二次函数(一般式)的图像和性质(精品课件).ppt

合集下载

22.1.1 二次函数 课件(共15张PPT)

22.1.1 二次函数  课件(共15张PPT)

新课导入
你 观 察 过 公 园 的 拱 桥 吗?
篮球入框,公 园里的喷泉, 雨后的彩虹都 会形成一条曲 线.这些曲线 能否用函数关 系式表示?
知识讲解
1.二次函数的定义
探究归纳
1 1
1
3
此式表示了种植面积y与边长x之间的关系,对于x的每一个值,y都有唯一 确定的一个对应值,即y是x的函数.
知识讲解
第 二十二章 二次函数
第二十二章 二次函数
22.1 二次函数的图象和性质 22.1.1 二次函数
温故知新
1. 函数的定义 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确 定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
2. 一次函数与正比例函数
3.一元二次方程的一般形式
30(1+x)2
30(1+x)2
30(1+x)
此式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y 都有唯一确定的一个对应值,即y是x的函数.
知识讲解
上述三个问题中的函数解析式具有哪些共同特征呢?
知识讲解
归纳总结
二次函数的定义:
注意
知识讲解
2.二次函数的应用 例1
不一定是,缺少 a≠0的条件
中y=0时得到的。
与前面我们学过的一元二 有什么联系和区别?
且a≠0; 可以看成是函数
区别:前者是函数,后者是方程;等式另一边前者是y,后 者是0。
随堂训练
B C
随堂训练
4.矩形的周长为16 cm,它的一边长为x(cm),面积为y(cm2). (1)求y与x之间的函数解析式及自变量x的取值范围; (2)求当x=3时矩形的面积.

二次函数的图像和性质(共82张PPT)

二次函数的图像和性质(共82张PPT)

y=ax2
向上
y轴 (0,0)
向下
y轴 (0,0)
4、二次函数y=2x2+1的图象与二次函数y=
2x2的图象开口方向、对称轴和顶点坐标是否相
同?它们有什么关系?我们应该采取什么方法
来研究这个问题?
画出函数y=2x2和函数y= 2x2+1的图象, 并加以比较
x … –1.5 –1 –0.5 0 0.5 1 1.5 …
y 1 x2 ··· 2
8
4.5
2 0.5 0 0.5 2 4.5
8
···
x
·· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
y 2x2 · 8 4.5 2 0.5 0 0.5 2 4.5 8
·· ·
y y x2 8
y 2x2
···
6
y 1 x2
4
2
2
-4
-2 O
24
在对称轴左侧,y都随x的增大而增大,
在对称轴右侧,y都随 x的增大而减小 .
联系: y=a(x-h)²+k(a≠0) 的图象可以看成y=ax²的图象先沿x轴整体左(右)平移| |个单位(当 >0时,向右平移;当 <0时,向左平移),
再沿对称轴整体上(下)平移|
|个单位 (当
>0时向上平移;当 <0时,向下平移)得到的.
y 1 x2
y1
1 3
x2
2
3
y2
1 3
x2
2
的图像
在同一直角坐标系中
画出函数 y 1 x2 5 y
y1
1 3
x2
2
3
y2
的图像

