点和限制。

通过进一步的研究和改进,可以提高压电式传感器的性能和可靠性,推动其在各个领域的应用。

《传感器技术及其应用》第03单元 压电传感器的应用—压电传感实验

《传感器技术及其应用》第03单元 压电传感器的应用—压电传感实验

电荷放大模块电路图:
比较器模块电路图:
(1)压电传感模块场景模拟界面认识 压电传感模块场景模拟界面主要包括5个部分,
模拟场景、压电特性曲线、放大信号和灵敏度调节 信号AD值、模拟车速检测的参数、比较器输出状态。
任务一 实验目的 任务二 是按原理 任务三 实验步骤
1. 振动实验模块的启动
(1)将NEWLab实验硬件平台通电并与电脑连接。
原理说明
1. 压电式传感器的工作原理 (1)压电效应 :
表达这一关系的压电方程如式:
式中 F——作用的外力; Q——产生的表面电荷; d——压电系数,是描述压电效应的物理量。
原理说明
(2)等效电路 其电容量为:
式中 S——压电元件电极面的面积,单位为; δ——压电元件厚度,单位为; ε——压电材料的介电常数,单位为,它随材料不同而不 同,如锆钛酸铅的;
第3单元 压电传感器的应用--压 电传感器实验
任务一 实验目的 任务二 实验原理 任务三 实验步骤
单元任务预览
一、实验目的 了解压电传感器的检测原理 掌握压电传感器的检测电路及方法 了解压电传感模块的原理并掌握其测量方法
任务一 实验目的 任务二 实验原理 任务三 实验步骤
原理说明
压电式传感器是将被测量变化转换成材料受 机械力产生静电电荷或电压变化的传感器,是一 种典型的、有源的、双向机电能量转换型传感器 或自发电型传感器。压电元件是机电转换元件, 它可以测量最终能变换为力的非电物理量,例如 力、压力、加速度等。
点为1210℃。
c)压电陶瓷:
4. NEWLab压电传感模块认识
①LDT0-028K压电薄膜传感器; ②电荷放大模块电路; ③灵敏度调节电位器; ④信号放大比较器模块; ⑤灵敏度调节信号接口J10,测量灵敏度调节点位器可调端 输出电压,即比较器1正端(3脚)的输入电压; ⑥传感器信号接口J7,测量压电传感器的输出信号; ⑦电荷信号接口J4,测量电荷放大模块的输出信号; ⑧放大信号接口J6,测量信号放大电路输出信号,即比较器 1负端(2脚)的输入信号; ⑨比较输出接口J3,测试信号放大比较器模块的输出信号。 ⑩接地GND接口J2

压电式传感器

压电式传感器

3.压电元件
用压电材料制造的传感元件称作压电元件。
第一节
压电式传感器的工作原理
4.压电效应机理 现以石英晶体为例,简要说明压电效应的机理。 (1)石英晶体的结构 石英晶体是二氧化硅单晶,属于六角 晶系。右图是天然晶体的外形图,它为规 则的六角棱柱体。 z 轴又称光轴,它与晶体的纵轴线方向 一致; x 轴又称电轴,它通过六面体相对的两 个棱线并垂直于光轴; y 轴又称为机械轴,它垂直于两个相对 的晶柱棱面。
AQ Uo [Ca Cc Ci (1 A)Cf ]
当 A 足够大时,则(1 + A)Cf >>(Ca + Cc + Ci),这样
AQ Q Uo (1 A)Cf Cf
由此可见,电荷放大器的输出电压仅与输入电荷和反馈电 容有关,电缆电容等其他因素的影响可以忽略不计。
第一节
压电式传感器的工作原理
(2)纵向压电效应 从晶体上沿 x y z 轴线切下的一片平 行六面体的薄片称为晶体切片。 它的六个面分别垂直于光轴、电轴 和机械轴。通常把垂直于 x 轴的上下两
个面称为 x 面,把垂直于 y 轴的面称为
y 面。 如右图所示。当沿着 x 轴对晶片施 加力时,将在 x 面上产生电荷,这种现 象称为纵向压电效应。
压电式传感器:一种典型的自发电式传感器。它以某些电 介质的压电效应为基础,在外力作用下,在电介质表面将产生 电荷,从而实现非电量电测的目的。压电传感元件是力敏感元 件。 应用:它可以测量那些最终可以变换为力的非电物理量, 但不能用于静态参数的测量。
第一节 压电式传感器的工作原理
一、压电效应
二、压电材料
第三节
压电式传感器的结构与应用
二、压电式加速度传感器

