导数或微分的计算典型例题

合集下载

导数与微分例题

导数与微分例题

导数与微分例题1、设函数()y y x =由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线()y y x =在3x =处的法线与x 轴交点的横坐标是【 】.()A 32ln 81+; ()B 32ln 81+-;()C32ln 8+-; ()D 32ln 8+.2、设函数()lim n f x →∞=()f x 在),(+∞-∞内【 】.()A 处处可导; ()B 恰有一个不可导点; ()C 恰有两个不可导点; ()D 至少有三个不可导点.3、已知()f x 在0x =处可导,且(0)0f =,则 233()2()limx x f x f x x→-=【 】. ()A 2(0)f '-; ()B (0)f '-; ()C (0)f '; ()D 0.4、设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则【 】()A 0dx y <<∆;()B 0y dy <∆<; ()C 0y dy ∆<<;()D 0.dy y <∆<5、设函数()f x 在0x =处连续,且()22lim1h f h h→=,则【 】()A ()()000f f -'=且存在; ()B ()()010f f -'=且存在; ()C()()000f f +'=且存在; ()D ()()010f f +'=且存在。

6、设()0()lim 13xt t f x x t →=+,则()f x '= .7、设xx y )sin 1(+=,则|x dy π==______ .8、曲线tan 4yx y e π⎛⎫++= ⎪⎝⎭,在点(0,0)处的切线方程为 . 9、曲线21022ln(2)t u x e du y t t --⎧=⎪⎨⎪=-⎩⎰在(0, 0)处的切线方程为 .10、设()y y x =是由方程1yx y e x +=+确定的隐函数,则22x d y dx== .11、曲线sin()ln()xy y x x +-=在点(0,1)处切线方程为 . 12、曲线2cos cos 1sin x t t y t⎧=+⎨=+⎩上对应于4t π=的点处的法线斜率为_____13、设函数123y x =+,则()0ny=_____.14、设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()2____.f '''= 15、设函数()y f x =由方程4ln 2y x xy =+所确定,则曲线()y f x =在点(1,1)处的切线方程是 .16、设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是2>λ. 17、已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b 18、设()(1)(2)(2001)(2009)f x x x x x =---- ,则=')1(f . 19、设 )(x f 可导,)1(2x f y -=,求 dy dx= .。

导数与微分练习题及解析

导数与微分练习题及解析

导数与微分练习题及解析在微积分学中,导数和微分是最基本的概念之一。

它们可以帮助我们研究函数的变化率和性质,广泛应用于物理、经济、工程等各个领域。

为了帮助你更好地理解导数和微分的概念,以下是一些练习题及其解析。

练习题1:求函数f(x) = x^2 + 3x + 2在x = 2处的导数和切线方程。

解析:首先,我们求函数f(x)的导数。

使用求导法则,对于多项式函数来说,可以将每一项的指数与系数相乘,并将指数减一,得到函数的导数。

f'(x) = 2x + 3接下来,我们计算x = 2处的导数值。

f'(2) = 2(2) + 3 = 7切线方程的一般形式为y = mx + b,其中m代表斜率,b代表截距。

根据导数的定义,导数即为切线的斜率。

所以切线的斜率为m = 7。

将切点的坐标代入切线方程,我们可以得到b的值。

2 = 7(2) + b2 = 14 + bb = -12最终的切线方程为y = 7x - 12。

练习题2:求函数f(x) = e^x * sin(x)的导数。

解析:考虑到函数f(x) = e^x * sin(x)是两个函数的乘积,我们可以使用乘积法则来求导。

乘积法则的公式为:(uv)' = u'v + uv'对于e^x和sin(x)两个函数,它们的导数分别为e^x和cos(x)。

根据乘积法则,我们可以将这两个导数与原函数进行组合,得到最终的导数为:f'(x) = (e^x * cos(x)) + (e^x * sin(x))练习题3:求函数f(x) = ln(x^2 + 1)的导数和微分。

解析:首先,我们求函数f(x)的导数。

根据链式法则,可以分别计算外函数和内函数的导数。

设内函数为u = x^2 + 1,则内函数的导数为du/dx = 2x。

外函数为f(u) = ln(u),则外函数的导数为df/du = 1/u。

根据链式法则,函数f(x)的导数为:f'(x) = df/du * du/dx= (1/u) * (2x)= 2x / (x^2 + 1)接下来,我们计算函数f(x)的微分。

2-6 导数与微分习题课

2-6 导数与微分习题课

当0 x 2时, f ( x) 3x2 4x;
2019年12月24日星期二
蚌埠学院 高等数学
9
当x 2时,
f ( 2)

lim
x2
f ( x) f (2) x2
lim x2 ( x 2) 4. x2 x 2
f ( 2)

lim
f (0) lim f (0 x) f (0)
x0
x
lim f (0 x) f (0)
x0
x
f (0).
2 f (0) 0, 即 f (0) 0.
2019年12月24日星期二
蚌埠学院 高等数学
16
例13. 设
x2, f (x)
d(a x ) a x ln adx
d(e x ) e xdx
d (loga
x)

1 dx x lna
d(arcsin x) 1 dx 1 x2
d
(arctan
x
)

1
1 x
2
dx
d(ln x) 1 dx x
d(arccos x) 1 dx 1 x2
d
(arc
cot
x)
2019年12月24日星期二
蚌埠学院 高等数学
13
例9. 设 y xab abx axb , 求 y.
解 y [x(ab ) ] [a(bx ) ] [a(xb ) ]
ab xab 1 (abx ln a) (bx ln b) (axb ln a) (b xb1).
(1)n n! ( x 1)n1
,

数学复习中的常见微积分题解析

数学复习中的常见微积分题解析

数学复习中的常见微积分题解析微积分是数学中的重要分支之一,涉及到对函数的导数、积分等运算。

在数学的学习与应用中,对微积分的理解和掌握至关重要。

本文将对常见的微积分题进行解析,帮助读者更好地复习和掌握微积分知识。

一、导数的计算导数是微积分中的基本概念,表示函数在某一点上的变化率。

常见的导数计算包括使用基本导数公式、链式法则、求导法则等。

下面以几个常见的例子进行解析。

1. 例题1:求函数f(x)=(3x^2+2x+1)^2的导数。

解析:首先,我们可以使用链式法则,将该函数拆解为两个函数的复合形式,即f(x)=u^2,其中u=3x^2+2x+1。

接下来,我们求u的导数,即u'。

根据求导法则,我们得到u' = 6x + 2。

然后,将u'代入链式法则的公式中,即d(f(u))/du * u'。

根据链式法则的公式,我们可以求得f(x)的导数为f'(x) = 2u * u' = 2(3x^2+2x+1)(6x+2)。

2. 例题2:求函数f(x)=sin(2x+3)的导数。

解析:对于这个问题,我们可以利用三角函数的导数规则。

根据导数规则,sin函数的导数是cos函数,因此该函数的导数f'(x) =cos(2x+3)。

二、定积分的计算定积分是微积分中另一个重要的概念,表示函数在某一区间上的面积。

常见的定积分计算包括使用基本积分表、换元积分法、分部积分法等。

下面以几个常见的例子进行解析。

1. 例题1:计算定积分∫[0, 1] x^2 dx。

解析:对于这个问题,我们可以直接应用定积分的公式,即∫[a, b]f(x) dx = F(b) - F(a),其中F(x)是f(x)的原函数。

根据该公式,我们可以求得∫[0, 1] x^2 dx = 1/3 * x^3 |[0, 1] = 1/3 - 0 = 1/3。

2. 例题2:计算定积分∫[0, π] sin(x) dx。

高等数学第二章导数与微分习题

高等数学第二章导数与微分习题

h0
h
lim f ( x) f ( x x) f ( x) .
x0
x
lim f ( x x) f ( x x)
x0
x
lim f ( x x) f ( x) f ( x) f ( x x)
x0
x
lim f ( x x) f ( x) lim f ( x) f ( x x)
习题课
f (a) lim f ( x) f (a) lim ( x a)F ( x) 0
xa x a
xa
xa
1
lim ( x a)F ( x) 0
x a 0
xa
g
(a
)
x
lim
a 0
g(
x) x
g(a a
)
2
例2.
研究函数
f
(
x
)
1 x 1 x
解 . lim f ( x) lim
x0
x
x0
x
14
例16 .
f
(
x)
ln x
(1
x)
x0 x0
求 f ( x) .
)[
f (0 0) f (0) ln(1 x) x0 0 ,
0
f (0 0) lim x 0 , f ( x) 在 x 0 处连续 .
x 0
f (0)
ln(1
x)
x
0
1
1
x
1
x0
f (0)
lim
(n)
(1)n n! ( x 1)n1
,
23
例24 . 试从 d x 1 导出: d y y
1.
d d
2x y2

微积分求导例题带答案

微积分求导例题带答案

微积分求导例题带答案一、微积分求导例题1、求解函数$y=x^2+ax+b$的导数;答:函数$y=x^2+ax+b$的导数= $\dfrac{dy}{dx}=2x+a$。

2、求解函数$y=sin2x+cos2x$的导数;答:函数$y=sin2x+cos2x$的导数= $\dfrac{dy}{dx}=2cos2x-2sin2x=2cos(2x-\frac{\pi}{2})$。

3、求解函数$y=e^xlnx$的导数;答:函数$y=e^xlnx$的导数= $\dfrac{dy}{dx}=(e^x+x) \dfrac{1}{x}$。

二、答案详解通过求导法则,可以计算函数的导数,也叫做斜率。

用求导法则来计算的好处是,可以知道函数在给定某点的斜率,从而了解函数的变化情况,也就是说可以求出一个函数的单调性,进而证明函数的解的确定性。

第一题中的函数$y=x^2+ax+b$,求出它的导数就可以得到$\dfrac{dy}{dx}=2x+a$,也就是在某一点上斜率为$2x+a$。

第二题中的函数$y=sin2x+cos2x$,求出它的导数就可以得到$\dfrac{dy}{dx}=2cos2x-2sin2x=2cos(2x-\frac{\pi}{2})$,也就是在某一点上斜率为$2cos(2x-\frac{\pi}{2})$。

