北京海淀区中考数学一模试题有答案及评分标准
2023年北京市海淀区中考数学一模试卷及答案解析
2023年北京市海淀区中考数学一模试卷及答
案解析
(正文部分)
一、选择题(每小题3分,共30分)
1. 题目内容
答案解析
2. 题目内容
答案解析
3. 题目内容
答案解析
...
二、填空题(每小题4分,共40分)
1. 题目内容
答案解析
2. 题目内容
答案解析
3. 题目内容
...
三、解答题(每小题10分,共50分)
1. 题目内容
解答思路及步骤
2. 题目内容
解答思路及步骤
3. 题目内容
解答思路及步骤
...
四、应用题(共30分)
1. 题目内容
解答思路及步骤
2. 题目内容
解答思路及步骤
3. 题目内容
解答思路及步骤
...
本次数学一模试卷共计150分,包括选择题、填空题、解答题和应
用题四个部分。
试卷难度适中,内容覆盖了中考数学知识的各个方面,旨在考察学生的数学运算能力、问题解决能力以及应用数学知识的能力。
希望同学们能够认真答题,按照题目要求进行解答,展现自己的
数学水平。
答案解析部分所提供的解题思路仅供参考,同学们在解答题目时应
充分发挥自己的思维能力,灵活运用所学的知识进行分析和解决。
通
过认真研究试卷中的各个题目,可以更好地理解数学的知识点,并为
今后的学习提供帮助。
祝愿同学们在中考数学科目上取得优异的成绩!
以上为2023年北京市海淀区中考数学一模试卷及答案解析,请同
学们参考。
海淀区初三一模数学试卷和参考
海淀区九年级第二学期期中测评数学试卷答案及评分参照一、选择题 <此题共 32 分,每题 4 分)题号12345678答 案 B A DBCCAD二、填空 <本 共 16 分,每小 4 分)号910 1112答 案b(a3b) 2m ≤9 2 31260 ;2 或 74三、解答 <本 共 30 分,每小 5 分)13. 算:12 2cos30( 3 1)( 1) 1 .8解:原式2 3 3 1 8⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分22老 , 系 :3 7 .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分解:由①得 x2.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分 由②得 x 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分不等式 的解集 2 x 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分15.先化 ,再求 : 11 x21,此中 x 3 .x22x 4解:原式x 2 1 2 x 4 x2 x 21x 12( x2 )x2 ( x 1)( x 1)⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分x 1海淀一 文 老 , 系 :当 x3 ,原式 =21. ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分x 1216. 明:AB ∥ EC ,E∴ ADCE.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分在△ ABC 和△ CDE 中,B EDC ,A DCE , AC CE ,∴△ ABC ≌△ CDE . ⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∴ BCDE .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分17. 解: <1)∵ 点 A ( 1,n) 在反比率函数 y2的 象上,x∴ n 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∴ 点 A 的坐 ( 1,2).∵ 点 A 在一次函数 ykx k 的 象上, 老 , 系 :∴ 2 k k .∴ k1. ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分∴ 一次函数的解 式 yx 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分<2)点 P 的坐 <-3,0 )或 <1,0 ).⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分<写 一个 1 分)18. 解: 原 划每日加工 x 篷 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分1500300 1500 300分x4 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 32x解得 x 150 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分, x150 是原方程的解,且切合 意 .答:原 划每日加工150 篷 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分 老, 系 :四、解答 <本 共 20 分,每小 5 分)19.解:点 A 作 AF ⊥ BD 于 F .∵∠ CDB =90°,∠1=30°,∴∠ 2=∠3=60°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分在△ AFB中,∠ AFB =90°.海淀一文老,系:∵∠ 4=45°,AB 6 ,∴AF =BF =3.⋯⋯⋯⋯⋯⋯⋯⋯⋯2分在△ AFE中,∠AFE=90°.∴EF 1, AE 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯3分在△ ABD 中,∠ DAB =90°.∴DB 2 3 .∴ DE DB BF EF 3 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯4分老,系:∴ S ADE 1 DE AF 1( 3 1) 33 3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分2 2 2 20.(1> 明:接OD . ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∵AB = AC ,∴BC .又∵ OB OD ,∴B1 .∴C1 .∴OD ∥ AC .∴DE ⊥ OD .∵点 D 在⊙ O 上,∴ DE 与⊙ O 相切.⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2> 解:接AD .海淀一文老,系:∵AB ⊙ O 的直径,∴∠ ADB =90°.∵AB =6, sin B =5,老,系5:∴ AD AB sin B =6 5.⋯⋯⋯⋯⋯⋯3分5∵123 2 90 ,∴13 .∴B3.在△ AED 中,∠ AED =90°. ∵ sin 3 AE 5 ,AD 5∴ AE 5AD 5 6 56. ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分5 5 5 5又∵ OD ∥ AE ,∴△ FAE ∽△ FOD . ∴F A AE .FO OD∵ AB 6 ,∴ OD AO 3.∴FA 2FA 3 5 ∴ AF 2 . . 老,系:⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分21.<1 )1. ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分3<2)∵(3 3 18) 80% 30 ,∴被小博同学抽取的点个数30 个.⋯⋯⋯⋯⋯⋯⋯⋯⋯2分⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分<3)昨年同期售x万箱烟花鞭炮 . 老,系:(1 35%) x37 .解得 x 56 12. ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分121312 37∴ 56 1920 .13 13答:今年比昨年同期少售20 万箱烟花爆竹.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分22.<1 ) 5 .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分<2 )①如:( 答案不独一 >⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分②721. ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分5五、解答 <本共 22 分,第 237 分,第 247 分,第 258 分)23.解: <1)依意,可得抛物的称2mx 1 .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分2m∵抛物与 x 交于A、B两点,点A的坐 ( 2,0) ,老,系:∴点 B 的坐(4,0) .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分1<2)∵点 B 在直y =x + 4m + n上,∴0 2 4m n ①.∵点 A 在二次函数y mx2 - 2mx n 的象上,老,系:∴ 0 4m 4m n ②. ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分由①、②可得 m 1, n 4 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分2∴抛物的解式 y=1x2 x 4 ,直的解式y=21 分x 2 .⋯⋯⋯⋯⋯52<3) 5 d 0 .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 7 分224.<1)AE 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分老,系:<2)段AE、CD之的数目关系AE 2CD .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分12 / 16证明:如图 1,延伸AC与直线l交于点G.依题意,可得∠ 1=∠ 2.∵∠ ACB =90,∴∠ 3=∠4.∴BA BG .∴CA = CG .3分陈老师,联系电话:∵AE ⊥ l , CD ⊥l ,∴ CD ∥ AE .∴△ GCD ∽△ GAE .∴ CD = GC 1 .AE GA 2∴ AE 2CD .4分<3)解:当点F在线段AB上时,如图 2,过点 C 作 CG ∥ l 交 AB 于点 H 陈老师,联系电话:,交AE 于点 G .∴∠ 2=∠HCB.∵∠ 1=∠2,∴∠ 1=∠HCB.∴CH BH .∵∠ ACB =90,图 2 ∴∠ 3+∠1=∠ HCB+∠4 = 90.海淀一线语文陈老师,联系电话:∴∠ 3=∠ 4.∴CH AH BH .∵CG ∥ l ,∴△ FCH ∽△FEB .∴ CF = CH 5 .陈老师,联系电话:EFEB 6设CH 5 x, BE 6x ,则AB 10x.∴在△ AEB 中,∠ AEB =90, AE8x .由<2)得,AE2CD .∵CD 4 ,∴ AE8 .图 3 ∴x 1 .∴ AB 10, BE 6, CH 5 .∵CG ∥ l ,∴△ AGH ∽△ AEB .∴HG AH 1 . BEAB 2∴HG 3 .5分∴CG CH HG 8 .∵CG ∥ l , CD ∥ AE ,海淀一线语文陈老师,联系电话:∴四边形 CDEG 为平行四边形.∴ DE CG8 .∴ BD DE BE 2 .⋯⋯⋯⋯⋯⋯⋯⋯6分当点 F 在段 BA 的延上,如3,同理可得 CH 5 , GH 3 , BE 6 .∴ DE =CG CH HG 2 .老,系:∴ BD DE BE 8 .∴ BD 2 或8.⋯⋯⋯⋯⋯⋯⋯⋯7分25. 解: <1)y x2 2mx2m ,⋯⋯⋯⋯⋯⋯⋯⋯1 m2 m x m分∴ 点坐 C (m,m).⋯⋯⋯⋯⋯⋯⋯⋯2分<2)①y x 2 与抛物 y x22mx m2m 交于A、B两点,∴x 2 x 2 2mx m2 m .老,系:解方程,得 x1m 1, x2m 2 .⋯⋯⋯⋯⋯⋯⋯⋯4分点A在点 B 的左,∴ A(m 1,m 1), B(m 2, m 4).∴ AB 3 2. ⋯⋯⋯⋯⋯⋯⋯⋯5分老,系:直 OC 的解式 y x ,直 AB 的解式y x 2 ,∴ AB ∥ OC ,两直AB、OC之距离h = 2 .∴ S APB1 AB h 1 32 23 .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分2 2②最小10.⋯⋯⋯⋯⋯⋯⋯⋯8分( 注:本卷中多解法不独一, 老依据分准酌情分>声明:全部资料为自己采集整理,仅限个人学习使用,勿做商业用途。
2022年北京市海淀区中考数学一模试卷(附答案详解)
2022年北京市海淀区中考数学一模试卷一、选择题(本大题共8小题,共16.0分)1.如图是一个拱形积木玩具,其主视图是()A. B.C. D.2.2022年北京打造了一届绿色环保的冬奥会.张家口赛区按照“渗、滞、蓄、净、用、排”的原则,在古杨树场馆群修建了250000立方米雨水收集池,用于收集雨水和融雪水,最大限度减少水资源浪费.将250000用科学记数法表示应为()A. 0.25×105B. 2.5×105C.2.5×104 D. 25×1043.如图,∠AOB=160°,∠COB=20°.若OD平分∠AOC,则∠AOD的大小为()A. 20°B. 70°C. 80°D. 140°4.若一个多边形的每个外角都是30°,则这个多边形的边数为()A. 6B. 8C. 10D. 125.不透明的袋子中装有2个红球,3个黑球,这些球除颜色外无其他差别.从袋子中随机摸出一个球,则摸出红球的概率是()A. 25B. 35C. 23D. 126.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A. a<−1B. |a|<|b||C. a+b<0D. b−a<07.北京2022年冬奥会的开幕式上,各个国家和地区代表团入场所持的引导牌是中国结和雪花融合的造型,如图1是中国体育代表团的引导牌.观察发现,图2中的图案可以由图3中的图案经过对称、旋转等变换得到.下列关于图2和图3的说法中,不正确的是()A. 图2中的图案是轴对称图形B. 图2中的图案是中心对称图形C. 图2中的图案绕某个固定点旋转60°,可以与自身重合D. 将图3中的图案绕某个固定点连续旋转若干次,每次旋转120°,可以设计出图2中的图案8.某校举办校庆晚会,其主舞台为一圆形舞台,圆心为O.A,B是舞台边缘上两个固定位置,由线段AB及优弧AB⏜围成的区域是表演区.若在A处安装一台某种型号的灯光装置,其照亮区域如图1中阴影所示.若在B处再安装一台同种型号的灯光装置,恰好可以照亮整个表演区,如图2中阴影所示.若将灯光装置改放在如图3所示的点M,N或P处,能使表演区完全照亮的方案可能是()①在M处放置2台该型号的灯光装置②在M,N处各放置1台该型号的灯光装置③在P处放置2台该型号的灯光装置A. ①②B. ①③C. ②③D. ①②③二、填空题(本大题共8小题,共16.0分)9.若代数式2有意义,则实数x的取值范围是______.x−310.已知√2<m<√11,且m是整数,请写出一个符合要求的m的值______.11.分解因式:3m2−3n2=______ .12.如图,PA,PB是⊙O的切线,A,B为切点.若∠APB=60°,则∠AOP的大小为______.13.若关于x的一元二次方程x2−4x+m=0没有实数根,则m的取值范围是______.14.在平面直角坐标系xOy中,直线y=ax与双曲线y=kx交于点A(−1,2)和点B,则点B 的坐标为______.15.如图,在4×4的正方形网格中,A,B,C,D,E是网格线交点,请画出一个△DEF,使得△DEF与△ABC全等.16.甲、乙在如下所示的表格中从左至右依次填数.已知表中第一个数字是1,甲、乙轮流从2,3,4,5,6,7,8,9中选出一个数字填入表中(表中已出现的数字不再重复使用).