双目视觉成像原理讲解学习

合集下载

双目相机视觉伺服原理

双目相机视觉伺服原理

双目相机视觉伺服原理
嘿,朋友们!今天咱来聊聊双目相机视觉伺服原理,这可真是个神奇又有趣的玩意儿!
你看啊,双目相机就像是人的两只眼睛,它能同时观察到同一个物体。

这就好比我们看东西的时候,两只眼睛一起工作,能让我们对物体的位置和形状有更准确的判断。

那视觉伺服呢,就像是给这个“眼睛”加上了聪明的大脑和灵活的手脚。

它能根据相机看到的东西,迅速做出反应,指挥着其他部分去行动。

比如说,让机器人去抓取一个物体,它就能通过双目相机准确地判断出物体的位置、大小、形状等信息,然后指挥机器人的手臂去准确地抓住它。

这是不是很神奇呢?就好像一个武林高手,眼睛一扫,就能立刻知道对手的弱点在哪里,然后迅速出击,一招制胜!双目相机视觉伺服原理不就是这样嘛,它能让机器像武林高手一样厉害。

想象一下,如果没有这个原理,那机器人不就像个没头苍蝇一样乱撞啦?它们怎么能准确地完成各种任务呢?所以说,双目相机视觉 servo原理可太重要啦!
它就像是给机器注入了灵魂,让它们能真正地“看”到这个世界,理解这个世界,然后在这个世界里自由地行动。

这多了不起啊!
而且啊,这个原理的应用可广泛啦!在工业生产中,它能让机器人准确地进行装配、焊接等工作;在医疗领域,它能帮助医生进行更精准的手术;在日常生活中,说不定哪天你就会看到一个机器人根据双目相机视觉伺服原理在为你服务呢!
这可不是开玩笑的哟!随着科技的不断进步,双目相机视觉伺服原理一定会发挥更大的作用,给我们的生活带来更多的惊喜和便利。

所以啊,朋友们,让我们一起期待这个神奇的原理能给我们带来更多美好的变化吧!不用怀疑,未来一定会因为它而更加精彩!。

双目视觉成像原理

双目视觉成像原理

双目视觉成像原理双目视觉成像原理是指人类双眼通过视网膜接收到的图像信息,通过大脑的处理,形成我们对三维物体位置、深度和距离等感知能力。

这种成像原理是基于人类拥有两只眼睛,每只眼睛分别观察同一场景的不同角度所形成的视差来计算图像的深度信息。

首先,我们了解一下人眼的构造。

人眼是由眼球、角膜、晶状体、虹膜、瞳孔、视网膜等组成。

其中,眼球是一个球状的结构,其中包含有视网膜,视网膜上有大量视觉感受器,即视杆细胞和视锥细胞。

当外界的光线通过角膜和晶状体折射后进入眼球,最终在视网膜上形成图像。

当我们观察其中一物体时,双眼分别从不同的位置观察到该物体,这就导致了两只眼睛所观察到的图像中存在一定的视差。

视差是指物体在两只眼睛中的位置差异,也可以理解为左右眼所看到的图像不完全相同,这种不同主要体现在物体的位置上。

根据视差的理论,当物体远离我们看时,两个视点之间的差距较小,视差也较小;而当物体靠近我们时,两个视点之间的差距增大,视差也增大。

通过大脑对所观察到的图像进行处理,我们可以根据视差推断出物体的距离和深度信息。

在图像匹配方面,大脑会将两只眼睛所观察到的图像进行比较,找出两个图像中相似的部分,这个过程被称为视网膜对应。

大脑会将两个图像的每个像素点进行比较,找到相同的点。

这些相同的点可以被视作是两个视点中物体的同一点,在计算深度时非常重要。

在深度计算方面,大脑通过视差来估算物体的深度。

根据视差原理,当物体离我们越近时,它在两个视网膜上的位置差距就越大;反之,当物体离我们越远时,它在两个视网膜上的位置差距就越小。

大脑会根据这个差距来计算物体的距离和深度。

另外,人类在使用双目视觉成像原理时,还会利用一些额外的线索来帮助深度感知,比如大小大小线索、运动感知线索、重合线索等。

这些线索可以帮助我们更准确地感知物体的深度和距离。

通过双目视觉成像原理,人类可以更好地感知和理解三维空间中的物体。

利用这一原理,我们可以进行深度感知、距离判断和物体识别等。

双目摄像头的工作原理

双目摄像头的工作原理

双目摄像头的工作原理双目摄像头是一种常见的计算机视觉设备,其工作原理是通过两个摄像头捕捉场景中的图像,并通过计算两个摄像头之间的距离和角度信息,以模拟人眼的视觉功能。

下面我们将详细介绍双目摄像头的工作原理。

一、双目摄像头的构成双目摄像头由两个摄像头、一个图像处理器和一个计算单元组成,其中摄像头是负责采集场景的两个映像的装置,一个图像处理器负责将二维图像转换成深度三维图像。

计算单元则是负责在得到三维图像后进行数据处理和分析。

二、双目摄像头的工作原理在实际使用中,双目摄像头通常会将两个摄像头间距离设为一定的值,这个值也叫做摄像头的基线,并且每个摄像头都会拍摄场景中的一个不同角度的图像。

在图像处理之前,需要对相机进行标定,即找出两个摄像头对应图像中相同的或有规律的点的位置关系,并通过这些点来确定两个摄像头之间的距离和角度信息。

1. 视差原理在单个摄像头图像中,物体距离摄像头越远,则其在图像中所占像素大小就越小,而在双目摄像头中,由于两个摄像头的位置不同,因此拍摄到的同一物体在两个图像上所占像素大小也是不同的。