第6章压电式传感器课件

第6章压电式传感器课件
②逆压电效应 在这些电介质的极化方向上施加 电场,它们也会产生变形,电场去掉后,变形随之消 失,这种现象称逆压电效应,或电致伸缩效应。
6.1.1 压电效应
1.石英晶体的压电效应 石英晶体是最常用的压电晶
体 之 一 。 其 化 学 成 分 为 SiO2 , 是 单晶体结构。它理想的几何形状 为正六面体晶柱,实际上两端为 晶锥形状。通过上下晶锥顶点的z 轴称为光轴,在此方向不产生压 电效应。
为了使压电陶瓷具有压电效 应,就必须在一定温度下对其进 行极化处理,即给压电陶瓷加外 电场,使电畴规则排列,从而具 备压电性能。
6.1.1 压电效应
外加电场的方向即是压电陶瓷的极化方向,通 常取沿z轴方向。左图为施加外电场时的情形。外加 电场去掉后,电畴极化方向基本保持原极化方向,如 右图所示。因此,压电陶瓷的极化强度不恢复为零, 而是存在着很强的剩余极化强度。
6.1.2 压电材料
(4)温度性能 要求压电材料具有较高的居里 点,以便获得较宽的工作温度范围,这是因为居 里点是压电材料开始失去压电效应的温度。
(5)长期稳定性 要求压电材料的压电特性不 随时间蜕变。
6.1.2 压电材料
1.压电晶体 由晶体学可知,无对称中心的晶体通常具有压
电效应,具有压电效应的单晶体统称为压电晶体。 石英晶体是最典型而常用的压电晶体,其特点是
P ql
式中,q为电荷量;l为正负电荷 间的距离。
6.1.1 压电效应
当石英晶体沿x轴方向被压缩时,沿y方向产生 拉伸变形,使正负离子的相对位置改变。P1、P2、P3 的矢量和不再为零,在x轴方向的分量小于零,因而 在x轴正方向的晶体表面上产生负电荷,在相对表面 上产生正电荷。
然而,电偶极矩的矢量和在 y轴和z轴的分量还是零,所以在 垂直于y轴和z轴的晶体表面上不 会出现电荷,d21=d31=0。

压电式传感器振动实验报告

压电式传感器振动实验报告

压电式传感器振动实验报告
引言
压电式传感器是近年来应用广泛的一种传感器,被应用于振动检测、振动分析、振动监测等领域,为计算机系统采集振动信号提供了一种新的方法。

本实验以陶瓷作为介质,介绍如何用压电式传感器来检测振动,以及用相应的实验设备来检验压电式传感器的振动检测功能。

实验内容
1.实验前的准备工作
(1)实验前需要准备一个压电式传感器,这种传感器可以检测振动;
(2)准备一个振动台,这个振动台可以在实验过程中提供振动。

(3)准备一台计算机,用于记录压电式传感器检测到的振动信号。

2.压电式传感器安装
(1)在振动台上安装压电式传感器,将压电式传感器安装在振动台上;
(2)将压电式传感器连接到计算机上,这样可以将检测到的振动信号传送到计算机;
(3)开启计算机,打开软件,将压电式传感器和计算机连接起来,就可以在软件中查看振动信号。

实验结果
按照上述步骤,实验中使用的压电式传感器能够正常检测到振动信号,同时在计算机上可以显示出检测到的振动信号,如下图所示:结论
根据本实验的结果可以看出,压电式传感器能够正常检测出振动信号,并能够将振动信号传输到计算机上,它可以在检测和监控振动信号方面发挥作用,因此可以作为一种新的检测振动的方法。

压电式传感器实验报告

压电式传感器实验报告

传感器测振动实验报告院系: 电子通信工程系班级: 应电112班、小组: 第二组组员:日期: 2013年5月14日实验二十二压电式传感器测振动实验一、实验目的: 了解压电传感器的测量振动的原理和方法。