二次函数图像与性质ppt课件

二次函数图像与性质ppt课件

D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式

二次函数的图象和性质课件

二次函数的图象和性质课件
最大值出现在顶点处。
解决实际问题
实际应用场景
二次函数在许多实际问题中都有应用,如物体运动、经济 活动等。通过建立数学模型,我们可以利用二次函数来描 述和解决这些实际问题。
实际问题的求解策略
对于实际问题,我们通常需要结合二次函数的性质和实际 问题的特点来制定求解策略。这可能包括分析函数的单调 性、最值、零点等。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的最值点即为顶点。对于一般形式的二次函数y=ax^2+bx+c,其顶点的x坐标为-b/2a,y坐 标为c-b^2/4a。Biblioteka 二次函数的对称轴总结词
二次函数的对称轴为x=-b/2a。
详细描述
二次函数的对称轴是一条垂直于x轴的直线,其方程为x=-b/2a。这是由二次函数的最值性质决定的,对称轴上 方的函数值与对称轴下方的函数值相等。
二次函数图象的绘制
01
02
03
步骤一
确定二次函数的表达式, 例如 $f(x) = ax^2 + bx + c$。
步骤二
选择一个或多个点,代入 二次函数表达式中,计算 出对应的y值。
步骤三
在坐标系上标出这些点, 通过这些点绘制出二次函 数的图象。
二次函数图象的形状
形状特征一
二次函数图象是一个抛物 线。根据a的值(正或负) ,抛物线开口向上或向下 。
二次函数的图象和性质课 件
• 二次函数的基本概念 • 二次函数的图象 • 二次函数的性质 • 二次函数的解析式 • 二次函数的应用
01
二次函数的基本概念
二次函数定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$。

二次函数 的图象和性质-PPT课件

二次函数 的图象和性质-PPT课件
二次函数 2
知识回顾
1. 二次函数的一般式 y = ax²+bx+c (a≠0) 。 2. 判定二次函数的依据
自变量的最高次是二次,且二次项系数 不为零 ; 解析式的右边一定是整式,不能包含分式或根式。 3. 二次函数解析式的求法:待定系数法 。
二次函数 y=ax2 (a≠0) 的图像
1.y=ax2 的图像 (a≠0) 2.y=ax2 的增减性 (a≠0) 3.y=ax2 的形状 (a≠0)
y=ax2 (a≠0) 的图像
所有形如 y=ax2 的二次函数,
都以原点为顶点,y 轴为对称轴。
a 的正负决定了 y=ax2 的开口方向和大致的位置。
a>0
a<0
ymax=0
ymin=0
y=ax2 (a≠0) 的图像例题
例1 若 m 小于 1,那抛物线 y=(m-1)x2,是否可能
过 (2,3) 这个点?
a<0,图像在 x 轴下方,开口向下。曲线的两边向上无 限延展。顶点是最高点,函数有最大值 ymax=0 。
总结
y=ax2 (a≠0) 抛物线两侧增减性相反
ห้องสมุดไป่ตู้
a>0,在对称轴左侧,抛物线的图象向下走,y 随 x 的增
2
大而减小;在对称轴右侧,抛物线的图象向上走,y 随 x
的增大而增大。
a<0,在对称轴左侧,抛物线的图象向上走,y 随 x 的增 大而增大;在对称轴右侧,抛物线的图象向下走,y 随 x 的增大而减小。
|a| 越大,开口越对小于抛物|a|线越来小说,,开口越大 |a| 相同,形状相同
决定形状的唯一要素就是开口大小 所以我们可以这样说: 只要 |a| 一样,无论是正是负,两个 抛物线的形状都是完全一样的。

二次函数一般式的图像与性质(与a.b.c符号)ppt课件

二次函数一般式的图像与性质(与a.b.c符号)ppt课件
5.已知二次函数y=ax2+bx+c的图象如图所示, 请根据图象判断下列各式的符号:
a < 0 ,b< 0, c > 0 ,∆ > 0 , a-b+c >0,a+b+c = 0
精选PPT课件
19
自我挑战1
1.已知y=ax2+bx+c的图象如图所示,请在下列横线 上填写“<”,“>”或“=”.
(1) a__<_0, b__<__0, c__>___0, abc__>__0 b2-4ac__>___0
为坐标原点,抛物线的对称轴为y轴,1米为数轴的
单位长度,建立平面直角坐标系, 求(1)以这一部分抛物线为图
y
象的函数解析式,并写出x的取
O
值范围;
x
(2) 有一辆宽2.8米,高1米的
农用货车(货物最高处与地面AB
的距离)能否通过此隧道?
A CB
精选PPT课件
26
探究活动:
一座拱桥的示意图如图,当水面宽12m时,桥洞顶部 离水面4m。已知桥洞的拱形是抛物线,要求该抛物线 的函数解析式,你认为首先要做的工作是什么?如果以 水平方向为x轴,取以下三个不同的点为坐标原点:
当a < 0 时开口向下 a 越大图象开口越小
a 越小图象开口越大
精选PPT课件
13
b影响 对称轴 的位置
b与图象的关系 当b=0时对称轴为y轴 当ab>0时对称轴在y轴左侧 当ab<0时对称轴在y轴右侧
精选PPT课件
14
c与图象的关系
C 确定图 象与y轴 的交点
当c=0时图象过原点 当 c > 0时图象与y轴正半轴相交 当c < 0时图象与y轴负半轴相交

