2021年奥数专题专讲五年级第12讲定义新运算
小学五年级奥数思维拓展提升志愿导学教案:2.定义新运算
2.定义新运算2023.10.29 教学目标:1.会理解特定的运算规则,会通过表达式寻找到运算规则。
2.培养学生自主思考,解题的能力。
感受到数学思维的逻辑性,唯美性。
教学重点:会通过表达式寻找到运算规则。
教学难点:特殊情况的表达式的理解。
教学准备:课件教学过程:一、导入1.揭示课题。
(1)加、减、乘、除这四种运算的意义和运算法则我们都很熟悉。
除了这四种运算之外,我们还可以人为的规定一些其他运算,并给出特定的运算规则。
这样的运算形式我们一般称之为定义新运算。
(2)定义新运算通常运用某种特殊符号来表示一种运算。
其运算规则中运用的计算方法与我们所学的四则运算方法相同。
解题的关键是通过表达式寻找到运算规则。
2.运算律。
新定义的运算中如果有括号,要先算括号里面的,但它在没有转化前是不适合用各种运算定律的。
二、新授1.例1如果2※3=2+3+4=9,5※4=5+6+7+8=26。
求:(1)9※5的值是多少?(2)解方程x※3=15。
(1)信号表示求连续自然数的和信号前面的数表示第一个数(首项)。
星号后面的数表示连续自然数的个数(项数)。
(2)9※5=9+10+11+12+13=55x※3=x+(x+1)+(x+2)=3x+33x+3=15,x=42.例2定义两种运算“©”“¤”,对于任意两个整数a、b。
都有:a©b=a+b-1,a¤b=a×b-1.若x©(x¤4)=33,求x的值。
(1)在有括号时,要先算括号内的,再算括号外的。
同时还要注意有两种运算。
(2)此题的运算方法是:先根据符号©所表示的意义。
将小括号里的式子改写成x×4-1。
再根据符号¤所表示的意义,将x©(x×4-1)改写成x+(x×4-1)-1,即原方程可变为x×5-2=33。
然后再求出未知数。
3.例3定义一种运算“*”,它的意义是a*b=a+aa+aaa+…+aaa…a(a,b都是非0自然数)。
【精选】小学五年级奥数__定义新运算一图文百度文库
【精选】小学五年级奥数__定义新运算一图文百度文库一、拓展提优试题1.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是.2.甲乙两人分别从AB两地同时出发相向而行,当甲走到一半时,乙将速度提高一倍,结果两人在距离B地1200米处相遇,并且最后同时到达,那么两地相距米3.如图,从A到B,有条不同的路线.(不能重复经过同一个点)4.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年岁,(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)5.鸡与兔共100只,鸡的脚比兔的脚多26只.那么,鸡有只.6.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;7.已知一个五位回文数等于45与一个四位回文数的乘积(即=45×),那么这个五位回文数最大的可能值是59895.8.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.9.定义新运算:a&b=(a+1)÷b,求:2&(3&4)的值为.10.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.11.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)12.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.13.观察下表中的数的规律,可知第8行中,从左向右第5个数是.14.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了千克面粉.15.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有人.【参考答案】一、拓展提优试题1.解:一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8,(1)当N=x8,则九个约数分别是:1,x,x2,x3,x4,x5,x6,x7,x8,其中有3个约数A、B、C且满足A×A=B×C,不可能.(2)当N=x2y2,则九个约数分别是:1,x,y,x2,xy,y2,x2y,xy2,x2y2,其中有3个约数A、B、C且满足A×A=B×C,①A=x,B=1,C=x2,则x+1+x2=79,无解.②A=xy,B=1,C=x2y2,则xy+1+x2y2=79,无解.③A=xy,B=x,C=xy2,则xy+x+xy2=79,无解.④A=xy,B=x2,C=y2,则xy+x2+y2=79,解得:,则N=32×72=441.⑤A =x 2y ,B =x 2y 2,C =x 2,则x 2y +x 2y 2+x 2=79,无解.故答案为441. 2.2800 [解答] 设两地之间距离为S 。
(完整版)定义新运算(小学数学五年级奥数)
定义新运算知识与方法:对于常用的加、减、乘、除等运算,我们已经熟知它们的运算法则和计算方法,如6+ 2=8, 6X2=12等。
都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。