第三题中的函数$y=e^xlnx$,求出它的导数就可以得到$\dfrac{dy}{dx}=(e^x+x) \dfrac{1}{x}$,也就是在某一点上斜率为$(e^x+x) \dfrac{1}{x}$。

总之,通过求导,我们可以快速的计算出函数的斜率,从而了解函数的变化情况及其解的确定性。

导数与微分习题及答案

导数与微分习题及答案

导数与微分习题及答案导数与微分习题及答案在数学学科中,导数与微分是非常重要的概念。

它们不仅在数学分析中有广泛的应用,还在物理、经济学等领域中起着重要的作用。

本文将为大家提供一些导数与微分的习题,并附上详细的答案,希望能够帮助大家更好地理解和掌握这一内容。

1. 习题一:求函数 f(x) = x^2 + 3x - 2 在点 x = 2 处的导数。

解答:根据导数的定义,我们有f'(x) = lim(h→0) [f(x+h) - f(x)] / h。

代入函数 f(x) = x^2 + 3x - 2 和 x = 2,得到f'(2) = lim(h→0) [(2+h)^2 + 3(2+h) - 2 - (2^2 + 3(2) - 2)] / h。

化简后得到f'(2) = lim(h→0) [4h + h^2 + 6h] / h = lim(h→0) (h^2 + 10h) / h = lim(h→0) (h + 10) = 10。

因此,函数 f(x) = x^2 + 3x - 2 在点 x = 2 处的导数为 10。

2. 习题二:求函数 g(x) = 2sin(x) + cos(x) 在点x = π/4 处的导数。

解答:同样地,我们可以利用导数的定义来求解。

根据定义,g'(x) = lim(h→0) [g(x+h) - g(x)] / h。

代入函数 g(x) = 2sin(x) + cos(x) 和x = π/4,得到g'(π/4) = lim(h→0) [2sin(π/4+h) + cos(π/4+h) - (2sin(π/4) + cos(π/4))] / h。

化简后得到g'(π/4) = lim(h→0) [2(sin(π/4)cos(h) + cos(π/4)sin(h)) + (cos(π/4)cos(h) -sin(π/4)sin(h))] / h。

导数与微分实际问题案例

导数与微分实际问题案例

导数与微分实际问题案例导数和微分是微积分中重要的概念,它们在现实世界中有着广泛的应用。

本文将通过一些实际问题案例,详细介绍导数和微分的应用。

案例一:车辆行驶问题假设一辆汽车在一段时间内以匀速行驶。

我们可以通过求解导数来计算汽车的速度。

设汽车的位移函数为s(t),其中t表示时间,s表示位移。

那么汽车的速度可以通过求解导数s'(t)来得到。

例如,假设汽车的位移函数为s(t) = 2t^2 + 3t。

我们可以通过求解导数s'(t)来计算汽车的速度,即s'(t) = 4t + 3。

通过求解导数,我们可以得知汽车的速度在任意时间点上是多少。

这对于研究车辆行驶过程中的加速度、减速度等问题非常有帮助。

案例二:物体移动问题在物理学中,有一类常见的问题是求解物体的运动过程。

通过求解导数,我们可以推导出物体的速度和加速度函数。

设物体的位移函数为s(t),其中t表示时间,s表示位移。

那么物体的速度可以通过求解导数s'(t)来得到,加速度可以通过求解导数s''(t)来得到。

例如,假设物体的位移函数为s(t) = 3t^2 - 4t + 2。

我们可以通过求解导数s'(t)来计算物体的速度,即s'(t) = 6t - 4;通过求解导数s''(t)来计算物体的加速度,即s''(t) = 6。

通过求解导数,我们可以分析物体的运动规律,例如物体的最大速度、加速度的变化情况等。

案例三:利润最大化问题在经济学中,有一个经典的问题是求解利润最大化。

假设某公司生产一种产品,售价为p(单位价格),销量为x(单位数量)。

成本函数可以表示为C(x),那么利润可以表示为P(x) = px - C(x)。

为了求解利润最大化,我们需要计算利润函数P(x)的导数。

通过求解导数P'(x) = p - C'(x),我们可以确定最大利润对应的销量。

求导全微分练习题

求导全微分练习题

求导全微分练习题1. 已知函数f(x) = 3x^2 + 2x - 1,求f(x)的一阶导数和全微分。

解析:首先,我们计算f(x)的一阶导数。

对于多项式函数来说,我们可以简单地将指数降低一次,并将指数乘以其系数。

f'(x) = d(3x^2)/dx + d(2x)/dx - d(1)/dx= 6x + 2 - 0= 6x + 2接下来,我们计算f(x)的全微分。

我们知道,全微分是函数的所有偏导数与自变量之差的线性组合。

df = (∂f/∂x)dx + (∂f/∂y)dy + (∂f/∂z)dz + ...因为f(x)是一个只与x有关的函数,所以除了dx以外,其它变量的偏导数都为0。

df = (∂f/∂x)dx= (6x + 2)dx请注意,全微分的含义是f(x)在给定点处的微小变化。

因此,在计算全微分时,我们只考虑与自变量直接相关的微小变化。

2. 已知函数g(x, y) = x^2 + xy + y^2,求g(x, y)关于x和y的一阶偏导数和全微分。

解析:首先,我们计算函数g(x, y)关于x的一阶偏导数。

∂g/∂x = d(x^2)/dx + d(xy)/dx + d(y^2)/dx= 2x + y接下来,我们计算函数g(x, y)关于y的一阶偏导数。

∂g/∂y = d(x^2)/dy + d(xy)/dy + d(y^2)/dy= x + 2y因此,g(x, y)的一阶偏导数为∂g/∂x = 2x + y 和∂g/∂y = x + 2y。

接下来,我们计算g(x, y)的全微分。

根据定义,全微分是函数在给定点处的微小变化。

dg = (∂g/∂x)dx + (∂g/∂y)dy= (2x + y)dx + (x + 2y)dy3. 已知函数h(x, y, z) = x^2 + y^2 + z^2,求h(x, y, z)关于x、y和z 的一阶偏导数和全微分。

