高考文科数学练习题概率
高考文科数学试卷概率题
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 从装有5个红球、4个蓝球、3个绿球的袋子里随机取出一个球,取出红球的概率是:A. 1/4B. 1/3C. 1/2D. 5/122. 一个袋子里装有5个白球和3个黑球,从袋子里随机取出两个球,取出两个白球的概率是:A. 5/18B. 5/12C. 5/9D. 1/33. 某班有40名学生,其中有20名男生,30名学生成绩在80分以上,已知至少有5名男生成绩在80分以上,则成绩在80分以上的男生占男生总数的概率是:A. 1/4B. 1/2C. 3/4D. 14. 某人有5把钥匙,其中只有一把能打开房门,他随机拿出一把钥匙尝试开门,直到成功为止,他第3次尝试成功的概率是:A. 1/10B. 1/5C. 1/3D. 1/25. 抛掷一枚均匀的六面骰子,得到偶数的概率是:A. 1/2B. 1/3C. 2/3D. 3/46. 一批产品中有100件,其中有10件次品,从这批产品中随机抽取3件,至少抽到1件次品的概率是:A. 9/10B. 8/10C. 7/10D. 6/107. 一批产品的合格率为90%,从中随机抽取10件产品,其中恰好有8件合格的概率是:A. 0.387B. 0.409C. 0.421D. 0.4348. 甲、乙两人参加数学竞赛,甲得奖的概率为0.6,乙得奖的概率为0.4,则甲、乙两人都得奖的概率是:A. 0.24B. 0.36C. 0.48D. 0.609. 一批产品的次品率为5%,从这批产品中随机抽取10件,其中至多有1件次品的概率是:A. 0.937B. 0.877C. 0.814D. 0.75610. 抛掷两枚均匀的硬币,至少出现一次正面的概率是:A. 1/4B. 1/2C. 3/4D. 7/8二、填空题(本大题共5小题,每小题10分,共50分。
把答案填在题中的横线上。
)11. 从1到10中随机选取一个整数,选出的数是奇数的概率是________。
高考真题数学概率题及答案
高考真题数学概率题及答案高考真题中的数学概率题常常是考生们的心头之患,因为涉及到概率的计算和推断,考生们往往感到头疼。
在这里,我为大家整理了一些高考真题中常见的数学概率题及答案,希望能帮助大家更好地应对考试。
题目一:某班有30名学生,其中10名喜欢篮球,8名喜欢足球,6名喜欢羽毛球,3名以上三项兼喜的学生只有两名,问至少有多少名学生喜欢至少一项球类运动?
解答:设喜欢至少一项球类运动的学生有x名,根据题意可列出方程:10+8+6-x=30-2,解得x=22,因此至少有22名学生喜欢至少一项球类运动。
题目二:甲、乙、丙三人开车到达目的地的概率分别是0.6、0.7和0.8,求至少有一个人到达目的地的概率。
解答:根据概率的互补性,至少有一个人到达目的地的概率为1-三人都没有到达的概率,即1-(1-0.6)(1-0.7)(1-0.8)=1-0.4*0.3*0.2=0.976,所以至少有一个人到达目的地的概率是0.976。
题目三:已知随机事件A的概率为0.4,事件B的概率为0.3,且事件A与事件B相互独立,求事件A与事件B至少有一个发生的概率。
解答:由事件A与事件B相互独立可知,事件A与事件B至少有一个发生的概率为1-(1-0.4)(1-0.3)=1-0.6*0.7=0.58,所以事件A与事件B至少有一个发生的概率为0.58。
通过以上题目的解答,我们可以看到,数学概率题并不是难到无法解决的问题,只要掌握了基本的概率知识和解题技巧,就能在考试中得心应手。
希望以上内容能对大家有所帮助,祝愿大家在高考中取得优异的成绩。
文科高考概率大题各省历年真题及答案
概率及统计1.袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球 (I )试问:一共有多少种不同的结果?请列出所有可能的结果;(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。
2.为了对某课题进行研究,用分层抽样方法从三所高校A,B,C 的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人) (Ⅰ)求x,y ;(Ⅱ)若从高校B 、C 抽取的人中选2人作专题发言,求这二人都来自高校C 的概率。
3.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:(Ⅰ)估计该校男生的人数;(Ⅱ)估计该校学生身高在170~185cm 之间的概率;(Ⅲ)从样本中身高在180~190cm 之间的男生中任选2人,求至少有1人身高在185~190cm 之间的概率。
4.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2n m <+的概率. 5.有编号为1A ,2A ,…10A 的10个零件,测量其直径(单位:cm ),得到下面数据:其中直径在区间[1.48,1.52]内的零件为一等品 (Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(Ⅱ)从一等品零件中,随机抽取2个. (ⅰ)用零件的编号列出所有可能的抽取结果; (ⅱ)求这2个零件直径相等的概率。
6.以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. (注:方差],)()()[(1222212x x x x x x nsn -+-+-= 其中x 为n x x x ,,,21 的平均数) 7. 甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(I )若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II )若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概8.某日用品按行业质量标准分成五个等级,等级系数X 依次为1.2.3.4.5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:编号1A2A3A4A5A6A7A8A9A10A直径1.511.491.491.511.491.511.471.461.531.47(I )若所抽取的20件日用品中,等级系数为4的恰有4件,等级系数为5的恰有2件,求a 、b 、c 的值;(11)在(1)的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率。
高考概率考试题及答案
高考概率考试题及答案一、选择题1. 某次考试中,学生A和学生B独立地答对一道题的概率分别为0.7和0.6,那么他们两人至少有一人答对这道题的概率是多少?A. 0.32B. 0.54C. 0.86D. 0.94答案:C2. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 0.6B. 0.4C. 0.33D. 0.67答案:A二、填空题3. 一个骰子连续掷两次,两次都掷出偶数的概率是______。
答案:1/34. 从一副去掉大小王的扑克牌中随机抽取一张牌,抽到黑桃的概率是______。
答案:1/4三、解答题5. 已知某工厂生产的一批产品中,次品率为2%,现随机抽取100件产品进行检查。
求至少有3件次品的概率。
解答:设X为100件产品中次品的数量,X服从二项分布B(100,0.02)。
要求至少有3件次品的概率,即P(X≥3)。
根据二项分布的性质,我们有:P(X≥3) = 1 - P(X<3) = 1 - [P(X=0) + P(X=1) + P(X=2)]计算得:P(X=0) = C(100, 0) * (0.02)^0 * (0.98)^100P(X=1) = C(100, 1) * (0.02)^1 * (0.98)^99P(X=2) = C(100, 2) * (0.02)^2 * (0.98)^98将上述概率值代入公式计算,得到P(X≥3)的值。
答案:根据上述计算过程,得出P(X≥3)的具体数值。
6. 甲乙两人进行射击比赛,甲击中目标的概率为0.8,乙击中目标的概率为0.9。
若两人同时射击,求至少有一人击中目标的概率。
解答:设A为甲击中目标的事件,B为乙击中目标的事件。
要求至少有一人击中目标的概率,即P(A∪B)。
根据概率的加法公式,我们有:P(A∪B) = P(A) + P(B) - P(A∩B)由于甲乙两人射击是相互独立的事件,所以P(A∩B) = P(A) * P(B)。
高三数学概率练习题
高三数学概率练习题
1. 某次数学考试中,共有100道选择题,每题有四个选项,只有一个正确答案。
若某学生随机猜测答案,求该学生至少答对60题的概率。
2. 一袋中有10个红球和20个蓝球,随机抽取5个球,求抽到至少3个红球的概率。
3. 甲、乙、丙三人独立射击同一个目标,甲击中目标的概率为0.5,乙击中目标的概率为0.6,丙击中目标的概率为0.7。
求至少有两人击中目标的概率。
4. 一个工厂生产的零件,合格率为95%。
现从这批零件中随机抽取100个,求其中至少有90个合格的概率。
5. 一个班级有50名学生,其中有30名男生和20名女生。
随机抽取5名学生,求抽到至少2名女生的概率。
6. 一个骰子连续投掷两次,求两次投掷结果之和为7的概率。
7. 一个袋子里有5个红球,3个蓝球和2个绿球,随机抽取3个球,求抽到至少1个蓝球和1个绿球的概率。
8. 某城市的公交车每10分钟发车一次,乘客到达车站的时间是随机的。
求乘客到达车站后,等待时间不超过5分钟的概率。
9. 一个信号灯有红、黄、绿三种颜色,红灯亮的概率为0.5,黄灯亮的概率为0.3,绿灯亮的概率为0.2。
求连续两次信号灯亮起都是红灯的概率。
10. 一个班级有40名学生,其中15名擅长数学,10名擅长物理,5名既擅长数学又擅长物理。
随机抽取一名学生,求该学生擅长数学或物理的概率。
【高考复习】2020年高考数学(文数) 概率 小题练(含答案解析)
【高考复习】2020年高考数学(文数)概率 小题练一、选择题1.从含有质地均匀且大小相同的2个红球、n 个白球的口袋中随机取出一球,若取到红球的概率是25,则取得白球的概率等于( ) A .15 B .25 C .35 D .452.一个均匀的正方体玩具的各个面上分别标以数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A 表示“向上的一面出现奇数”,事件B 表示“向上的一面出现的数字不超过3”,事件C 表示“向上的一面出现的数字不小于4”,则( ) A .A 与B 是互斥而非对立事件 B .A 与B 是对立事件 C .B 与C 是互斥而非对立事件 D .B 与C 是对立事件3.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为( )A .0.7B .0.65C .0.35D .0.34.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一个产品是正品(甲级)的概率为( ) A .0.95 B .0.97 C .0.92 D .0.085.把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是( )A .对立事件B .对立但不互斥事件C .互斥但不对立事件D .以上均不对6.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .12 C .25 D .137.某商场举行有奖促销活动,抽奖规则如下:箱子中有编号为1,2,3,4,5的五个形状、大小完全相同的小球,从中任取两球,若摸出的两球号码的乘积为奇数则中奖;否则不中奖,则中奖的概率为( )A .110B .15C .310D .258.某汽车站每天上午均有3辆开往A 景点的分上、中、下等级的客车.某天王先生准备在该汽车站乘车去A 景点,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆,那么他乘上上等车的概率为( ) A .16 B .13 C .12 D .239.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为( )A .12B .13C .38D .5810.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .π8C .12D .π411.取一个正方形及其外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为( )A .2πB .π-2πC .2πD .π412.在如图所示的圆形图案中有12片树叶,构成树叶的圆弧均相同且所对的圆心角为π3,若在圆内随机取一点,则此点取自树叶(即图中阴影部分)的概率是( )A .2-33πB .4-63πC .413-32πD .423二、填空题13.从2,3,8,9中任取两个不同的数字,分别记为a,b,则log a b为整数的概率是________.14.某城市2018年的空气质量状况如下表所示:其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染,则该城市2018年空气质量达到良或优的概率为________.15.口袋内装有一些除颜色不同之外其他均相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,若红球有21个,则黑球有________个.16.口袋中有形状、大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为________.17.若向区域Ω={(x,y)|0≤x≤1,0≤y≤1}内投点,则该点到原点的距离小于1的概率为______.18.记函数f(x)=6+x-x2的定义域为D.在区间[-4,5]上随机取一个数x,则x∈D的概率是______.答案解析1.答案为:C ;解析:取得红球与取得白球为对立事件,∴取得白球的概率P =1-25=35.故选C .2.答案为:D ;解析:A∩B ={出现数字1或3},事件A ,B 不互斥更不对立;B∩C =∅,B ∪C =Ω(Ω为必然事件),故事件B ,C 是对立事件.故选D .3.答案为:C解析:事件“抽到的不是一等品”与事件A 是对立事件,由于P(A)=0.65,所以由对立事件的概率公式得“抽到的不是一等品”的概率为P =1-P(A)=1-0.65=0.35.选C .4.答案为:C ;解析:记抽检的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而所求概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%=0.92.5.答案为:C ;解析:事件“甲分得红牌”与“乙分得红牌”是不可能同时发生的两个事件,这两个事件可能恰有一个发生、一个不发生,可能两个都不发生,所以这两个事件互斥但不对立,应选C.6.答案为:C ;解析:记3个红球分别为a ,b ,c ,3个黑球分别为x ,y ,z ,则随机取出两个小球共有15种可能: ab ,ac ,ax ,ay ,az ,bc ,bx ,by ,bz ,cx ,cy ,cz ,xy ,xz ,yz , 其中两个小球同色共有6种可能,ab ,ac ,bc ,xy ,xz ,yz ,根据古典概型概率公式可得所求概率为615=25,故选C .7.答案为:C解析:由题得试验的所有基本事件有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4), (2,5),(3,4),(3,5),(4,5),共10个,摸出的两球号码的乘积为奇数的基本事件有(1,3),(1,5),(3,5),共3个,由古典概型的概率公式得P=310.故选C .8.答案为:C解析:共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上; ⑤下、中、上;⑥下、上、中(其中画线的表示王先生所乘的车),所以他乘上上等车的概率为36=12,故选C .解析:该树枝的树梢有6处,有2处能找到食物,所以获得食物的概率为26=13.10.答案为:B ;解析:不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,S 正方形=4.由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知所求概率P =S 黑S 正方形=π24=π8.故选B .11.答案为:B ;解析:设圆的半径为r ,所以正方形的边长为2r ,正方形的面积为2r 2,圆的面积为πr 2,∴所求概率P =1-2r 2πr 2=π-2π.12.答案为:B ;解析:设圆的半径为r ,根据扇形面积公式和三角形面积公式得阴影部分的面积S=24×⎝ ⎛⎭⎪⎫16πr 2-34r 2=4πr 2-63r 2,圆的面积S′=πr 2,所以此点取自树叶(即图中阴影部分)的概率为S S′=4-63π,故选B. 13.答案为:16;解析:所有的基本事件有(2,3),(2,8),(2,9),(3,2),(3,8),(3,9),(8,2),(8,3), (8,9),(9,2),(9,3),(9,8),共12个,记“log a b 为整数”为事件A ,则事件A 包含的基本事件有(2,8),(3,9),共2个,∴P(A)=212=16.14.答案为:35;解析:由题意可知2018年空气质量达到良或优的概率为P=110+16+13=35.15.答案为:15;解析:摸到黑球的概率为1-0.42-0.28=0.3.设黑球有n 个,则0.4221=0.3n,故n=15.16.答案为:23;解析:从袋中一次随机摸出2个球,共有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}6个基本事件,其中摸出的2个球的编号之和大于4包含的基本事件有{1,4},{2,3},{2,4},{3,4},共4个,因此摸出的2个球的编号之和大于4的概率为46=23.17.答案为:π4;影部分,即四分之一个圆,其面积为π4,所以所求概率为π4.18.答案为:59;解析:由6+x -x 2≥0,解得-2≤x≤3,∴D =[-2,3].如图,区间[-4,5]的长度为9,定义域D 的长度为5,∴P =59.。