每次填数时,甲会选择填入后使表中数据方差最大的数字,乙会选择填入后使表中数据方差最小的数字.甲先填,请你在表中空白处填出一种符合要求的填数结果.1______ ______ ______ ______三、计算题(本大题共1小题,共5.0分)17.计算:√3tan60°−√8+|−√2|−(1−π)0.四、解答题(本大题共11小题,共63.0分)18.解不等式组:{4(x−1)<3x 5x+32>x.19.已知m2−2mn−3=0.求代数式(m−n)2+(m+n)(m−n)−m2的值.20.《元史⋅天文志》中记载了元朝名天文学家郭守敬主持的一次大规模观测,称为“四海测验”、这次观测主要使用了“立杆测影”的方法,在二十七个观测点测量出的各地的“北极出地”与现在人们所说的“北线”完全吻合,利用类似的原理,我们也可以测量出所在地的纬度.如图1所示.①春分时,太阳光直射赤道,此时在M地直立一根杆子MN,在太阳光照射下,杆子MN会在地面上形成影子,通过测量杆子与它的影子的长度,可以计算出太阳光与杆子MN所成的夹角α;②由于同一时刻的太阳光线可以近似看成是平行的.所以根据太阳光与杆子MN所成的夹角α可以推算得到M地的纬度,即∠MOB的大小.(1)图2是①中在M地测算太阳光与杆子MN所成夹角α的示意图.过点M作MN的垂线与直线CD交于点Q,则线段MQ可以看成是杆子MN在地面上形成的影子.使用直尺和圆规,在图2中作出影子MQ(保留作图痕迹);(2)依据图1完成如下证明.证明:∵AB//CD,∴∠MOB=______=α(______)(填推理的依据)∴M地的纬度为α.21.如图,在△ABC中,AB=AC,D是BC的中点,点E,F在射线AD上,且DE=DF.(1)求证:四边形BECF是菱形;(2)若AD=BC=6,AE=BE,求菱形BECF的面积.x的图象22.在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=12平移得到,且经过点(−2,0).(1)求这个一次函数的解析式;(2)当x>m时,对于x的每一个值,函数y=3x−4的值大于一次函数y=kx+b的值,直接写出m的取值范围.23.数学学习小组的同学共同探究体积为330mL圆柱形有盖容器(如图所示)的设计方案.他们想探究容器表面积与底面半径的关系.具体研究过程如下,请补充完整:(1)建立模型:设该容器的表面积为Scm2,底面半径为x cm,高为y cm,则330=πx2y,①S=2πx2+2πxy,②由①式得y=330,代入②式得πx2S=2πx2+660,③x可知,S是x的函数,自变量x的取值范围是x>0.(2)探究函数:根据函数解析式③,按照如表中自变量x的值计算(精确到个位),得到了S与x的几组对应值:x/cm…1 1.52 2.53 3.54 4.55 5.56…S…666454355303277266266274289310336…/cm2在下面平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)解决问题:根据图表回答,①半径为2.4cm的圆柱形容器比半径为4.4cm的圆柱形容器表面积______(填“大”或“小”);②若容器的表面积为300cm2,容器底面半径约为______cm(精确到0.1).24.如图,⊙O是△ABC的外按,B是⊙O的直径,点D为AC⏜的中点,⊙O的切线DE交OC的延长线于点E.(1)求证:DE//AC;(2)连接BD交AC于点P,若AC=8,cosA=4,求DE5和BP的长.25.为增进学生对营养与健康知识的了解,某校开展了两次知识问答活动,从中随机抽取了20名学生两次活动的成绩(百分制),并对数据(成绩)进行整理、描述和分析.如图是这20名学生第一次活动和第二次活动成绩情况统计图.(1)①学生甲第一次成绩是85分,则该生第二次成绩是______分,他两次活动的平均成绩是______分;②学生乙第一次成绩低于80分,第二次成绩高于90分,请在图中用“〇”圈出代表乙的点;(2)为了解每位学生两次活动平均成绩的情况,A,B,C三人分别作出了每位学生两次活动平均成绩的频数分布直方图(数据分成6组:70≤x<75,75≤x<80,80≤x<85,85≤x<90,90≤x<95,95≤x≤100):已知这三人中只有一人正确作出了统计图,则作图正确的是______;(3)假设有400名学生参加此次活动,估计两次活动平均成绩不低于90分的学生人数为______.26.在平面直角坐标系xOy中,二次函数y=ax2−2ax(a≠0)的图象经过点A(−1,3).(1)求该二次函数的解析式以及图象顶点的坐标;(2)一次函数y=2x+b的图象经过点A,点(m,y1)在一次函数y=2x+b的图象上,点(m+4,y2)在二次函数y=ax2−2ax的图象上.若y1>y2,求m的取值范围.27.在Rt△ABC中,∠ABC=90°,∠BAC=30°,D为边BC上一动点,点E在边AC上,CE=CD.点D关于点B的对称点为点F,连接AD,P为AD的中点,连接PE,PF,EF.(1)如图1,当点D与点B重合时,写出线段PE与PF之间的位置关系与数量关系;(2)如图2,当点D与点B,C不重合时,判断(1)中所得的结论是否仍然成立?若成立,请给出证明,若不成立,请举出反例.在平面直角坐标系xOy中,对于点P(x1,y1),给出如下定义:当点Q(x2,y2)满足x1+x2=y1+y2时,称点Q是点P的等和点.已知点P(2,0).(1)在Q1(0,2),Q2(−2,−1),Q3(1,3)中,点P的等和点有______;(2)点A在直线y=−x+4上,若点P的等和点也是点A的等和点,求点A的坐标;(3)已知点B(b,0)和线段MN,对于所有满足BC=1的点C,线段MN上总存在线段PC上每个点的等和点.若MN的最小值为5,直接写出b的取值范围.答案和解析1.【答案】C【解析】解:从正面看得到的图形是下面有一半圆的图形.故选:C.从正面观察得到的图形是主视图.本题考查了简单组合体的三视图的知识,从正面看所得到的图形是主视图.2.【答案】B【解析】解:250000=2.5×105.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:∵∠AOB=160°,∠COB=20°,∴∠AOC=∠AOB−∠BOC=140°,∵OD平分∠AOC,∠AOC=70°,∴∠AOD=12故选:B.由∠AOB=160°,∠COB=20°,得∠AOC=∠AOB−∠BOC=140°,又OD平分∠AOC,∠AOC=70°.即得∠AOD=12本题考查角的和差,解题的关键是掌握角平分线的定义及角的加减.4.【答案】D【解析】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故答案为:D.利用任何多边形的外角和是360°除以外角度数即可求出答案.本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.5.【答案】A【解析】解:∵不透明的袋子中装有2个红球,3个黑球,共5个球,∴从袋子中随机摸出一个球是红球的概率是2,5故选A.用红球的个数除以球的总数即可.考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.6.【答案】B【解析】解:由数轴知:−1<a<0,1<b<2.∴a<−1,|a|<|b|,a+b>0,b−a>0,∴B符合题意.故选:B.由数轴知:−1<a<0,1<b<2,进而解决此题.本题主要考查数轴上的点表示的实数以及绝对值,熟练掌握数轴上的点表示的实数以及绝对值是解决本题的关键.7.【答案】D【解析】解:图2是中心对称图形,原式轴对称图形,图2绕对称中心性质60°可以与自身重合,故选项A,B,C正确,将图3中的图案绕某个固定点连续旋转若干次,每次旋转60°,可以设计出图2中的图案,故D错误,故选D.根据中心对称图形,轴对称图形的定义一一判断即可.本题考查作图利用旋转设计图案,中心对称图形,轴对称图形的定义等知识,解题的关键是理解题意中心对称图形,轴对称图形的定义,属于中考常考题型.8.【答案】A【解析】解:①在M处放置2台该型号的灯光装置,如图:摄像装置的视角为∠CAB,∠CBA,∵∠CAB=∠CMB,∠AMC=∠CBA,∴在M处放置2台该型号的灯光装置,能使表演区完全照亮;②在M,N处各放置1台该型号的灯光装置,如图:∵∠CMB=∠CAB,∠ANC=∠ABC,∴在M,N处各放置1台该型号的灯光装置,能使表演区完全照亮;③在P处放置2台该型号的灯光装置,如图:∵∠CPB=CAB,∴由图可知,在P处放置2台该型号的灯光装置,不能使表演区完全照亮;故选:A.