解析:首先,我们计算函数h(x, y, z)关于x的一阶偏导数。

多元函数的微分学典型例题

多元函数的微分学典型例题

多元函数的微分学典型例题例 1 设 2 2 y xy x z + - = .求它在点 ) 1 , 1 ( 处沿方向v = ) sin , cos ( a a 的方向导 数,并指出:(1) 沿哪个方向的方向导数最大? (2) 沿哪个方向的方向导数最小? (3) 沿哪个方向的方向导数为零?解 1 ) 1 , 1 ( = x z , 1 ) 1 , 1 ( = y z . ) 1 , 1 (v z¶ ¶ a a sin cos + = .因此(1) 函数 a a a j sin cos ) ( + = 在 4pa = 取最大值,即沿方向 ) 1 , 1 ( 的方向导数最大.(2) 函数 a a a j sin cos ) ( + = 在 4 pa - = 取最小值,即沿方向 ) 1 , 1 ( - - 的方向导数最小.(3) 43pa - = 是函数 a a a j sin cos ) ( + = 的零点,即沿方向 ) 1 , 1 (- 的方向导数为零.例 2 如果函数 ) , ( y x f 在点 ) 2 , 1 ( 处可微, 且从点 ) 2 , 1 ( 到点 ) 2 , 2 ( 方向的方向 导数为2,从点 ) 2 , 1 ( 到点 ) 1 , 1 ( 方向的方向导数为 2 - .求 (1) 该函数在点 ) 2 , 1 ( 处的梯度;(2) 该函数在点 ) 2 , 1 ( 处从点 ) 2 , 1 ( 到点 ) 6 , 4 ( 方向的方向导数. 解 (1) 设 x f 和 y f 分别表示函数 ) , ( y x f 在点 ) 2 , 1 ( 处关于x 和 y 的偏导 数,从点 ) 2 , 1 ( 到点 ) 2 , 2 ( 的方向为 1 l ,从点 ) 2 , 1 ( 到点 ) 1 , 1 ( 的方向为 2 l ,则 1 l 和 2 l 的方向余弦分别为 ) 0 , 1 ( 和 ) 1 , 0 ( - ,于是就有x f l f = ¶ ¶ 12 0 1 = × + × y f ,故 2 = x f ; 2 1 0 2 - = × - × = ¶ ¶ y x f f l f ,故 2 = y f . 因此 ) 2 , 2 ( ) 2 , 1 ( = gragf .(2) 在点 ) 2 , 1 ( 处从点 ) 2 , 1 ( 到点 ) 6 , 4 ( 方向的方向余弦为 ÷ ø öç è æ 5 4,5 3 ,设该方向为l ,则 l f ¶ ¶ ) 2 , 1 ( 5145 4 2 5 3 2 = ´ + ´ = .例 3 验证函数) , ( y x f ïî ï í ì = + ¹ + + = . 0 ,0 , 0 , 2 2 22 22 y x y x yx xy 在原点 ) 0 , 0 ( 连续且可偏导,但它在该点不可微.验证 注意不等式 | | 2 2 xy y x ³ + ,就有0 | | 0 2 2 22 2 2 22 ® + = + + £ + £y x y x y x y x xy , ) , ( y x ® ) 0 , 0 ( .故而 0 ) , ( lim)0 , 0 ( ) , ( = ® y x f y x f = ) 0 , 0 ( .因此, ) , ( y xf 在原点 ) 0 , 0 ( 连续. x f ) 0 , 0 ( = 0lim® x 0 )0 , 0 ( ) 0 , ( = - xf x f ,由变量对称性得 y f ) 0 , 0 ( 0 = .即该函数在原点 ) 0 , 0 ( 可偏导.假如 ) , ( y x f 在原点 ) 0 , 0 ( 可微,就应有) , ( y x f = - ) 0 , 0 ( f x f ) 0 , 0 ( + x y f ) 0 , 0 ( ) ( 2 2 y x y + +o ,即 ) , ( y x f = ) ( 2 2 y x + o .但这是不可能的,因为沿路径 ) 0 ( ¹ = k kx y ,就有= + ® 2 2 )0 , 0 ( ) , ( ), ( limyx y x f kx x = + ® 2 2 ) 0 , 0 ( ) , ( lim y x xykx x 0 1 lim 2 2 2 2 2 0 ¹ + = + ® k k x k x kx x .可见, ) , ( y x f ¹ ) ( 2 2 y x + o .因此, ) , ( y x f 在原点 ) 0 , 0 ( 不可微. 例 4 验证函数) , ( y x f ï îï íì = + ¹ + + + = . 0 , 0 , 0 , 1 sin ) ( 2 2 22 22 2 2 y x y x y x y x 的偏导函数 ) , ( y x f x 和 ) , ( y x f y 在原点 ) 0 , 0 ( 不连续,但它却在该点可微.验证x f ) 0 , 0 ( = 0lim® x 0 1sin lim ) 0 , 0 ( ) 0 , ( 2 0 = = - ® xx x f x f x ; ) , ( y x ¹ ) 0 , 0 ( 时,) , ( y x f x 22 2222222121 2sin()cos () x x x y x y x y x yæö =++- ç÷ +++ èø 2 2 2 2 2 2 1cos2 1 sin2 y x y x x y x x + + - + = .因此, ) , ( y x f x ï î ï íì= + ¹ + + + - + = . 0 , 0 , 0 , 1 cos 2 1 sin 2 2 2 2 2 22 2 2 2 2 y x y x y x y x x y x x 由变量对称,得) , ( y x f y ï îï íì= + ¹ + + + - + = . 0 , 0 , 0 , 1 cos 2 1 sin 2 2 2 2 2 22 2 2 2 2 y x y x y x y x y y x y ) , ( y x f x 在点 ) 0 , 0 ( 不连续.事实上,沿路径 x y = , ® ) , ( x x ) 0 , 0 ( 时,2 2 2 2 1 cos 2 2 2 1 sin2 ) , ( x x x x x x x f x - = 中,第一项趋于零,而第二项 22 1cos 1 x x - 的极限不存在(比如取 pk x k 2 1=, +¥ ® k 时有 0 ® k x ,而2 2 1cos 1 kk x x -¥ ® ).可见, x y x f ) 0 , 0 ( ) , ( lim ® ) , ( y x 不存在,因此 ) , ( y xf x 在点 ) 0 , 0 ( 不连续.同理可证 ) , ( y x f y 在点 ) 0 , 0 ( 不连续. 但由于0 1sin ) , ( 0 2 2 22 2 2 22 ® + £ + + =+ £y x y x y x y x y x f ,® ) , ( y x ) 0 , 0 ( ,就有 0 ) , ( 22® + yx y x f ,于是就有0 ) , ( ) 0 , 0 ( ) 0 , 0 ( ) 0 , 0 ( ) , ( 2222® + =+ - - - yx y x f yx yf x f f y x f y x , ® ) , ( y x ) 0 , 0 ( ,即 ) ( ) 0 , 0 ( ) 0 , 0 ( ) 0 , 0 ( ) , ( 2 2 y x y f x f f y x f y x + + + = - o . 可见 f 在点 ) 0 , 0 ( 可微. 例 5 证明函数) , ( y x f ï îïí ì = + ¹ + + = . 0 , 0 , 0 , 2 22 22 42 2 y x y x y x xy 在原点 ) 0 , 0 ( 处沿各个方向的方向导数都存在,但它在该点不连续,因此不可 微.证 设 ) sin , cos ( a a = l 则= - = ¶ ¶ ® tf t t f l f t )0 , 0 ( ) sin , cos ( lim 0 a a 32 2244 0 2cos sin lim ( cos sin )t t t t t a a a a ® = +3 0 , , , 22 2tan sin , , . 22p p a p p a a a ì= ï ï = íï ¹ ï î 可见在原点 ) 0 , 0 ( 处沿各个方向的方向导数都存在.但沿路径 2y x = ,有 = ® ) , ( lim )0 , 0 ( ) , ( 2y x f y y f y y y y y ¹ = + ® 1 2 lim 4 4 22 0 ) 0 , 0 ( 可见 f 在 原点 ) 0 , 0 ( 并不连续,因此不可微. 例 6 计算下列函数的高阶导数或高阶微分: (1) x yz arctan = ,求 2 2 x z ¶ ¶ , y x z ¶ ¶ ¶ 2 22 y z ¶ ¶ ;解 x z ¶ ¶ 2 2 2 2 2 1 y x y x y x y + - = + -= , y z ¶ ¶ 22 22 1 1 y x x xy x + = + =. 2 2 x z ¶ ¶ 2 2 2 ) ( 2 y x xy + = , y x z ¶ ¶ ¶ 2 2 2 2 2 2 ) ( y x x y + - = , 2 2 y z ¶ ¶ = 22 2 )( 2 y x xy+ - . (2) xyxe z = ,求 y x z ¶ ¶ ¶ 2 3 和 23 y x z¶ ¶ ¶ .解 x z ¶ ¶ = ) 1 ( xy e xye e xyxy xy + = + , 2 2 x z ¶ ¶ ) 2 ( ) 1 ( xy ye y e xy ye xy xy xy + = + + = ;yx z¶ ¶ ¶ 2 ) 2 ( ) 1 ( xy xe xe xy xe xy xy xy + = + + = . y x z ¶ ¶ ¶ 2 3 = = ¶ ¶ ¶¶ x y x z 3 = ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ y x z x 2 xyxy xy xy e xy xye xye xy e ) 2 3 ( ) 2 ( + = + + + ;2 3 y x z ¶ ¶ ¶ = ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ = y x z y 2 ( )= + + xy xy xe xy xe x ) 2 ( xye y x x x ) 3 ( 2 + . (3) ) ln(xy x z = ,求 z d 2 ; 解 x z 1 ) ln( ) ln( + = + = xy xy xy xy, xy z y xy x 1 = = , x xy y z xx 1= = ;y z y x xy x = = 2 , yy z 2 yx- = .2222222 2 12 xx xy yy d z dx dy z z dx z dxdy z dy x y x dx dxdy dy x y yæö¶¶ =+=++ ç÷ ¶¶ èø =+- .(4) ) ( sin 2 by ax z + = ,求 z d 3 .解 x z ) ( 2 sin by ax a + = , xx z ) ( 2 cos 2 2 by ax a + = , = 3x z ) ( 2 sin 4 3 by ax a + - ,) ( 2 sin 4 2 axby b a z xxy - = ; y z ) ( 2 sin by ax b + = , ) ( 2 cos 2 2 by ax b z yy + = ,= = yyx xyy z z ) ( 2 sin 4 2 by ax ab + - . = 3 y z ) ( 2 sin 4 3 by ax b + - .z d 3 = = ÷ ÷ ø ö ç ç è æ ¶ ¶ + ¶¶ z y dy x dx 33223322333 x x y xy y z dx z dx dy z dxdy z dy +++ ) ( 2 sin 12 ) ( 2 sin 4 2 3 by ax b a by ax a + - + - = ) ( 2 sin 12 2 by ax ab + - 3 4sin 2()b ax by -+ ) ( 2 sin ) ( 4 3 by ax b a + + - = .例 7 利用链式规则求偏导数 :(1) ÷ ÷ øö ç ç è æ = , y x xy f u .求 x u¶ ¶ , y u ¶ ¶ , y x u ¶ ¶ ¶ 2 和 2 2 y u ¶ ¶ .