文科数学概率高考题(含答案)
文科数学概率高考题(含答案)概率是历年高考数学文科考试经常出现的题型。
为了帮助考生掌握数学中概率知识点,下面是店铺为大家整理的数学概率高考题,希望对大家有所帮助!文科数学概率高考题(一)1.[2014•新课标全国卷Ⅱ] 甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.1.132.[2014•全国新课标卷Ⅰ] 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.2.233.[2014•浙江卷] 在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.3.134.[2014•陕西卷] 某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元) 0 1000 2000 3000 4000车辆数(辆) 500 130 100 150 120(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.4.解:(1)设A表示事件“赔付金额为3000元”,B表示事件“赔付金额为4000元”,以频率估计概率得P(A)=1501000=0.15,P(B)=1201000=0.12.由于投保金额为2800元,所以赔付金额大于投保金额的概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4000元”,由已知,得样本车辆中车主为新司机的有0.1×1000=100(辆),而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24.由频率估计概率得P(C)=0.24.5.、[2014•四川卷] 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.5.解:(1)由题意,(a,b,c)所有的可能为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P(A)=327=19.因此,“抽取的卡片上的数字满足a+b=c”的概率为19.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B)=1-327=89.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为89.K2 古典概型6.[2014•福建卷] 根据世行2013年新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035~4085美元为中等偏下收入国家;人均GDP为4085~12 616美元为中等偏上收入国家;人均GDP不低于12 616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:行政区区人口占城市人口比例区人均GDP(单位:美元)A 25% 8000B 30% 4000C 15% 6000D 10% 3000E 20% 10 000(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.6.解:(1)设该城市人口总数为a,则该城市人均GDP为8000×0.25a+4000×0.30a+6000×0.15a+3000×0.10a+10 000×0.20aa=6400(美元).因为6400∈[4085,12 616),所以该城市人均GDP达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有的基本事件是:{A,B},{A,C},{A,D},{A,E},{B,C},{B,D},{B,E},{C,D},{C,E},{D,E},共10个.设事件M为“抽到的2个行政区人均GDP都达到中等偏上收入国家标准”,则事件M包含的基本事件是:{A,C},{A,E},{C,E},共3个.所以所求概率为P(M)=310.7.[2014•广东卷] 从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为________.7.258.[2014•湖北卷] 随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则( )A.p1C.p18.C9.[2014•湖南卷] 某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b).其中a,a分别表示甲组研发成功和失败;b,b分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平.(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.9.解:(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为x甲=1015=23,方差为s2甲=1151-232×10+0-232×5=29.乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为x乙=915=35,方差为s2乙=1151-352×9+0-352×6=625.因为x甲>x乙,s2甲(2)记E={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),共7个,故事件E发生的频率为715.将频率视为概率,即得所求概率为P(E)=715.文科数学概率高考题(二)10.[2014•江苏卷] 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是________.10.1311.[2014•江西卷] 掷两颗均匀的骰子,则点数之和为5的概率等于( )A.118B.19C.16D.11211.B12.[2014•江西卷] 将连续正整数1,2,…,n(n∈N*)从小到大排列构成一个数123…n,F(n)为这个数的位数(如n=12时,此数为123456789101112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤2014时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S={n|h(n)=1,n≤100,n∈N*},求当n∈S时p(n)的最大值.12.解:(1)当n=100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p(100)=11192.(2)F(n)=n,1≤n≤9,2n-9,10≤n≤99,3n-108,100≤n≤999,4n-1107,1000≤n≤2014.(3)当n=b(1≤b≤9,b∈N*),g(n)=0;当n=10k+b(1≤k≤9,0≤b≤9,k∈N*,b∈N)时,g(n)=k;当n=100时,g(n)=11,即g(n)=0,1≤n≤9,k,n=10k+b,11,n=100.1≤k≤9,0≤b≤9,k∈N*,b∈N,同理有f(n)=0,1≤n≤8,k,n=10k+b-1,1≤k≤8,0≤b≤9,k∈N*,b∈N,n-80,89≤n≤98,20,n=99,100.由h(n)=f(n)-g(n)=1,可知n=9,19,29,39,49,59,69,79,89,90,所以当n≤100时,S={9,19,29,39,49,59,69,79,89,90}.当n=9时,p(9)=0.当n=90时,p(90)=g(90)F(90)=9171=119.当n=10k+9(1≤k≤8,k∈N*)时,p(n)=g(n)F(n)=k2n-9=k20k+9,由y=k20k+9关于k单调递增,故当n=10k+9(1≤k≤8,k∈N*)时,p(n)的最大值为p(89)=8169.又8169<119,所以当n∈S时,p(n)的最大值为119.13.[2014•辽宁卷] 某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生 60 20 80北方学生 10 10 20合计 70 30 100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:χ2=n(n11n22-n12n21)2n1+n2+n+1n+2,P(χ2≥k) 0.100 0.050 0.010k 2.706 3.841 6.63513.解:(1)将2×2列联表中的数据代入公式计算,得χ2=n(n11n22-n12n21)2n1+n2+n+1n+2=100×(60×10-20×10)270×30×80×20=10021≈4.762.由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)},其中ai表示喜欢甜品的学生,i=1,2,bj表示不喜欢甜品的学生,j=1,2,3.Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A表示“3人中至多有1人喜欢甜品”这一事件,则A={(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)}.事件A由7个基本事件组成,因而P(A)=710.14.[2014•山东卷] 海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C数量 50 150 100(1)求这6件样品中来自A,B,C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.14.解:(1)因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是:50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3}{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D为“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.所以P(D)=415,即这2件商品来自相同地区的概率为415.15.[2014•陕西卷] 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A.15B.25C.35D.4515.B16.[2014•四川卷] 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.16.解:(1)由题意,(a,b,c)所有的可能为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P(A)=327=19.因此,“抽取的卡片上的数字满足a+b=c”的概率为19.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B)=1-327=89.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为89.17.[2014•天津卷] 某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:一年级二年级三年级男同学 A B C女同学 X Y Z现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.17.解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M发生的概率P(M)=615=25.18.[2014•重庆卷] 20名学生某次数学考试成绩(单位:分)的频率分布直方图如图13所示.(1)求频率分布直方图中a的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.18.解:(1)据直方图知组距为10,由(2a+3a+7a+6a+2a)×10=1,解得a=1200=0.005.(2)成绩落在[50,60)中的学生人数为2×0.005×10×20=2.成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(3)记成绩落在[50,60)中的2人为A1,A2,成绩落在[60,70)中的3人为B1,B2,B3,则从成绩在[50,70)的学生中任选2人的基本事件共有10个,即(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3).其中2人的成绩都在[60,70)中的基本事件有3个,即(B1,B2),(B1,B3),(B2,B3).故所求概率为P=310.文科数学概率高考题(三)19.[2014•福建卷] 如图15所示,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.19.1820.[2014•湖南卷] 在区间[-2,3]上随机选取一个数X,则X≤1的概率为( )A.45B.35C.25D.1520.B21.[2014•辽宁卷] 若将一个质点随机投入如图11所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A.π2B.π4C.π6D.π821.B22.[2014•重庆卷] 某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________.(用数字作答)22.932K4 互斥事件有一个发生的概率K5 相互对立事件同时发生的概率23.[2014•全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.23.解:记A1表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.E表示事件:同一工作日4人需使用设备.F表示事件:同一工作日需使用设备的人数大于k.(1)因为P(B)=0.6,P(C)=0.4,P(Ai)=Ci2×0.52,i=0,1,2,所以P(D)=P(A1•B•C+A2•B+A2•B•C)=P(A1•B•C)+P(A2•B)+P(A2•B•C) =P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)由(1)知,若k=2,则P(F)=0.31>0.1,P(E)=P(B•C•A2)=P(B)P(C)P(A2)=0.06.若k=3,则P(F)=0.06<0.1,所以k的最小值为3.K6 离散型随机变量及其分布列24.[2014•江苏卷] 盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X 的概率分布和数学期望E(X).24.解:(1)取到的2个颜色相同的球可能是2个红球、2个黄球或2个绿球,所以P=C24+C23+C22C29=6+3+136=518.(2)随机变量X所有可能的取值为2,3,4.{X=4}表示的随机事件是“取到的4个球是4个红球”,故P(X=4)=C44C49=1126;{X=3}表示的随机事件是“取到的4个球是3个红球和1个其他颜色的球,或3个黄球和1个其他颜色的球”,故P(X=3)=C34C15+C33C16C49=20+6126=1363;于是P(X=2)=1-P(X=3)-P(X=4)=1-1363-1126=1114.所以随机变量X的概率分布如下表:X 2 3 4P 111413631126因此随机变量X的数学期望E(X)=2×1114+3×1363+4×1126=209.K7 条件概率与事件的独立性K8 离散型随机变量的数字特征与正态分布25.[2014•全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.25.解:记A1表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.E表示事件:同一工作日4人需使用设备.F表示事件:同一工作日需使用设备的人数大于k.(1)因为P(B)=0.6,P(C)=0.4,P(Ai)=Ci2×0.52,i=0,1,2,所以P(D)=P(A1•B•C+A2•B+A2•B•C)=P(A1•B•C)+P(A2•B)+P(A2•B•C) =P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)由(1)知,若k=2,则P(F)=0.31>0.1,P(E)=P(B•C•A2)=P(B)P(C)P(A2)=0.06.若k=3,则P(F)=0.06<0.1,所以k的最小值为3.。