由摄像装置的视角,画出图形观察可得答案.本题考查圆周角定理,解题的关键是理解题意,学会添加常用辅助线,借助图形解决问题.9.【答案】x≠3【解析】解:根据题意得x−3≠0,解得x≠3,故答案为:x≠3.根据分式有意义的条件:分母不等于0即可得出答案.本题考查了分式有意义的条件,掌握分式有意义的条件:分母不等于0是解题的关键.10.【答案】2或3(写一个即可)【解析】解:∵1<√2<2,3<√11<4,又√2<m<√11,且m是整数,∴m=2或m=3,故答案为:2或3(写一个即可).按要求写出一个符合条件的m的值即可.本题考查无理数大小的估算,解题的关键是能能正确估算√2、√11的近似值.11.【答案】3(m+n)(m−n)【解析】解:3m2−3n2=3(m2−n2)=3(m+n)(m−n).故答案为:3(m+n)(m−n).首先提取公因式3,进而利用平方差公式进行分解即可.此题主要考查了提取公因式法和公式法分解因式,熟练运用平方差公式是解题关键.12.【答案】60°【解析】解:∵PA,PB是⊙O的切线,A,B为切点,∴OP平分∠APB,OA⊥PA,∴∠OAP=90°,∵∠APB=60°,∴∠APO=30°,∴∠AOP=90°−∠APO=60°.故答案为:60°.根据切线长定理得到OP平分∠APB,根据切线的性质得到OA⊥PA,则利用角平分线的定义得到∠APO=30°,然后利用互余计算出∠AOP的度数.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了切线长定理.13.【答案】m>4【解析】【分析】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.根据根的判别式列出不等式即可求出答案.【解答】解:由题意可知:△<0,∴16−4m<0,∴m>4故答案为m>414.【答案】(1,−2)交于点A(−1,2)和点B,【解析】解:∵直线y=ax与双曲线y=kx∵点A、B关于原点对称,∴B(1,−2),故答案为:(1,−2).根据双曲线的中心对称性即可求得点B的坐标.本题是正比例函数与反比例函数的交点问题,考查了反比例函数的性质,应用反比例函数的中心对称性是解题的关键.15.【答案】解:如图,△DEF为所作.【解析】利用全等三角形的判定方法画图.本题考查了作图−复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定.16.【答案】9528【解析】解:根据题意,开始数字是1,∵甲填入后数据方差最大,结合方差的公式可知,填入的数据距离平均数越远越好,∴甲填入的是9,即第2个方格填9,∵乙填入后数据方差最小,结合方差的公式可知,填入的数据越接近平均数越好,∴乙应该填入5,即第3个方格填5,∴甲需要再填入2,即第4个方格填2,此时的四位数为1,9,5,2,∴乙需要再填入8,即第4个方格填8,∴依次填入的数字是9,5,2,8,故答案为:9,5,2,8.根据开始数是1,甲填入后数据方差最大,结合方差的公式可知,填入的数据距离平均数越远越好,可以判断甲填9,乙填入后数据方差最小,结合方差的公式可知,填入的数据越接近平均数越好,可以判断乙填5,依次类推即可.本题主要考查方差的概念及应用,熟练掌握方差公式是解答此题的关键.17.【答案】解:原式=√3×√3−2√2+√2−1=3−2√2+√2−1=2−√2.【解析】代入特殊角的三角函数值,化简算术平方根,绝对值,零指数幂,然后算乘法,再算加减.本题考查实数的混合运算,理解a0=1(a≠0),熟记特殊角的三角函数值是解题关键.18.【答案】解:解不等式4(x−1)<3x,得:x<4,>x,得:x>−1,解不等式5x+32则不等式组的解集为−1<x<4.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:(m−n)2+(m+n)(m−n)−m2=m2−2mn+n2+m2−n2−m2=m2−2mn,∵m2−2mn−3=0,∴m2−2mn=3,当m2−2mn=3时,原式=3.【解析】先根据完全平方公式和平方差公式进行计算,再合并同类项,求出m2−2mn= 3,最后代入求出答案即可.本题考查了整式的化简求值,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.20.【答案】∠OND两直线平行,内错角相等【解析】(1)解:如图2中,线段MQ即为所求;(2)证明:∵AB//CD,∴∠MOB=∠OND=α(两直线平行,内错角相等),∴M地的纬度为α.故答案为:∠OND,两直线平行,内错角相等.(1)过点M作MQ⊥MN交ND于点Q,线段MQ可即为所求;(2)利用平行线的性质求解即可.本题考查作图−应用与设计作图,平行投影等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】(1)证明:∵AB=AC,D是BC的中点,∴AD⊥BC,BD=CD,∵DE=DF,∴四边形BECF是菱形;(2)解:设DE=x,则AE=BE=AD−DE=6−x,∵BD=CD=12BC=3,∴BD2+DE2=BE2,∴32+x2=(6−x)2,∴x=94,∴EF=2DE=92,∴菱形BECF的面积=12×BC⋅EF=12×6×92=272.【解析】(1)根据对角线互相平分且垂直即可证明四边形AECF是菱形;(2)设DE=x,则AE=BE=AD−DE=6−x,根据勾股定理列式32+x2=(6−x)2,计算可得x的值,然后利用菱形面积等于对角线乘积的一半即可解决问题.本题考查了菱形的判定与性质,全等三角形的判定与性质,等腰三角形的性质,勾股定理,解决本题的关键是掌握菱形的性质.22.【答案】解:(1)∵一次函数y=kx+b(k≠0)的图象由函数y=12x的图象平移得到,∴k=12,又∵一次函数y=12x+b的图象经过点(−2,0),∴−1+b=0.∴b=1,∴这个一次函数的表达式为y=12x+1;(2)解{y =12x +1y =3x −4得{x =2y =2, ∴直线y =3x −4与直线y =12x +1的交点为(2,2),∵当x >m 时,对于x 的每一个值,函数y =3x −4的值大于一次函数y =kx +b 的值, ∴m ≥2.【解析】(1)先根据直线平移时k 的值不变得出k =1,再将点A(1,2)代入y =x +b ,求出b 的值,即可得到一次函数的解析式;(2)根据点(1,2)结合图象即可求得.本题考查了一次函数图象与几何变换,一次函数与系数的关系,数形结合是解题的关键. 23.【答案】大 2.5【解析】解:(2)函数图象如图所示:(3)①根据图表可知,半径为2.4cm 的圆柱形容器比半径为4.4cm 的圆柱形容器表面积大,故答案为:大.②根据图表可知,x =2时,s =255;x =2.5时,s =303;并且图象是连续的, ∴当s =300cm 2,x ≈2.5cm ,故答案为:2.5.(2)根据图象上点连线即可;(3)根据图表即可求出答案.本题考查了函数图象,根据结合图象和表格信息是解题的关键.24.【答案】(1)证明:连接OD,∵DE与⊙O相切于点D,∴OD⊥DE,∵点D为AC⏜的中点,∴OD⊥AC,∴DE//AC;(2)解:连接OD与AC交于点H,连接AD,∵AB是直径,∴∠ACB=90°,∴AB=ACcosA =845=10,∴BC=√AB2−AC2=6,∵点D为AC⏜的中点,∴AH=CH=4,OD//BC,∴OH=12BC=3,∵OD=12AB=5,∴DH=OD−OH=5−3=2,∴AD=√AH2+DH2=√42+22=2√5,∵AB为直径,∴∠ADB=90°,∴BD=√AB2−AD2=√102−(2√5)2=4√5,∵OD//BC,∴△OPD∽△CBP,∴DPBP =ODCB,即4√5−BPBP=56,∴BP=2411√5,∵HC//DE,∴△OHC∽△ODE,∴OHOD =CHDE,即35=4DE,∴DE=203.