《二次函数图象》PPT课件

《二次函数图象》PPT课件

-2
-3 -4
-5
-6 -7
y=-x2
-8 -9
-10
5
从图像可以看出,二次函数y=x2和y=-x2的图像都
是一条曲线,它的形状类似于投篮球或投掷铅球时球在
空中所经过的路线. 这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
y y=x2
y
o
x
y=-x2的图像叫做抛物线y=-
x2. 实际上,二次函数的图像 o
(2)当a>0时,抛物线的开口向上,顶点是 抛物线的最低点;
y
a>0
当a<0时,抛物线的开口向下,顶点是
抛物线的最高点;
o
x
|a|越大,抛物线的开口越小;
.
a<0
16
请同学们把所学的二次函数图象的知识归纳小结。
(0,0) 最低点 y轴 向上
(0,0) 最高点 y轴 向下
.
增 减增增 大 小大大
增 增增减 大 大大小
17
8
y=x2
7
6
5
4
3
2
接各点,就得到y=x2的
1 -5 -4 -3 -2 -1 o 1 2 3 4 5
x
图像.
.
4
请画函数y=-x2的图像 解:(1) 列表
(2) 描点
(3) 连线
y 1
根据表中x,y的数值在 坐标平面中描点(x,y),
再用平滑曲线顺次连接 各点,就得到y=-x2的图 像.
.
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
x
都是抛物线.
它们的开口向上或者向下.
一般地,二次函数y=ax2+bx+c

人教版九年级上册二次函数一般式的图像和性质精品系列PPT

人教版九年级上册二次函数一般式的图像和性质精品系列PPT
有变化的:抛物线的顶点坐标、对称轴, 没有变化的:抛物线的开口方向、形状
新课
我们复习了将抛物线 y 3x2向左平移2个单位
再向下平移5个单位就得到y 3 x 22 5 的图 象,将 y 3 x 22 5 化为一般式为
y 3x2 12x 7 ,那么如何将抛物线 y 3x2的图 像移动,得到的 y 3x2 12x 7 图像呢?
那么一般地,函数y ax2 的图象怎样平 移就得到 y ax2 bx c 的图象呢?
人教版九年级上册22.1.4二次函数一 般式的 图像和 性质课 件
1.用配方法把 y ax2 bx c 化为
y a x h2 k 的形式。
例1 用配方法把 y 1 x2 3x 5 化为
2
2
2.用公式法把抛物线 y ax2 bx c 化为
y a x h2 k 的形式。
把 y ax2 bx c 变形为 y a x h2 k的方法
和我们前面学过的用配方法解二次方程 “ax2 bx c 0 ”类似.具体演算如下:
人教版九年级上册22.1.4二次函数一 般式的 图像和 性质课 件
人教版九年级上册22.1.4二次函数一 般式的 图像和 性质课 件
人教版九年级上册22.1.4二次函数一 般式的 图像和 性质课 件
解:列表 y 2x2 8x 6 0 x …0 1 2 3 4 … y … -6 0 2 0 -6 …
人教版九年级上册22.1.4二次函数一 般式的 图像和 性质课 件
练习1 用配方法把 y 2x2 4x 7 化为
y a x h2 k 的形式,求出顶点坐标
和对称轴。
答案:y 2 x 12 5 ,顶点坐标是(1,5),
对称轴是直线 x=1.
人教版九年级上册22.1.4二次函数一 般式的 图像和 性质课 件