这个大小差异就叫做视差。

视差原理就是利用这个视差信息计算出物体的距离。

2. 立体成像原理双目摄像头同时拍摄到的两个图像就像人的两只眼睛一样。

通过对两个图像的处理,可以得到一个“立体图片”,也就是一张三维深度图像。

立体成像原理就是通过对两个图像的匹配来确定物体在场景中的位置。

3. 三角测量原理通过视差和立体成像原理,可以计算出物体在相机坐标系下的位置,但是由于不同相机的坐标系不同,所以需要将相机坐标系转换成世界坐标系。

这一步需要用到三角测量原理,即通过一组已知的平面三角形来确定各个相机坐标系之间的关系。

三、双目摄像头的应用双目摄像头在工业、医疗、安防、教育等领域都有广泛的应用,比如:1. 工业机器人和自动化生产线的视觉引导和定位。

2. 医疗图像拍摄,如体表和内窥镜的检测。

3. 安防监控系统的三维视觉分析,如人脸识别、行为识别等。

一文详解深度相机之双目成像

一文详解深度相机之双目成像

一文详解深度相机之双目成像干货第一时间送达文章导读本文通过介绍双目立体视觉的成像过程,带大家了解双目视觉如何从两个不同视角的成像平面中恢复出物体三维几何信息,重建周围景物的三维形状与位置。

在说双目视觉之前,我们先聊一下单目成像过程,最简单的单目成像是基于小孔成像的原理,三维空间中的点经过透视投影过程映射到图像平面上,如此一来在透视线上的空间点都落在像平面上的同一点处,所以普遍认为单目相机缺乏深度信息无法测距。

(这里仅从成像原理出发,当然现实中借助外界约束有很多单目测距的方法)而双目相机利用视差原理从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差来恢复出物体三维几何信息。

双目的核心在于建立两个图像中特征之间的对应关系,将三维空间中同一目标点在不同视图的成像点关联起来,然后计算它们之间的差别,最后通过视差和距离的几何关系得到深度图。

双目立体视觉的具体步骤如下:对双目相机进行标定得到内外参数和单应性矩阵通过内参做畸变校正并用单应矩阵将两张图片转换到同一平面对校正后的两张图片根据极线约束进行像素配准根据配准结构计算每个像素的深度从而获得深度图输入左右两个视角的自行车图像:输出自行车的深度图信息:到底什么是视差、极点、极线、极平面、极线约束等等?在谈到双目成像时,首先出现的一个概念就是视差,网上有人用过一个很简单的形式来描述视差,即将人眼想象成双目相机,竖起一根手指放在前方作为目标,分别闭上左眼或右眼去观察目标,我们发现目标在不同成像平面中的位置移动了,这个像素位置的差异值就是视差。

在上面这张图中,左右两幅图分别表示左右相机的成像平面,假设一个目标在左视图的成像点落在第二列蓝色区域,在右视图的成像点落在第五列蓝色区域,视差值即为3。

这里小伙伴会问为什么在计算视差值的时候,目标在左右视图中的匹配点所在行相同呢?其实在计算视差图之前,存在一个重要的操作即图像校正:包括畸变校正和立体校正两个过程。

双目视觉基本原理

双目视觉基本原理

Bumblebee 双目测量基本原理一.双目视觉原理:双目立体视觉三维测量是基于视差原理。

图 双目立体成像原理其中基线距B=两摄像机的投影中心连线的距离;相机焦距为f 。

设两摄像机在同一时刻观看空间物体的同一特征点(,,)c c c P x y z ,分别在“左眼”和“右眼”上获取了点P 的图像,它们的图像坐标分别为(,)left left left p X Y =,(,)right right right p X Y =。

现两摄像机的图像在同一个平面上,则特征点P 的图像坐标Y 坐标相同,即left right Y Y Y ==,则由三角几何关系得到:()c left c c right c c c x X f z x B X f z y Y f z ⎧=⎪⎪⎪-=⎨⎪⎪=⎪⎩ (1-1)则视差为:left right Disparity X X =-。

由此可计算出特征点P 在相机坐标系下的三维坐标为:left c c c B X x Disparity B Y y Disparity B f z Disparity ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩ (1-2)因此,左相机像面上的任意一点只要能在右相机像面上找到对应的匹配点,就可以确定出该点的三维坐标。

这种方法是完全的点对点运算,像面上所有点只要存在相应的匹配点,就可以参与上述运算,从而获取其对应的三维坐标。

二.立体视觉测量过程1.图像获取(1) 单台相机移动获取(2) 双台相机获取:可有不同位置关系(一直线上、一平面上、立体分布)2.相机标定:确定空间坐标系中物体点同它在图像平面上像点之间的对应关系。

(1)内部参数:相机内部几何、光学参数(2)外部参数:相机坐标系与世界坐标系的转换3.图像预处理和特征提取预处理:主要包括图像对比度的增强、随机噪声的去除、滤波和图像的增强、伪彩色处理等;特征提取:常用的匹配特征主要有点状特征、线状特征和区域特征等4.立体匹配:根据对所选特征的计算,建立特征之间的对应关系,将同一个空间物理点在不同图像中的映像点对应起来。