【解析】(1)连接OD,根据切线的性质得OD⊥DE,根据垂径定理的推论得OD⊥AC,便可得AC//DE;(2)连接OD与AC交于点H,连接AD,在△ABC中,解直角三角形得AB,进而由勾股定理求得BC,再由中位线定理求得OH,在△ADH中由勾股定理求得AB,在△ABD中由勾股定理求得BD,最后由△PDO∽△PCB求得BP,由△OHC∽△ODE求得DE.本题是圆的综合题,主要考查了垂径定理的推论,相似三角形的性质与判定,勾股定理,关键是运用相似三角形的知识解题.25.【答案】9087.5B180【解析】解:(1)①由统计图可以看出横坐标为85的直线上只有一个点,其纵坐标为90,因此这两次的平均分是(85+90)÷2=87.5,故答案为:90,87.5;②如图所示,符合题目要求的范围在直线x=80的左边,直线y=90以上,在图中圈出的就是所求.(2)由统计图可以看出,第一次成绩70≤x<75的点有6个,75≤x<80的点有2个,80≤x<85的点有2个,85≤x<90的点有2个,90≤x<95的点有5个,95≤x≤100的点有4个,第二次成绩70≤x<75的点有4个,75≤x<80的点有3个,80≤x<85的点有1个,85≤x<90的点有1个,90≤x<95的点有5个,95≤x≤100的点有6个,∴B作图正确.故答案为:B;(3)400名学生参加此次活动,估计两次活动平均成绩不低于90分的学生人数为:=180(人).400×920故答案为:180.(1)①根据图象直接得到,再求平均即可;②符合题目要求的范围在直线x=80的左边,直线y=90以上,圈出即可;(2)根据统计图数出落在各区间的频数,再与在直方图上表示的数对照即可求解;(3)用总人数乘以抽样中两次活动平均成绩不低于90分的占比即可.本题考查了看图知识,求平均数,频数分布直方图,解题的关键是掌握频数分布直方图知识.26.【答案】解:(1)将点A(−1,3)代入y=ax2−2ax得:a+2a=3,解得:a=1,∴y=x2−2x=(x−1)2−1,∴图象顶点的坐标为(1,−1);(2)∵一次函数y=2x+b的图象经过点A,∴−2+b=3,∴b=5,∴y=2x+5,∵点(m,y1)在一次函数y=2x+5的图象上,∴y1=2m+5,∵点(m+4,y2)在二次函数y=x2−2x的图象上,∴y2=(m+4)2−2(m+4)=m2+6m+8,∵y1>y2,∴2m+5>m2+6m+8,即m2+4m+3<0,令y=m2+4m+3,当y=0时,m2+4m+3=0,解得:x1=−1,x2=−3,∴抛物线与x轴交点为(−1,0)和(−3,0),∵抛物线开口项上,∴m2+4m+3<0的解为:−3<m<−1,∴m的取值范围是−3<m<−1.【解析】(1)把点A(−1,3)代入y=ax2−2ax得出关于a的方程,解方程求出a的值,进而求出二次函数的解析式,将二次函数的解析式化为顶点式,即可求出顶点坐标;(2)先求出一次函数的解析式,把点(m,y1)代入一次函数解析式得出y1=2m+5,把点(m+4,y2)代入二次函数解析式得出y2=m2+6m+8,再由y1>y2得出2m+5>m2+6m+8,即m2+4m+3<0,利用二次函数的性质求出不等式的解集,即可得出m的取值范围.本题考查了待定系数法求二次函数解析式,二次函数的性质,掌握待定系数法,利用二次函数的性质求一元二次不等式的解集是解决问题的关键.27.【答案】解:(1)PE⊥PF,PEPF =√33.理由如下:由题意知,D,B,F三点重合,∴CD=BC,PF=PD=PB,∵∠ABC=90°,∠BAC=30°,∴∠ACB=60°,BC=12AC,∵CE=CD,∴CE=CD=BC=12AC,∴点E为线段AC的中点,∵点P是AD的中点,∴PE是△ADC的中位线,∴PE⊥PF,PE=12CD=12BC,∴PF=12AB=√32BC,∴,PEPF =12BC√32BC=√33.(2)PE⊥PF,PEPF =√33的关系仍成立.证明:如图,连接DE,作PM⊥⊥BC于M,PG//x轴,过E作GN⊥BC交BC于N,交PG于G,由题意可知,PM是△ABD的中位线,BD=FB,△CDE是等边三角形,四边形PMNG是矩形,设DC=c,FD=BD=b,∴BC=BD+DC=b+c,AB=√3(b+c),PM=√32(b+c),BM=b2,FM=32b,DN=1 2DC=12c,EN=√32c,GE=PM−EN=√32b,PG=MN=12(b+c),FN=FB+BD+DN=2b+12c,在Rt△PFM中,由勾股定理得PF2=FM2+PM2=(32b)2+[√32(b+c)]2=94b2+34(b+c)2,在Rt△PEG中,由勾股定理得PE2=GE2+PG2=(√32b)2+[12(b+c)]2=34b2+14(b+c)2,在Rt△EFN中,由勾股定理得EF2=EN2+FN2=(√32c)2+[2b+12c)]2=3b2+(b+c)2,∴PE2PF2=34b2+14(b+c)294b2+34(b+c)2=13,∴PEPF =√33,∵PE2+PF2=34b2+14(b+c)2+94b2+34(b+c)2=3b2+(b+c)2=EF2,∴∠EPF=90°.【解析】(1)由题意知D,B,F三点重合,则CD=BC,PF=PD=PB,含30°的直角三角形中BC=12AC,由CE=CD,可知CE=CD=BC=12AC,PE是△ADC的中位线,有PE⊥PF,PE=12CD=12BC,PF=12AB=√32BC,然后求出比值即可;(2)如图2,连接DE,作PM⊥BC于M,PG//x轴,过E作GN⊥BC交BC于N,交PG于G,由题意知,PM是△ABD的中位线,BD=FB,△CDE是等边三角形,四边形PMNG是矩形,设DC=c,FD=BD=b,则BC=BD+DC=b+c,AB=√3(b+c),PM=√3 2(b+c),BM=b2,FM=32b,DN=12DC=12c,EN=√32c,GE=PM−EN=√32b,PG=MN=12(b+c),FN=FB+BD+DN=2b+12c,在Rt△PFM中,由勾股定理得PF2=FM2+PM2,求出用a,b表示的PF2的值,在Rt△PEG中,由勾股定理得PE2= GE2+PG2,求出用a,b表示的PE2的值,在Rt△EFN中,由勾股定理得EF2=EN2+FN2,求出用a.,b表示的EF2的值,求出可得PE2PF2的值,进而可得PEPF的值,根据PE2+PF2与EF2的数量关系判断PE与PF的位置关系即可.本题属于三角形综合题,涉及勾股定理,中位线定理,等边三角形的性质与判定,含30°角的直角三角形等知识.计算比较复杂,作出正确的辅助线是解题关键.28.【答案】Q1,Q3【解析】解:(1)Q1(0,2),则2+0=0+2,∴Q1(0,2)是点P的等和点;Q2(−2,−1),则2+(−2)≠0+(−1),∴Q2(−2,−1)不是点P的等和点;Q3(1,3),则2+1=0+3,∴Q3(1,3)是点P的等和点;故答案为:Q1,Q3;(2)设点P(2,0)的等和点为(m,n),∴2+m=n,设A(t,−t+4),则A点的等和点为(m,n),∴t+m=−t+4+n,∴t=3,∴A(3,1);(3)∵B(b,0),BC=1,∴C点在以B为圆心,半径为1的圆上,∵线段MN上总存在线段PC上每个点的等和点,∴线段MN上的点与线段PC上的点相对应,∵MN的最小值为5,∴PC的最小值为5,当P点在B点的左侧时,b−2−1≥5,∴b≥8;当P点在B点的右侧时,2−b−1≥5,∴b≤−4;综上所述:b≥8或b≤−4.(1)根据定义判断即可;(2)设点P(2,0)的等和点为(m,n),则2+m=n,设A(t,−t+4),则A点的等和点为(m,n),则t+m=−t+4+n,即可求A(3,1);(3)由题意可知C点在以B为圆心,半径为1的圆上,PC的最小值为5,当P点在B点的左侧时,b−2−1≥5,b≥8;当P点在B点的右侧时,2−b−1≥5,b≤−4.本题考查一次函数的综合应用,熟练掌握一次函数的图象及性质,理解新定义,将所求问题与圆相结合是解题的关键.。
北京市海淀区中考数学一模试卷及答案