由此可见,一种运算实际就是两个数与一个数的一种对应方法。
对应法则不同就是不同的运算。
当然,这个对应法则应该是对应任意两个数。
通过这个法则都有一个唯一确定的数与它们对应。
这节课,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。
解决定义新运算这类题的关键:是抓住定义的本质借用“ +、一、X、十”四则运算进行的,解答时要弄活新运算与四则运算的关系。
特别注意运算顺序,每个新定义的运算符号只能在本题中使用,新运算不一定符合运算定律。
例1:设a、b都表示数,规定:aAb =3X a— 2X b。
试计算:(1) 3A2; (2) 2A3。
练习1:1. 设a b都表示数,规定:a。
b=5X a— 2X b。
试计算3042. 设a b都表示数,规定:a*b=3x a+ 2X b。
试计算:5*6例2:对于两个数a与b,规定b=3a+ 2a,试计算( 3^5)练习2:1.对于两个数a与b,规定:aOb=a+3b,试计算405062.对于两个数A与B,规定:A△ B=2X A — B,试计算5A6A7例3:对于两个数a, b,规定:a金b=ax b+ a+ b,试计算:9 ®练习3:1.对于两个数a, b,规定:a$b=ax b— ( a+ b),试计算:6 ® 7.2..对于两个数A与B,规定:A GB=A X B-2,试计算:8 99例4:如果2、3=2 + 3 + 4, 5A4=5+ 6+ 7+ 8,那么按此规律计算:(1) 3A5;(2) 8A3。
练习4:1.如果4A2=4X 5, 2A3=2X 3X 4,那么按此规律计算:5A4。
2.如果24=24- (2+ 4), 3V6=36- (3 + 6), 6V3=63- (6+ 3),那么按此规律计算:7V2.例5:对于两个数a与b,规定aDb=a(a+1)+(a+2)+・・・(a+b— 1)。
小学五年级奥数__定义新运算图文百度文库
小学五年级奥数__定义新运算图文百度文库一、拓展提优试题1.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是.2.甲乙两人分别从AB两地同时出发相向而行,当甲走到一半时,乙将速度提高一倍,结果两人在距离B地1200米处相遇,并且最后同时到达,那么两地相距米3.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.4.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年岁,(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)5.有白球和红球共300个,纸盒100个.每个纸盒里都放3个球,其中放1个白球的纸盒有27个,放2个或3个红球的纸盒共有42个,放3个白球和3个红球的纸盒数量相同.那么,白球共有个.6.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市千米处追上乙车.7.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.8.如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四边=平方米.形EFGH9.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.10.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.11.(15分)甲、乙两船顺流每小时行8千米,逆流每小时行4千米,若甲船顺流而下,然后返回;乙船逆流而上,然后返回,两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?12.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.13.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块.14.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.15.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.【参考答案】一、拓展提优试题1.解:一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8,(1)当N=x8,则九个约数分别是:1,x,x2,x3,x4,x5,x6,x7,x8,其中有3个约数A、B、C且满足A×A=B×C,不可能.(2)当N=x2y2,则九个约数分别是:1,x,y,x2,xy,y2,x2y,xy2,x2y2,其中有3个约数A、B、C且满足A×A=B×C,①A=x,B=1,C=x2,则x+1+x2=79,无解.②A=xy,B=1,C=x2y2,则xy+1+x2y2=79,无解.③A=xy,B=x,C=xy2,则xy+x+xy2=79,无解.④A=xy,B=x2,C=y2,则xy+x2+y2=79,解得:,则N=32×72=441.⑤A=x2y,B=x2y2,C=x2,则x2y+x2y2+x2=79,无解.故答案为441.2.2800[解答] 设两地之间距离为S。