高中数学:概率统计专题
高三文科数学:概率与统计专题一、选择题:1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量单位:kg分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.343、在一组样本数据x1,y1,x2,y2,…,x n,y n n≥2,x1,x2,…,x n不全相等的散点图中,若所有样本点x i,y i i=1,2,…,n都在直线y=错误!x+1上,则这组样本数据的样本相关系数为A-1 B0 C错误! D14.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为A103 B15C110D1205.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π46.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是二、填空题:7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______;8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.9.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 由表中数据得回归直线方程错误!=错误!x +错误!中的错误!=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售;如果当天卖不完,剩下的玫瑰花做垃圾处理;Ⅰ若花店一天购进17枝玫瑰花,求当天的利润y 单位:元关于当天需求量n 单位:枝,n ∈N 的函数解析式;Ⅱ花店记录了100天玫瑰花的日需求量单位:枝,整理得下表: 日需求量n 14 15 16 17 18 19 20 频数102016161513101假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润单位:元的平均数;气温℃ 18 13 10 -1 用电量度243438642若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率;11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值75,85 85,95 95,105 105,115 115,125 分组频数 6 26 38 22 8 I在答题卡上作出这些数据的频率分布直方图:II估计这种产品质量指标值的平均数及方差同一组中的数据用该组区间的中点值作代表;III根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定12. 某地区2009年至2015年农村居民家庭人均纯收入y单位:千元的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y1求y关于t的线性回归方程;2利用1中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:错误!=错误!,错误!=错误!-错误!错误!.13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:1若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少结果保留2位小数;2由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=错误!14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸单位:cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.1求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小.2一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.ⅰ从这一天抽检的结果看,是否需对当天的生产过程进行检查ⅱ在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.精确到附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.。
高三数学《概率统计(文科)》练习
文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率()()1,0∈AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表. A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表 满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:()()()()()d b c a d c b a bc d a n K ++++-=22满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意()02k K P ≥ 0.10 0.05 0.01 0.005 0k 2.706 3.841 6.635 7.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ .18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分区间 [25,30) [30,35) [35,40) [40,45) [45,50]人数 25 a b(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.31B.21C.32D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.107 B.85 C.83 D.103 22.在区间[-2,3]上随机选取一个数x ,则1≤x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A .1ˆ-=x yB .1ˆ+=x yC .x y 2188ˆ+= D .176ˆ=y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程a x b yˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年 份 2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程a t b yˆˆˆ+=; (Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程a t b yˆˆˆ+=中,t b y atn tyt n y t b ni ini ii ˆˆ,ˆ1221-=--=∑∑==.28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算y x ,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算()()()()()d b c a d c b a bc ad n K ++++-=22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:a x b y ˆˆˆ+=,其中()()()x b y ax x y y x x b ni ini iiˆˆ,ˆ121-=---=∑∑==; 90,93==y x ,()()()30,4051251=--=-∑∑==y y x x x x ii ii i .30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁) 频数 频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350[35,40) 30 b[40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。
(完整版)概率大题训练总结(全国高考经典概率问题文科),推荐文档
1(本小题满分 12 分)某赛季,甲、乙两名篮球运动员都参加了 7 场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示(1)求甲、乙两名运动员得分的中位数;(2))你认为哪位运动员的成绩更稳定?(3)如果从甲、乙两位运动员的 7 场得分中各随机抽取一场的得分,求甲的得分大于乙的得分的概率.(参考数据:92 + 82 +102 + 22 + 62 +102 + 92 = 466 ,72 + 42 + 62 + 32 + 12 + 22 + 112 = 236 )2 在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为 5 月1 日至30 日,评委会把同学们上交作品的件数按 5 天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为 2:3:4:6:4:1,第三组的频数为 12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?共有多少件?(3)经过评比,第四组和第六组分别有 10 件、2 件作品获奖,问这两组哪组获奖率高?3 已知向量a =(1, -2),b =(x, y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a b =-1 的概率;(2)若实数x, y ∈[1,6],求满足a b > 0 的概率.4某公司在过去几年内使用某种型号的灯管 1000 支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:(1)将各组的频率填入表中;(2)根据上述统计结果,计算灯管使用寿命不足 1500 小时的频率;(3)该公司某办公室新安装了这种型号的灯管 2 支,若将上述频率作为概率,试求恰有 1 支灯管的使用寿命不足 1500 小时的概率.5为研究气候的变化趋势,某市气象部门统计了共100 个星期中每个星期气温的最高温度和最低温度,如下表:(1)若第六、七、八组的频数t 、m、n 为递减的等差数列,且第一组与第八组的频数相同,求出x 、t 、m 、n 的值;(2)若从第一组和第八组的所有星期中随机抽取两个星期,分别记它们的平均温度为x ,y ,求事件“ | x -y |> 5 ”的概率.6某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了 22 人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5 所示,其中 120~130(包括 120 分但不包括 130 分)的频率为 0.05,此分数段的人数为 5 人.(1)问各班被抽取的学生人数各为多少人?(2)在抽取的所有学生中,任取一名学生,求分数不小于 90 分的概率. 频率0.400.350.300.250.200.150.100.0570 80 90 100 110 120 130分数气温(℃)频数频率[-5, -1] x = 0.03 [0, 4] 8[5, 9] 12[10,14] 22[15,19] 25[20, 24] t =[25, 29] m =[30, 34] n =合计100 138 图 图321608 06O8图1 171615 1413 0.7 某班 50 名学生在一次百米测试中,成绩全部介于 13 秒与 18 秒之间,将测试结果按如下 方式分成五组:每一组3,14) ;第二组 4,15) ,……,第五组7,1.右图是按上述分组 方法得到的频率分布直方 图 图0. 图.0. (I ) 若成绩大于或等于 14 秒且小于 16 秒认为 良好,求该班在这次百米测试中0. 成绩良好的人数;(II ) 设m 、n 表示该班某两位同学的百米0. 测试成绩,且已知 m , n 3,14)7,1 ,求事件“ m n1 ”的概率.8 一人盒子中装有 4 张卡片,每张卡上写有 1 个数字,数字分别是 0,1、2、3。
历年(2019-2023)高考数学真题专项(概率与统计解答题)汇编(附答案)
历年(2019-2023)高考数学真题专项(概率与统计解答题)汇编考点01:统计案例及应用1 (2021年全国高考乙卷文科)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:122S .(1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).2 (2020年高考数学课标Ⅰ卷文科)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下: 甲分厂产品等级的频数分布表等级 ABCD频数40202020乙分厂产品等级的频数分布表等级 ABCD频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A 级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?3 (2019年高考数学课标Ⅲ卷文科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下实验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据实验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中的a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用改组区间的中点值为代表).4 (2019年高考数学课标Ⅱ卷文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[0.20,0)-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数 2 24 53 147 (1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.5.(2022新高考全国II 卷·)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表); (2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).考点02相关关系与回归分析1.(2022年高考全国乙卷(文)·)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i 12345678910总和根部横截面积i x0.04 0.06 0.04 0.08 0.08 0050050.07 0.07 0.06 0.6材积0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9..量i y并计算得10101022i i i ii=1i=1i=10.038, 1.6158,0.2474x y x y===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数i i(1.377)()nx x y yr--=≈∑.2.(2020年高考数学课标Ⅱ卷文科·)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i,y i)(i=1,2,…,20),其中x i和y i分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160iix==∑,2011200iiy==∑,202180iixx=-=∑(,2021)9000iiy y=-=∑(,201)800iiix yx y=--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i,y i)(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r)ni ix yx y--∑((≈1.414.考点03 独立性检验1.(2022年全国高考甲卷(文)·)甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数 未准点班次数 A 240 20 B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有0090的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k …0.100 0.050 0.010 k2.7063.8416.6352.