解 设 xy t = , yxs = .x u ¶ ¶ = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = x s s f x t t f s f y t f y ¶ ¶ + ¶ ¶ 1 , y u ¶ ¶ = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = y s s f y t t f sfy x t f x ¶ ¶ - ¶ ¶ 2 ;y x u ¶ ¶ ¶ 2 ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u y ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ = y s s t f y t t f y t f 2 2 2 22 22 11 f f t f s y s y s t y s y æö¶¶¶¶¶ -++ ç÷ ¶¶¶¶¶¶ èø = ÷ ÷ øö ç ç è æ ¶ ¶ ¶ - ¶ ¶ + ¶ ¶ s t f y x t f x y t f 2 2 2 2 22 222 11 f f x f x y s y s t y s æö¶¶¶ -+- ç÷ ¶¶¶¶ èø 2 2 t f xy ¶ ¶ = s t f y x ¶ ¶ ¶ - 2 3 s fy t f ¶ ¶ - ¶ ¶ + 2 1 .2 2 y u ¶ ¶ ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ = y u y 2 f x f x y t y s æö ¶¶¶ =- ç÷ ¶¶¶èø 23 2 2 2 2 y xs f y x y s s t f y t t f x - ¶ ¶ + ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = = ÷ ÷ øöç ç è æ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ ¶ y s s f y t t s f 2 2 2 23 2 2 2 2 2 y xs f y x s t f y x tf x x - ¶ ¶ + ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ - ¶ ¶ = = ÷ ÷ ø ö ç ç è æ ¶ ¶ - ¶ ¶ ¶ 2 2 2 2 s f y x t sf x s f y x s f y x s t f y x t f x ¶¶ +¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = 3 2 2 2 2 2 2 2 2 2 22 2 . (2) ) ( 222z y x f u + + = .求 x u ¶ ¶ , y u ¶ ¶ , z u¶ ¶ , y x u ¶ ¶ ¶ 2 和 2 2 xu ¶ ¶ .解 设 2 2 2 z y x t + + = .x u ¶ ¶ ( 2 ) ( f x x tt f ¢ = ¶ ¶ ¢ = ) 2 2 2 z y x + + , y u ¶ ¶ ( 2 ) ( f y yt t f ¢ = ¶ ¶ ¢= ) 2 2 2 z y x + + , z u ¶ ¶ ( 2 ) ( f z zt t f ¢ = ¶ ¶ ¢ = ) 2 2 2 z y x + + ;y x u ¶ ¶ ¶ 2 = ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u y ( )= + + ¢ ¶ ¶) ( 2 2 2 2 z y x f x y 4( xyf ¢¢ ) 2 2 2 z y x + + ; 22 xu ¶ ¶ = ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u x ( ) 222 2() xf x y z x ¶¢ ++ ¶ 2( f ¢ = ) 2 2 2 z y x + + 2 4x + ( f ¢¢ ) 2 2 2 z y x + + . 例 8 设函数 ) , ( y x f z = 具有二阶连续导数.写出 2 2 x z ¶ ¶ 2 2 y z ¶ ¶ + 在坐标变换2 2 y x u - = , xy v 2 = 下的表达式.解x z ¶ ¶ = u z ¶ ¶ x u ¶ ¶ + v z ¶ ¶ x v ¶ ¶ x 2 = u z ¶ ¶ + y 2 vz¶ ¶ ,2 2 x z ¶ ¶ 2 = u z¶ ¶ ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + x v v u z x u u z x 2 2 2 2 22 2 2 z u z v y v u x v x æö ¶¶¶¶ ++ ç÷ ¶¶¶¶¶ èø 2 2 24 u z x ¶ ¶ = v u z xy ¶ ¶ ¶ + 2 8 222 4 v z y ¶ ¶ + 2 + u z ¶ ¶ .y z ¶ ¶ = u z ¶ ¶ y u ¶ ¶ + v z ¶ ¶ y v ¶ ¶ y 2 - = u z ¶ ¶ + x 2 vz¶ ¶ ,2 2 y z ¶ ¶ 2 - = u z¶ ¶ ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ - y v v u z y u u z y 2 2 2 2 22 2 2 z u z v x v u y v y æö ¶¶¶¶ ++ ç÷ ¶¶¶¶¶ èø u z vz x v u z xy u z y ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = 2 4 8 4 222 2 2 2 2. 则2 2 x z ¶ ¶ 22 y z ¶ ¶ + 2 2 2 4 u z x ¶ ¶ = v u z xy ¶ ¶ ¶ + 2 8 2 22 4 v z y ¶ ¶ + 2 + u z ¶ ¶ = ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ + u z v z x v u z xy u z y 2 4 8 4 2 2 2 2 2 2 2÷ ÷ ø ö ç ç è æ ¶ ¶ + ¶¶ + 2 2 2 22 2 ) ( 4 v z u z y x . 例 9 (1)写出函数 ) , ( y x f 9 8 6 2 23 2 2 3 3 + - - - - + = y x xy y x y x 在点 ) 2 , 1 ( 的Taylor 展开式.解= ) 2 , 1 ( f 16 - , = ) 2 , 1 ( x f 13 - , = ) 2 , 1 ( y f 6 - ; = ) 2 , 1 ( xx f 10, = ) 2 , 1 ( xy f 12 - , = ) 2 , 1 ( yy f 8;= ) 2 , 1 ( 3 x f 18, = ) 2 , 1 ( xxy f 4 - , 4 ) 2 , 1 ( - = xyy f , 6 ) 2 , 1 ( 3 = y f .更高阶的导数全为零 .因此, ) , ( y x f = + ) 2 , 1 ( f + - ) 1 )( 2 , 1 ( x f x ( 1 , 2 )(2)y f y - + - + 2 ) 1 )( 2 , 1 ( x f xx + - - ) 2 )( 1 )( 2 , 1 ( 2 y x f xy 2( 1 , 2 )(2) yy f y - 3 3 ( 1 , 2 )(1) x f x +- 3 ) 2 ( ) 1 )( 2 , 1 ( 3 2 + - - + y x f xxy 2) 2 )( 1 )( 2 , 1 ( - - y x f xyy 3 3 ( 1 , 2 )(2)y f y +- 22 1613(1)6(2)5(1)12(1)(2)4(2)x y x x y y =-----+----+- 3 2 2 3 ) 2 ( ) 2 )( 1 ( 2 ) 2 ( ) 1 ( 2 ) 1 ( 3 - + - - - - - - - + y y x y x x .(2) 求函数 ) , ( y x f y x e + = 在点 ) 0 , 0 ( 的n 阶Taylor 展开式,并写出余项.解x f ¶ ¶ y x e + = , y f ¶ ¶ yx e + = ,一般地,有 k h k h yx f ¶ ¶ ¶ + y x e + = ,则 1 ) 0 , 0 ( 00 = = ¶ ¶ ¶ + + e yx f kh k h . 因此, ) , ( y x f 在点 ) 0 , 0 ( 的n 阶Taylor 展开式为) , ( y x f å = + ÷ ÷ øö ç ç è æ ¶ ¶ + ¶ ¶ = n k kf y y x x k 0 ) 0 , 0 ( ! 1 )! 1 ( 1 + n 1( , )n x y f x y x y q q + æö ¶¶ + ç÷ ¶¶ èø å = + + = nk k y x k 0 ) ( ! 1 )! 1 ( 1 + n yx n e y y x x 1q q + + ÷ ÷ øö ç ç è æ ¶ ¶ + ¶ ¶ , ) 1 0 ( < <q .例 10 求下列方程所确定的隐函数的导数或偏导数:(1) 0 arctan = - + a y a y x ,求 dx dy 和 2 2 dxy d ;解 0 1 1 2 = ¢ - ÷ øöç è æ + + ¢+ a y a y x a y ,即 a y y x a y a ¢ = + + ¢ + 2 2 ) ( ) 1 ( ,即 dx dy 22 ) ( y x a + = . 由 2 2 ) ( y x y a + ¢ = ,再求导 0 ) 1 )( ( 2 ) ( 2 = ¢ + + ¢ + + ¢ ¢ y y x y y x y ,解得 2 ) ( ) 1 )( ( 2 y x y y x y y + ¢ + + ¢ - = ¢ ¢ ,代入 = ¢ y 22)( y x a + ,得 2 2 dx y d 22 23 () () x y a a x y ++ = + . (2) 0 = -xyz e z,求 x z ¶ ¶ 、 y z ¶ ¶、 2 2 xz ¶ ¶ 和 y x z ¶ ¶ ¶ 2 ;解 方程 0 = -xyz e z 两端对x 求导,得 0 = - - x z x xyz yz e z , x z ¶ ¶ xye yzz - = ;方程 0 = -xyz e z 两端对y 求导,得 0 = - - z z y xyz xz e z , y z ¶ ¶ xye xzz - = .0 = - - x z x xyz yz e z 再对x 求导,得 0 2 = - - - - + xx x x zx z xx xyz yz xz z e z e z ,解得2 2 x z ¶ ¶ xy e e z z y x z z zx x - - + + = 2 ) ( 32 2 2 2 ) ( ) ( xy e e z y xy e z y ze zzz z - - - + = . 同理得y x z ¶ ¶ ¶ 2 32 2 2 2 )( ) ( xy e e z x xy e z x ze zzz z - - - + = . (3) 0 ) , , ( = + + + x z z y y x f ,求 x z ¶ ¶ 和 yz ¶ ¶.解 设 y x u + = , z y v + = , x z w + = ,方程 0 ) , , ( = + + + x z z y y x f 两端对x 求导,得 = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ x w w f x v v f x u u f 0 1 = ÷ ø ö ç è æ + ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ x z w f x z v f u f,解得 x z¶ ¶ w v u w f f f f + + - = ;同理得 y z ¶ ¶ wv v u f f f f + + - = .例 11 求下列方程组所确定的隐函数的导数或偏导数 :(1) ï î ï í ì = + + = - - . 4 32 ,0 22 2 2 22 a z y x y x z 求 dx dy , dx dz , 2 2 dx y d 和 2 2 dx z d ; 解 方程对x 求导,注意 y 和z 是x 的函数,就有 î íì = ¢ + ¢ + = ¢ - - ¢ . 0 6 4 2 , 0 2 2 z z y y x y yx z *) 解得 dx dy ) 3 1 ( 2 6 z y xz x + + - = , dx dzzx z y xy 3 1 ) 3 1 ( 2 2 + = + = .方程 *)在对x 求导,有 ï î ï íì = ¢ + ¢ ¢ + ¢ + ¢ ¢ + = ¢ - ¢ ¢ - - ¢ ¢ . 0 6 6 4 4 , 0 2 2 2 2 2 2 z z z y y yx y y y z 解得 2 2 dx yd ) 3 1 ( 4 12 6 ) 3 1 ( 4 2 2 z y z z z y x + + ¢ + + ¢ + - = , 2 2 dxz d ) 3 1 ( 2 6 ) 1 ( 4 4 2 2 z y z y xy y y y + ¢ - - + ¢ + = ;代入 dx dy 和 dxdz的表达式,即得2 2 dx y d 2 22 3 ) 3 1 ( 2 3 ) 3 1 ( 4 ) 6 1 ( 4 ) 3 1 ( 4 12 z y x z y z x z y z x + -+ + - + + - = , 2 2 dx z d 222 3 ) 3 1 ( 3 ) 3 1 ( 2 ) 6 )( 1 ( ) 4 (2 1 z x z y xz x y x + - + + + + - = . (2) î í ì - = + = . ) , (, ) , , ( 2y v x u g v y v x u f u 求 x u ¶ ¶ 和 y v ¶ ¶ . 解 设 y v s + = , x u t - = , y v r 2 = ,方程对x 求导,注意u 和v 是x 的函 数,就有î íì + = + + = . ) , ( ) , (, ) , , ( ) , , ( ) , , (2 x r x t x x s x x u x r r t g t y v t g v s s x u f s x u f u s x u f u 即î íì + - = + + = . 