五年级奥数培优之定义新运算
定义新运算是指用一个符号和已知运算表达式表示一种新的运算。
解答定义新运算关键是要正确理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
例1 设b a,表示两个不同的数,规定b a b a 43.求6)78(.例2 规定:6* 2=6+66=72,2*3=2+22+222=246,1*4=1+11+111+1111=1234。
求7*5例3 设ab b a b a 5.024,求34)14(x 中的未知数x 。
专题:定义新运算1、定义运算?为a ?b =5×)(b a b a .则11?12=2、b a,表示两个数,记为:a ※b =2×b b a 41.则8※(4※16)= .3、设y x,为两个不同的数,规定x □y 4)(y x.求a □16=10中a = 4、有一个符号“?”,使下列算式成立:4?8=16,10?6=26,6?10=22,18?14=50.求7?3=5、如果a △b 表示(a-2)×b ,例如:3△4=(3-2)×4=4,那么当( a △2)△3=12时,a=6、对于数b a,规定运算“▽”为)5()3(b a ba .求)76(57、Q P,表示两个数,P ※Q =2Q P ,如3※4=243=3.5.求4※(6※8);如果x※(6※8)=6,那么x ?. 8、对任意的数a ,b ,定义:f (a )=a2+1, k (b )=2b(1)已知f (m )=26,求m 的值;(2)求f (k (3))+k (f (3))的值9、规定a ⊕)1()2()1(b a a a a b ,(b a,均为自然数,a b ).如果x ⊕10=65,那么x ?10、有A ,B ,C ,D 四种装置,将一个数输入一种装置后会输出另一个数。
装置A ∶将输入的数加上5;装置B ∶将输入的数除以2;装置C ∶将输入的数减去4;装置D ∶将输入的数乘以3。
最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】
小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
五年级奥数:定义新运算
五年级奥数:定义新运算五年级奥数重难点:定义新运算定义新运算是指使用新的符号来进行运算。
在解题时需要按照所规定的“运算程序”进行运算,以得出最终结果。
不同的题目有不同的规定,我们应该严格按照题目中的规定进行运算。
类型一:直接运算型在这种类型的问题中,我们需要直接根据运算公式进行计算。
例如,对于题目“★”表示一种新运算,规定A★B=5A+7B,求4★5,我们可以直接代入A=4,B=5,然后按照规定进行计算。
练题:1.设a、b都表示数,规定:a○b=6×a-2×b。
试计算3○4.2.“♀”表示一种新的运算,规定A♀B=2A+3B,求0.3♀1.4.3.设a、b都表示数,规定:a*b=3×a+2×b。
试计算:(1)(5*6)*7(2)5*(6*7)4.a、b是自然数,规定a※b=(a+b)÷2,求3※(4※6)5.令A®B=3×A+4×B,试计算:(1)(4®5)®6(2)(1®5)+(2®4)类型二:反解未知数型在这种类型的问题中,我们需要建立方程来求解未知数。
例如,对于题目规定a&b=3a-2b,如果x&4=7,求x的值,我们可以建立方程3x-8=7,然后解方程得到x=5.练题:1.如果规定 ab cd =a×d-b×c,已知126 x2.4=7.2,求x的值。
2.对于任意正整数a,b,规定a※b=a÷b×2+3.若256※a=19,求a的值。
3.对于两个数a与b,规定a□b=a+(a+1)+(a+2)+…(a+b-1)。
已知x□6=27,求x。
类型三:观察规律型在这种类型的问题中,我们需要观察规律来进行计算。
例如,对于题目如果1※3=1+2+3=6,5※4=5+6+7+8=26,那么9※5=?我们可以发现,每个数的结果都是从第一个数开始加上后面的连续的几个数,因此9※5=9+10+11+12+13=55.练题:1.已知1∆3=1×2×3,6∆5=6×7×8×9×10,求2∆5.2.如果2※3=2+3+4=9,5※4=5+6+7+8=26,按此规则计算:(1)1※x=15(2)x※3=12类型四:综合类型在这种类型的问题中,我们需要综合运用不同的方法来进行计算。
小学奥数基础教程(五年级)
小学奥数根底教程(五年级)第1讲数字迷〔一〕第2讲数灯谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性〔一〕第8讲奇偶性〔二〕第9讲奇偶性〔三〕第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数〔一〕第13讲最大公约数与最小公倍数〔二〕第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原那么第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题〔一〕第25讲行程问题〔二〕第26讲行程问题〔三〕第27讲逻辑问题〔一〕第28讲逻辑问题〔二〕第29讲抽屉道理(一)第30讲抽屉道理(二)第1讲数灯谜〔一〕数灯谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜测、拼凑、排除、枚举等方法解题。