(2020年新高考I 卷(山东卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表: 2SOPM2.5[0,50](50,150] (150,475][0,35]32 18 4 (35,75]6 8 12 (75,115]3710(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表: 2SOPM2.5[0,150](150,475][0,75](75,115](3)根据(2)中列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥ 0.050 0.010 0.001 k3.841 6.63510.8283 .(2020新高考II 卷(海南卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?的附:22()()()()()n ad bc K a b c d a c b d -=++++,4.(2021年高考全国甲卷文科·)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品 二级品 合计 甲机床 150 50 200 乙机床 120 80 200 合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥ 0.050 0.0100.001k 3.841 6.635 10.8285.(2020年高考数学课标Ⅲ卷文科·)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天): 锻炼人次 空气质量等级 [0,200](200,400](400,600]1(优) 2 16 25 2(良)51012的3(轻度污染) 67 84(中度污染) 72 0(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.8286.(2019年高考数学课标Ⅰ卷文科·)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客40 10女顾客30 20(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.2()P K k…0.050 0.010 0.001 k 3.841 6.635 10.828参考答案考点01:统计案例及应用1 (2021年全国高考乙卷文科)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:122S .(1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).【答案】(1)221210,10.3,0.036,0.04x yS S ====;(2)新设备生产产品的该项指标的均值较旧设备有显著提高. 【答案解析】:(1)9.810.31010.29.99.81010.110.29.71010x +++++++++==,10.110.410.11010.110.310.610.510.410.510.310y +++++++++==,22222222210.20.300.20.10.200.10.20.30.03610S +++++++++==,222222222220.20.10.20.30.200.30.20.10.20.0410S +++++++++==(2)依题意,0.320.15y x -==⨯==,=y x -≥,所以新设备生产产品的该项指标的均值较旧设备有显著提高.2 (2020年高考数学课标Ⅰ卷文科)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲.分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级 A B C D频数 4020 20 20乙分厂产品等级的频数分布表等级 A B C D频数 2817 34 21(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【答案】(1)甲分厂加工出来的A级品的概率为0.4,乙分厂加工出来的A级品的概率为0.28;(2)选甲分厂,理由见答案解析.【答案解析】(1)由表可知,甲厂加工出来的一件产品为A级品的概率为400.4100=,乙厂加工出来的一件产品为A级品的概率为280.28 100=;(2)甲分厂加工100件产品总利润为()()()()4090252050252020252050251500⨯-+⨯-+⨯--⨯+=元,所以甲分厂加工100件产品的平均利润为15元每件;乙分厂加工100件产品的总利润为()()()()2890201750203420202150201000⨯-+⨯-+⨯--⨯+=元,所以乙分厂加工100件产品的平均利润为10元每件.故厂家选择甲分厂承接加工任务.3 (2019年高考数学课标Ⅲ卷文科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下实验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据实验数据分别得到如下直方图:的记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中的a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用改组区间的中点值为代表). 【答案】【答案解析】:(1)C 为事件:“乙离子残留在体内的百分比不低于5.5”, 根据直方图得到P (C )的估计值为0.70. 则由频率分布直方图得: 0.200.150.70.050.1510.7a b ++=⎧⎨++=-⎩, 解得乙离子残留百分比直方图中0.35a =,0.10b =. (2)估计甲离子残留百分比的平均值为:20.1530.2040.3050.2060.1070.05 4.05x =⨯+⨯+⨯+⨯+⨯+⨯=甲.乙离子残留百分比的平均值为:30.0540.150.1560.3570.280.156x =⨯+⨯+⨯+⨯+⨯+⨯=乙.4 (2019年高考数学课标Ⅱ卷文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[0.20,0)-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数 2 24 53 147 (1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈. 【答案】【答案解析】:(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=.产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=,()52211100i i i s n y y ==-∑222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.020.17s ==≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.5.(2022新高考全国II 卷·)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表); (2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001). 【答案】(1)47.9岁; (2)0.89; (3)0.0014.【答案解析】:(1)平均年龄(50.001150.002250.012350.017450.023x =⨯+⨯+⨯+⨯+⨯ 550.020650.017750.006850.002)1047.9+⨯+⨯+⨯+⨯⨯=(岁). (2)设A ={一人患这种疾病的年龄在区间[20,70)},所以()1()1(0.0010.0020.0060.002)1010.110.89P A P A =-=-+++⨯=-=.(3)设{B =任选一人年龄位于区间}[40,50),{C =任选一人患这种疾病}, 则由条件概率公式可得 ()0.1%0.023100.0010.23(|)0.00143750.0014()16%0.16P BC P C B P B ⨯⨯⨯====≈.考点02相关关系与回归分析1.(2022年高考全国乙卷(文)·)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据: 样本号i 12345678910总和根部横截面积i x0.04 0.06 0.04 0.08 0.08 0050050.07 0.07 0.06 0.6材积量i y0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9并计算得10101022ii i i i=1i=1i=10.038, 1.6158,0.2474xy x y ===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数ii( 1.377)()nx x y y r --=≈∑.【答案】(1)20.06m ;30.39m (2)0.97..(3)31209m【答案解析】:【小问1详解】样本中10棵这种树木的根部横截面积的平均值0.60.0610x == 样本中10棵这种树木的材积量的平均值 3.90.3910y == 据此可估计该林区这种树木平均一棵的根部横截面积为20.06m , 平均一棵的材积量为30.39m 【小问2详解】()()1010iii i10x x y y x y xyr ---==∑∑0.01340.970.01377==≈≈则0.97r ≈ 【小问3详解】设该林区这种树木的总材积量的估计值为3m Y , 又已知树木的材积量与其根部横截面积近似成正比, 可得0.06186=0.39Y,解之得3=1209m Y . 则该林区这种树木总材积量估计为31209m2.(2020年高考数学课标Ⅱ卷文科·)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,202180i ix x =-=∑(,2021)9000i i y y =-=∑(,201)800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.的附:相关系数r)niix y x y --∑((≈1.414.【答案】(1)12000;(2)0.94;(3)详见答案解析【答案解析】(1)样区野生动物平均数为201111200602020ii y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯= (2)样本(,)i i x y (i =1,2,…,20)的相关系数为20()()0.943iix x y y r --===≈∑(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性, 由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大, 采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性, 从而可以获得该地区这种野生动物数量更准确的估计.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.考点03 独立性检验1.(2022年全国高考甲卷(文)·)甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数 未准点班次数 A 240 20 B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有0090的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k …0.100 0.050 0.010 k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有 【答案解析】根据表中数据,A 共有班次260次,准点班次有240次, 设A 家公司长途客车准点事件为M ,则24012()26013P M ==; B 共有班次240次,准点班次有210次, 设B 家公司长途客车准点事件为N , 则210()28074P N ==. A 家公司长途客车准点的概率为1213; B 家公司长途客车准点的概率为78. (2)列联表准点班次数未准点班次数 合计A 240 20 260B 210 30 240 合计4505050022()()()()()n ad bc K a b c d a c b d -=++++=2500(2403021020) 3.205 2.70626024045050⨯⨯-⨯≈>⨯⨯⨯,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关. 2.(2020年新高考I 卷(山东卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表: 2SOPM2.5[0,50](50,150] (150,475][0,35]32 18 4 (35,75]6812(75,115]3 7 10(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表: 2SOPM2.5[0,150](150,475][0,75](75,115](3)根据(2)中列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥ 0.050 0.010 0.001 k3.841 6.63510.828【答案】(1)0.64;(2)答案见答案解析;(3)有.【答案解析】:(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:2SO2.5PM[]0,150(]150,475合计[]0,7564 16 80 (]75,11510 10 20 合计 7426100(3)根据22⨯列联表中的数据可得的222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>, 因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 3 .(2020新高考II 卷(海南卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)0.64;(2)答案见答案解析;(3)有.【答案解析】:(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:2SO2.5PM[]0,150(]150,475合计[]0,7564 16 80 (]75,11510 10 20 合计 7426100(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>, 因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 【题目栏目】统计\相关关系、回归分析与独立性检验\独立性检验4.(2021年高考全国甲卷文科·)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品 二级品 合计 甲机床 150 50 200 乙机床 120 80 200 合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥ 0.050 0.0100.001k 3.841 6.635 10.828【答案】(1)75%;60%;的(2)能.答案解析:(1)甲机床生产的产品中的一级品的频率为15075% 200=,乙机床生产的产品中的一级品的频率为12060% 200=.(2)()22400150801205040010 6.63527013020020039K⨯-⨯==>>⨯⨯⨯,故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.5.(2020年高考数学课标Ⅲ卷文科·)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400] (400,600]1(优) 216 252(良) 510 123(轻度污染) 67 84(中度污染) 72 0(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.050 0.010 0.001 k 3.841 6.635 10.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见答案解析.【答案解析】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好 3337 空气质量好 228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.6.(2019年高考数学课标Ⅰ卷文科·)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意 不满意 男顾客 40 10 女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异? 附:22()()()()()n ad bc K a b c d a c b d -=++++.2()P K k …0.050 0.010 0.001 k3.8416.63510.828【答案】【答案解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.850=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.650=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)22100(40203010)4.76250507030K⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.。