2 ) , ( ) 1 )( , (, ) , , ( ) , , ( ) , , ( x r x t x x s x x u x yvv r t g u r t g v v s x u f s x u f u s x uf u 解得x u¶ ¶ ), ( ) , , ( ] 1 ) , ( 2 ][ 1 ) , , ( [ ) , ( ) , , ( ] 1 ) , ( 2 )[ , , ( r t g s x u f r t yvg s x u f r t g s x u f r t yvg s x u f t s r u t s r x - - - + - - = ; 方程对 y 求导,注意u 和v 是x 的函数,就有ï îï í ì + + = + + = . ) 2 )( , ( ) , ( , 1) )( , , ( ) , , ( 2 v yvv r t g u r t g v v s x u f u s x u f u y r y t y y s y u y 解得y v ¶ ¶), ( ) , , ( ] 1 ) , ( 2 ][ 1 ) , , ( [ ) , ( ) , , ( ] 1 ) , ( 2 )[ , , ( 2 r t g s x u f r t yvg s x u f r t g s x u f v r t yvg s x u f t s r u r s r s - - - - - -= . 例 12 设函数 ) , ( y x f z = 具有二阶连续偏导数. 在极坐标 q cos r x = , q sin r y = 变换下,求 + ¶ ¶ 2 2 x f 2 2 yf¶ ¶ 关于极坐标的表达式.解2 2 y x r + = , xy arctan = q .所以= ¶ ¶ x f = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ x f x r r f q q 2 2 2 2 y x y f y x x r f + ¶ ¶ - + ¶ ¶ q qq q ¶ ¶ - ¶ ¶ = f r r f sin cos , = ¶ ¶ y f = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ y f y r r f q q 2 2 2 2 y x x f y x y r f + ¶ ¶ + + ¶ ¶ q q q q ¶ ¶ + ¶ ¶ = f r r f cos sin ; 2 2 x f ¶ ¶ ÷ ø ö ç è æ ¶ ¶ - ¶ ¶ ¶¶ = q q q f r r f x sin cos r ¶ ¶ = q cos sin cos f f r r q q q ¶¶ æö - ç÷ ¶¶ èø q q ¶ ¶ -r sin sin cos f f r r q q q ¶¶ æö- ç÷¶¶ èør fr f rf r r f r csos r f ¶ ¶ + ¶ ¶ + ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = q q q q q q q q q q 2 22 2 2 2 2 2 2 2sin cos sin 2 sin sin 2 cos ; 类似有22 yf ¶ ¶ r f r f r f r r f r csos r f ¶ ¶ + ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ + ¶ ¶ = q q q q q q q q q q 2 2 2 2 2 2 2 2 2 2cos cos sin 2 cos sin 2 sin . 于是得 + ¶ ¶ 2 2 x f 2 2 yf ¶ ¶ = r fr f r r f ¶ ¶ + ¶ ¶ + ¶ ¶ 1 1 2 2 2 2 2 q .例 13 证明:通过线性变换 y x u l + = , y x v m + = ,可以北将方程A 2 2 x f ¶ ¶B 2 + y x f ¶ ¶ ¶ 2C + 0 2 2 = ¶ ¶ yf,( 0 2 < - B AC )化简为 0 2 = ¶ ¶ ¶ v u f.并说明此时l 和m 为一元二次方程 0 2 2 = + + Ct Bt A 的两个相异实根.证 由 y x u l + = 和 y x v m + = 得x f ¶ ¶ v f u f ¶ ¶ + ¶ ¶ = , y u ¶ ¶ vfu f ¶ ¶ + ¶ ¶ = m l . 2 2 x f ¶ ¶ + ¶ ¶ = 2 2 u f + ¶ ¶ ¶ v u f 2 2 2 v f ¶ ¶ , 2 2 y f ¶ ¶ lm l 2 2 2 2 + ¶ ¶ = u f + ¶ ¶ ¶ v u f 2 222 v f ¶ ¶ m , = ¶ ¶ ¶ v u f 2 ) ( 2 2 m l l + + ¶ ¶ u f + ¶ ¶ ¶ v u f 2 2 22 vf ¶ ¶ m . 代入A 2 2 x f ¶ ¶ B 2 + y x f ¶ ¶ ¶ 2 C + 0 2 2 = ¶ ¶ yf ,化简得) 2 ( 2l l C B A + + 2 2 u f ¶ ¶ + ) 2 ( 2 m m C B A + + 2 2 vf ¶ ¶] 2 ) ( 2 2 [ lm m l C B A + + + + 0 2 = ¶ ¶ ¶ vu f.可见,当且仅当l 和m 为一元二次方程 0 2 2 = + + Ct Bt A 的两个相异实根时,方 程就化成 0 2 = ¶ ¶ ¶ vu f.例 14 求椭球面 498 3 2 2 2 2 = + + z y x 的平行于平面 7 5 3 = + + z y x 的切平面.解 所求切平面的法向量为 ) 6 , 4 , 2 ( z y x ,应有 56 3 4 1 2 z y x = = k 令== ,就有 2 k x = , k y 4 3 = , k z 6 5 = ,代入方程 498 3 2 2 2 2 = + + z y x ,有 498 2483 2 = k ,得12 ± = k . 在点M ) 10 , 9 , 6 ( 和N ) 10 , 9 , 6 ( - - - 的切平面与平面 7 5 3 = + + z y x 平 行.在点M ) 10 , 9 , 6 ( 的法向量为 ) 60 , 36 , 12 ( ,切平面为0 ) 10 ( 60 ) 9 ( 36 ) 6 ( 12 = - + - + - z y x ,即 0 83 5 3 = - + + z y x ;在点N ) 10 , 9 , 6 ( - - - 的法向量为 ) 60 , 36 , 12 ( - - - ,切平面为0 ) 10 ( 60 ) 9 ( 36 ) 6 ( 12 = + - + - + - z y x ,即 0 83 5 3 = + + + z y x .综上,椭球面 498 3 2 2 2 2 = + + z y x 上,平行于平面 7 5 3 = + + z y x 的切平面 有两块,它们是 0 83 5 3 = ± + + z y x .例15 证明曲面 a z y x = + + ) 0 ( > a 上任一点的切平面在各坐标轴上的 截距之和等于a .证 设M ) , , ( 0 0 0 z y x 为曲面 a z y x = + + 上任的一点,曲面在该点的切面为0 2 2 2 00 00 00 = - + - + - z z z y y y x x x ,即0 ) ( 0 0 0 0 00 = + + - + + z y x z z y y x x , 亦即0 0 0 0 = - + + a z z y y x x .化为截距式即为 1 0 0 0= + + az zay y ax x . 可见在各坐标轴上的截距之和为a az ay ax = + + 0 0 0 = + + ) ( 0 0 0 z y x a .例 16 在 ] 1 , 0 [ 上用怎样的直线 b ax + = x 来代替曲线 2 x y = ,才能使它在平方 误差的积分 = ) , ( b a J ò - 10 2 ) ( dx y x 为极小意义下的最佳近似.解 = ) , ( b a J = - - ò 10 22) ( dx b ax x 51 32 23 2 2 + - - + + b a ab b a .现求其中极小值.ï ï îï ï íì- + = - + = .3 2 2 ,2 1 3 2 a b J b a J b a 解得有唯一驻点M ÷ ø ö ç èæ- 6 1 , 1 .0 3 1 1 2 3 2 | ) ( > = - ´ = - M ab bb aa J J J ,又 0 32| > = Maa J ,因此, ) , ( b a J 在点 M ÷ ø ö ç è æ- 6 1 , 1 取极小值.因为 ) , ( b a J 在R 2 中仅有唯一的极小值,可见该极小值还是最小值.因此,在 ] 1 , 0 [ 上用直线 61- = x x 来代替曲线 2 x y = ,才能使它在平方误差的积分为极小的意义下是最佳的近似.例 17 要做一圆柱形帐篷,并给它加一个圆锥形的顶.问在体积为定值时,圆柱的半径R ,高H 及圆锥的高h 满足什么关系时,所用的布料最省?解 设体积为定值V ,则 ÷ ø ö ç èæ+ = h H R V 3 1 2 p ,得 h R V H 3 1 2 - = p .帐篷的全面积为2 2 2 2 322 2 ) , ( h R R Rh R V h R R RH h R S + + - =+ + = p p p p , 0 > R , 0 > H . R S 0 3 2 2 2 2 2 22 2 = + + + + - - = hR R h R h R V p p p ,(*)0 3 2 2 2 = + + - = hR RhR S h p p .(**)由(**)式的得 h h R 232 2 = + ,代入(*)式,有R S 0 6 4 5 12 242 2 = + + - = h R R h R Vh p p ,由 0 6 2 > h R ,应有 0 12 5 4 2 2 2 = - + Vh h R R p p . 这就是驻点出应满足的关系式.由于该问题在于有最小值,这也是帐篷的全面 积 ) , ( h R S 取最小值时,圆柱的半径R 与圆锥的高h 所应满足的关系式. 例 18 抛物面 2 2 y x z + = 被平面 1 = + + z y x 截成一椭圆.求原点到这个椭圆的 最长距离与最短距离.解 这是求函数 2 2 2 ) , , ( z y x z y x d + + = 在约束条件 0 2 2 = - - y x z 与0 1= - + + z y x 之下的条件极值问题 .构造 Lagrange 函数= ) , , , , ( m l z y x L l - + + 2 2 2 z y x m + - - ) ( 2 2 y x z ) 1 ( - + + z y x .(5) . 0 1 (4) , 0 (3) , 0 2) 2 ( , 0 2 2 ) 1 ( , 0 2 2 2 2 ï ï ï î ïï ïí ì = - + + = = - + = = + - = = + + = = + + = z y x Lz y x L z L y y Lx x L z y x m l m l m l m l 由(1)和(2)有 0 ) 1 )( ( 2 = + - l y x ,由于 1 - ¹ l (否则由(1)得 0 = m ,据(3)得 2 1 - = z ,代入(4) ,导致 0 212 2 = + + y x 无解),得 y x = .把 y x = 代入(4)和(5) ,解得 2 3 1 2 , 1 ± - =x , 231 2, 1 ± - = y , 3 2 2 1 m = - = x z .即得两个 驻点A ÷ ÷ ø ö ç ç è æ - + - + - 3 2 , 2 3 1 , 2 3 1 和B ÷ ÷ øöç ç è æ + - - - - 3 2 , 2 3 1 , 2 3 1 . 而该 问题必有最大值和最小值,因此,点A 和B 就是最大和最小值点.由于d ÷ ÷ ø öç ç è æ - + - + - 3 2 , 2 3 1 , 2 3 1 3 5 9- = ; d ÷ ÷ øöç ç è æ + - - - - 3 2 , 2 3 1 , 2 3 1 3 5 9+ = . 可见点A 和B 分别是最小和最大值点.即原点到这个椭圆的最长距离为 3 5 9+ ,最短距离为 3 5 9- .例 19 求椭圆 12 3 2 2 = + y x 的内接等腰三角形,其底边平行于椭圆的长轴,而使面积最大.解 所指内接等腰三角形的一半(如图) 是 ABC D ,设C 的坐标为(,) x y ,则三角(0,2)A yx(0,)B y o(,)C x y形 ABC D 面积为 ) 2 ( y x - 之半,于是所求内接等腰三角形的面积为 ) 2 ( y x - .问题是求函数 ) 2 ( ) , ( y x y x S - = 在约束条件 12 3 2 2 = + y x 之下的条件极值. 设Lagrange 函数为) 12 3 ( ) 2 ( ) , , ( 2 2 - + + - = y x y x y x L l l ,( 0 > x , 2 2 < < - y ),则ï î ïí ì = - + = = + -= = + - = (3) . 0 12 3 (2) , 0 6 ) 1 ( , 0 22 2 2 y x L y x L x y L y x ll l 从方程(1)和(2)中消去l ,得 y y x 6 3 2 2 - = ,代入(3) ,得 0 2 2 = - - y y ,解得 231± = y . 2 = y 时, 0 ) 2 , ( = x S .因此,得唯一的驻点 ) 1 , 3 ( - .该问题有最大值,当底边右端点的坐标为 ) 1 , 3 ( - 时,所得内接等腰三角形的面 积最大.。