数灯谜涉及的常识多,思考性强,所以很能熬炼我们的思维。
这两讲除了复习稳固学过的常识外,还要讲述数灯谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,别离填入下面等式的○内,使等式成立〔每个运算符号只准使用一次〕:〔5○13○7〕○〔17○9〕=12。
阐发与解:因为运算成果是整数,在四那么运算中只有除法运算可能呈现分数,所以应首先确定“÷〞的位置。
当“÷〞在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
〔5÷13-7〕×〔17+9〕。
当“÷〞在第二或第四个○内时,运算成果不成能是整数。
当“÷〞在第三个○内时,可得下面的填法:〔5+13×7〕÷〔17-9〕=12。
例2 将1~9这九个数字别离填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
小学五年奥数-定义运算
定义新运算【知能大展台】同学们已经学过加、减、乘、除四则运算。
不知同学们想过没有,作为一种运算,它有没有特定的运算法则和规律呢?先请同学们看下面两算式:6+8=14 6×8=48同样是6和8的运算,为什么运算结果不同呢?这主要是运算方式不同,即运算法则不同。
可见,一种运算实质就是两个数与一个数的对应关系,对应法则不同就是不同的运算。
其实,在加、减、乘、除四则运算之外,还有其他多种法则的运算。
我们学习的定义新运算就是用﹡、△、※、⊙等多种符号按照一定的关系,“临时”规定的一种运算法则进行的运算。
【试金石】例1 已知a※b=(a+b)-(a-b),求9※2的值。
【分析】这是一道很简单的题,把a=9,b=2代入新运算式,即可算出结果。
但是,根据四则运算的法则,我们可以先把新运算“※”化简,再求结果。
【解答】a※b=(a+b)-(a-b)=a+b-a+b=2b。
所以,9※2=2×2=4。
【智力加油站】【针对性训练】如果规定a※b=13×a-b÷8,那么17※24的最后结果是多少?【试金石】例2设是p、q两个数,规定p△q=4×q-(p+q)÷2。
求5△(2△8)。
【分析】在这里,“△”是定义新运算的运算符号。
根据此题的规定,用“△”这个特殊符号连接起来的两个数所组成是式子表示:第二个数的4倍减去这两个数的平均数,求差是多少。
【解答】5△(2△8)=5△〔4×8-(2+8)÷2〕=5△27=4×27-(5+27)÷2=108-16=92【智力加油站】【针对性训练】如果m、n分别表示两个数,定义m△n=(m+n)÷5,那么5△(10△15)等于多少?【试金石】例3 定义运算:a⊙b=3a+5ab+kb,其中a,b为任意两个数,k为常数。
比如:2⊙7=3×2+5×2×7+7k。
奥数专题-定义新运算(带答案完美排版)
定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例子可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步39△2=3 ×39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:① 5※7=5×7-(5+7)=35-12=23,7※ 5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例子可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)=8x-13那么8x-13=3 解出x=2.例3、定义新的运算a ?b=a×b+a+b.①求6 ?2,2 ?6;②求(1 ?2)?3,1 ?(2 ?3);③这个运算有交换律和结合律吗?解:① 6 ?2=6×2+6+2=20,2 ?6=2×6+2+6=20.②(1 ?2)?3=(1×2+1+2)?3=5 ?3=5×3+5+3=231 ?(2 ?3)=1 ?(2×3+2+3)=1 ?11=1×11+1+11=23.③先看“?”是否满足交换律:a ?b=a×b+a+bb ?a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ?b=b ?a,因此“?”满足交换律.再看“?”是否满足结合律:(a ?b)?c=(a×b+a+b)?c=(a×b+a+b)×c+a×b+a+b+c=abc +ac +bc +ab +a +b +c .a ?(b ?c )=a ?(b ×c +b +c )=a ×(b ×c +b +c )+a +b ×c +b +c=abc +ab +ac +a +bc +b +c=abc +ac +bc +ab +a +b +c .(普通加法的交换律) 所以(a ? b )? c =a ?(b ? c ),因此“?”满足结合律.说明:“?”对于普通的加法不满足分配律,看反例:1 ?(2+3)=1 ? 5=1×5+1+5=11;1 ? 2+1 ? 3=1×2+1+2+1×3+1+3=5+7=12;因此1 ?(2+3)≠ 1 ? 2+1 ? 3.例4、有一个数学运算符号“?”,使下列算式成立:2?4=8,5?3=13,3?5=11,9?7=25,求7?3=?解:通过对2?4=8,5?3=13,3?5=11,9?7=25这几个算式的观察,找到规律:a ?b =2a +b ,因此7?3=2×7+3=17.