双目视觉系统的原理和设计

双目视觉系统的原理和设计

双目视觉系统的原理和设计双目视觉系统是一种基于视差原理的三维测量方法。

该系统通过两个摄像机从不同的角度同时获取被测物的两幅数字图像,然后基于视差原理恢复出物体的三维几何信息,重建物体三维轮廓及位置。

双目视觉系统的原理可以概括为以下几个步骤:1. 图像获取:双目视觉系统通常由两个摄像机组成,它们从不同的角度拍摄被测物体。

摄像机获取的图像经过预处理后,进行特征提取和匹配。

2. 特征提取和匹配:这一步是双目视觉系统中的重要环节。

在预处理后,提取出图像中的特征点,并找到对应的特征点对。

特征点匹配是根据特征描述符的相似度来确定特征点之间的对应关系。

3. 立体校正和立体匹配:为了确保左右摄像机获取的图像在同一水平线上,需要进行立体校正。

立体匹配则是确定左右图像中对应像素之间的视差,这一步对于三维重建至关重要。

4. 三维重建:根据视差图和摄像机的参数,通过一系列算法计算出每个像素点的三维坐标,进而得到物体的三维模型。

5. 后期处理:最后,根据需求对重建的三维模型进行进一步的处理,如表面重建、纹理映射等。

双目视觉系统的设计可以根据实际需求进行调整。

影响系统性能的关键因素包括摄像机的分辨率、焦距、基线长度等。

为了获得更准确的三维测量结果,需要选择高分辨率、高精度的摄像机,并确保合适的基线长度和焦距。

此外,还需要进行精确的摄像机标定,以获取准确的摄像机参数。

在系统实现过程中,还需注意算法的优化和稳定性,以确保实时性和准确性。

总之,双目视觉系统是一种基于视差原理的三维测量方法,通过两个摄像机获取被测物的两幅数字图像,然后进行特征提取和匹配、立体校正和立体匹配、三维重建等一系列步骤,最终得到物体的三维模型。

在实际应用中,需要根据具体需求进行系统设计,选择合适的硬件设备和参数设置,并进行算法优化和稳定性测试,以确保双目视觉系统的性能和可靠性。

双目相机原理

双目相机原理

双目相机原理双目相机原理是采用两个摄像头组成的立体视觉系统,它能够以三维的方式感知物体的几何结构和表面灰度值,并将其转换为数字信号。

这种情况下,摄像头之间的距离就是一个重要参数,它决定了每个图像中物体的深度信息。

1、工作原理双目相机系统包含两个摄像头,分别放置在两个独立的位置上,形成一个立体视觉系统。

两个摄像头分别拍摄不同的视角,所以它们的画面中的物体的位置是不同的,这样就可以获得物体的三维信息。

由于两个摄像头的位置和视角确定,所以可以通过计算两个摄像头的图像来获得物体的三维信息,即深度信息。

此外,双目相机系统还可以使用光学测距法来计算物体的深度信息。

该方法利用两个摄像头之间的距离来估计物体的深度信息,如果两个摄像头之间的距离越大,估计的深度信息越准确。

2、应用双目相机系统的应用非常广泛,可以应用于计算机视觉、机器人导航、自动驾驶、智能家居等领域。

(1)计算机视觉:双目相机可以用来进行物体检测、跟踪和识别,并获得物体的几何结构信息。

(2)机器人导航:双目相机可以用来进行三维重建和环境感知,帮助机器人快速、准确地进行导航,使机器人可以准确地定位并避开障碍物。

(3)自动驾驶:双目相机可以用来进行道路检测、车辆检测和危险性分析,从而使车辆能够自动驾驶,避免发生事故。

(4)智能家居:双目相机可以用来进行房间内物体的检测和识别,从而实现智能家居的功能,例如识别家庭成员、智能控制家电等。

3、优缺点双目相机系统有很多优点:(1)双目相机系统可以实现三维重建,从而获得物体的几何结构和表面灰度值;(2)双目相机系统可以获得物体的深度信息,从而实现精确定位和跟踪;(3)双目相机系统可以快速、准确地实现物体的检测、跟踪和识别;(4)双目相机系统可以应用于多种机器视觉的应用。

但是双目相机也有一些缺点:(1)双目相机系统的安装和调试比较复杂,需要花费大量时间和精力;(2)双目相机系统需要一定的采集系统,计算机资源也比较昂贵;(3)双目相机系统受光线影响比较大,易受到外界光线的干扰;(4)双目相机系统价格比较高,不太经济实惠。