导数与微分练习题及习题详细解答

导数与微分练习题及习题详细解答

第二章 导数与微分练习题及习题详细解答练习题2.11.已知质点作直线运动的方程为23s t =+,求该质点在5t =时的瞬时速度.解 由引例2.1可知,质点在任意时刻的瞬时速度d 2d sv t t==.代入5t =,得10v =. 2.求曲线cos y x =在点π(6处的切线方程和法线方程. 解 由导数的几何意义知,曲线cos y x =在π(6点切线的斜率 ππ661(cos )(sin )2x x k x x =='==-=-,所以,切线方程为1π()226y x -=--,即612π=0x y +-.法线方程为π2()6y x =-,即1262π=0x y -+. 3.讨论函数32,0()31,013,1x f x x x x x ⎧≤⎪=+<≤⎨⎪+>⎩在0x =和1=x 处的连续性与可导性.解 在0x =处,0lim ()lim 22x x f x --→→==,0lim ()lim (31)1x x f x x ++→→=+=, 由于0lim ()lim ()x x f x f x -+→→≠,所以不连续,根据可导与连续的关系知,也不可导. 在1x =处,11lim ()lim(31)4x x f x x --→→=+=,311lim ()lim(3)4x x f x x ++→→=+=,(1)4f =, 所以连续.又00(1)(1)3(1)lim lim 3x x f x f xf x x---∆→∆→+∆-∆'===∆∆, 2300(1)(1)33()()(1)lim lim 3x x f x f x x x f x x+++∆→∆→+∆-∆+∆+∆'===∆∆,所以可导.4.已知函数()f x 在点0x 处可导,且0()f x A '=,求下列极限:000(5)()(1)limx f x x f x x ∆→-∆-∆; 000(2)()(2)lim h f x h f x h →+-解 (1)000000(5)()(5)()55()55limlim x x f x x f x f x x f x f x A x x ∆→∆→-∆--∆-'=-=-=-∆-∆;(2)000000(2)()(2)()22()22limlim h h f x h f x f x h f x f x A h h →→+-+-'===.5.求抛物线2y x =上平行于直线43y x =-+的切线方程.解 由于切线平行于43y x =-+,所以斜率为4k =-.又2k y x '==,所以2x =-.对应于抛物线上的点为(2,4)-,所以切线方程为44(2)y x -=-+,即440x y ++=.练习题2.21.求下列函数的导数:(1)100(21)y x =-; (2)22e xxy +=;(3)sin(3π)y x =+; (4)2cos y x =; (5)2e sin x y x =; (6)2ln(1)y x =+; (7)tan 2y x =; (8)cot 3y x =; (9)arctan(31)y x =+; (10)arcsin(41)y x =+. 解 (1)9999100(21)(21)200(21)y x x x ''=--=-; (2)22222e (2)e (41)xxxxy x x x ++''=+=+;(3)cos(3π)(3π)3cos(3π)y x x x ''=+⋅+=+; (4)2cos (cos )2sin cos sin 2y x x x x x ''=⋅=-=-;(5)22222(e )sin e (sin )2e sin e cos e (2sin cos )xxxxxy x x x x x x '''=+=+=+; (6)22212(1)11x y x x x''=⋅+=++; (7)22sec 2(2)2sec 2y x x x ''=⋅=; (8)22csc 3(3)3csc 3y x x x ''=-⋅=-;(9)2213(31)1(31)1(31)y x x x ''=⋅+=++++;(10)(41)y x ''=+=2.设y =d d y x .解对于y =[]1ln ln(1)ln(2)ln(3)ln(4)3y x x x x =+++-+-+ 两边对x 求导,得111111()31234y y x x x x '=+--++++ 所以1111()1234y x x x x '=+--++++ 3.求曲线31x ty t =+⎧⎨=⎩上,点(1,0)处的切线方程. 解 点(1,0)对应参数t 的值为0. 设k 为曲线上对应(1,0)点的切线斜率,则32000d ()30d (1)1t t t y t t k x t ==='===='+,于是,所求切线方程为0y =,即x 轴.4.求由方程3330y x xy --=所确定的隐函数的导数d d y x. 解 方程两边对x 求导,可得22333()0y y x y xy ''--+=由上式解出y ',便得隐函数的导数为22x yy y x+'=-(20y x -≠). 练习题2.31.求下列函数的微分:(1)22sin 34y x x x =+-+; (2)2ln y x x x =-; (3)2(arccos )1y x =-; (4)arctan y x x =; (5)ln tan 2x y =; (6)sin ln 57xy x x x x=++-; (7)1cos 2xy -=; (8)3(e e )x x y -=+.解 (1)22d (sin 34)d (2sin 23)d y x x x x x x x '=+-+=+-; (2)2d (ln )d (ln 12)d y x x x x x x x '=-=+-; (3)2d ((arccos )1)d y x x x '=-=;(4)2d (arctan )d (arctan )d 1xy x x x x x x '==++; (5)2111d (ln tan )d sec d d csc d 222sin tan 2x x y x x x x x x x '==⋅⋅==;(6)2sin cos sin d (ln 57)d (ln 6)d x x x xy x x x x x x x x-'=++-=++; (7)11cos cos d (2)d 2ln 2sec tan d xxy x x x x --'==-⋅;(8)32d (e e )d 3(e e )(e e )d x x x x x xy x x ---'⎡⎤=+=+-⎣⎦. 2.填空. (1)23d d()x x =(2)21d d()1x x =+ (3)2cos2d d()x x = (4)21d d()x x= 解 (1)3x C +; (2)arctan x C +; (3)sin 2x C +; (4)1C x-+. 3解=()f x =064x =,1x ∆=.因为000()()()f x x f x f x x '+∆≈+∆,()f x ''==所以1188.062516=≈=+=.4.半径为10m 的圆盘,当半径改变1cm 时,其面积大约改变多少?解 圆盘面积函数为2S πR =,并取0R 10m =,R 1cm 0.01m ∆==.因为 S 2πR '= 所以面积改变量2S dS 2πR R 2π100.010.2π0.628m ∆≈=⋅∆=⨯⨯=≈.习题二1.如果函数()f x 在点0x 可导,求:(1)000()()limh f x h f x h →--; (2)000()()lim h f x h f x h hαβ→+--.解 (1)0000000()()()()limlim ()h h f x h f x f x h f x f x h h →-→----'=-=--; (2)00000000()()()()()()lim lim h h f x h f x h f x h f x f x f x h h hαβαβ→→+--+-+--=0000000()()()()limlim ()()h h f x h f x f x h f x f x h hαβαβαβαβ→→+---'=+=+-2.求函数3y x =在点(2,8)处的切线方程和法线方程. 解 由导数的几何意义,得3222()312x x k x x =='===切,112k =-法. 所以,切线方程为812(2)y x -=-即12160x y --=.法线方程为18(2)12y x -=--即12980x y +-=.3.设2, 1(), 1x x f x ax b x ⎧≤=⎨+>⎩,试确定,a b 的值,使()f x 在1x =处可导.解 若()f x 在1x =处可导,则必在1x =处连续.1lim ()1x f x -→=,1lim ()x f x a b +→=+, 11lim ()lim ()x x f x f x -+→→=,即1a b +=. 又2111()(1)1(1)limlim lim(1)211x x x f x f x f x x x ----→→→--'===+=--, 111()(1)1(1)(1)lim lim lim 111x x x f x f ax b a x f a x x x ++-+→→→-+--'====--- 所以 2a =,1b =-. 4.求下列各函数的导数:(1)231251y x x x =-++; (2)2sin y x x =; (3)1cos y x x =+; (4)1ln 1ln xy x-=+.解 (1)23413(251)45y x x x x x''=-++=++;(2)22(sin )2sin cos y x x x x x x ''==+; (3)221(cos )sin 1()cos (cos )(cos )x x x y x x x x x x '+-''==-=+++;(4)21ln (1ln )(1ln )(1ln )(1ln )()1ln (1ln )x x x x x y x x ''--+--+''==++ 2211(1ln )(1ln )2(1ln )(1ln )x x x x x x x -+--==-++ . 5.求下列函数的导数:(1)36()y x x =-; (2)y =;(3)2sin (21)y x =-; (4)21sin y x x=; (5)ln1xy x=-; (6)[]ln ln(ln )y x =; (7)ln(y x =; (8)arcsin 2x y x =+解 (1)3533526()()6()(31)y x x x x x x x ''=--=--;(2)322(1)y x -'==-; (3)2sin(21)cos(21)(21)2sin(42)y x x x x ''=-⋅-⋅-=-; (4)22221111111()sin(sin )2sin cos ()2sin cos y x x x x x x x x x x x x'''=+=+⋅-=-; (5)lnln ln(1)1x y x x x ==---,∴1111(1)y x x x x -'=-=--; (6)[]{}[]1ln ln(ln )ln(ln )(ln )ln ln(ln )y x x x x x x ''''=⋅⋅=;(7)((1y x ''==+=;(8)1arcsin22x y '=++arcsin arcsin 22x x=+=.6.若以310cm /s 的速率给一个球形气球充气,那么当气球半径为2cm 时,它的表面积增加的有多快?解 设气球的体积为V ,半径为R ,表面积为S ,则34π3V R =,24πS R =. d d d d d d V V R t R t =⋅,d d d d d d S S Rt R t =⋅, 2d d d d dV 12d 8πd d d d dt 4πd S S V R V R t R t V R R t ∴=⋅⋅=⋅⋅=, 将3d 10cm /s d V t =,2cm R =代入得,2d 10cm /s d St=.7.求下列函数的高阶导数:(1)2sin 2y x x =,求y '''; (2)y =5x y =''. 解 (1)Q 22sin 22cos2y x x x x '=+,22sin 24cos24cos24sin 2y x x x x x x x ''=++-22sin 28cos 24sin 2x x x x x =+-,∴24cos28cos216sin 28sin 28cos2y x x x x x x x x '''=+---212cos 224sin 28cos 2x x x x x =--.(2)Q 2y '==y ''==23222(24)(16)x x x -=-,∴5x y =''1027=. 8.求由下列方程所确定的隐函数的导数: (1)3330y x xy +-=; (2)arctan ln yx=. 解 (1)方程两边对x 求导,得22333()0y y x y xy ''+-+=,从中解出y ',得22y x y y x-'=-. (2)方程两边对x 求导,得2222112221()xy y x yy y x x y x''-+⋅=⋅++, 从中解出y ',得x yy x y+'=-. 9.用对数求导法求下列各函数的导数:(1)y =; (2)cos (sin )x y x = (s i n 0)x >.解 (1)方程两边取对数,得11ln ln(23)ln(6)ln(1)43y x x x =++--+,两边对x 求导,得1211234(6)3(1)y y x x x '=+-+-+, 即211[234(6)3(1)y x x x '=+-+-+ (2)方程两边取对数,得cos ln ln(sin )cos lnsin x y x x x ==⋅两边对x 求导,得11sin ln sin cos cos sin y x x x x y x'=-⋅+⋅⋅ sin lnsin cos cot x x x x =-⋅+⋅,即cos (sin )(sin lnsin cos cot )x y x x x x x '=-⋅+⋅.10.求由下列各参数方程所确定的函数()y y x =的导数:(1)33cos sin x a t y b t ⎧=⎪⎨=⎪⎩; (2)e cos e sin tt x t y t ⎧=⎪⎨=⎪⎩,求π2d d t y x =. 解 (1)22d d 3sin cos d tan d d 3cos sin d yy b t t bt t x x a t t a t===--;(2)Q d d e (sin cos )sin cos d d d e (cos sin )cos sin d t t yy t t t tt x x t t t t t++===--, ∴π2d d t y x =π2sin cos 101cos sin 01t t tt t=++===---. 11.求下列函数的微分: (1)ln sin2x y =; (2)1arctan 1x y x+=-; (3)e 0x yxy -=; (4)24ln y y x +=.解 (1)111d (lnsin )d (cos )d cot d 22222sin 2x x xy x x x x '==⋅⋅=; (2)2221(1)(1)1d d d 1(1)11()1x x y x x x x x x-++=⋅=+-++- (3)方程两边同时取微分,得d(e )d()0x yxy -=,2d de (d d )0x yy x x yy x x y y-⋅-+=, 整理得22d d xy y y x x xy-=+.(4)方程两边同时取微分,得312d d 4d y y y x x y+=, 整理得324d d 21x yy x y =+.12.利用微分求近似值:(1)sin3030︒'; (2解 (1)设()sin f x x =,则0π306x ︒==,π30360x '∆==,()cos f x x '=.11 / 11 000sin3030()()()f x x f x f x x ︒''=+∆≈+∆πππsincos 0.507666360=+⋅≈ (2)设()f x =064x =,1x ∆=,561()6f x x -'=.000()()()f x x f x f x x '=+∆≈+∆5611(64)12 2.00526192-⋅=+≈ 13.已知单摆的振动周期2T =2980cm/s g =,l 为摆长(单位为cm ),设原摆长为20cm ,为使周期T 增大0.05s ,摆长约需加长多少?解由2T =224πgT l =,02T =0.05s T ∆=,22πgT l '=. 所以027d 0.050.050.05 2.23cm 2ππgT l l l T '∆≈=⋅∆=⋅===≈, 即摆长约需加长2.23cm .。