高三文科统计与概率练习题
高三文科统计与概率练习题在高三的学习生涯中,统计与概率是文科学生们需要掌握的重要知识点之一。
为了提高学生的能力,下面将提供一些统计与概率的练习题,帮助学生们巩固知识和提升解题能力。
1. 统计(1)某班级有30名学生,其中20名男生和10名女生,求男生人数占总人数的百分比。
(2)一次考试中,某学生的成绩为75分,超过了总人数的80%。
求该次考试的总人数。
(3)某校体育队中共有60名学生,其中30名男生,体操队由男女学生组成,其中男生占总队员数的40%。
求体操队的女生人数。
2. 概率小明有5件T恤,3条裤子和2双鞋子。
如果他从中随机选择一件衣服和一件裤子,并且随机穿上一双鞋子,那么他穿上的衣服、裤子和鞋子都是同一个颜色的概率是多少?提示:首先计算出小明选择同一颜色的T恤、裤子和鞋子的概率,然后根据全概率公式计算最终结果。
3. 事件的独立性假设A和B是两个相互独立的事件。
已知P(A) = 0.4,P(B) = 0.3,求P(A并B)。
4. 期望值一枚均匀的骰子中有1、2、3、4、5、6六个面,每个面的概率都是1/6。
如果投掷一次骰子,求出投掷结果的期望值。
5. 排列组合在一副扑克牌中,红桃和黑桃各有13张,方块和梅花各有13张。
从中随机选择5张牌,求以下各种情况的概率:(1)5张牌都是红桃;(2)5张牌都是黑桃;(3)5张牌都是方块;(4)5张牌都是梅花;(5)5张牌中有3张红桃和2张黑桃。
通过以上练习题,希望能够帮助高三文科学生们更好地掌握统计与概率的知识点,并提高解题能力。
在备战高考的道路上,坚持练习和不断提升是成功的关键。
祝愿大家取得优异的成绩!。
高考文科数学概率及统计题型归纳及训练.docx
2020 年高考文科数学《概率与统计》题型归纳与训练【题型归纳】题型一古典概型例 1从甲、乙等5名学生中随机选出2人,则甲被选中的概率为().A. 1B.2C.8D. 5525925【答案】 B【解析】可设这 5 名学生分别是甲、乙、丙、丁、戊,从中随机选出 2 人的方法有:(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有种选法,其中只有前 4 种是甲被选中,所以所求概率为 . 故选 B.例 2将2本不同的数学书和1 本语文书在书架上随机排成一行,则 2 本数学书相邻的概率为 ________.【答案】23【解析】根据题意显然这是一个古典概型,其基本事件有:数1,数2,语;数1,语,数 2; 数 2,数 1,语 ;数2,语,数1;语,数2,数1;语,数1,数2共有6 种,其中 2 本数学书相邻的有 4 种,则其概率为:p 4 2.6 3【易错点】列举不全面或重复, 就是不准确【思维点拨】直接列举, 找出符合要求的事件个数.题型二几何概型例 1 如图所示,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称. 在正方形内随机取一点,则此点取自黑色部分的概率是().A. 1B.πC.1D.π4824【答案】 B【解析】不妨设正方形边长为 a ,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半. 由几何概型概率的计算公式得,所求概率为21a22a28.故选B.例 2在区间[0,5]上随机地选择一个数p ,则方程 x2 + 2 px + 3 p - 2 = 0 有两个负根的概率为 ________.【答案】234 p24(3 p2)0【解析】方程 x2 + 2 px + 3p -2 = 0 有两个负根的充要条件是x1 x22p0即x1x2 3 p202p 1, 或 p 2 ,又因为 p[0,5] ,所以使方程x2+ 2 px + 3 p - 2 = 0 有两个负根的p3(1 2) (5 2) 2,故填:2 .的取值范围为 ( 2,1] U [2,5] ,故所求的概率33533【易错点】“有两个负根”这个条件不会转化 .【思维点拨】“有两个负根”转化为函数图像与x 轴负半轴有两个交点.从而得到参数 p 的范围.在利用几何概型的计算公式计算即可.题型三抽样与样本数据特征例 1某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200, 400,300 ,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.【答案】 18【解析】按照分层抽样的概念应从丙种型号的产品中抽取6018(件).3001000例 2已知样本数据 x1, x2,, x n的均值x 5 ,则样本数据2x11, 2x21,,2x n1的均值为.【答案】 11【解析】因为样本数据,,,的均值,又样本数据,,,的和为 2 x1x2 L x n n ,所以样本数据的均值为= 11.例 3 某电子商务公司对10000名网络购物者 2018 年度的消费情况进行统计,发现消费金额(单位:万元)都在区间 [0.3,0.9] 内,其频率分布直方图如图所示.(1)直方图中的a =.(2)在这些购物者中,消费金额在区间[0.5,0.9] 内的购物者的人数为.【答案】 a 3人数为 0.6 10000 6000【解析】由频率分布直方图及频率和等于1,可得0.2 0.1 0.8 0.1 1.5 0.1 2 0.1 2.5 0.1 a 0.1 1 ,解之得 a 3 .于是消费金额在区间0.5,0.9 内频率为 0.2 0.1 0.8 0.1 2 0.1 3 0.10.6 ,所以消费金额在区间0.5,0.9 内的购物者的人数为 0.6 10000 6000.例 4某城市100户居民的月平均用电量(单位:度),以160,180,180,200,200,220,220,240,240,260,260,280,280,300分组的频率分布直方图如图所示.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为220,240,240,260,260,280,280,300的四组用户中,用分层抽样的方法抽取 11户居民,则从月平均用电量在220,240的用户中应抽取多少户?【答案】见解析【解析】(1)由0.002 0.0095 0.011 0.0125x 0.005 0.0025 20 1,得 x0.0075 .220 240(2)由图可知,月平均用电量的众数是230 .2因为 0.002 0.0095 0.011 20 0.450.5 ,又 0.002 0.0095 0.011 0.0125 20 0.70.5 ,所以月平均用电量的中位数在220,240 内.设中位数为 a ,由0.002 0.0095 0.011 20 0.0125 a 2200.5,得 a 224 ,所以月平均用电量的中位数是224 .(3)月平均用电量为220,240的用户有0.0125 20 100 25(户);月平均用电量为 240,260 的用户有 0.0075 20 100 15(户);月平均用电量为 260,280 的用户有 0.005 20 100 10 (户);月平均用电量为280,300 的用户有 0.0025 20 100 5 (户).抽取比例为111051 ,25155所以从月平均用电量在220,240 的用户中应抽取2515 (户).5【易错点】没有读懂题意 , 计算错误 . 不会用函数思想处理问题【思维点拨】根据题意分情况写出函数解析式; 2 牵涉到策略问题 , 一般可以转化为比较两个指标的大小.题型四回归与分析例 1 下图是我国 2008 年至 2014 年生活垃圾无害化处理量(单位:亿吨)的折线图(1)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明(2)建立关于的回归方程(系数精确到),预测年我国生活垃圾无害化处理量 .参考数据:,,,.参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为:【答案】见解析【解析】(1)由折线图中数据和附注中参考数据得,,,,.因为与的相关系数近似为,说明与的线性相关程度相当高,从而可以用线性回归模型拟合与的关系 .(1)变量与的相关系数,又,,,,,所以,故可用线性回归模型拟合变量与的关系 .(2),,所以,,所以线性回归方程为.当时, . 因此,我们可以预测2016 年我国生活垃圾无害化处理亿吨.【易错点】没有读懂题意 , 计算错误 .【思维点拨】将题目的已知条件分析透彻 , 利用好题目中给的公式与数据 .题型五独立性检验例 1 甲、乙、丙、丁四位同学各自对 A、 B 两变量的线性相关性作试验,并用回归分析方法分别求得相关系数 r 与残差平方和 m如下表:甲乙丙丁rm 115 106 124103则哪位同学的试验结果体现A、B 两变量更强的线性相关性?() A.甲B.乙C.丙D.丁【答案】 D【解析】 D因为r>0且丁最接近1,残差平方和最小,所以丁相关性最高【易错点】不理解相关系数和残差平方和与相关性的关系【思维点拨】相关系数 r 的绝对值越趋向于 1, 相关性越强 . 残差平方和 m越小相关性越强【巩固训练】题型一古典概型1.将一颗质地均匀的骰子(一种各个面上分别标有个点的正方体玩具)先后抛掷次,则出现向上的点数之和小于的概率是.【答案】【解析】将先后两次点数记为,则基本事件共有(个),其中点数之和大于等于有,共种,则点数之和小于共有种,所以概率为.2. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30 723 .在不超过 30 的素数中,随机选取两个不同的数,其和等于30 的概率是().A.1B.1C.1D.1 12141518【答案】 C【解析】不超过 30 的素数有 2、3、5、7、11、13、17、19、23、29,共 10 个,随机选取两数有 45 (种)情况,其中两数相加和为30 的有 7 和 23,11 和 19,31P451513 和 17,共 3 种情况,根据古典概型得.故选C.3.袋中有形状、大小都相同的 4 只球,其中 1只白球, 1只红球, 2 只黄球,从中一次随机摸出 2 只球,则这 2 只球颜色不同的概率为.【答案】P56【解析】 1只白球设为a,1只红球设为b, 2 只黄球设为c,d,则摸球的所有情况为a,b , a, c , a,d , b, c , b,d , c,d ,共6件,足意的事件a,b , a,c , a,d , b,c , b,d ,共5件,故概率P 5 .6型二几何概型1.某公司的班在 7:00 ,8:00 ,8:30 ,学 . 小明在 7:50 至 8:30 之到达站乘坐班,且到达站的刻是随机的,他等不超10 分的概率是().B.D.【答案】 B【解析】如所示,画出.小明到达的会随机的落在中段中,而当他的到达落在段或,才能保他等的不超分 .根据几何概型,所求概率. 故B.2.从区随机抽取 2n个数,,⋯,,,,⋯,,构成n个数,,⋯,,其中两数的平方和小于 1 的数共有m个,用随机模的方法得到的周率的近似().A.B.C.D.【答案】 C【解析】由意得:在如所示方格中,而平方和小于 1 的点均在如所示的阴影中,由几何概型概率计算公式知,所以.故选C.3.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形 ABC 的斜边 BC ,直角边AB, AC ,△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为 p1, p2, p3,则A.p1p2B.p1p3C.p2p3D.p1p2p3【答案】 A【解析】概率为几何概型,总区域面积一定,只需比较Ⅰ,Ⅱ,Ⅲ区域面积即可 .设直角三角形ABC 的三个角A,B, C 所对的边长分别为 a ,b, c ,则区域Ⅰ的面积为 S11 ab,2区域Ⅱ的面积为区域Ⅲ的面积为222S21π1c1π1b1ab1π1a1ab ,2222222221 π 1 b21 πa21ab .S3 1 π 1 c1ab2222282显然 p1p2.故选A.题型三抽样与样本的数据特征1. 已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.【答案】 10【解析】平均数 x 1 4658766.62.某电子商务公司对 10000 名网络购物者 2014 年度的消费情况进行统计,发现消费金额(单位:万元)都在区间 [0.3, 0.9] 内,其频率分布直方图如图所示.(Ⅰ)直方图中的a_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5, 0.9] 内的购物者的人数为_________.【答案】 3;6000【解析】频率和等于 1 可得0.2 0.1 0.8 0.1 1.5 0.1 2 0.1 2.50.1a0.1 1 ,解之得 a 3 .于是消费金额在区间 [0.5, 0.9] 内频率为 0.20.10.80.120.1 3 0.1 0.6 ,所以消费金额在区间 [0.5, 0.9] 内的购物者的人数为: 0.6100006000 ,故应填3;6000.3.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费 . 为了了解居民用水情况,通过抽样,获得了某年位居民每人的月均用水量(单位:吨),将数据按照,,,分成组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有万居民,估计全市居民中月均用水量不低于吨的人数,请说明理由;(3)若该市政府希望使的居民每月的用水量不超过标准(吨),估计的值,并说明理由 .【答案】见解析【解析】(1)由频率分布直方图知,月均用水量在中的频率为,同理,在,,,,,中的频率分别为,,,,,.由,解得 .(2)由( 1),位居民每人月均用水量不低于吨的频率为.由以上样本的频率分布,可以估计全市万居民中月均用水量不低于吨的人数为.(3)因为前组的频率之和为,而前组的频率之和为,所以由,解得 .题型四回归与分析1.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区 5 户家庭,得到如下统计数据表:收入 x(万元)支出 y (万元)根据上表可得回归直线方程???,其中???y bx a b0.76,a y bx ,据此估计,该社区一户收入为 15 万元家庭年支出为()A.万元B.万元C.万元D.万元【答案】 B8.28.610.011.311.9(万元),【解析】由已知得x5106.27.58.0 8.59.88(万元),故 ?8 0.76 10 0.4,5所以回归直线方程为y? 0.76 x 0.4 .当社区一户收入为15 万元,家庭年支出为y? 0.76 150.411.8 (万元).故选B.2.为了研究某班学生的脚长x (单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10 名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为.已知,,.该班某学生的脚长为 24,据此估计其身高为().A.B.C.D.【答案】 C【解析】,,所以,时,.故选C.3.某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位: t )和年利润z(单位:千元)的影响,对近8 年的年宣传费 x i和年销售量y i i 1,2, ,8数据作了初步处理,得到下面的散点图及一些统计量的值.x y w82888x i x2w i w y i yw i w x i x y i y i 1i 1i 1i 1561469 3表中 w i18x i, w w i ,8 i 1(1)根据散点图判断,y a bx 与y c d x 哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由)?(2)根据( 1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系式为z 0.2 y x,根据( 2)的结果回答下列问题:(ⅰ)年宣传费x49时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据 u1, v1u2,v2,, u n ,v n,其回归直线v u 的斜率和n?u i u v i vi 1?