例5、x 、y 表示两个数,规定新运算“*”及“△”如下:x *y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以首先要计算出k 的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a *3,按“*”的定义: a *3=ma+3n ,在只有求出m 、n 时,我们才能计算a *3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.又因为m 、n 均为自然数,所以解出:①当m=1,n=2时: (2*3)△4=(1×2+2×3)△4=8△4=k ×8×4=32k有32k=64,解出k=2.②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4=9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是自然数矛盾,因此m=3,n =1,k=971 m=1 n =2 m=2 n =23(舍去) m=3n =1这组值应舍去.所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a 一b =b 1a +, ①求2一(3一4)的值; ② 若x 一4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值. 4.定义两种运算“?”、“?”,对于任意两个整数a 、b ,a ?b =a +b +1, a ?b=a ×b -1,①计算4?[(6?8)?(3?5)]的值;②若x ?(x ?4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y ×2x ×m y×x ×6+(其中m 是一个确定的整数),如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值. 8.a ※b=b÷a b a +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =? 课后习题解答1.2.3.所以有5x-2=30,解出x=6.4 左边: 8.解:由于9.解:按照规定的运算:x △10=x +(x+1)+(x+2)+…+(x+10-1)=10x +(1+2+3+?+9)=10x + 45因此有10x + 45=65,解出x=2.定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a 、b 都表示数,规定a △b =3×a -2×b ,①求 3△2, 2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b =2,求b .例2、定义运算※为 a ※b =a ×b -(a +b ),①求5※7,7※5; ②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗? ④如果3※(5※x )=3,求x . 例3、定义新的运算a ? b =a ×b +a +b .①求6 ? 2,2 ? 6;②求(1 ? 2)? 3,1 ?(2 ? 3);③这个运算有交换律和结合律吗?例4、有一个数学运算符号“?”,使下列算式成立:2?4=8,5?3=13,3?5=11,9?7=25,求7?3=?例5、x 、y 表示两个数,规定新运算“*”及“△”如下:x *y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a 一b =b 1a +, ①求2一(3一4)的值; ② 若x 一4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值. 4.定义两种运算“?”、“?”,对于任意两个整数a 、b ,a ?b =a +b +1, a ?b=a ×b -1,①计算4?[(6?8)?(3?5)]的值;②若x ?(x ?4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y ×2x ×m y×x ×6+(其中m 是一个确定的整数),如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值. 8.a ※b=b÷a b a +,在x ※(5※1)=6中,求x 的值.9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]。
五年级奥数.定义新运算
五年级奥数•定义新运算定义新运算知识结构一、定义新运算(1)基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
(2) 基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
⑶ 关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、一、X、一等.如:2+3 = 5 2X3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同•可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算•当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应•只要符合这个要求,不同的法则就是不同的运算•在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“ + ” , “一” , “X”,“十”运算不相同.定义新运算分类(1)直接运算型(2)反解未知数型(3)观察规律型其他类型综合(4)重难点(1)正确理解新运算的规律。