双目深度相机原理

双目深度相机原理

双目深度相机原理
双目深度相机是一种利用双目立体视觉技术来获取物体深度信息的设备。

其原理是通过两个相机的视差来计算物体在三维空间中的位置和深度信息。

双目深度相机的两个相机分别从不同的角度拍摄同一物体,形成两幅不同的图像。

由于两个相机之间的距离和角度不同,因此它们拍摄的图像中对应物体的位置也会有所不同,这种现象被称为视差。

通过计算这种视差,我们可以得到物体在三维空间中的位置和深度信息。

具体来说,双目深度相机的原理可以分为以下几个步骤:
1. 获取图像:双目深度相机的两个相机分别获取物体的两幅不同角度的图像。

2. 图像校正:由于两个相机之间的位置和角度差异,拍摄的图像可能会出现畸变或错位。

因此需要对获取的图像进行校正,使其对齐并形成一致的视角。

3. 特征点匹配:在两幅图像中寻找对应特征点的位置,这些特征点可以是边缘、角点等明显的特征。

4. 计算视差:根据特征点在两幅图像中的位置差异,计算出物体的视差。

视差的大小反映了物体在三维空间中的深度信息。

5. 生成深度图:根据计算出的视差,生成物体的深度图。

深度图是一个表示物体表面各点距离相机远近的图像,其中每个像素点的值表示该点在三维空间中的深度信息。

6. 三维重建:结合深度图和校正后的图像,利用三角测量原理,重建出物体的三维模型。

双目深度相机具有结构简单、成本低、精度高等优点,因此在机器人视觉、自动驾驶、虚拟现实等领域得到了广泛应用。

双目立体视觉之原理揭秘ppt课件

双目立体视觉之原理揭秘ppt课件
一.视差讲解深度信息
2
双目摄像机视差原理图
坐标系以左相机为准,右相机相对于左相机是简单的平移,用坐标表示为(Tx,0,0)
3
双目摄像机视差原理图
4
双目摄像机视差原理图
5
双目摄像机视差原理图
6
双目摄像机视差原理图
视差公式
7
视差与深度的关系
进而获取物体二维信息,同时也可以通过求 视差获取物体深度信息,实现获取物体距离, 物体高度,物体三维重建等计算。
14
8
二.外极线几何讲解
9
外极线几何知识
非标准外极线几何图
10
1.极平面 2.极线
3.极点 4.极线约束
11
外极线几何
12
三.双目标定
13
双目标定物理意义: 获取非标准外极线几何到标准外极线几何的 变换矩阵,校正两个相机的图像。根据两个相 机的相对位姿,从而在标准外极线几何图像 中获取物体在另一个相机成像中位置。

双目成像原理(一)

双目成像原理(一)

双目成像原理(一)双目成像双目成像是计算机视觉领域中常用的一项技术,它模拟了人眼的双目视觉原理,通过两个摄像头拍摄同一物体,从而获得三维信息,实现深度感知和立体显示。

本文将从浅入深地介绍双目成像的相关原理。

单目成像的局限性在讲双目成像前,我们需要先了解一下单目成像的局限性。

单目成像是指使用一台摄像机拍摄同一物体,得到二维图像信息。

单目成像的缺陷在于,它无法获得物体的深度信息,只能得到二维信息,这就限制了它在很多场景下的应用,比如虚拟现实、机器人视觉、自动驾驶等领域。

双目成像原理双目成像是通过两个摄像机同时拍摄同一物体并记录下不同的角度和距离信息,从而得到三维立体信息的一种技术。

它的原理可以简述为:1.两个摄像头同时拍摄同一物体,得到两张图片。

2.将两张图片进行匹配,找出对应的像素。

3.根据两个摄像头之间的距离及像素的匹配关系,确定每个像素在三维空间中的位置。

4.利用三维数据创建虚拟场景,并将其展示在二维屏幕上,实现立体显示。

双目成像的优势相比单目成像,双目成像的优势主要在于:1.获得了物体的深度信息,可以实现深度感知,更加精准地识别物体,提高了识别准确率。

2.三维立体感更强,可以实现真正的立体显示,增加了用户体验。

3.实现立体成像的多种方式,可以根据场景需求自由选择不同方式,提高了适用性。

双目成像的应用双目成像在计算机视觉领域有着广泛的应用,例如:1.智能摄像头:可以通过双目成像技术实现智能分析、目标跟踪和人脸识别等功能。

2.虚拟现实:可以通过双目成像技术实现更加真实的虚拟现实体验,增加用户沉浸感。

3.自动驾驶:可以通过双目成像技术实现精准的障碍物检测和跟踪,提高自动驾驶安全性。

4.机器人视觉:可以通过双目成像技术实现机器人的环境感知和路径规划等功能。

双目成像的不足之处双目成像也有其局限性,主要表现在以下几个方面:1.双目成像需要使用两个相机同时进行拍摄,因此成本较高。

2.双目成像依赖于相机之间的距离和角度,因此在不同的场景下需要对相机进行不同的调整,调整不好会影响成像效果。

双目视觉成像原理

双目视觉成像原理

双目视觉成像原理1、引言双目立体视觉(Binocular Stereo Vision)就是机器视觉得一种重要形式,它就是基于视差原理并利用成像设备从不同得位置获取被测物体得两幅图像,通过计算图像对应点间得位置偏差,来获取物体三维几何信息得方法。

融合两只眼睛获得得图像并观察它们之间得差别,使我们可以获得明显得深度感,建立特征间得对应关系,将同一空间物理点在不同图像中得映像点对应起来,这个差别,我们称作视差(Disparity)图。

双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场得在线、非接触产品检测与质量控制。

对运动物体(包括动物与人体形体)测量中,由于图像获取就是在瞬间完成得,因此立体视觉方法就是一种更有效得测量方法。

双目立体视觉系统就是计算机视觉得关键技术之一,获取空间三维场景得距离信息也就是计算机视觉研究中最基础得内容。

2、双目立体视觉系统立体视觉系统由左右两部摄像机组成。

如图一所示,图中分别以下标L与r标注左、右摄像机得相应参数。

世界空间中一点A(X,Y,Z)在左右摄像机得成像面C L与C R上得像点分别为al(ul,vl)与ar(ur,vr)。

这两个像点就是世界空间中同一个对象点A得像,称为“共轭点”。

知道了这两个共轭像点,分别作它们与各自相机得光心Ol与Or得连线,即投影线alOl与arOr,它们得交点即为世界空间中得对象点A(X,Y,Z)。

这就就是立体视觉得基本原理。

图1:立体视觉系统3、双目立体视觉相关基本理论说明3.1 双目立体视觉原理双目立体视觉三维测量就是基于视差原理,图2所示为简单得平视双目立体成像原理图,两摄像机得投影中心得连线得距离,即基线距为b。

摄像机坐标系得原点在摄像机镜头得光心处,坐标系如图2所示。

事实上摄像机得成像平面在镜头得光心后,图2中将左右成像平面绘制在镜头得光心前f处,这个虚拟得图像平面坐标系O1uv得u轴与v轴与与摄像机坐标系得x轴与y轴方向一致,这样可以简化计算过程。