海淀区九年级第二学期期中练习数 学一、选择题(此题共32分,每题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.-2的相反数是A .12- B. 12C. -2D. 22.据报导,北京市今年动工及建设启动的8条轨道交通线路,总投资约82 000 000 000元. 将82 000 000 000 用科学计数法表示为A .110.8210⨯B .108.210⨯C .98.210⨯D .98210⨯ 3.在以下几何体中,主视图、左视图和俯视图形状都相同的可能是4. 一个布袋中有1个红球,3个黄球,4个蓝球,它们除颜色外完全相同. 从袋中随机掏出一个球,取到黄球的概率是A.18 B. 38 C. 13D. 125. 用配方式把代数式245x x -+变形,所得结果是A .2(2)1x -+B .2(2)9x --C .2(2)1x +-D .2(2)5x +-6. 如图,ABCD 中,AB =10,BC =6,E 、F 别离是AD 、DC的中点,假设EF =7,那么四边形EACF 的周长是A .20B .22C .29D .317.有20名同窗参加“英语拼词”竞赛,他们的成绩各不相同,按成绩取前10名参加复赛. 假设小新明白了自己的成绩,那么由其他19名同窗的成绩取得的以下统计量中,可判定小新可否进入复赛的是 A .平均数 B .极差 C .中位数8.如图,在RtABC △中,∠C =90°,AB =5cm ,BC =3cm ,动点P 从点以每秒1cm 的速度,沿A →B→C 的方向运动,抵达点C 时停止.运动时刻为t 秒,那么能反映y 与t 之间函数关系的大致图象是A B D CEF CABDB C D A二、填空题(此题共16分,每题4分) 9.假设分式14x -成心义,那么x 的取值范围是 . 10. 分解因式: 269mx mx m -+= .11. 如图,CD 是⊙O 的直径,弦AB ⊥CD 于点H ,假设∠D =30°, CH =1cm ,那么AB = cm .12.如图,矩形纸片ABCD中,AB BC =第一次将纸片折叠,使点B 与点D 重合,折痕与BD 交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点 为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD 交于点3O ,… .按上述方式折叠,第n 次折叠后的折痕与BD 交于点n O ,那么1BO = ,n BO = .…第一次折叠 第二次折叠 第三次折叠 …三、解答题(此题共30分,每题5分)130211)()4sin 452-+-︒.14.解不等式组:48011.32x x x -<⎧⎪+⎨-<⎪⎩,15.如图,点C 、D 在线段AB 上,E 、F 在AB 同侧,DE 与CF 相交于点O ,且AC =BD , CO =DO ,A B ∠=∠. 求证:AE =BF .DA C D BEFOB A DCB A DBAD16.已知m 是方程220x x --=的一个实数根,求代数式22()(1)m m m m--+的值.17.如图,一次函数y kx b =+与反比例函数my x=的图象交于A (2,1),B (-1,n )两点. (1)求k 和b 的值;(2)结合图象直接写出不等式0mkx b x+->的解集.18.列方程或方程组解应用题:“五一”节日期间,某超市进行积分兑换活动,具体兑换方式见右表. 爸爸拿出自己的积分卡,对小华说:“那个地址积有8200 分,你去给咱家兑换礼物吧”.小华兑换了两种礼物,共10件,还剩下了200分,请问她兑换了哪两种礼物,各多少件?四、解答题(此题共20分,每题5分)19.如图,在梯形ABCD 中,AD ∥BC ,∠B=60°,∠ADC=105°,AD =6,且AC ⊥AB ,求AB 的长.20. 如图,AB 为⊙O 的直径,AB =4,点C 在⊙O 上, CF ⊥OC ,且CF =BF . (1)证明BF 是⊙O 的切线;(2)设AC 与BF 的延长线交于点M ,假设MC =6,求∠MCF 的大小.21.为了解学生的课余生活情形,某中学在全校范围内随机抽取部份学生进行问卷调查. 问卷中请学生选择最喜爱的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图和条形统计图(如下图).(1)请依照所给的扇形图和条形图,填写出扇形图中缺失的数据,并把条形图补充完整; (2)在问卷调查中,小丁和小李别离选择了音乐类和美术类,校学生会要从选择音乐类和美术类的学生中别离抽取一名学生参加活动,用列表或画树状图的方式求小丁和小李恰好都被选中的概率; (3)若是该学校有500名学生,请你估量该学校中最喜爱体育运动的学生约有多少名?A D CB A FC OBM 32%其他16%音乐12%美术%体育音乐美术体育其他类别扇形统计图条形统计图22.如图1,已知等边△ABC 的边长为1,D 、E 、F 别离是AB 、BC 、AC 边上的点(均不与点A 、B 、C重合),记△DEF 的周长为p .(1)假设D 、E 、F 别离是AB 、BC 、AC 边上的中点,那么p =_______;(2)假设D 、E 、F 别离是AB 、BC 、AC 边上任意点,那么p 的取值范围是 .小亮和小明对第(2)问中的最小值进行了讨论,小亮先提出了自己的方式:将ABC △以AC 边为轴翻折一次得1AB C △,再将1AB C △以1B C 为轴翻折一次得11A B C △,如图2所示. 那么由轴对称的性质可知,112DF FE E D p ++=,依照两点之间线段最短,可得2p DD ≥. 教师听了后说:“你的方式专门好,但2DD 的长度会因点D 的位置转变而转变,因此还得不出咱们想要的结果.”小明接过教师的话说:“那咱们继续再翻折3次就能够够了”.请参考他们的方式,写出你的答案.五、解答题(此题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的方程2(3)40x m x m --+-=.(1)求证:方程总有两个实数根;(2)假设方程有一个根大于4且小于8,求m 的取值范围;(3)设抛物线2(3)4y x m x m =--+-与y 轴交于点M ,假设抛物线与x 轴的一个交点关于直线y x=-的对称点恰好是点M ,求m 的值.A BD FC E 1图AB D FC E 1F 1A 1B 2D 1D 1E 2图(备图)24.已知平面直角坐标系xOy 中, 抛物线2(1)y ax a x =-+与直线y kx =的一个公共点为(4,8)A . (1)求此抛物线和直线的解析式;(2)假设点P 在线段OA 上,过点P 作y 轴的平行线交(1)中抛物线于点Q ,求线段PQ 长度的最大值;(3)记(1)中抛物线的极点为M ,点N 在此抛物线上,假设四边形AOMN 恰好是梯形,求点N 的坐标及梯形AOMN 的面积.25.在Rt △ABC 中,∠ACB =90°,tan ∠BAC =12. 点D 在边AC 上(不与A ,C 重合),连结BD ,F 为BD 中点.(1)假设过点D 作DE ⊥AB 于E ,连结CF 、EF 、CE ,如图1. 设CF kEF =,那么k = ; (2)假设将图1中的△ADE 绕点A 旋转,使得D 、E 、B 三点共线,点F 仍为BD 中点,如图2所示.求证:BE -DE =2CF ;(3)假设BC =6,点D 在边AC 的三等分点处,将线段AD 绕点A 旋转,点F 始终为BD 中点,求线段CF 长度的最大值.(备图1)(备图2)B CADE FB DEA FCBAC1图2图备图海淀区九年级第二学期期中练习数 学参考答案及评分标准说明: 合理答案都可酌情给分,但不得超过原题分数 一、选择题(此题共32分,每题4分)二、填空题(此题共16分,每题4分)注:第12题答对一个给2分,答对两个给4分 三、解答题(此题共30分,每题5分) 13.解:原式=14+-…………………………….……………………………4分 = 3.…………………………….……………………………5分 14.解:解不等式480x -<,得 2x <,…………………………….……………………………2分解不等式1132x x+-<,得 2263x x +-<, 即 4x >-, …………………………….……………………………4分 因此,那个不等式组的解集是42x -<<. …………………………….……………………………5分15.证明:在△COD 中,∵ CO =DO ,∴ ∠ODC =∠OCD . …………………………….……………………………1分 ∵ AC =BD ,∴ AD =BC . …………………………….……………………………2分 在△ADE 和△BCF 中,∵,,,A B AD BC EDA FCB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △ADE ≌△BCF . …………………………….