截距的最小二乘估计分别为, ? v u .nu i2ui 1【答案】见解析【解析】(1)由散点图变化情况可知选择y c d x 较为适宜.8w i w y iy(2)由题意知di 182108.8 68 .又 y c d x 一定过点, y ,w i w1.6i 1所以 c y d563 68 6.8 100.6 ,所以 y 与 x 的回归方程为 y 100.6 68 x .(3)(ⅰ)由( 2)知,当 x 49 时, y 100.6 6849 576.6 t ,z 0.2 576.6 49 66.32(千元),所以当年宣传费为 x 49 时,年销售量为 576.6 t ,利润预估为 66.32千元.(ⅱ)由( 2)知, z0.2 y x0.2100.6 68 x x 13.6 x x 20.122x 6.8时,年利润的预估值最大,x 6.86.82 20.12 ,所以当即 x 6.8 2 46.24 (千元). 题型五 独立性检验1. 某医疗研究所为了检验某种血清预防感冒的作用, 把 500 名使用血清的人与另外 500 名未使用血清的人一年中的感冒记录作比较,提出假设 H :“这种血清不能起到预防感冒的作用”,利用 2×2列联表计算的 K 2≈,则下列表述中正确的是( )A .有 95℅的把握认为“这种血清能起到预防感冒的作用”B .若有人未使用该血清,那么他一年中有95℅的可能性得感冒C.这种血清预防感冒的有效率为95℅D.这种血清预防感冒的有效率为5℅【答案】 A【解析】由题可知,在假设 H 成立情况下,P( K23.841)的概率约为,即在犯错的概率不错过的前提下认为“血清起预防感冒的作用”,即有95℅的把握认为“这种血清能起到预防感冒的作用” . 这里的 95℅是我们判断H不成立的概率量度而非预测血清与感冒的几率的量度,故 B 错误. C,D也犯有 B 中的错误.故选 A2. 观察下面频率等高条形图,其中两个分类变量x,y 之间关系最强的是( )A.B.【答案】 D【解析】在频率等高条形图中,C.D.a与c相差很大时,我们认为两个分类变量a b c d有关系,四个选项中,即等高的条形图中x1, x2所占比例相差越大,则分类变量 x, y 关系越强,故选 D .3.淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了 100 个网箱,测量各箱水产品的产量(单位:kg )的频率分布直方图如图所示.(1)设两种养殖方法的箱产量相互独立,记 A 表示事件:旧养殖法的箱产量低于 50kg ,新养殖法的箱产量不低于50kg ,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量箱产量50kg⋯50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到 0.01).附:P K2⋯kkK 2n( ad bc)2.(a b)(c d )(a c)(b d )【答案】见解析【解析】(1)记:“旧养殖法的箱产量低于50kg ”为事件B,“新养殖法的箱产量不低于50kg”为事件 C,由题图并以频率作为概率得P B0.040 5 0.034 5 0.024 5 0.014 5 0.012 5 0.62,P C0.068 5 0.046 5 0.010 5 0.008 50.66,P A P B P C0.4092 .(2)箱产量50kg箱产量≥50kg 旧养殖法6238新养殖法3466k 220062 6638 342由计算可得 K2的观测值为15.705 ,因为15.705 6.635,所以10010096104P K2≥ 6.6350.001,从而有 99%以上的把握认为箱产量与养殖方法有关.(3)1 5 0.2,0.10.0040.0200.0440.032,0.0320.0688,85 2.35,171750 2.35 52.35,所以中位数为52.35.。
高考数学概率真题训练100题含参考答案
高考数学概率真题训练100题含答案学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.在区间(0,1)随机取一个数,则取到的数小于13的概率为( )A .34B .23C .13D .162.向边长为4的正三角形区域投飞镖,则飞镖落在离三个顶点距离都不小于2的区域内的概率为( )A .1B .34C D .143.某公交车站的末班车在19:0019-:30间随机驶离该站,小明在19:1519-:30间随机到达该站,则小明赶上末班车的概率是( )A .18B .14C .12D .344.从1,2,3,4四个数字中任取两个不同数字,则这两个数字之积小于5的概率为 A .13B .12C .23D .565.将一颗质地均匀的骰子(它是一种各面上分别标有1,2,3,4,5,6点数的正方体玩具)先后抛掷2次,记第一次出现的点数为m ,记第二次出现的点数为n ,则3m n =的概率为( ) A .118B .112 C .19D .166.如图,先画一个正方形ABCD ,再将这个正方形各边的中点相连得到第2个正方形,依此类推,得到第4个正方形EFGH ,在正方形ABCD 内随机取一点,则此点取自正方形EFGH 内的概率是A .14B .16C .18D .1167.两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为( ) A .12B .14C .13D .168.在区间[0,2]上随机取一个实数x ,则事件“3x -1<0”发生的概率为A.12B.13C.14D.169.在等腰直角三角形ABC中,角C为直角.在ACB∠内部任意作一条射线CM,与线段AB交于点M,则AM AC<的概率().A2B.12C.34D.1410.《孙子算经》是中国古代重要的数学著作,据书中记载,中国古代诸侯的等级从低到高分为五级:男、子、伯、侯、公.现有每个级别的诸侯各一人,共5人,要把80个橘子分完且每人都要分到橘子,级别每高一级就多分m个(m为正整数),若按这种方法分橘子,“子”恰好分得13个橘子的概率是()A.18B.17C.16D.1511.某公司安排甲、乙、丙3人到,A B两个城市出差,每人只去1个城市,且每个城市必须有人去,则A城市恰好只有甲去的概率为()A.15B.16C.13D.1412.从装有20个红球和30个白球的罐子里任取两个球,下列情况中是互斥而不是对立的两个事件是A.至少有一个红球,至少有一个白球B.恰有一个红球,都是白球C.至少有一个红球,都是白球D.至多有一个红球,都是红球13.写算,是一种格子乘法,也是笔算乘法的一种,用以区别筹算与珠算,它由明代数学家吴敬在其撰写的《九章算法比类大全》一书中提出,是从天元式的乘法演变而来.例如计算8965⨯,将被乘数89计入上行,乘数65计入右行.然后以乘数65的每位数字乘被乘数89的每位数字,将结果计入相应的格子中,最后从右下方开始按斜行加起来,满十向上斜行进一,如图,即得5785.类比此法画出648345⨯的表格,若从表内(表周边数据不算在内)任取一数,则恰取到奇数的概率是()A.518B.13C.1318D.2314.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为A.4π81B.81-4π81C.127D.82715.五行学说最早出现在黄老、道家学说中,据《尚书·洪范》记载:“五行:一曰水,二曰火,三曰木,四曰金,五曰土.水曰润下,火曰炎上,木曰曲直,金曰从革,土曰稼穑.润下作咸,炎上作苦,曲直作酸,从革作辛,稼穑作甘.”后人根据对五行的认识,又创造了木、火、土、金、水五行相生相克理论,如金与木、金与火、水与火、水与土、土与木相克,若从5大类元素中任选2类,则2类元素相克的概率是()A.34B.25C.35D.1216.“垃圾分类”已成为当下最热议的话题,我们每个公民都应该认真履行,逐步养成“减量、循环、自觉、自治”的行为规范,某小区设置了“可回收垃圾”、“不可回收垃圾”、“厨余垃圾”、“其他垃圾”四种垃圾桶.一天,小区住户李四提着属于4个不同种类垃圾桶的4袋垃圾进行投放,发现每个桶只能再投一袋垃圾就满了,作为一个意识不到位份子,李四随机把4袋垃圾投放到了4个桶中,则有且仅有一袋垃圾投放正确的概率为()A.16B.23C.13D.1217.中国古代的贵族教育体系,开始于公元前1046年的周王朝,周王官学要求学生掌握的六种基本才能礼、乐、射、御、书、数.某中学为了传承古典文化,开设了六种选修课程,要求每位学生从中选择3门课程,扎西同学从中随机选择3门课程,则他选中“御”的概率为()A.16B.13C.12D.2318.不透明的袋中装有8个大小质地相同的小球,其中红色的小球6个,白色的小球2个,从袋中任取2个小球,则取出的2个小球中有1个是白色小球另1个是红色小球的概率为()A.314B.37C.67D.132819.同时投掷两个质地均匀的骰子,两个骰子的点数至少有一个是奇数的概率为()A.736B.1136C.1112D.3420.某人忘记了电话号码的最后一个数字,随意拨号,则拨号不超过两次而接通电话的概率为A.910B.310C.15D.11021.一块各面均涂有油漆的正方体被锯成1000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其两面涂有油漆的概率是()A.112B.110C.325D.1212522.据人口普查统计,育龄妇女生男生女是等可能的,如果允许生育二胎,则某一育龄妇女两胎均是女孩的概率是A.12B.13C.14D.1523.若x A∈,则1Ax∈,就称集合A是“和谐集合”.任选集合111,,,1,3,423M⎧⎫=-⎨⎬⎩⎭的一个非空子集是“和谐集合”的概率为()A.110B.19C.731D.73224.张先生知道清晨从甲地到乙地有好、中、差三个班次的客车.但不知道具体谁先谁后.他打算:第一辆看后一定不坐,若第二辆比第一辆舒服,则乘第二辆;否则坐第三辆.问张先生坐到好车的概率和坐到差车的概率分别是A.、B.、C.、D.、25.在右图所示的电路中,5只箱子表示保险匣,箱中所示数值表示通电时保险丝被切断的概率,当开关合上时,电路畅通的概率是A.B.C.D.26.如图,阴影部分是由四个全等的直角三角形组成的图形, 在大正方形内随机取一点,这一点落在小正方形内的概率为15, 若直角三角形的两条直角边的长分别为(),a b a b >,则b a=A .13B .12C D 27.不定项选择题是高中物理选择题中必考题型之一,正确答案为A 、B 、C 、D 四个选项中的一个或多个,假设某考生对A 、B 、C 、D 选项正确与否完全不知道,则该考生猜对答案概率是( ) A .16B .114C .115D .11628.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为X ,则“4X >”表示试验的结果为 A .第一枚为5点,第二枚为1点 B .第一枚为5或6点,第二枚为1点 C .第一枚为6点,第二枚为1点D .第一枚为1点,第二枚为6点29.2021年湖北省新高考将实行“3+1+2”模式,即语文、数学、英语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式,现有甲、乙、丙、丁4名学生都准备选物理与化学,并且他们都对政治、地理、生物三科没有偏好,则甲、乙、丙、丁4人中恰有2人选课相同的概率为( ) A .16B .512 C .58D .4930.《周髀算经》中对圆周率π有“径一而周三”的记载,已知两周率π小数点后20位数字分别为14159 26535 89793 23846.若从这20个数字的前10个数字和后10个数字中各随机抽取一个数字,则这两个数字均为奇数的概率为( )A .35B .3395C .21100D .72031.费马小定理:若p 是质数,且a ,p 互质,那么a 的()1p -次方除以p 所得的余数恒等于1.依此定理,若在数集{}2,3,5,6中任取两个数,其中一个作为p ,另一个作为a ,则所取的两个数符合费马小定理的概率为( )A .712 B .34C .23D .1232.一个矩形,如果从中截去一个最大的正方形,剩下的矩形的宽与长之比,与原矩形的一样(即剩下的矩形与原矩形相似)0.618≈,称为黄金比,称该矩形为黄金矩形.黄金矩形可以用上述方法无限地分割下去.已知ABCD 是黄金矩形,按上述方法分割若干次以后,得如图所示图形.若在ABCD 内任取一点,则该点取自阴影内部的概率为( )A .4⎝⎭B .6⎝⎭C .7⎝⎭D .8⎝⎭33.现有三张识字卡片,分别写有“中”、“国”、“梦”这三个字.将这三张卡片随机排序,则能组成“中国梦”的概率是( ) A .13B .16C .19D .11234.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是A .14B .13C .532D .31635.在正方体1111ABCD A B C D -中,从1,,,A B C B 四个点中任取两个点,这两点连线平行于平面11AC D 的概率为( ) A .23B .12C .13D .5636.同时抛掷两枚硬币,“向上面都是正面”为事件M ,“至少有一枚的向上面是正面”为事件N ,则有( ) A .M N ⊆B .M N ⊇C .M ND .M N <37.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”,如图是在“赵爽弦图”的基础上创作出的一个“数学风车”,其中正方形ABCD 内部为“赵爽弦图”,正方形ABCD 外部四个阴影部分的三角形称为“风叶”.现从该“数学风车”的8个顶点中任取2个顶点,则2个顶点取自同一片“风叶”的概率为( )A .37B .47C .314D .111438.抛一枚均匀硬币,正,反面出现的概率都是12,反复投掷,数列{}n a 定义如下:1({-1(n n a n =第次投掷出现正面)第次投掷出现反面),若*12()n n S a a a n N =+++∈,则事件40S >的概率为A .516B .14C .116D .1239.在区间[]0,1上任取两个数,则这两个数之和小于65的概率是( )A .1225B .1625C .1725D .182540.如图,在矩形OABC 中的曲线分别是sin y x =,cos y x =的一部分,,02A π⎛⎫ ⎪⎝⎭,()0,1C ,在矩形OABC 内随机取一点,若此点取自阴影部分的概率为1P ,取自非阴影部分的概率为2P ,则( )A .12P P <B .12P P >C .12P P =D .大小关系不能确定41.已知在10件产品中可能存在次品,从中抽取2件检查,记次品数为X ,已知16(1)45P X ==,且该产品的次品率不超过40%,则这10件产品的次品数为( ) A .2件 B .4件 C .6件 D .8件42.函数()()22846f x x x x =-++-≤≤,在其定义域内任取一点0x ,使()00f x ≥的概率是 A .310B .23C .35D .4543.设k 是一个正整数,在(1+)k x k的展开式中,第四项的系数为116,记函数2yx 与y kx =的图象所围成的阴影部分面积为S ,任取[0,4]x ∈,[0,16]y ∈,则点(,)x y 恰好落在阴影区域S 内的概率是( ) A .23B .13C .25D .1644.在2015年全国青运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手,若从中任选2人,则选出的火炬手的编号不相连的概率为 A .310 B .35C .710 D .2545.《世界数学史简编》的封面有一图案(如图),该图案的正方形内有一内切圆,圆内有一内接正三角形,在此图案内随机取一点,则此点取自阴影部分的概率为A .2πB .4πC .4πD .2π46.将长为1的小捧随机拆成3小段,则这3小段能构成三角形的概率为 A .12 B .13C .14D .1547.已知函数,若在[1,8]上任取一个实数,则不等式成立的概率是A .B .C .D .48.由1,2,3,4,5组成的没有重复数字的五位数,从中任意抽取一个,则其恰好为“前3个数字保持递减,后3个数字保持递增”(如五位数“43125”,前3个数字“431”保持递减,后3个数字“125”保持递增)的概率是( ) A .120B .112C .110 D .16二、填空题49.(理)一盒中装有12个同样大小的球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1个球,则取出的1个球是红球或黑球或白球的概率为__________. 50.已知某市的1路公交车每5分钟发车一次,小明到达起点站乘车的时刻是随机的,则他候车时间不超过2分钟的概率是______.51.已知某运动员在一次射击中,射中10环、9环、8环、7环、7环以下的概率分别为0.24、0.28、0.19、0.16、0.13,则该运动员在一次射击中,至少射中8环的概率是_______. 52.如图,靶子由一个中心圆面I 和两个同心圆环Ⅱ、Ⅱ构成,射手命中I 、Ⅱ、Ⅱ的概率分别为0.33、0.29、0.26,则脱靶的概率是______.53.下列命题中,正确的是______.(填序号)Ⅱ事件A 发生的概率()P A 等于事件A 发生的频率()n f A ;Ⅱ一颗质地均匀的骰子掷一次得到3点的概率是16,说明这个骰子掷6次一定会出现一次3点;Ⅱ掷两枚质地均匀的硬币,事件A 为“一枚正面朝上,一枚反面朝上”,事件B 为“两枚都是正面朝上”,则()()2P A P B =;54.