二次函数的图像和性质一般形式(精品课件).ppt

二次函数的图像和性质一般形式(精品课件).ppt

4
∴开口方向:向上; 对称轴:x=4; 顶点坐标:(4,-4);
-----------------------
X=4
﹒ ·(4,-4)
y
9
8 7 6 5 4 3 2
1
32 1 0 1 2 3 4 5 1 2
将抛物线y 1 x2 2
向右平移4个单位后, 再向下平移4个单位, 会得到抛物线:
y
1 2
二次函数y=ax2+bx+c(a≠0)
一般地, a我(x 们 b可)2以 4用ac 配b2方法 求抛物线y=a2xa2+bx+4ca (a≠0) 对称的轴顶为点: 与对直称线轴x b ,
2a 顶点坐标是: 推2导ba过, 4程a!c4a b2
22.1.4 二次函数y=ax2+bx+c的 图象与性质
• 1.将二次函数y=4x2_8x-1等号左边配方得 ______________
• 2.你能说出函数y=4(x-2)2+1图象的开口方 向、对称轴和顶点坐标吗?
• 3.函数y=4(x-2)2+1图象与函数y=4x2的图象 有什么关系?
试研究二次函数y
(1)y -2x2 - 4x 3
对于二次函数 y ax2 bxc,你能用配方法求出 它的对称轴和顶点坐标吗?
解:y ax2 bx c
a(x2 b x) c a
a[x2 b x ( b )2 ( b )2 ] c
a
2a
2a
a x b 2 4ac b2
2a
4a
(平移?
说一说
根据图象,你能说出它的增减性吗?
X=4
-----------------------

二次函数的图像和性质ppt课件

二次函数的图像和性质ppt课件

二次函数与其他数学知识的综合应用
与三角函数的结合
在解决一些复杂的数学问题时,二次函数与三角函数经常需要结合使用,如振 动和波动的问题。
与解析几何的结合
二次函数图像与直线、圆等几何图形结合时,可以形成一些有趣的几何问题, 如切线、相交弦等。
05
习题与解答
基础习题
01
02
03
题目1
请画出二次函数$f(x) = x^2 - 2x$的图像。
题目6
已知二次函数$f(x) = x^2 - 2x$在区间$(1,3)$上有零 点,求该零点的近似值。
答案与解析
题目1答案与解析:答案略,
解析略。
01
题目2答案与解析:答案略,
解析略。
02
题目3答案与解析:答案略,
解析略。
03
题目4答案与解析:答案略,
解析略。
04
题目5答案与解析:答案略,
解析略。
详细描述
对于开口向上的二次函数,其最小值出现在顶点处,可以通过公式x=-b/2a求得顶点的 横坐标,进而求得最小值;对于开口向下的二次函数,其最大值出现在顶点处,同样可
以通过公式x=-b/2a求得顶点的横坐标,进而求得最大值。
二次函数的增减性
总结词
由二次函数的开口方向和对称轴决定,对称轴左边函数值随x增大而减小,对称轴右边函数值随x增大而增大。
05
题目6答案与解析:答案略,
解析略。
06
THANK YOU
感谢聆听
二次函数的图像和性质ppt课 件

CONTENCT

• 二次函数的基本概念 • 二次函数的图像 • 二次函数的性质 • 二次函数的应用 • 习题与解答

二次函数一般式图像和性质(精品课件).ppt

二次函数一般式图像和性质(精品课件).ppt

的值是
()
• A4
B. -1
C. 3
D.4或A-1
4.若二次函数 y=ax2 + b x + c 的图象如下,与x
轴的一个交点为(1,0),则下列各式中不成立
的是 ( B )
A.b2-4ac>0
B.
-
b 2a
<0
y
C.a+b+c=0
D. 4ac-b2 >0-1 o 1 x 4a
5.若把抛物线y = x2 - 2x+1向右平移2个单位,再向
如何画出y 1 x2 6x 21的图象呢? 2
我们知道,像y=a(x-h)2+k这样的函数,
容易确定相应抛物线的顶点为(h,k), 二次函 数 y 1 x2 6x 21也能化成这样的形式吗?
2
y 1 x2 6x 21 你知道是怎样配
2
方的吗?