导数与微分真题答案及解析

导数与微分真题答案及解析

导数与微分真题答案及解析一、基础概念在微积分中,导数与微分是非常重要的概念。

导数描述了函数在某一点的变化率,而微分则描述了函数在某一点附近的局部变化情况。

了解导数与微分的概念对于解决数学问题至关重要,下面就是一些导数与微分的真题及其答案解析。

二、导数计算真题1. 求函数f(x) = 3x^2 - 2x + 1的导数。

解析:根据导数的定义,可以使用求导法则来计算导数。

对于多项式函数f(x) = ax^n + bx^m + cx^l + ...,其导数可以通过对每一项求导后再相加的方式得到。

根据此法则,对于f(x) = 3x^2 - 2x + 1,求导后得到f'(x) = 6x - 2。

2. 求函数f(x) = sin(2x)的导数。

解析:根据导数的链式法则,对于复合函数f(g(x)),其导数可以通过对外层函数求导后再乘以内层函数的导数得到。

对于f(x) = sin(2x),将外层函数设为f(u) = sin(u),内层函数设为g(x) = 2x,则f'(x) = f'(g(x)) * g'(x) = cos(2x) * 2 = 2cos(2x)。

三、微分计算真题1. 求函数f(x) = e^x的微分。

解析:对于指数函数f(x) = e^x,其微分可以通过导数乘以微小变化量dx的方式得到。

由于f'(x) = e^x,所以微分df = f'(x) * dx = e^x * dx。

2. 求函数f(x) = ln(x)的微分。

解析:对于对数函数f(x) = ln(x),其微分可以通过导数除以x的方式得到。

由于f'(x) = 1/x,所以微分df = f'(x) / x = 1 / (x * dx)。

四、综合计算真题1. 求函数f(x) = (x^2 + 1) / (x - 1)在点x = 2处的导数和微分。

解析:首先,求导数。

利用求导法则,对于f(x) = (x^2 + 1) / (x - 1),可以通过分子分母求导再计算商的导数的方式来求得导数。

微积分第3章导数与微分

微积分第3章导数与微分

2021/4/21
9
三、左、右导数
定义 设函数 y = f(x) 在某U+(x0) (或 U-(x0))内有定义. 若
(或
)
存在,则称该极限值为 f 在点 x0 处的右 (左) 导数.
记作 f( x0 ) (或 f( x0 )) .
注:1. f 在x0可导 f 在 x0 的左, 右导数存在且相等.
f
(
x)
x
sin
1 x
,
x 0 与 f(x) = |x| 在 x = 0 处连续但不可导.
0, x 0
2021/4/21
11
例5. 求下列函数的导函数:
(1) c ( 常函数 ) ;
答案:0
记结论
(2) xn , ( n∈N+ ) ; (3) sin x ,
cos x ; (4) log ax ( a > 0, a≠1, x > 0 ) .
方法一:F(x, y) = 0 显化 y = f(x) 已有方法 求 y.
√ 方法二:F(x, y) = 0 两边同时求导 [F(x, y)] 0 求 y.
例6. 已知 y x ln y 确定了函数 y = f(x),求 y.
(答案:
y
y ln y y x

2021/4/21
第三章 导数与微分
22
要牢记!
(1) (c) 0 (c为常数);
(2) ( x ) x1 (为任意实数 );
(3) (a x ) a x ln a, (ex ) ex ;
(4)
(log a
x)
1, x ln a
(ln
x)
1; x
(5) (sin x) cos x,(cos x) sin x ;