袋子中有四个小球,分别写有“四”“校”“联”“考”四个字,有放回地从中任取一个小球,取到“联”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“四”“校”“联”“考”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 21 23 13 32 21 24 42 13 32 23 34据此估计,直到第二次就停止的概率为______.55.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为__________.56.已知甲罐中有四个相同的小球,标号为1,2,3,4;乙罐中有五个相同的小球,标号为1,2,3,5,6,现从甲罐、乙罐中分别随机抽取1个小球,记事件A =“抽取的两个小球标号之和大于5”,事件B =“抽取的两个小球标号之积大于8”,则正确命题的序号是______.Ⅱ事件A 发生的概率为12;Ⅱ事件A B 发生的概率为1120; Ⅱ事件A B 发生的概率为25;Ⅱ从甲罐中抽到标号为2的小球的概率为15.57.随机抽取10个同学中至少有2个同学在同一月份生日的概率为__(精确到0.001). 58..从分别写上数字1,2,3,9,的9张卡片中,任意取出两张,观察上面的数字,则两数积是完全平方数的概率为________________59.如图,有四根木棒穿过一堵墙,两人分别站在墙的左、右两边,各选该边的一根木棒.若每边每根木棒被选中的机会相等,则两人选到同一根木棒的概率为__________.60.抛掷一枚质地均匀的骰子(骰子的六个面上分别标有1、2、3、4、5、6个点)一次,观察掷出向上的点数,设事件A 为“向上的为奇数点”,事件B 为“向上的为4点”,则()P A B =______.61.盒子里装有大小质量完全相同且分别标有数字1、2、3、4、5的五个小球,从盒子里随机摸出两个小球,那么事件“摸出的小球上标有的数字之和不小于5”的概率是______.62.已知向量(2,1),(,)a b x y ==,若{}{}1,0,1,2,1,0,1x y ∈-∈-,则向量//a b 的概率为_______.63.某微信群中四人同时抢3个红包(金额不同),假设每人抢到的几率相同且每人最多抢一个,则其中甲、乙都抢到红包的概率为 _____.64.将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X ,则X 的分布列是________.65.如图,已知圆的半径为10,其内接三角形ABC 的内角A ,B 分别为60°和45°,现向圆内随机撒一粒豆子,则豆子落在三角形ABC 内的概率为_______66.2022北京冬奥会期间,吉祥物冰墩墩成为“顶流”,吸引了许多人购买,使一“墩”难求.甲、乙、丙3人为了能购买到冰墩墩,商定3人分别去不同的官方特许零售店购买,若甲、乙2人中至少有1人购买到冰墩墩的概率为12,丙购买到冰墩墩的概率为13,则甲,乙、丙3人中至少有1人购买到冰墩墩的概率为___________.67.设a ,b 随机取自集合{}1,2,3,则直线30ax by ++=与圆221x y +=有公共点的概率是________. 三、解答题68.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4,先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n .求(1)用列举法,列出所有结果; (2)求事件2n m <+的概率.69.电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;70.为了适应新高考改革,某校组织了一次新高考质量测评(总分100分),在成绩统计分析中,抽取12名学生的成绩以茎叶图形式表示如图,学校规定测试成绩低于87分的为“未达标”,分数不低于87分的为“达标”.(1)求这组数据的众数和平均数;(2)在这12名学生中从测试成绩介于80~90之间的学生中任选2人,求至少有1人“达标”的概率.71.共享单车进驻城市,绿色出行引领时尚.某市有统计数据显示,2020年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”.已知在“经常使用单车用户”中有56是“年轻人”.图1共享单车用户年龄等级分布图2共享单车使用频率分布(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列22列联表,并根据列联表的独立性检验,判断是否有85%的把握认为经常使用共享单车与年龄有关?使用共享单车情况与年龄列联表:(2)现从不常使用共享单车的人中分层抽样抽出4人跟踪调查,若从这4人中随机抽取2人,求2人都是年轻人的概率. 参考数据:独立性检验界值表:其中,()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.72.为了提高学生的身体素质,某校高一、高二两个年级共336名学生同时参与了“我运动,我健康,我快乐”的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取7名和5名学生进行测试.下表是高二年级的5名学生的测试数据(单位:个/分钟):(1)求高一、高二两个年级各有多少人?(2)设某学生跳绳m 个/分钟,踢毽n 个/分钟.当175m ≥,且75n ≥时,称该学生为“运动达人”.Ⅱ从高二年级的学生中任选一人,试估计该学生为“运动达人”的概率;Ⅱ从高二年级抽出的上述5名学生中,随机抽取3人,求抽取的3名学生中为“运动达人”的人数ξ的分布列和数学期望.73.若养殖场每个月生猪的死亡率不超过1%,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;(2)根据1月到8月的数据,求出月利润y (十万元)关于月养殖量x (千只)的线性回归方程(精确到0.001).(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?附:线性回归方程ˆˆˆya bx =+中斜率和截距用最小二乘法估计计算公式如下:1221ˆni ii nii x ynx ybxnx ==-=-∑∑,ˆˆay bx =- 参考数据:88211460,379.5ii i i i x x y ====∑∑.74.某次社会实践活动中,甲、乙两个班的同学共同在一个社区进行民意调查.参加活动的甲、乙两班的人数之比为5Ⅱ3,其中甲班中女生占35,乙班中女生占13.求该社区居民遇到一位进行民意调查的同学恰好是女生的概率. 75.设袋中有5个黄球,3个红球,2个绿球,试按:(1)有放回摸球三次,每次摸一球,求第三次才摸到绿球的概率; (2)不放回摸球三次,每次摸一球,求第三次才摸到绿球的概率.76.将一枚质地均匀且四个面上分别标有1,2,3,4的正四面体先后抛掷两次,其底面落于桌面上,记第一次朝下面的数字为x ,第二次朝下面的数字为y ,用(),x y 表示一个基本事件. (1)求满足条件“xy为整数”的事件的概率; (2)求满足条件“2x y -<”的事件的概率.77.投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面的数字是0,两个面的数字是2,两个面的数字是4.将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标.(1)求点P落在区域C:x2+y2≤10上的概率;(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率.78.如今我们的互联网生活日益丰富,网购开始成为不少人日常生活中不可或缺的一部分,某校学生管理机构为了了解学生网购消费情况,从全校学生中抽取了100人进行分析,得到如下表格(单位:人)参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++参考数据如下:(1)根据表中数据,能否在犯错误的概率不超过0.05的前提下认为学生网购的情况与性别有关?(2)现从所调查的女生中利用分层抽样的方法抽取了5人,其中经常网购的女生分别是:,,A B C,偶尔或从不网购的女生分别是,a b,从这5人中随机选出2人,求选出的2人中至少有1人经常网购的概率79.已知甲袋中有4个白球2个黑球,乙袋中有3个白球2个黑球.现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取1个球.(1)求甲袋中任取出的2个球为同色球的概率;(2)求乙袋中任取出1球为白球的概率.80.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n天监测空气质量指数()AQI,数据统计如下:(1)根据所给统计表和频率分布直方图中的信息求出,n m的值,并完成频率分布直方图:(2)由频率分布直方图,求该组数据的平均数与中位数;-的监测数据中,用分层抽样的方法抽取5 (3)在空气质量指数分别为51100-和151200天,从中任意选取2天,求事件A“两天空气都为良”发生的概率.81.甲、乙两人参加一次考试.已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从各选题中随机抽出3题进行测试,至少答对2题才算合格.(1)分别求甲、乙两人考试合格的概率;(2)求甲、乙两人至少有一人考试合格的概率.82.某医院为促进行风建设,拟对医院的服务质量进行量化考核,每个患者就医后可以对医院进行打分,最高分为100分.上个月该医院对100名患者进行了回访调查,将他们按所打分数分成以下几组:第一组[0,20),第二组[20,40),第三组[40,60),第四组80,100,得到频率分布直方图,如图所示.[60,80),第五组[](1)求所打分数不低于60分的患者人数;(2)该医院在第二、三组患者中按分层抽样的方法抽取6名患者进行深入调查,之后将从这6人中随机抽取2人聘为医院行风监督员,求行风监督员来自不同组的概率. 83.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话;(2)拨号不超过3次而接通电话.84.浙江省新高考采用“3+3”模式,其中语文、数学、外语三科为必考科目,另外考生根据自己实际需要在政治、历史、地理、物理、化学、生物、技术7 门科目中自选 3 门参加考试.下面是某校高一200 名学生在一次检测中的物理、化学、生物三科总分成绩,以组距20 分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如下图所示.(1)求频率分布直方图中a的值;(2)由频率分布直方图,求物理、化学、生物三科总分成绩的第60 百分位数;(3)若小明决定从“物理、化学、生物、政治、技术”五门学科中选择三门作为自己的选考科目,求小明选中“技术”的概率.85.某学校在学校内招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如茎叶图所示(单位:cm),若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”.(Ⅱ)根据数据分别写出男、女两组身高的中位数;(Ⅱ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,则各抽几人?(Ⅱ)在(Ⅱ)的基础上,从这5人中选2人,那么至少有一人是“高个子”的概率是多少?86.2020年江西省旅游产业发展大会于6月12日至6月13日在赣州顺利召开.为让广学生子解赣州旅游文化,赣州市旅游局在赣州市各中小学校开展“赣州市旅游知识网络竞赛”活动.为了更好地分析中学生和小学生对赣州市旅游知识掌握情况,将中学组和小学组的所有参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.(1)若将一般和良好等级合称为合格等级,根据已知条件完成下面的22⨯列联表,并据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?(2)若某县参赛选手共80人,用频率估计概率,试估计该县参赛选手中优秀等级的人数;(3)如果在优秀等级的选手中取3名,在良好等级的选手中取2名,再从这5人中任选3人组成一个比赛团队,求所选团队中恰有2名选手的等级为优秀的概率.注:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.。
高三数学概率练习题及答案2023
高三数学概率练习题及答案2023概率是数学中一个重要的分支,它研究的是不确定事件的可能性。
在高三数学学习中,概率也是一个重要的内容。
为了帮助各位高三学生巩固概率知识,我整理了一些概率练习题及其答案。
练习题一:1.一个有12个红球和8个蓝球的袋子,从中随机抽取4个球,求抽到2个红球2个蓝球的概率。
2.在一批电脑中,有60%的电脑工作正常,40%的电脑存在故障。
如果从中随机抽取3台电脑,求至少有2台工作正常的概率。
3.一副扑克牌共有52张牌,其中黑桃、红桃、梅花和方片各有13张。
从中随机抽取5张牌,求其中至少有3张黑桃的概率。
练习题二:1.一个班级有40个学生,其中20个学生喜欢篮球,15个学生喜欢足球,10个学生既喜欢篮球又喜欢足球。
从中随机抽取一个学生,求该学生既喜欢篮球又喜欢足球的概率。
2.一家手机厂商共有1000部手机,其中100部属于次品。
从中抽取5部手机,求至少有1部次品的概率。
3.在一次模拟考试中,某班级参加考试的学生共有50人。
已知这些学生中80%能取得优异成绩,60%能取得及格成绩。
从中随机抽取3个学生,求至少有2个学生能取得优异成绩的概率。
练习题三:1.甲、乙、丙三个人相继投掷一颗骰子,求他们得到的点数之和为9的概率。
2.某商品的包装中有10个零件,其中4个是次品。
从中无放回地抽取3个零件,求其中至少2个是次品的概率。
3.在一场抽奖活动中,共有1000人参与,其中10人可以获奖。
从中随机抽取5人,求至少有1人获奖的概率。
答案解析:练习题一:1.计算红球的概率:P(红球) = 红球个数/总球数 = 12/20。
计算蓝球的概率:P(蓝球) = 蓝球个数/总球数 = 8/20。
计算抽到2个红球2个蓝球的概率:P(2个红球2个蓝球) = C(12,2) * C(8,2) / C(20,4)。
2.计算正常电脑的概率:P(正常) = 60% = 0.6。
计算故障电脑的概率:P(故障) = 40% = 0.4。
2023高考数学概率高分练习题及答案
2023高考数学概率高分练习题及答案一、选择题1. 在一批电子元件中,每个元件是正常的概率为0.95。
现从中任取一件,该件元件正常的概率为()。
A. 0.95B. 0.05C. 0.95^2D. 0.95/0.052. 掷一枚公正的骰子,得到的点数是8的概率为()。
A. 1/6B. 1/12C. 0D. 13. 甲乙两个小组比赛,甲组的胜率为0.6,乙组的胜率为0.8。
两组相遇的概率为0.5,则甲组获胜的概率为()。
A. 0.3B. 0.25C. 0.4D. 0.2二、填空题1. 掷一枚公正骰子6次,恰好出现一次3的概率为__________。
2. 一发射筒有3个弹药筒,编号为1、2、3。
装填时,P(装进1号筒) = 1/3,P(装进2号筒) = 1/2,P(装进3号筒) = 1/6。
现从1号筒连续发射2次子弹,未发射的概率为__________。
3. 一个宝箱中有4个相同的球,编号为1、2、3、4。
现从中任意抽取1个球,放在一个空盒中。
再从宝箱中随机抽取1个球,并放入盒中。
最后从盒中随机抽取1个球,以此球的号码作为抽取的球的号码。
假设知道抽取的球号码小于等于3,求最后抽取的球号是3的概率为__________。
三、解答题1. 某商场有3对双胞胎孪生婴儿,他们穿着不同颜色的衣服。
现在商场要举办一次有奖竞猜活动,顾客猜中至少一对孩子穿同色服装的概率有多大?2. 甲、乙、丙、丁、戊5个人随机排队上车,司机在拿到5张乘车票之前不能发车。
他们相互独立地随机选取乘车票,再凭所拿到的乘车票按顺序上车。
司机应该不发车的概率是多少?=============================== 答案部分===============================一、选择题1. B. 0.052. C. 03. C. 0.4二、填空题1. 6/6^62. 2/33. 1/3三、解答题1. 我们可以分情况讨论:a) 至少有一对孩子穿同色服装:共有3种情况- 两对穿蓝色- 两对穿红色- 一对穿蓝色,一对穿红色b) 所有孩子穿的衣服颜色都不相同:共有2种情况- 一对穿蓝色,一对穿红色- 一对穿红色,一对穿蓝色因此,猜中至少一对孩子穿同色服装的概率为 (3/5) + (2/5) = 1。
高三数学试卷概率题及答案
一、选择题(每题5分,共50分)1. 从一副52张的扑克牌中(去掉大小王),随机抽取一张牌,抽到红桃的概率是多少?A. 1/4B. 1/2C. 1/13D. 4/132. 一个袋子里装有5个红球和7个蓝球,随机取出一个球,取出红球的概率是多少?A. 5/12B. 7/12C. 1/2D. 5/73. 一枚均匀的硬币连续抛掷两次,至少出现一次正面的概率是多少?A. 3/4B. 1/2C. 1/4D. 1/34. 一个班级有40名学生,其中有20名男生和20名女生。