(1)“提”:提出二次项系数;

( 2 )“配”:括号内配成完全平方;
y
10
5
O
5
10 x
y a x
b
2
4ac
b2
.
2a
4a
函数y=ax²+bx+c的顶点是
求次函数y=ax²+bx+c的对称轴和顶点坐标.
配方:
这个结果通常 称为求顶点坐 标公式.
y ax2 bx c
a x2 b x c
提取二次项系数
a c
a
x2
b a
x
b 2a
2
b 2a
y
1
. -1
3. 1
x
1.抛物线y=2x2+8x-11的顶点在

二次函数一般式的图像与性质课件

二次函数一般式的图像与性质课件

VS
基础习题2
已知二次函数$f(x) = ax^2 + bx + c$在 $x=2$处取得最大值,求$a$的取值范围。
提升习题
01
02
03
提升习题1
已知二次函数 $f(x) = ax^2 + bx + c$的图像与 $x$轴有两个交点,求证: $b^2 - 4ac > 0$。
提升习题2
已知二次函数 $f(x) = ax^2 + bx + c$的图像关 于原点对称,求证:$b = 0$。
总结词:由二次项系数a决定 a>0时,向上开口;
a<0时,向下开口。
顶点坐标
总结词:由公式(-b/2a,f(-b/2a))求得 顶点的横坐标为-b/2a;
顶点的纵坐标为f(-b/2a)。
对称轴
总结词:由公式x=b/2a求得
对称轴是一条垂直于 x轴的直线。
二次函数的对称轴为 x=-b/2a;
增减性
一般式与特殊式的转换
配方转换
将二次函数一般式中的项进行配方, 得到顶点式。
因式分解转换
将二次函数一般式中的项进行因式分 解,得到交点式。
求最值问题
总结词
通过配方法或顶点式,求二次函数的最值。
详细描述
对于形如$y = ax^2 + bx + c$的二次函数,可以通过配方将其转化为顶点式$y = a(x - h)^2 + k$,其中$(h, k)$为函数的顶点。根据$a$的正负性,可以判断函数的最值情况,当$a > 0$时,函数有最小值;当$a < 0$时, 函数有最大值,最小值或最大值即为顶点的纵坐标$k$。
二次函数一形式,便于分析和理解函数的 性质。

《二次函数》PPT课件

《二次函数》PPT课件

一次函数 y=kx+b(k≠0)
正比例函数
y=kx (k≠0)
一条直线
反比例函数 y k (k 0).
双曲线
x
课时导入
导入新知 正方体的六个面是全等的正方形(如图),设正 方体的棱长为x,表面积为y. 显然,对于x的 每一个值,y都有一个对应值,即y是x的函数, 它们的具体关系可以表示为 y=6x2.
课堂小结
二次函数
(2)确定二次函数的各项系数及常数项时,要把函 数关系式化为一般形式.
(3)二次项系数不为0.
感悟新知
知2-练
方法点拨:在实际问题中建立二次函数模型时,关键 要找出两个变量之间的数量关系,用类似建立一元二 次方程模型的方法,借助方程思想求出二次函数的关 系式.
解:(1) y=300+30 ( 60-x ) =-30x+2 100 ( 40 ≤ x ≤ 60 ). ( 2 ) W= ( x-40 ) ( -30x+2 100 ) =-30x2+3 300x-84 000.
课时导入
这个函数与我们学过的函数不同,其中自变 量x的最高次数是2.
这类函数具有哪些性质呢?这就是本章要学 习的二次函数.
感悟新知
知识点 1 二次函数的定义
问题1
知1-讲
n个球队参加比赛,每两队之间进行一场比赛,
比赛的场次数m与球队数n有什么关系?
比赛的场次数
m= 1 n(n-1),
即m=
1
2 n2-
感悟新知
总结
知2-讲
1. 建立二次函数模型的一般步骤: (1)审清题意:找出问题中的已知量(常量)和
未知量(变量),把问题中的文字或图形语言转化 成数学语言.