二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。

(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动, 质量块便有正比于加速度的交变力作用在晶片上, 由于压电效应, 压电晶片上产生正比于运动加速度的表面电荷。

三、需用器件与单元: 振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。

双踪示波器。

1、实验步骤:2、压电传感器装在振动台面上。

3、将低频振荡器信号接入到台面三源板振动源的激励源插孔。

图7-1压电式传感器性能实验接线图将压电传感器输出两端插入到压电传感器实验模板两输入端, 见图7-1, 与传感器外壳相连的接线端接地, 另一端接R1。

将压电传感器实验模板电路输出端Vo1, 接R6。

将压电传感器实验模板电路输出端V02, 接入低通滤波器输入端Vi, 低通滤波器输出V0与示波器相连。

4、合上主控箱电源开关, 调节低频振荡器的频率和幅度旋钮使振动台振动, 观察示波器波形。

5、改变低频振荡器的频率, 观察输出波形变化。

6、用示波器的两个通道同时观察低通滤波器输入端和输出端波形。

实验三十光纤式传感器测量振动实验一、实训目的: 了解光纤传感器动态位移性能。

二、实训仪器: 光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。

三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应, 用合适的测量电路即可测量振动。

四、实训内容与操作步骤光纤位移传感器安装如图所示, 光纤探头对准振动平台的反射面, 并避开振动平台中间孔。

2.根据“光纤传感器位移特性试验”的结果, 找出线性段的中点, 通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。