双目视觉定位原理

双目视觉定位原理

双目视觉定位原理详解1. 引言双目视觉定位(Binocular Visual Localization),也被称为立体视觉定位,是一种通过两个相机获取场景深度信息,并根据这些信息确定相机在三维空间中的位置和姿态的技术。

它是计算机视觉领域的一个重要研究方向,广泛应用于机器人导航、增强现实、视觉测量等领域。

本文将从基本原理、算法流程和应用实例三个方面详细介绍双目视觉定位的原理。

2. 基本原理双目视觉定位的基本原理是通过两个相机模拟人眼的双目视觉系统,利用视差(Disparity)来计算深度信息,进而确定相机在空间中的位置和姿态。

下面将详细介绍双目视觉定位的基本原理。

2.1 立体几何立体几何是双目视觉定位的基础。

它描述了相机在三维空间中的位置和姿态,以及图像中物体的几何信息。

在立体几何中,我们有以下几个重要的概念:•相机坐标系(Camera Coordinate System):相机坐标系是相机所在位置的局部坐标系,以相机光心为原点,相机的X轴向右,Y轴向下,Z轴朝向场景。

•世界坐标系(World Coordinate System):世界坐标系是场景的全局坐标系,以某个固定点为原点,一般选择一个或多个地面上的特征点作为参考。

•相机投影(Camera Projection):相机将三维空间中的点投影到二维图像平面上,形成相机图像。

•图像坐标系(Image Coordinate System):图像坐标系是相机图像上的坐标系,原点通常位于图像的左上角,X轴向右,Y轴向下。

•像素坐标(Pixel Coordinate):像素坐标是图像中的离散点,表示为整数坐标(x, y)。

2.2 视差与深度视差是指双目摄像机的两个成像平面上,对应点之间的水平像素位移差。

通过计算视差,可以获得物体的深度信息。

视差与深度的关系可以用三角几何来描述。

假设相机的基线长度为 b,两个成像平面之间的距离为 f,视差为 d,物体的真实深度为 Z,则有以下关系:[ Z = ]由于视差在像素坐标中的表示是一个差值,而不是直接的深度信息,因此需要进行视差计算来获取深度。

双目3d相机的原理

双目3d相机的原理

双目3D相机利用两个摄像头模拟人眼的双眼视觉,从而实现深度感知和三维重建。

其原理基于视差(disparity)和三角测量。

1. 视差原理:
双目相机中的两个摄像头以一定的距离分开,当它们同时观察同一个物体时,由于视线的错位,物体在两个图像中的位置会有所不同,这种差异称为视差。

利用视差可以推断出物体与相机的距离关系。

2. 三角测量原理:
通过测量摄像头之间的距离、视角等参数,以及在两个图像中对应特征点的视差,可以利用三角测量原理计算出物体到相机的距离。

工作流程:
- 标定:确定摄像头参数、位置和朝向。

- 匹配:在两个图像中找到对应的特征点,计算视差。

- 三角测量:利用视差和摄像头参数进行距离计算。

- 生成深度图:将距离信息转换为深度图像。

双目3D相机可用于机器人导航、立体视觉、人脸识别、三维重建等领域,能够提供丰富的三维信息,对于需要精确深度感知的场景具有很大的应用潜力。

双目视觉技术解析

双目视觉技术解析

双目视觉技术解析
双目视觉的基础原理是基于三角测量原理,我们并排放置两个相机,利用投影光学系统可使两个相机视野在所需求的物距发生重叠,通过每个相机拍摄的图片,我们可以捕捉到不同视角的场景,如下图所示:
CCAS双目视觉模型
在实现3D测量前,首先我们需要确定左边相机图像的表面点在右边相机图像的哪里显示;其次必须知道左右相机图像的关联像素交叉点。

这涉及到2种技术:立体匹配和双目标定。

1、双目标定
双目标定是对双目三维测量系统的参数初始化过程,也就是说用已知世界坐标系测算双目系统的参数,可以用下面的关系进行描述:
双目视觉中测量和标定的关系
2、相机矫正
通过上述关系,很容易发现“图像坐标”是每次计算的基础,为了准确的计算该坐标,我们需要相机是“理想模型”,而实际上任何成像系统都有其畸变。

相机的畸变模型如下,我们可以通过单相机标定确定相机的畸变系数。

CCAS系统成像畸变模型
3、立体匹配
由于单相机获取的图像只能计算出二维坐标,因为我们使用了2套相机,且2套相机之间的关系也是已知的,那么如果我们能把三维空间中某点在左右相机成像的二维坐标都计算出来,且能知道这是同一个点,这样就可以计算出三维坐标。