随机选择一名学生,这名学生是女生的概率是多少?A. 1/2B. 1/4C. 1D. 05. 一批产品中有10个正品和5个次品,随机抽取3个产品,至少抽取到2个正品的概率是多少?A. 21/55B. 36/55C. 45/55D. 54/55二、填空题(每题5分,共50分)6. 从1到10这10个数字中随机抽取一个数字,抽到偶数的概率是______。
7. 一批产品中有30%是次品,随机抽取5个产品,其中至少有1个次品的概率是______。
8. 抛掷两个均匀的正方体,两个正方体上点数之和为7的概率是______。
9. 一个密码锁由3位数字组成,每个数字可以是0到9中的任意一个,随机输入一个密码,输入正确的概率是______。
10. 一个班级有30名学生,其中有10名喜欢数学,15名喜欢物理,5名两者都喜欢。
随机选择一名学生,这名学生既喜欢数学又喜欢物理的概率是______。
三、解答题(每题20分,共40分)11. 甲、乙两人进行一场比赛,甲获胜的概率是0.6,乙获胜的概率是0.4。
如果比赛进行到一半时,甲领先2分,请问此时甲最终获胜的概率是多少?12. 一个袋子里装有10个球,其中有3个红球、4个蓝球和3个绿球。
随机取出3个球,求以下事件的概率:(1)取出3个球都是同一种颜色的概率;(2)取出3个球中有2个红球和1个蓝球的概率。
答案一、选择题1. A2. A3. A4. A5. B二、填空题6. 1/27. 0.7298. 6/36 = 1/69. 1/100010. 5/30 = 1/6三、解答题11. 由于甲领先2分,且甲获胜的概率为0.6,所以甲最终获胜的概率仍然是0.6。
广东高考文科数学--概率习题答案
广东高考文科数学-统计及概率习题 答案一、选择题:1、【解析】随机取出2个小球得到的结果数有154102⨯⨯=种(提倡列举).取出的小球标注的数字之和为3或6的结果为{1,2},{1,5},{2,4}共3种,故所求答案为(A).2、答案:C【解析】很多同学根据题意发现n=16可行,判除A,B 选项,但对于C,D 选项则难以作出选择,事实上,这是一道运筹问题,需要用函数的最值加以解决.设A B →的件数为1x (规定:当10x <时,则B 调整了1||x 件给A,下同!),B C →的件数为2x ,C D →的件数为3x ,DA→的件数为4x ,依题意可得415040x x +-=,125045x x +-=,235054x x +-=,345061x x +-=,从而215x x =+,311x x =+,4110x x =-,故调动件次11111()|||5||1||10|f x x x x x =+++++-,画出图像(或绝对值的几何意义)可得最小值为16,故选(C). 3、答案:B【解析】由题意知,所有可能路线有6种: ①A B C D E →→→→,②A B D C E →→→→,③A C B D E→→→→,④A C D B E →→→→,⑤A D B C E →→→→,⑥A D CB E →→→→, 其中, 路线③AC BDE →→→→的距离最短, 最短路线距离等于496221+++=,4、答案C解:设11时到12时的销售额为x 万元,依题意有:2.5/x=0.10/0.4,X=10 故选 C . 5、答案B 线段AB 三等分,当点P 落在中间那一段时满足条件,所以概率P=1/3 6、答案B以O 为圆心半径为1的球体积为4πR^3/3,因为O 在底面上,所以为半个球的体积即2πR^3/3=2π/3,正方体体积为2^3=8.,所以概率为(8-2π/3)/8=1-π/12 7、答案C8、答案A设这两个数为x ,y ,建立一个直角坐标系,标出x ∈(0,1),y ∈(0,1)的区域,是一个正方形。
高考文科数学概率与统计题型归纳与训练
高考文科数学概率与统计题型归纳与训练2020年高考文科数学《概率与统计》题型归纳与训练题型归纳古典概型例1:从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()。
A。
55.B。
25.C。
9.D。
128解析:可设这5名学生分别是甲、乙、丙、丁、戊,从中随机选出2人的方法有:甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有10种选法,其中只有前4种是甲被选中,所以所求概率为4/10=2/5.故选B。
例2:将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________。
解析:根据题意显然这是一个古典概型,其基本事件有:数1,数2,语;数1,语,数2;数2,数1,语;数2,语,数1;语,数2,数1;语,数1,数2共有6种,其中2本数学书相邻的有4种,则其概率为:p=4/6=2/3.易错点:列举不全面或重复,就是不准确。
思维点拨:直接列举,找出符合要求的事件个数。
几何概型例1:如图所示,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。
在正方形内随机取一点,则此点取自黑色部分的概率是()。
解析:不妨设正方形边长为a,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半。
由几何概型概率的计算公式得,所求概率为1/2πa^2=π/4a^2.故选B。
例2:在区间[0,5]上随机地选择一个数p,则方程x^2+2px-3p^2=0有两个负根的概率为________。
解析:方程x^2+2px-3p^2=0有两个负根的充要条件是Δ=4p^2-4(3p-2)x<0,即3p^2-x^2<2.因为x^2<p,所以3p^2-p^2<2,即p∈(0,1]∪[2,5],又因为p∈[0,5],所以使方程x^2+2px-3p^2=0有两个负根的p的取值范围为(√3,1]∪[2,5],故所求的概率为(5-√3)/5.220度,中位数是235度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题限时集训(五) 概率[专题通关练](建议用时:30分钟)1.[一题多解](2019·全国卷Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A .0.5B .0.6C .0.7D .0.8C [法一:设调查的100位学生中阅读过《西游记》的学生人数为x ,则x +80-60=90,解得x =70, 所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为70100=0.7. 故选C.法二:用Venn 图表示阅读过《西游记》和《红楼梦》的人数之间的关系如图:易知调查的100位学生中阅读过《西游记》的学生人数为70,所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为70100=0.7.故选C.] 2.已知定义在区间[-3,3]上的函数f (x )=2x +m 满足f (2)=6,在[-3,3]上任取一个实数x ,则使得f (x )的值不小于4的概率为( )A.16B.13C.12D.23B [∵f (2)=6,∴22+m =6,解得m =2.由f (x )≥4,得2x+2≥4,即x ≥1,而x ∈[-3,3], 故根据几何概型的概率计算公式,得f (x )的值不小于4的概率P =26=13.故选B.] 3.标有数字1,2,3,4,5的卡片各1张,从这5张卡片中随机抽取1张,不放回地再随机抽取1张,则抽取的第1张卡片上的数大于第2张卡片上的数的概率为 ( )A.12B.15C.35D.25A [5张卡片上分别写有数字1,2,3,4,5,从这5张卡片中随机抽取2张,基本事件的总数n =5×4=20,抽得的第1张卡片上的数大于第2张卡片上的数的情况有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共10种.故抽取的第1张卡片上的数大于第2张卡片上的数的概率P =1020=12,故选A.] 4.(2019·郑州模拟)在区间(0,2)内随机取一个实数a ,则满足⎩⎪⎨⎪⎧ 2x -y ≥0,y ≥0,x -a ≤0的点(x ,y )构成区域的面积大于1的概率是( )A.18B.14C.12D.34C [作出约束条件⎩⎪⎨⎪⎧ 2x -y ≥0,y ≥0,x -a ≤0表示的平面区域如图中阴影部分所示,则阴影部分的面积S =12×a ×2a =a 2>1,∴1<a <2,根据几何概型的概率计算公式得所求概率为2-12-0=12,故选C.] 5.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆径几何.”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步.”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )A.3π10B.3π20C .1-3π10D .1-3π20D [如图,直角三角形的斜边长为82+152=17,设其内切圆的半径为r ,则8-r +15-r =17,解得r =3,∴内切圆的面积为πr 2=9π,∴豆子落在内切圆外的概率P =1-9π12×8×15=1-3π20.] 6.(2019·全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.0.98 [x =10×0.97+20×0.98+10×0.9910+20+10=0.98. 则经停该站高铁列车所有车次的平均正点率的估计值为0.98.]7.已知实数x ,y 满足|x |≤3,|y |≤2,则任取其中的一对实数x ,y ,使得x 2+y 2≤4的概率为________.π6 [如图,在平面直角坐标系xOy 中,满足|x |≤3,|y |≤2的点在矩形ABCD 内(包括边界),使得x 2+y 2≤4的点在图中圆O 内(包括边界).由题意知,S 矩形ABCD =4×6=24,S 圆O =4π,故任取其中的一对实数x ,y ,使得x 2+y 2≤4的概率P =S 圆OS 矩形ABCD =4π24=π6.] 8.从正五边形ABCDE 的5个顶点中随机选择3个顶点,则以它们作为顶点的三角形是锐角三角形的概率是________.12[从正五边形ABCDE 的5个顶点中随机选择3个顶点,基本事件总数为10,即ABC ,ABD ,ABE ,ACD ,ACE ,ADE ,BCD ,BCE ,BDE ,CDE ,以它们作为顶点的三角形是锐角三角形的种数为5,即△ABD ,△ACD ,△ACE ,△BCE ,△BDE ,所以以它们作为顶点的三角形是锐角三角形的概率P =510=12.] [能力提升练](建议用时:15分钟)9.某港口有一个泊位,现统计了某月100艘轮船在该泊位的停靠时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,依此类推,统计结果如表:停靠时间2.5 33.5 44.5 55.5 6 轮船数量 12 12 17 20 15 13 8 3(2)假定某天只有甲、乙两艘轮船需要在该泊位停靠a 小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.[解] (1)a =1100×(2.5×12+3×12+3.5×17+4×20+4.5×15+5×13+5.5×8+6×3)=4.(2)设甲船到达的时间为x ,乙船到达的时间为y ,则⎩⎪⎨⎪⎧ 0<x ≤240<y ≤24.若这两艘轮船中至少有一艘在停靠该泊位时必须等待,则|y -x |<4,符合题意的区域如图中阴影部分(不包括x ,y 轴)所示.记“这两艘轮船中至少有一艘在停靠该泊位时必须等待”为事件A ,则P (A )=24×24-2×12×20×2024×24=1136.所以这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率为1136. 10.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量(单位:辆)如表:(1)求z 的值;(2)用分层抽样的方法从C 类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数x i (1≤i ≤8,i ∈N ),设样本平均数为x ,求|x i -x |≤0.5的概率.[解] (1)设该厂这个月共生产轿车n 辆,由题意得50n =10100+300,所以n =2 000,则z =2 000-(100+300)-(150+450)-600=400.(2)设所抽样本中有a 辆舒适型轿车,由题意得4001 000=a 5,得a =2, 所以抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A 1,A 2分别表示2辆舒适型轿车,用B 1,B 2,B 3分别表示3辆标准型轿车,用E 表示事件“在该样本中任取2辆,至少有1辆舒适型轿车”.从该样本中任取2辆包含的基本事件有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3),共10个, 其中事件E 包含的基本事件有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),共7个.故P (E )=710,即所求的概率为710. (3)样本平均数x =18×(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.设D 表示事件“从样本中任取一个数x i (1≤i ≤8,i ∈N ),|x i -x |≤0.5”,则从样本中任取一个数有8个基本事件,事件D 包括的基本事件有9.4,8.6,9.2,8.7,9.3,9.0,共6个.所以P (D )=68=34,即所求的概率为34.题号内容押题依据1几何概型本题将半圆、圆、圆环的面积等知识融入到几何概型中,既为几何概型输送了新鲜的“血液”,又为圆的知识找到了坚定的“着陆点”,使呆板、平淡的几何概型充满活力,很好地考查了考生的直观想象和数学运算的核心素养2频率分布直方图、分层抽样、概率本题是以临潼石榴为背景设的频率分布直方图、概率、决策型问题相交汇的试题,设问角度新颖、典型,有代表性,意在考查考生的逻辑推理、数学运算、数学建模等核心素养【押题1】如图,半圆、较大圆、小圆的直径比为4∶2∶1.若在该半圆内随机取一点,则该点取自阴影部分的概率是( )A.17B.316C.38D.1316C[设小圆的半径为r,因为半圆、较大圆、小圆的直径比为4∶2∶1,所以阴影部分的面积S1=π(2r)2-πr2=3πr2,半圆的面积S=12π(4r)2=8πr2,根据几何概型的概率计算公式,得该点取自阴影部分的概率P=S1S=3πr28πr2=38.故选C.]【押题2】临潼石榴集中国石榴之优,素以色泽艳丽,果大皮薄,汁多味甜,品质优良等特点而著称.临潼石榴名居中国五大名榴之冠,被列为果中珍品.白居易曾写诗赞美:“日照血球将滴地,风翻火焰欲烧人.”现从该地区某村的石榴树上随机摘下100个石榴进行测重,其质量分布在区间[200,500]内(单位:克),根据统计的数据作出频率分布直方图如图所示:(1)按分层抽样的方法从质量落在[350,400),[400,450)内的石榴中随机抽取5个,再从这5个石榴中随机抽取2个,求这2个石榴中质量至少有一个不小于400克的概率;(2)以各组数据的中间数值代表这组数据,以频率代表概率,已知该村大约还有100 000个石榴待出售,某电商提出如下两种收购方案:方案A:所有石榴均以20元/千克的价格收购.方案B:低于350克的石榴以5元/个的价格收购,高于或等于350克的以9元/个的价格收购.请你通过计算为该村选择收益最好的方案.[解](1)由题得石榴质量在[350,400)和[400,450)内的比例为3∶2,所以应分别在质量在[350,400)和[400,450)内的石榴中各抽取3个和2个.记所抽取的质量在[350,400)内的石榴为A1,A2,A3,质量在[400,450)内的石榴为B1,B2,则从这5个石榴中随机抽取2个的情况共有以下10种:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A2,B1},{A3,B1},{A1,B2},{A2,B2},{A3,B2},{B1,B2}.其中质量至少有一个不小于400克的有7种情况,故所求概率为710.(2)方案B好,理由如下:由频率分布直方图可知,石榴质量在[200,250)内的频率为50×0.001=0.05,同理,石榴质量在[250,300),[300,350),[350,400),[400,450),[450,500]内的频率依次为0.16,0.24,0.3,0.2,0.05.若按方案B收购:因为石榴质量低于350克的个数为(0.05+0.16+0.24)×100 000=45 000,石榴质量不低于350克的个数为55 000个,所以总收益为45 000×5+55 000×9=720 000(元).若按方案A收购:根据题意各区间段内石榴个数依次为5 000,16 000,24 000,30 000,20 000,5 000,于是总收益为(225×5 000+275×16 000+325×24 000+375×30 000+425×20 000+475×5 000)×201 000=709 000(元).因为720 000>709 000,即方案B的收益比方案A的收益高,所以该村应选择方案B.。