⑵把不熟悉的新运算变化成我们熟悉的运算。
⑶新运算也要遵守运算规律。
例题精讲【例1】对于任意两个数X 和y ,定义新运算♦和「规则如下:由此计算:0.36 ♦ 4 _ 11二 ______【巩固】对于任意两个数x,y ,定义新运算,运算,规则如下: x ♦ y = x y —x ,2 , x 二 y =x y-〉2 .按此规则计算: 3.6 ♦ 2= _________ , 0.12 ♦ 7.5 二 4.8 二 _________ . ♦ 一 2x y x y y = e ,X“rr^ 如: 1 ♦ 2=冷1 1 2 1 + 2+3【例2】如果a、b、c是3个整数,则它们满足加法交换律和结合律,即⑴ a b =b a ;(2) (a b) c = a (b c)。
小学五年级奥数讲义(教师版)30讲全
小学奥数基础教程(五年级)第1讲数字迷(一)第16讲巧算24第2讲数字谜(二)第17讲位置原则第3讲定义新运算(一)第18讲最大最小第4讲定义新运算(二)第19讲图形的分割与拼接第5讲数的整除性(一)第20讲多边形的面积第6讲数的整除性(二)第21讲用等量代换求面积第7讲奇偶性(一)第22讲用割补法求面积第8讲奇偶性(二)第23讲列方程解应用题第9讲奇偶性(三)第24讲行程问题(一)第10讲质数与合数第25讲行程问题(二)第11讲分解质因数第26讲行程问题(三)第12讲最大公约数与最小公倍数(一)第27讲逻辑问题(一)第13讲最大公约数与最小公倍数(二)第28讲逻辑问题(二)第14讲余数问题第29讲抽屉原理(一)第15讲子问题与逐步约束法第30讲抽屉原理(二)第1讲数字谜(一)数字谜的容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○时,因为除数是13,要想得到整数,只有第二个括号是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○时,运算结果不可能是整数。
当“÷”在第三个○时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
五年级奥数题及答案:定义新运算(高等难度)
五年级奥数题及答案:定义新运算(高等难度) 结合目前学生的学习进度,查字典数学网为大家准备了小学五年级奥数题,希望小编整理奥数题定义新运算(高等难度),可以帮助到你们!一分耕耘一分收获!奥数习题万变不离其宗,相信大家平时多动脑、多练习、多积累,掌握学习方法与技巧,通过自己的努力,一定能够取得优异的成绩! 定义新运算:(高等难度)规定:A○B表示A、B中较大的数,A△B表示A、B中较小的数.若(A○5+B△3)×(B○5+ A△3)=96,且A、B均为大于0的自然数A×B的所有取值有( )个。
共5种;分类讨论,由于题目中所要求的定义新运算的符号是较大的数与较大的数,则对于A或者B有3类不同的范围,A小于3,A大于等于3,小于5,A大于等于5。
对于B也有类似,两者合起来共有3×3=9种不同的组合,我们分别讨论。
1) 当A<3,B<3,则(5+B)×(5+A)=96=6×16=8×12,无解;2) 当3≤A<5,B<3时,则有(5+B)×(5+3)=96,显然无解;3) 当A≥5,B<3时,则有(A+B)×(5+3)=96,则A+B=12.所以有A=10,B=2,此时乘积为20或者A=11,B=1,此时乘积为11。
4) 当A<3,3≤B<5,有(5+3)×(5+A)=96,无解;5) 当3≤A<5,3≤B<5,有(5+3)×(5+3)=96,无解;6) 当A≥5,3≤B<5,有(A+3)×(5+3)=27,则A=9.此时B=3后者B=4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年奥数专题专讲(五年级)
(★★) 如果4*2=4×2+4+2,3*6=3×6+3+6,那么7*10=______
【改编】
(★★) 定义新运算★:a ★b =3×a -b ÷2,例如:7★8=3×7-8÷2,那么计算9★10。
(★★) 两个不相等的自然数a 、b
(b ≠0),较大的数除以较小的数商为a △b ,余数记为a ◇b ,如3△11=3、
3◇11=2,那么6◇(2△7)=( )。
(★★★) 定义新运算:如果4*2=4+44=48,2*3=2+22+222=246,1*4=1+11+111+1111=1234,那么3*4等于_______。
(★★★) 如图是一个运算器的示意图,A 、B 是输入的两个数据,C 是输出的结果,右下表是输入A 、B 数据后,运算器输出C 的对应值,请你据此判断,当输入A 值是1999,输入B 值是9时,运算器输出的C
值是_____。
(★★★) (中环杯试题) 已知A *B =A ×B +A +B ,则101*9*9*9**9*9 共次算
运
【精灵王子趣题挑战】
下面是一个由木棍摆成的算式,但这个算式是错误的,请你移动其中的2根木棍,使它变成一个正确的算式。