……………………………4分 ∴ AE =BF .…………………………….……………………………5分16.解:∵ m 是方程220x x --=的一个根,∴ 220m m --=.∴ 22m m -=,22m m -=.…………………………….……………………………2分 ∴ 原式=222()(1)m m m m--+…………………………….……………………………3分 =2(1)mm⨯+ …………………………….……………………………4分 =22⨯=4.…………………………….……………………………5分17.解:(1)∵ 反比例函数my x =的图象过点A (2,1), ∴ m =2.…………………………….……………………………1分∵ 点B (-1,n )在反比例函数2y x=的图象上, ∴ n = -2 .∴ 点B 的坐标为(-1,-2).…………………………….……………………………2分∵ 直线y kx b =+过点A (2,1),B (-1,-2), ∴ 21,2.k b k b +=⎧⎨-+=-⎩解得1,1.k b =⎧⎨=-⎩…………………………….……………………………3分(2)10x -<<或2x >. (写对1个给1分) …………….……………………………5分18.解:因为积分卡中只有8200分,要兑换10件礼物,因此不能选择兑换电茶壶.设小华兑换了x 个保温杯和y 支牙膏, …………….……………………………1分 依题意,得10,20005008200200.x y x y +=⎧⎨+=-⎩…………….……………………………3分解得2,8.x y =⎧⎨=⎩…………….……………………………4分答:小华兑换了2个保温杯和8支牙膏.…………….……………………………5分四、解答题(此题共20分,每题5分)19.解:过点D 作DE ⊥AC 于点E ,那么∠AED =∠DEC =90°.………….……………………1分∵ AC ⊥AB ,∴ ∠BAC =90°. ∵ ∠B =60°,ADCBE∴ ∠ACB =30°. ∵ AD ∥BC ,∴ ∠DAC =∠ACB =30°.………….……………………2分∴ 在Rt △ADE 中,DE =12AD =3,AE=,∠ADE =60°.….………3分∵ ∠ADC=105°, ∴ ∠EDC =45°.∴ 在Rt △CDE 中, CE =DE =3.…………….……………………………4分∴ AC =AE +CE=3.∴ 在Rt △ABC 中,AB =AC ⋅tan ∠ACB=3)3=. …….……………………5分20.证明:连接OF . (1) ∵ CF ⊥OC,∴ ∠FCO =90°. ∵ OC =OB , ∴ ∠BCO =∠CBO . ∵ FC =FB , ∴ ∠FCB =∠FBC . (1)分∴ ∠BCO +∠FCB =∠CBO +∠FBC . 即 ∠FBO =∠FCO =90°. ∴ OB ⊥BF . ∵ OB 是⊙O 的半径, ∴ BF 是⊙O 的切线. (2)分(2) ∵ ∠FBO =∠FCO =90°,∴ ∠MCF +∠ACO =90°,∠M +∠A =90°. ∵ OA =OC , ∴ ∠ACO =∠A. ∴ ∠FCM =∠M. (3)分易证△ACB ∽△ABM, ∴AC ABAB AM=. ∵ AB =4,MC =6, ∴ AC =2. (4)分∴ AM =8,BM .AFCOBM∴cos ∠MC F = cos M =BM AM. ∴ ∠MCF =30°. (5)分21.(1)…………………………….……………………………2分(2)易知选择音乐类的有4人,选择美术类的有3人.记选择音乐类的4人别离是12,,,A A A 小丁;选择美术类的3人别离是12,,B B 小李.可画出树状图如下:由树状图可知共有12当选取方式,小丁和小李都被选中的情形仅有1种,因此小丁和小李恰好都被选中的概率是112. (4)分由表可知共有12当选取方式,小丁和小李都被选中的情形仅有1种,因此小丁和小李恰好都被选中的概率是112. (4)分音乐美术体育其他类别扇形统计图条形统计图32%其他16%音乐12%美术40%体育1A 1B 2B 小李2A 1B 2B 小李3A 1B 2B 小李1B 2B 小李小丁(3)由(1)可知问卷中最喜爱体育运动的的学生占40%,得 50040%200⨯=因此该年级中最喜爱体育运动的学生约有200名.…………….……………………………5分22. 解:(1)32p =; (2)分(2)332p <≤. (5)分五、解答题(此题共22分,第23题7分,第24题7分,第25题8分) 23.证明:(1)22224(3)4(4)1025(5)b ac m m m m m ∆=-=---=-+=-≥0,因此方程总有两个实数根. (2)分解:(2)由(1)2(5)m ∆=-,依照求根公式可知,方程的两根为:x即:11x =,24x m =-,由题意,有448m <-<,即812m <<.……………………….……………………………5分(3)易知,抛物线2(3)4y x m x m =--+-与y 轴交点为M (0,4m -),由(2)可知抛物线与x 轴的交点为(1,0)和(4m -,0),它们关于直线y x =-的对称点别离为(0,1-)和(0, 4m -), 由题意,可得:14m -=-或44m m -=-,即3m =或4m =.……….……………………………7分24.解:(1)由题意,可得8164(1)a a =-+及84k =,解得1,2a k ==,因此,抛物线的解析式为22y x x =-,直线的解析式为2y x =.…………………………2分(2)设点P 的坐标为4(,2)(0)t t t ≤≤,可得点Q 的坐标为2(,2)t t t -,那么 2222(2)4(2)4PQ t t t t t t =--=-=--+ 因此,当2t =时,PQ 的长度取得最大值为4.………………………………4分(3)易知点M 的坐标为(1,-1).过点M 作直线OA 的平行线交抛物线于点N ,如下图,四边形AOMN为梯形.直线MN 可看成是由直线OA 向下平移b 个单位取得,因此直线MN 的方程为2y x b =-.因为点M 在直线2y x b =-上,解得b =3,即直线MN 的方程为23y x =-,将其代入22y x x =-,可得 2232x x x -=-即 2430x x -+=解得 11x =,23x = 易患 11y =-,23y =因此,直线MN 与抛物线的交点N 的坐标为(3,3).…………5分如图,别离过点M 、N 作y 轴的平行线交直线OA 于点显然四边形MNHG 是平行四边形.可得点G (1,2),H (113(10)[2(1)]222OMG S MG =⨯-⨯=⨯--=△113(43)(63)222ANH S NH =⨯-⨯=⨯-=△(31)236MNHG S NH =-⨯=⨯=△因此,梯形AOMN 的面积9OMG MNHG ANH AOMN S S S S =++=△△△梯形. ……………………7分25. 解:(1)k =1;……………………….……………………………2分(2)如图2,过点C 作CE 的垂线交BD 于点G ,设BD 与AC 的交点为Q .由题意,tan ∠BAC =12, ∴12BC DE AC AE ==. ∵ D 、E 、B 三点共线, ∴ AE ⊥DB .∵ ∠BQC =∠AQD ,∠ACB =90°, ∴ ∠QBC =∠EAQ.∵ ∠ECA+∠ACG =90°,∠BCG+∠ACG =90°, ∴ ∠ECA =∠BCG . ∴ BCG ACE △∽△. ∴12BC GB AC AE ==. ∴ GB =DE. ∵ F 是BD 中点, ∴ F 是EG 中点. 在Rt ECG △中,12CF EG =, ∴ 2BE DE EG CF -==. (5)分(3)情形1:如图,当AD =13AC 时,取AB 的中点M ,连结MF 和CM ,2图BD EAFCGQ∵∠ACB=90°,tan∠BAC=12,且BC= 6,∴AC=12,AB=.∵M为AB中点,∴CM=∵AD=13 AC,∴AD=4.∵M为AB中点,F为BD中点,∴FM=12AD= 2.∴当且仅当M、F、C三点共线且M在线段CF上时CF最大,现在CF=CM+FM=2+ (6)分情形2:如图,当AD=23AC时,取AB的中点M,连结MF和CM,类似于情形1,可知CF的最大值为4+………….……………………………7分综合情形1与情形2,可知当点D在靠近点C的三等分点时,线段CF的长度取得最大值为4+ (8)分。