压电式传感器资料

压电式传感器资料
压电式传感器资料
目录
CONTENTS
• 压电式传感器概述 • 压电效应及材料特性 • 传感器结构与工作原理 • 性能评价与测试方法 • 选型、安装与使用注意事项 • 典型应用案例分析
01 压电式传感器概述
CHAPTER
定义与工作原理
定义
压电式传感器是一种利用压电效应将机械能转换为电能的装置。其核心部件是压 电材料,当受到外力作用时,压电材料内部会产生极化现象,从而在材料表面产 生电荷,实现机械能到电能的转换。
01
03
机械品质因数
反映压电材料在振动过程中的能量损 耗,影响传感器的频率响应和稳定性。
选用依据
根据具体应用场景和需求,综合考虑 压电材料的性能参数、成本、加工难 度等因素进行选择。
05
04
居里温度
压电材料失去压电性的温度点,选用 时需考虑传感器的工作温度范围。
03 传感器结构与工作原理
CHAPTER
航空航天
在航空航天领域,压电式传感器可用于测量飞行 器的加速度、振动、压力等参数,确保飞行器的 安全和稳定。
军事领域
压电式传感器在军事领域也有广泛应用,如用于 测量枪炮射击时的后坐力、导弹发射时的冲击力 等。
谢谢
THANKS
压电力传感器
压电压力传感器
利用压电元件在压力作用下产生电荷 的原理来测量压力。广泛应用于气压、 液压等压力测量领域。
通过测量受力物体对压电元件的作用 力来测量力的大小。常用于工业控制、 机器人等领域中的力反馈控制。
04 性能评价与测试方法
CHAPTER
性能评价指标体系建立
重复性
线性度
描述传感器输出信号与被测量之 间线性关系的程度,用线性误差 表示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锡导电电极,再用超声波焊接上
两根柔软的电极引线。并用保护
膜覆盖。
质量块
使用时,用瞬干胶将其粘
贴在玻璃上。当玻璃遭暴力打碎 的瞬间,压电薄膜感受到剧烈振 动,表面产生电荷Q,在两个输 出引脚之间产生窄脉冲报警信号。
2020/4/22
48
压电式周界报警系统
(用于重要位置出入口、周界安全防护等)
应用:电声器件,可进行压力、加速度、温度、水声探测 等应用,在生物医学领域广泛应用。
2020/4/22
27
高分子压电材料制作的压电薄膜和电缆
2020/4/22
28
三、压电式传感器
1、概述 压电式传感器的基本原理是利用压电材料
的压电效应,即当施加力作用在压电材料上,传 感器就有电荷(或电压)输出。
2020/4/22
17
石英晶体压电模型
++++++++
P1
x y
2020/4/22
P2
P3
---------
P1增大, P2、 P3 减小。 在 x轴上出现电 荷, 它的极性 为x轴正向为 负电荷。 在y 轴方向上不 出现电荷。
18
石英晶体压电模型
当作用力Fx、Fy的方向相反时,电荷的极性 也随之改变,输出电压的频率与动态力的频 率相同。
上式变为:
Uo
q Cf
电荷放大器的输出电压Uo只与输入电荷q(成正比) 和反馈电容Cf(100~104pF)有关,而与电缆电容 Ce无关
2020/4/22
41
五、应用
石英晶体振荡器、压力传感器、超声换能器 广泛用于通讯(卫星接收、对讲机、电话机
等)、家电(TV/VCD/DVD等)、电脑、汽车电 子、电子游戏机等领域
12
石英晶体压电模型
x y
2020/4/22
P1
P2
P3
此时正负电荷 重心不再重合, 电偶极矩在x 方向上的分量 由于P1的减小 和P2、P3的增 加而不等于零
13
石英晶体压电模型
x y
2020/4/22
- --- -Байду номын сангаас-
P1
P2
P3
在x轴的正方 向出现正电荷, 电偶极矩在y 方向上的分量 仍为零, 不出 现电荷。
30
当受外力作用时,产生电荷Q
电荷等效: Q=CaUa
电压等效:
ua
Q Ca
2020/4/22
31
实际使用中,还需要考虑连接电缆的等效电容
Ce、放大器的输入电阻Ri、输入电容Ci以及传感器 的泄漏电阻Ra。
实际等效电路如图所示:
2020/4/22
32
3、压电元件的连接
多片压电元件的组合
单片压电元件产生电荷量甚微,为提高压电传
2)并联
Ce nC Ue U Qe nQ
并联使压电传感器时间常数增大, 电荷灵敏度增大,适合于电荷输出、低 频信号测量场合。
2020/4/22
++++ ---- ---- ++++ ++++ ----
34
4、压电元件的分类
按受力和形变方式
厚度变形 长度变形 体积变形
厚度剪切变形
5、预载
在测量低压力时,由于力传递系数非线性(低压力下力 的损失较大)存在,导致压电式传感器线性度不好。为此, 在测量时需要加入预加力——预载。这样,不仅消除压力使 用中的非线性外,还可消除传感器内外接触表面的间隙,提 高刚度。在测量拉力、拉-压交变力及剪力和扭矩时必须给 压电传感器施加预载。
2020/4/22
35
四、测量电路
压电传感器自身内阻抗很高,且输出能量较 小,因此测量电路通常需要接入一个高输入阻抗的 前置放大器。
其作用为: ①将传感器高输出阻抗转换为低输出阻抗; ②放大传感器输出的微弱信号。