这里面确认同名点的技术就是立体匹配。

立体匹配有很多种算法,其中局部匹配法是最常用的,但是就目前已有算法来说,没有一种算法可以实现100%匹配。

一般来说待匹配点越多,匹配准确率越低。

CCAS双目标定结果
4、三维测量
不管使用哪种匹配方式,最终的目的还是把兴趣点的三维坐标计算出来,达到我们三维信息获取的目的。

目前比较常见的应用有三类:三维还原、立体导航、空间跟踪。

双目视觉成像原理

双目视觉成像原理

双目视觉成像原理1.引言双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。

融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)图。

双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场的在线、非接触产品检测和质量控制。

对运动物体(包括动物和人体形体)测量中,由于图像获取是在瞬间完成的,因此立体视觉方法是一种更有效的测量方法。

双目立体视觉系统是计算机视觉的关键技术之一,获取空间三维场景的距离信息也是计算机视觉研究中最基础的内容。

2.双目立体视觉系统立体视觉系统由左右两部摄像机组成。

如图一所示,图中分别以下标L和r标注左、右摄像机的相应参数。

世界空间中一点A(X,Y,Z)在左右摄像机的成像面C L和C R上的像点分别为al(ul,vl)和ar(ur,vr)。

这两个像点是世界空间中同一个对象点A的像,称为“共轭点”。

知道了这两个共轭像点,分别作它们与各自相机的光心Ol和Or的连线,即投影线alOl和arOr,它们的交点即为世界空间中的对象点A(X,Y,Z)。

这就是立体视觉的基本原理。

图1:立体视觉系统3.双目立体视觉相关基本理论说明3.1 双目立体视觉原理双目立体视觉三维测量是基于视差原理,图2所示为简单的平视双目立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b。

摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图2所示。

事实上摄像机的成像平面在镜头的光心后,图2中将左右成像平面绘制在镜头的光心前f处,这个虚拟的图像平面坐标系O1uv的u轴和v 轴与和摄像机坐标系的x 轴和y 轴方向一致,这样可以简化计算过程。

双目视觉原理

双目视觉原理

双目视觉原理双目视觉原理是指人类通过双眼观察物体时,利用双眼间的视差来感知物体的深度和距离,从而形成立体视觉。

这一原理在生活中有着广泛的应用,不仅在人类视觉系统中起着重要作用,也被广泛运用在各种技术领域中。

本文将从生物学角度和技术应用角度对双目视觉原理进行介绍和分析。

首先,从生物学角度来看,人类的双眼视觉系统是如何实现立体视觉的呢?人类的双眼分别位于头部的两侧,由于双眼间距约为6.5-7.5厘米,因此左右眼所看到的物体会有微小的差异。

当物体距离眼睛较近时,左右眼所看到的差异会更加显著,而当物体距离较远时,差异会减小。

大脑会通过比较左右眼的视差,来计算物体的距离和深度,从而形成立体视觉。

这种双目视觉原理是人类视觉系统能够感知三维空间的重要基础。

其次,从技术应用角度来看,双目视觉原理在计算机视觉和机器人领域有着重要的应用。

利用双目视觉原理,计算机可以通过摄像头获取的左右眼图像,计算出物体的距离和深度信息,从而实现对物体的立体感知和识别。

这种技术被广泛运用在自动驾驶、机器人导航、三维重建等领域。

通过双目视觉原理,计算机可以更加准确地感知和理解周围环境,实现更加智能化的应用。

另外,双目视觉原理还被应用在虚拟现实和增强现实技术中。

通过模拟人类双眼视觉系统,虚拟现实设备可以实现对虚拟场景的立体感知,使用户可以身临其境地体验虚拟世界。

而增强现实技术则可以通过双目摄像头获取周围环境的立体信息,实现对现实世界的增强和交互。

这些技术的实现都离不开双目视觉原理的支持。

总的来说,双目视觉原理是人类视觉系统的重要原理,也是许多技术领域的关键技术之一。

通过对双目视觉原理的深入理解和应用,可以实现更加智能化和生动的视觉体验,推动技术的不断发展和创新。

希望本文对双目视觉原理有所启发,也希望读者能够进一步探索和应用这一原理,为技术的发展和人类生活带来更多的可能性。

双目视觉成像原理

双目视觉成像原理

双目视觉成像原理双目视觉成像是通过模拟人类双眼的视觉系统来实现三维物体成像的一种技术。

它基于人类视觉系统的原理,通过两个相距一定距离的摄像机模拟人类的双眼观察,以获取不同视角的图像,并通过计算机算法将两张图像合成为一个立体图像,从而实现对三维物体的成像。

1.视差:视差是人类视野中的两种视觉感知之一,用于确定三维空间中物体的距离。

在双目成像中,双眼的视线分别对准物体的不同位置,通过比较两个视角的图像之间的差异,可以计算出点像素的视差大小。

视差越大,表示物体离摄像机的距离越近,视差越小,表示物体离摄像机的距离越远。

2.立体视觉:立体视觉是人类双眼观察世界的基础,它通过两个眼睛同时观察同一物体,从而产生稍微不同的视角。

这种微小的差异使得人脑能够将两个图像合成为一个立体图像,从而形成对三维物体的感知。

在双目成像中,同样需要通过计算机算法将两个摄像头采集到的图像合成为一个立体图像,以还原真实世界中的三维场景。

在双目视觉成像中,首先需要进行摄像机的标定。

摄像机标定是计算摄像机的内外参数,包括焦距、图像畸变等,以保证后续的计算过程准确可靠。

然后,通过两个相距一定距离的摄像机同时拍摄同一物体,获取一对立体图像。

接下来,需要进行图像预处理,包括图像去噪、滤波、灰度转换等。

然后,通过计算算法对两个图像进行匹配,找到对应点像素之间的视差。

常用的视差计算方法有区域匹配、视差图像、SAD(Sum of Absolute Difference)、SSD(Sum of Squared Difference)等。

最后,通过视差与距离之间的关系,可以将视差图像转化为深度图像,从而得到物体的三维坐标信息。

双目视觉成像技术主要应用于计算机视觉、机器人导航和虚拟现实等领域。

在计算机视觉领域,双目视觉可以用于目标检测、目标跟踪、立体重建等任务;在机器人导航领域,双目视觉可以用于地图构建、障碍物避障、路径规划等任务;在虚拟现实领域,双目视觉可以用于3D游戏、虚拟现实眼镜等设备的制作。