(完整版)导数的运算经典习题

(完整版)导数的运算经典习题

(完整版)导数的运算经典习题1. 概述本文档列举了一些有关导数的运算的经典题,以帮助读者巩固和提高对该知识点的理解和应用能力。

2. 题集2.1 一阶导数1. 计算函数 $f(x) = 3x^2 + 2x + 1$ 的导函数 $f'(x)$。

2. 求函数 $g(x) = \sqrt{x}$ 的导数 $g'(x)$。

3. 计算函数 $h(x) = e^x - \sin(x)$ 在 $x = 0$ 处的导数 $h'(0)$。

4. 求函数 $k(x) = \ln(x)$ 的导函数 $k'(x)$。

2.2 高阶导数1. 计算函数 $f(x) = \cos(x)$ 的二阶导数 $f''(x)$。

2. 求函数 $g(x) = \frac{1}{x^2}$ 的二阶导数 $g''(x)$。

3. 计算函数 $h(x) = e^x \cos(x)$ 的二阶导数 $h''(x)$。

4. 求函数 $k(x) = \ln(x^2)$ 的二阶导数 $k''(x)$。

2.3 乘积法则和商积法则1. 使用乘积法则计算函数 $f(x) = (3x^2 + 2x + 1)(4x + 1)$ 的导函数 $f'(x)$。

2. 使用商积法则计算函数 $g(x) = \frac{x^2 + 1}{x}$ 的导数$g'(x)$。

2.4 链式法则1. 使用链式法则计算函数 $f(x) = \sin(3x^2 + 2x + 1)$ 的导数$f'(x)$。

2. 使用链式法则计算函数 $g(x) = e^{2x^3}$ 的导函数 $g'(x)$。

3. 总结本文档提供了一些有关导数的运算的经典习题,涵盖了一阶导数、高阶导数、乘积法则和商积法则、链式法则等知识点。

通过完成这些习题,读者可以巩固对导数运算的理解,并提高应用能力。

希望这些习题对您有所帮助!。

第二讲导数和微分内容提要和典型例题

第二讲导数和微分内容提要和典型例题

x0
① f (x)连续 ② f(0)存在
③ f(x)连续 ④ f(0)存在
第二章 导数与微分典型例题
解 首先注意到
当 0时lim xsin 1不存在
x 0
x
当 0时 lim xsi1 n0
x 0
x
① 当 x0时f, (x)xnsi1n是初等函数,连续 x
因此要使 f (x)连续只f须 (x)在 x0处连续
F ( 0 ) 存 F ( 0 ) 在 F ( 0 ) F (0 ) x l 0 if m (x )1 ( sxix )n f(0 )
x l i0 m f(x x ) 0 f(0 )f(x)sx ixn f(0 )f(0 ) F (0 ) x l 0 if m (x )1 ( sxix )n f(0 ) x l i0 m f(x x ) 0 f(0 )f(x)sx ix n
2d yy22tyd yet 0
dt
dt
dyet y2 dt 2ty2
dy

dy dx

dt dx
(1t2)(et y2) 2ty2
dt
④ 设 f(x)(x20 01 1)g(x),其 g(x)在 中 x1处连续
且 g(1)1求 f(1)
第二章 导数与微分典型例题
第二讲 导数与微分
内容提要与典型例题
第二章 导数与微分内容提要
一、主要内容
关 系
d y y d y y d x y d o y ( x ) dx
导数
y lim x0 x
基本公式 高阶导数 高阶微分
微分
dyyx
求导法则
第二章 导数与微分内容提要

导数的基本公式14个例题

导数的基本公式14个例题

导数的基本公式14个例题一、导数的基本公式。

1. 常数函数的导数:若y = C(C为常数),则y^′=0。

- 例如:y = 5,求y^′。

- 解析:根据常数函数导数公式,y^′ = 0。

2. 幂函数的导数:若y=x^n,则y^′ = nx^n - 1。

- 例如:y=x^3,求y^′。

- 解析:根据幂函数导数公式,n = 3,所以y^′=3x^2。

- 例如:y = x^(1)/(2),求y^′。

- 解析:n=(1)/(2),根据公式y^′=(1)/(2)x^(1)/(2)-1=(1)/(2)x^-(1)/(2)=(1)/(2√(x))。

3. 正弦函数的导数:若y = sin x,则y^′=cos x。

- 例如:y=sin x,求y^′。

- 解析:根据正弦函数导数公式,y^′=cos x。

4. 余弦函数的导数:若y=cos x,则y^′ =-sin x。

- 例如:y = cos x,求y^′。

- 解析:根据余弦函数导数公式,y^′=-sin x。

5. 指数函数y = a^x的导数(a>0,a≠1):y^′=a^xln a。

- 例如:y = 2^x,求y^′。

- 解析:根据指数函数导数公式,a = 2,所以y^′=2^xln2。

6. 对数函数y=log_ax的导数(a>0,a≠1,x>0):y^′=(1)/(xln a)。

- 例如:y=log_2x,求y^′。

- 解析:根据对数函数导数公式,a = 2,所以y^′=(1)/(xln2)。

- 特别地,当a = e时,y=ln x,y^′=(1)/(x)。

- 例如:y=ln x,求y^′。

- 解析:根据自然对数函数导数公式,y^′=(1)/(x)。

7. 正切函数的导数:若y=tan x=(sin x)/(cos x),则y^′=sec^2x=(1)/(cos^2)x。

- 例如:y = tan x,求y^′。

- 解析:根据正切函数导数公式,y^′=sec^2x=(1)/(cos^2)x。

导数与微分的实际应用案例

导数与微分的实际应用案例

导数与微分的实际应用案例导数与微分是微积分的基本概念,广泛应用于数学、物理、工程等领域。

它们通过计算变量的变化率和近似值,为我们提供了解决实际问题的有效工具。

本文将介绍导数与微分在实际应用中的几个案例,以展示它们的重要性和实用性。

案例一:速度与加速度计算导数与微分在物理学中的应用非常广泛,特别是在描述物体运动时。

例如,我们可以利用导数计算物体的速度和加速度。

考虑一辆汽车匀速行驶的情况,假设汽车的位移函数为 $s(t)$,其中 $t$ 表示时间。

则汽车的速度可以通过对位移函数$s(t)$ 进行微分得到,即 $v(t) = \frac{{ds(t)}}{{dt}}$。

同样地,加速度可以通过对速度函数 $v(t)$ 进行微分得到,即 $a(t) = \frac{{dv(t)}}{{dt}} =\frac{{d^2s(t)}}{{dt^2}}$。

通过这些导数的计算,我们可以准确地描绘汽车的运动状态,为实际驾驶和交通规划提供重要依据。

案例二:最优化问题求解导数与微分在优化问题中起着关键作用。

假设我们希望制作一个容量为 $V$ 的长方体箱子,但是只有限定的材料可以使用。

我们希望找到一个长方体的尺寸,使其表面积最小。

这个问题可以通过微分求解。

设长方体的长、宽、高分别为 $x$、$y$、$z$,则表面积为 $A = 2xy + 2xz + 2yz$,而容量为 $V = xyz$。

我们可以利用微分的方法,对表面积函数 $A$ 进行求导,并令导数为零,从而找到关于 $x$、$y$、$z$ 的方程组。

进一步求解这个方程组,就可以得到使表面积最小化的尺寸。

这个例子展示了导数与微分在解决实际最优化问题中的应用。

案例三:金融中的应用导数与微分在金融学中也有广泛的应用。

例如,投资者常常需要计算投资组合的风险和回报。

假设我们有两种投资资产,其价格分别为 $P_1(t)$ 和 $P_2(t)$,其中 $t$ 表示时间。

我们可以利用导数求解资产价格的变化率,即$\frac{{dP_1(t)}}{{dt}}$ 和 $\frac{{dP_2(t)}}{{dt}}$。

考研真题二-导数与微分

考研真题二-导数与微分

考研真题二-导数与微分考研真题二导数与微分在考研数学中,导数与微分是极其重要的概念,也是每年必考的知识点。

理解和掌握导数与微分,对于解决各类数学问题,尤其是涉及函数的性质、变化趋势等方面的问题,具有至关重要的意义。

导数,简单来说,就是函数在某一点的变化率。

它反映了函数在该点处的瞬时变化情况。

我们通过极限的概念来定义导数,设函数 y =f(x) 在点 x₀的某个邻域内有定义,当自变量 x 在 x₀处取得增量Δx (点 x₀+Δx 仍在该邻域内)时,相应地函数取得增量Δy = f(x₀+Δx) f(x₀);如果Δy 与Δx 之比当Δx→0 时的极限存在,则称函数 y =f(x) 在点 x₀处可导,并称这个极限为函数 y = f(x) 在点 x₀处的导数,记作 f'(x₀) 。

举个简单的例子,比如我们考虑一次函数 y = 2x + 1 ,它的导数就是 2 。

这意味着,对于这个函数,无论 x 取何值,函数值的变化率始终是 2 。

再比如,对于二次函数 y = x²,其导数为 2x 。

当 x = 1 时,导数为 2 ,表示在 x = 1 这一点,函数值的变化率是 2 。

导数的几何意义也非常重要。

函数在某一点的导数,就是该点处切线的斜率。

比如,对于函数 y = x²,在点(1, 1) 处的导数为 2 ,这就意味着过点(1, 1) 的切线斜率为 2 。

微分则是函数增量的线性主部。

设函数 y = f(x) 在某区间内有定义,x₀及 x₀+Δx 在这区间内,如果函数的增量Δy = f(x₀+Δx) f(x₀) 可以表示为Δy =AΔx +o(Δx) ,其中 A 是不依赖于Δx 的常数,而o(Δx) 是比Δx 高阶的无穷小,那么称函数 y = f(x) 在点 x₀是可微的,而AΔx 叫做函数 y = f(x) 在点 x₀相应于自变量增量Δx 的微分,记作dy ,即 dy =AΔx 。

导数和微分之间有着密切的联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档