2020/4/22
36
1、电压放大器——阻抗变换器
图中R=RaRi/(Ra+Ri),C=Ce+Ci,Ua=q/Ca
第6章 压电式传感器
压电式传感器的工作原理
1880年居里兄弟 研究石英时发现
某种介质材料受力作用变形时,其表面产生电 荷(压电效应),从而实现非电量测量。它是一种 有源传感器。
特点:体积小、质量轻、频响高、信噪比大
应用范围:压电式传感器可用于动态力、压力、速度、机械冲 击与振动等许多非电量的测量,广泛应用于声学、 医学、土木、机械、军工、宇航等等领域。
2020/4/22
26
3、新型压电材料——压电聚合物PVDF
PVDF是一种有机高分子物性型敏感材料,其名称为聚偏 二氟乙烯。1969年由日本学者Kawai首先发现,具有很强 的压电特性。与微电子技术结合,能够制成多功能传感元 件;与压电陶瓷结合,开拓了复合材料的新领域。
优点:高灵敏度;韧性及加工性能好;声阻抗与人体肌肉 接近;频带宽;机械强度高;化学特性稳定。
Fz
电荷Qx和Qy的符 号由受拉力还是
受压力决定
2020/4/22
9
石英晶体压电模型
不受力
晶体在x方向受力
Fx
x
晶体在y方向受力
x
Fy
Fy
正常情况下石 英体中正负电 荷处于平衡, 外部呈中性。
y
y
Fx
正负电荷产生移动,出现带电现象。
2020/4/22
10
石英晶体压电模型
x y
2020/4/22
P1
当动态力变为静态力时,电荷将由于表面漏 电而很快泄漏、消失。
如果沿z轴方向施加作用力,因为晶体在x方 向和y方向所产生的形变完全相同,所以正负 电荷重心保持重合,电偶极矩矢量和等于零。 这表明沿z轴方向施加作用力,晶体不会产生 压电效应。
2020/4/22
19
2、压电陶瓷
压电陶瓷是人工制造的多晶体压电材料。 材料内部 的晶粒有许多自发极化的电畴, 它有一定的极化方向, 从而 存在电场。
P2
P3
当石英晶体未受 外力作用时, 正、 负离子正好分布 在正六边形的顶 角上, 形成三个 互 成 120° 夹 角 的电偶极矩P1、 P2 、 P3 。 如 图 所示。
11
石英晶体压电模型
x y
2020/4/22
P1
P2
P3
当石英晶体受 到沿x轴方向的 压力作用时, 晶 体沿x方向将产 生压缩变形, 正 负离子的相对 位置也随之变 动。
2020/4/22
46
玻璃打碎报警装置
将高分子压电测振 薄膜粘贴在玻璃上, 可以感受到玻璃破 碎时会发出的振动, 并将电压信号传送 给集中报警系统。
2020/4/22
粘贴 位置
47
高分子压电材料制作的玻璃打碎传感器
将厚约0.2mm左右的PVDF
薄膜裁制成1020mm大小。在它
的正反两面各喷涂透明的二氧化
39
2、电荷放大器
图中R=RaRi/(Ra+Ri),C=Ca+Ce+Ci,Ua=q/Ca
由于运算放大器输入阻抗高,输入端几乎没有分 流,故可略去R。
2020/4/22
40
根据运算放大器的基本特性,可求出电荷放大器
得输出电压:
Uo
Ca
Ce
Aq Ci
1
AC f
通常A=104~108,当有(1+A)Cf>>Ca+Ce+Ci时,
•外电场去掉后, 电畴的极化方向基本不变, 即剩余极化强度 很大, 这时的材料才具有压电特性。
2020/4/22
24
压电陶瓷的正压电效应:
•当陶瓷材料(剩余极化很强)受到外力作用时, 电畴的界限 发生移动, 电畴发生偏转, 从而引起剩余极化强度的变化, 因而 在垂直于极化方向的平面上将出现极化电荷的变化。 •电荷量的大小与外力成正比关系:
电荷在无泄漏条件下才能保持,即需要测量
回路需要无限大的输入阻抗,但无法实现,所以 压电式传感器不能用于静态测量。只有在交变力 的作用下,电荷才可以得到不断补充,供给测量 回路能量,故适于动态测量(一般必须高于100Hz,但在 。 50kHz以上时,灵敏度下降)
2020/4/22
29
2020/4/22
在无外电场作用时, 电畴在晶体中杂乱分布, 它们的极 化效应被相互抵消, 压电陶瓷内极化强度为零。因此原始 的压电陶瓷呈中性, 不具有压电性质。
2020/4/22
20
压电陶瓷及其换能器外形
2020/4/22
21
无铅压电陶瓷及其换能器外形
2020/4/22
22
压电陶瓷—极化处理后的人工多晶铁电体
感器输出灵敏度,在实际应用中常采用两片或以上 同型号压电元件粘贴组合。因此,考虑电荷的极性 因素,其连接法分为串联和并联两种。
2020/4/22
33
1)串联
Ce
C n
Ue nU
Qe Q
串联使压电传感器时间常数减小, 电压灵敏度增大,适合于电压输出、高 频信号测量场合。
++++ ---- ++++ ---- ++++ ----
※ 但不适用于静态参数的测量 ※
2020/4/22
1
一、压电效应
正压电效应: ★ 利用电介质受力变形,内部产生的极化现象,产生电荷 ★ 去掉外力后,电荷消失,状态复原 ★ 作用力相反,电荷极性也发生变化
机械量
压电元件
电量
逆压电效应(电致伸缩效应):
当在电介质的极化方向上施加电场时,这些电介质发 生形变。
为无限大,即ω(Ca+Ce+Ci)R>>1,此时输入电压
幅值Uim为:
U im
Ca
相关文档
最新文档