双目立体成像原理

双目立体成像原理

双目立体成像原理双目立体成像原理双目立体成像是一种通过两个视角来获取三维信息的技术,它模拟了人类的视觉系统,可以在计算机图形学、计算机视觉、虚拟现实等领域得到广泛应用。

本文将从以下几个方面来介绍双目立体成像的原理。

一、基本概念1. 双目视差双目视差是指两个眼睛看到同一物体时,由于它们之间的距离不同而产生的物体位置差异。

这种差异可以用一个参数来表示,即视差值。

2. 视平面视平面是指眼睛所在位置与物体之间的平面。

在双目立体成像中,我们通常将视平面作为参考平面,用来计算双目视差。

3. 基线距离基线距离是指两个摄像头之间的距离,它决定了双目立体成像的精度和范围。

基线距离越大,可测量的深度范围就越广;基线距离越小,精度就越高。

二、原理分析1. 左右图像采集在进行双目立体成像之前,首先需要采集左右两个视角的图像。

这可以通过两个摄像头来实现,将它们分别放置在左右两侧,并保证它们的位置和朝向相同。

2. 图像校正由于左右两个摄像头之间存在一定的距离和角度差异,所以采集到的图像可能存在畸变。

为了消除这种畸变,需要进行图像校正。

这可以通过标定摄像头的内部参数和外部参数来实现。

3. 视差计算在进行双目立体成像时,我们通常将左侧图像作为参考图像,右侧图像作为待匹配图像。

通过比较左右两幅图像中对应点的亮度或颜色值等特征来计算它们之间的视差值。

4. 深度计算通过视差值和基线距离可以计算出物体到相机的距离。

具体公式如下:深度 = 基线距离× 焦距 / 视差值其中,焦距是指相机镜头的焦距。

5. 三维重建在获取了物体到相机的深度信息后,就可以进行三维重建了。

这可以通过将深度信息转换成点云数据,并使用三维建模软件来实现。

三、应用领域1. 计算机图形学双目立体成像可以用来生成逼真的三维图像和动画,为计算机图形学提供了重要的技术支持。

2. 计算机视觉双目立体成像可以用来进行物体识别、目标跟踪、姿态估计等任务,为计算机视觉提供了一种重要的手段。

双目相机成像原理

双目相机成像原理

双目相机成像原理一、双目相机简介双目相机是一种基于立体视觉的成像设备,由两个摄像头组成,模拟人类双眼观察物体的方式,能够获取物体在三维空间中的深度信息。

双目相机广泛应用于机器人导航、三维重建、虚拟现实等领域。

二、双目相机成像原理1. 双目视差双目视差是指两个摄像头在拍摄同一物体时,由于位置不同而产生的两幅图像之间的差异。

这种差异可以用来计算物体在空间中的深度信息。

2. 立体匹配立体匹配是指将两幅图像中对应点进行匹配,并计算出它们之间的距离或深度信息。

常用的立体匹配算法有基于区域、基于特征点和基于深度学习等。

3. 双目标定为了进行立体匹配,需要对双目相机进行标定,即确定两个摄像头之间的几何关系和内部参数。

通常采用棋盘格标定法或者三维重建法进行标定。

4. 三角测量通过立体匹配得到两幅图像中对应点的深度信息后,可以通过三角测量计算出物体在空间中的三维坐标。

三角测量是指利用已知的两个点和它们与待求点的夹角来计算待求点的坐标。

5. 双目相机应用双目相机广泛应用于机器人导航、三维重建、虚拟现实等领域。

在机器人导航中,双目相机可以获取环境中物体的深度信息,从而实现避障和路径规划等功能。

在三维重建中,双目相机可以获取物体表面的深度信息,从而实现精确的三维模型重建。

在虚拟现实中,双目相机可以获取用户视觉信息,并将其转化为虚拟世界中的图像。

三、总结双目相机是一种基于立体视觉的成像设备,能够获取物体在空间中的深度信息。

其成像原理主要包括双目视差、立体匹配、双目标定和三角测量等。

双目相机广泛应用于机器人导航、三维重建、虚拟现实等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双目视觉成像原理
双目视觉成像原理
1.引言
双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。

融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)图。

双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场的在线、非接触产品检测和质量控制。

对运动物体(包括动物和人体形体)测量中,由于图像获取是在瞬间完成的,因此立体视觉方法是一种更有效的测量方法。

双目立体视觉系统是计算机视觉的关键技术之一,获取空间三维场景的距离信息也是计算机视觉研究中最基础的内容。

2.双目立体视觉系统
立体视觉系统由左右两部摄像机组成。

如图一所示,图中分别以下标L和r标注左、右摄像机的相应参数。

世界空间中一点A(X,Y,Z)在左右摄像机的成像面C L和C R上的像点分别为al(ul,vl)和ar(ur,vr)。

这两个像点是世界空间中同一个对象点A的像,称为“共轭点”。

知道了这两个共轭像点,分别作它们与各自相机的光心Ol和Or的连线,即投影线alOl和arOr,它们的交点即为世界空间中的对象点A(X,Y,Z)。

这就是立体视觉的基本原理。

图1:立体视觉系统
3.双目立体视觉相关基本理论说明
3.1 双目立体视觉原理
双目立体视觉三维测量是基于视差原理,图2所示为简单的平视双目
立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b 。

摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图2所示。

事实上摄像机的成像平面在镜头的光心后,图2中将左右成像平面绘制在镜头的光心前f 处,这个虚拟的图像平面坐标系O1uv 的u 轴和v 轴与和摄像机坐标系的x 轴和y 轴方向一致,这样可以简化计算过程。