二次函数的图像与性质课件

二次函数的图像与性质课件

面积问题
矩形面积问题
通过二次函数表示矩形面 积与边长之间的关系,解 决最大面积问题。
三角形面积问题
利用二次函数表示三角形 面积与高或底之间的关系, 求解最大或最小面积。
梯形面积问题
通过二次函数表示梯形面 积与上底、下底和高之间 的关系,解决面积优化问 题。
利润问题
总利润与销售量关系
利用二次函数表示总利润与销售量之间的关系,找到最大利润点。
韦达定理的应用
韦达定理可用于求解一元二次方程的两个根的平方和、倒数和等问题,简化计算过程。同时,在解决 与二次函数相关的问题时,韦达定理也具有重要的应用价值。例如,在求解二次函数的顶点坐标、对 称轴等问题时,可以利用韦达定理进行求解。
PART 05
二次函数在实际问题中应 用
REPORTING
WENKU DESIGN
定价策略
通过二次函数分析商品定价与销售量、成本之间的关系,制定最优 定价策略。
成本控制
利用二次函数表示成本与产量之间的关系,寻求最低成本方案。
抛物线型问题
抛物线顶点与对称轴
01
通过二次函数的图像分析,确定抛物线的顶点坐标和对称轴方
程。
抛物线开口方向与最值
02
根据二次函数的系数判断抛物线的开口方向,并找到函数的最
与x轴交点
二次函数与x轴的交点即为方程的根。当Δ=b^2-4ac>0时,方程有两个不相等的实根,图像 与x轴有两个交点;当Δ=0时,方程有两个相等的实根(重根),图像与x轴有一个交点;当 Δ<0时,方程无实根,图像与x轴无交点。
PART 03
二次函数性质探讨
REPORTING
WENKU DESIGN
伸缩变换
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.确定抛物线的开口方向、对称轴 及顶点坐标。 3.在对称轴的两侧以顶点为中心左 右对称描点画图。
例3 画出 y 2x2 8x 6 的图像,利用函 数图像回答:
(1)x取什么值时,y=0? (2)x取什么值时,y>0? (3)x取什么值时,y<0? (4)x取什么值时,y有最大值或最小值?
分析:我们可以用顶点坐标公式求出图 象的顶点,过顶点作平行于y轴的直线就 是图象的对称轴.在对称轴的一侧再找 两个点,则根据对称性很容易找出另两 个点,这四个点连同顶点共五个点,过 这五个点画出图像.
· · (0,-6)
(4,-6)
y有最大值2。
练习3 画出 y x2 2x 2 的图像。 x … -1 0 1 2 3 … y … 5 2 1 2 5…
y=x2-2x+2 x=1
4.二次函数 y ax2 bx c 的性质:
(1)顶点坐标
b 2a
,
4ac 4a
b2
;
(2)对称轴是直线 x b
解:列表 y 2x2 8x 6 0 x …0 1 2 3 4 … y … -6 0 2 0 -6 …
y
·(2,2)y 2x2 8x 6
由图像知:
· · (1,0)
(3,0)
x
(1)当x=1或x=3时, y=0;
(2)当1<x<3时,
y>0;
(3)当x<1或x>3时,
y<0;
x=2
(4)当x=2时,
的两实数根
(7)抛物线 y ax2 bx c 与x轴的交点情况 可由对应的一元二次方程ax2 bx c 0 的根的判别式判定: ① △>0有两个交点抛物线与x轴相交; ② △=0有一个交点抛物线与x轴相切; ③ △<0没有交点抛物线与x轴相离。
x2
3x
5 2
1 2
x2
6x
5
1 x2
2
6x
9 9 5
1 2
x
32
4
1 x 32 2
2
顶点坐标为(-3,-2),对称轴为x=-3
练习1 用配方法把 y 2x2 4x 7 化为
y a x h2 k 的形式,求出顶点坐标
和对称轴。
答案:y 2 x 12 5 ,顶点坐标是(1,5),
二次函数(一般式)图象和性质
陈国彬
复习提问
1.y a x h2 k 的顶点坐标是_(__h_,__k_)_,
对称轴是__直__线__x_=__h_ 2.怎样把 y 3x2的图象移动,便可得到
y 3 x 22 5 的图象?
3.y 3 x 22 5 的顶点坐标是(-2,-5),
对称轴是直线 x=-2 . 4.在上述移动中图象的开口方向、形状、 顶点坐标、对称轴,哪些有变化?哪些没 有变化?
2a
(3)开口方向:当 a>0时,抛物线开
口向上;当 a<0时,抛物线开口向下。
(4)最值:
如果a>0,当 x
b 2a
时,函数有最小值,
y最小=
4ac 4a
b2
,
如果a<0,当
x
b 2a
时,函数有最大值,
y最大=
4ac 4a
b2
;
(5)增减性:
①若a>0,当
x
b 2a
时,y随x的增大而增大;