左右图像坐标系的原点在摄像机光轴与平面的交点O1和O2。

空间中某点P 在左图像和右图像中相应的坐标分别为P1(u1,v1)和P2(u2,v2)。

假定两摄像机的图像在同一个平面上,则点P 图像坐标的Y 坐标相同,即v1=v2。

由三角几何关系得到:
c c 1z x f u = c c 2z )b -x (f u = v 1 c c
21z
y f v v ==
上式中(x c ,y c ,z c )为点P 在左摄像机坐标系中的坐标,b 为基线
距,f 为两个摄像机的焦距,(u1,v1)和(u2,v2)分别为点P 在左图像和右图像中的坐标。

视差定义为某一点在两幅图像中相应点的位置差:
c 21z
b f )u -u (d *==
图2:双目立体成像原理图
由此可计算出空间中某点P 在左摄像机坐标系中的坐标为:
d u b x 1c *= d v b y c *= d
f b z c *= 因此,只要能够找到空间中某点在左右两个摄像机像面上的相应点,并且通过摄像机标定获得摄像机的内外参数,就可以确定这个点的三维坐标。

3.2双目立体视觉的系统结构以及精度分析
由上述双目视觉系统的基本原理可知,为了获得三维空间中某点的三维坐标,需要在左右两个摄像机像面上都存在该点的相应点。

立体视觉系统的一般
结构为交叉摆放的两个摄像机从不同角度观测同一被测物体。

这样通过求得两个图像中相应点的图像坐标,便可以由双目立体视觉测量原理求取三维空间坐标。

事实上,获取两幅图像也可以由一个摄像机实现,如一个摄像机通过给定方式的运动,在不同位置观测同一个静止的物体,或者通过光学成像方式将两幅图像投影到一个摄像机,都可以满足要求。

各种双目视觉系统结构各有优缺点,这些结构适用于不同的应用场合。

对要求大测量范围和较高测量精度的场合,采用基于双摄像机的双目立体视觉系统比较合适;对测量范围要求比较小,对视觉系统体积和质量要求严格,需要高速度实时测量对象,基于光学成像的单摄像机双目立体视觉系统便成为最佳选择。

基于双摄像机的双目立体视觉系统必须安装在一个稳定的平台上,在进行双目视觉系统标定以及应用该系统进行测量时,要确保摄像机的内参(比如焦距)和两个摄像机相对位置关系不能够发生变化,如果任何一项发生变化,则需要重新对双目立体视觉系统进行标定。

视觉系统的安装方法影响测量结果的精度。

测量的精度可由下式得出:
d b f Z Z ∆**=∆2
上式中ΔZ 表示测量得出的被测点与立体视觉系统之间距离的精度,Z 指被测点与立体视觉系统的绝对距离,f 指摄像机的焦距,b 表示双目立体视觉系统的基线距,Δd 表示被测点视差精度。

如果b 和Z 之间的比值过大,立体图像对之间的交迭区域将非常小,这样就不能够得到足够的物体表面信息。

b/z 可以取的最大值取决于物体的表面特征。

一般情况下,如果物体高度变化不明显,b/z 可以取的大一些;如果物体表
面高度变化明显,则b/z 的值要小一些。

无论在任何情况下,要确保立体图像对之间的交迭区域足够大并且两个摄像机应该大约对齐,也就是说每个摄像机绕光轴旋转的角度不能太大。

3.3 双目立体视觉标定
摄像机内参数的标定和单目视觉系统标定一致,双目立体视觉系统的标定主要是指摄像机的内部参数标定后确定视觉系统的结构参数R 和T (即两个摄像机之间的位置关系,R 和T 分别为旋转矩阵和平移向量)。

一般方法是采用标准的2D 或3D 精密靶标,通过摄像机图像坐标与三维世界坐标的对应关系求得这些参数。

具体的标定过程如下:
(1)将标定板放置在一个适当的位置,使它能够在两个摄像机中均可以完全成像。

通过标定确定两个摄像机的内部参数以及他们的外部参数(R1、T1与R2、T2),则R1、T1表示左摄像机与世界坐标系的相对位置,R2、T2表示右摄像机与世界坐标系的相对位置。

(2)假定空间中任意一点在世界坐标系、左摄像机坐标系和右摄像机坐标系下的非齐次坐标分别为X w 、X 1、X 2,则:
111T X R X W += 222T X R X W +=
消去X W 得到:1112211122T R R T X R R X ---+=
两个摄像机之间的位置关系R 、T 可以用以下关系式表示:
112-=R R R 11122T R R T T --=
3.4 双目立体视觉中的对应点匹配
由双目立体视觉系统原理可以看出双目立体视觉是建立在对应点的视差基础之上,因此左右图像中各点的匹配关系成为双目立体视觉技术的一个极其重要的问题。

然而,对于实际的立体图像对,求解对应问题极富挑战性,可以说是双目立体视觉中最困难的一步。

为了能够增加匹配结果的准确性以及提高匹配算法的速度,在匹配过程中通常会加入下列几种约束: (1)极线约束。

在此约束下,匹配点已经位于两副图像中相应的极线上。

(2)唯一性约束。

两副图像中的对应的匹配点应该有且仅有一个。

(3)视差连续性约束。

除了遮挡区域和视差不连续区域外,视差的变化都是平滑的。

(4)顺序一致性约束。

位于一副图像极线上的系列点,在另一幅图像中极线上有相同的顺序。

图像匹配的方法有基于图像灰度(区域)的匹配、基于图像特征的匹配和基于解释的匹配或者多种方法结合的匹配。

相关文档
最新文档