x
c a
a
x2
b a
x
b 2a
2Leabharlann b 2a2c
a
a
x
b 2a
2
4ac b2 4a2
a
x
b 2a
2
4ac b2 4a
所以抛物线 y ax2 bx c 的顶点坐标是
b 2a
,
4ac 4a
b2
,对称轴是直线 x b 。
2a
例2 用公式法把 y 1 x2 x 5 化为
x
b 2a
时,y随x的增大而减小。
②若a<0,当
x
b 2a
时,y随x的增大而减小;

x
b 2a
时,y随x的增大而增大。
(6)抛物线 y ax2 bx c 与坐标轴的交点
①抛物线 y ax2 bx c 与y轴的交点坐标 为(0,c) ②抛物线y ax2 bx c与x轴的交点坐标为
x1,0, x2,0,其中 x1, x2为方程ax2 bx c 0
练习2 用公式法把y 2x2 8x 6 化成
y a x h2 k 的形式,并求出顶点坐标和
对称轴。
答案:y 2 x 22 2 ,顶点坐标为
(2,2)对称轴是直线 x=2
3. y ax2 bx c 图象的画法.
步骤:1.利用配方法或公式法把y ax2 bx c
化为y a x h2 k 的形式。
(1)用顶点坐标公式,可求出顶点为(2,2), 对称轴是x=2. (2) 当x=1时,y=0,即图 象与x轴交于点(1,0),根据轴对称,很容 易知道(1 ,0)的轴对称点是点(3,0) .又当 x=0时,y=-6,即图象与y轴交于点(0, -6),根据轴对称,很容易知道(0,-6)的 轴对称点是点(4,-6).用光滑曲线把五个 点(2,2),(1,0),(3,0),(0,-6),(4, -6)连结起来,就是 y 2x2 8x 6 的0图象。
那么一般地,函数y ax2 的图象怎样平 移就得到 y ax2 bx c 的图象呢?
1.用配方法把 y ax2 bx c 化为
y a x h2 k 的形式。
例1 用配方法把 y 1 x2 3x 5 化为
2
2
y a x h2 k 的形式,求出顶点坐标和对称轴。
解:y
1 2
2
2
y a x h2 k 的形式,求出对称轴和顶点
坐标.
解:在 y 1 x2 x 5 中,a 1 ,b 1, c 5
2
2
2
2
b
1
1,
4ac b2
4
1 2
5 2
12
4
2
2a
y
21
1 2
x
1
2
4a
2

4
1 2
2
2
∴顶点为(1,-2),对称轴为直线 x=1。
对称轴是直线 x=1.
2.用公式法把抛物线 y ax2 bx c 化为
y a x h2 k 的形式。
把 y ax2 bx c 变形为 y a x h2 k的方法
和我们前面学过的用配方法解二次方程 “ax2 bx c 0 ”类似.具体演算如下:
y
ax2
bx
c
a
x2
b a
有变化的:抛物线的顶点坐标、对称轴, 没有变化的:抛物线的开口方向、形状
新课
我们复习了将抛物线 y 3x2向左平移2个单位
再向下平移5个单位就得到 y 3 x 22 5的图 象,将 y 3 x 22 5 化为一般式为
y 3x2 12x 7 ,那么如何将抛物线 y 3x2的图 像移动,得到的 y 3x2 12x 7 图像呢?
相关文档
最新文档