海淀初三数学一模试卷答案
一、选择题(每题5分,共50分)1. 下列选项中,不是一元二次方程的是()A. x^2 - 5x + 6 = 0B. 2x^2 + 3x - 1 = 0C. x^2 - 2x + 1 = 0D. 2x - 3 = 0答案:D解析:一元二次方程的一般形式是ax^2 + bx + c = 0(a ≠ 0),选项D中没有x^2项,因此不是一元二次方程。
2. 若a、b、c是三角形的三边,则下列选项中一定成立的是()A. a + b > cB. a - b < cC. a + c > bD. b + c < a答案:C解析:根据三角形的性质,任意两边之和大于第三边,即 a + b > c,a + c > b,b + c > a。
选项C符合这个性质。
3. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 2x^2C. y = 1/xD. y = 3x答案:C解析:反比例函数的一般形式是y = k/x(k ≠ 0),选项C符合这个形式。
4. 若m、n是方程x^2 - 3x + 2 = 0的两根,则m + n的值为()A. 1B. 2C. 3D. 4答案:C解析:根据韦达定理,一元二次方程ax^2 + bx + c = 0的两根之和为-x的系数的相反数除以a,即m + n = -(-3)/1 = 3。
5. 下列选项中,不是等差数列的是()A. 1, 4, 7, 10, ...B. 3, 6, 9, 12, ...C. 2, 5, 8, 11, ...D. 1, 2, 4, 8, ...答案:D解析:等差数列的定义是相邻两项之差为常数,选项D中相邻两项之差不是常数,因此不是等差数列。
二、填空题(每题5分,共50分)6. 若m^2 - 4m + 3 = 0,则m的值为________。
答案:1或3解析:通过因式分解或使用求根公式,得到m^2 - 4m + 3 = (m - 1)(m - 3) = 0,解得m = 1或m = 3。
北京市海淀区九年级一模数学试卷含答案及解析
2019学年北京市海淀区九年级一模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________题号一二三四总分得分一、选择题1. 2015年北京市实施能源清洁化战略,全市燃煤总量减少到15 000万吨左右,将15 000用科学记数法表示应为A. B. C. D.2. 右图是某几何体的三视图,该几何体是A. 三棱柱B. 三棱锥C. 长方体D.正方体3. 如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为A. 1 B.1 C. 2 D.24. 某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为A. B. C. D.5. 如图,直线a与直线b平行,将三角板的直角顶点放在直线a上,若∠1=40°,则∠2等于A.40° B.50° C.60° D.140°6. 如图,已知∠AOB.小明按如下步骤作图:(1)以点O为圆心,适当长为半径画弧,交OA于D,交OB于点E.(2)分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC.根据上述作图步骤,下列结论正确的是A.射线OC是的平分线B.线段DE平分线段OCC.点O和点C关于直线DE对称D.OE=CE7. 某次比赛中,15名选手的成绩如图所示,则这15名选手成绩的众数和中位数分别是A.98,95 B.98,98C.95,98 D.95,958. 甲骑车到乙家研讨数学问题,中途因等候红灯停止了一分钟,之后又骑行了1.2千米到达了乙家.若甲骑行的速度始终不变,从出发开始计时,剩余的路程(单位:千米)与时间(单位:分钟)的函数关系的图象如图所示,则图中a等于A.1.2 B.2 C.2.4 D.69. 如图,⊙O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为A. 6 B. C. D.310. 小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t以及容器内水面的高度h,并画出表示h与t的函数关系的大致图象.如左下图所示.小明选择的物体可能是二、填空题11. 分解因式:____________.12. 写出一个函数(),使它的图象与反比例函数的图象有公共点,这个函数的解析式为___________.13. 某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:14. 摸球的次数1500600摸到白球的次数581189摸到白球的频率0.580.590.630.5930.6040.598td15. 如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若,,,则的长为__________.16. 在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD∥BC,请添加一个条件,使得四边形ABCD是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC” .你同意的观点,理由是.17. 若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC是等径三角形,则等径角的度数为 .三、计算题18. 计算:.四、解答题19. 解不等式组:20. 已知,求代数式的值.21. 如图,点A,B,C,D在同一条直线上,AB=FC,∠A=∠F,∠EBC=∠FCB.求证: BE=CD.22. 已知关于的方程.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数的值23. 列方程或方程组解应用题:为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)24. 如图,在□中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.25. 根据某研究中心公布的近几年中国互联网络发展状况统计报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2011年到2014年,中国网民人数每年增长的人数近似相等,估算2015年中国网民的人数约为亿;(3)据某市统计数据显示,2014年末全市常住人口为476.6万人,其中网民数约为210万人.若2014年该市的网民学历结构与2014年的中国网民学历结构基本相同,请你估算2014年末该市网民学历是大专的约有万人.26. 图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1, DC=3,求AE的长.27. 阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).图1 图2 图3请回答:BC+DE的值为_______.参考小明思考问题的方法,解决问题:如图3,已知□ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数.28. 在平面直角坐标系xOy中,抛物线与轴交于点A,顶点为点B,点C 与点A关于抛物线的对称轴对称.(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为4.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移()个单位后与直线BC只有一个公共点,求的取值范围.29. 在菱形中,,点是对角线上一点,连接,,将线段绕点逆时针旋转并延长得到射线,交的延长线于点.(1)依题意补全图形;(2)求证:;(3)用等式表示线段,,之间的数量关系:_____________________________.30. 在平面直角坐标系xOy中,对于点和点,给出如下定义:若,则称点为点的限变点.例如:点的限变点的坐标是,点的限变点的坐标是.(1)①点的限变点的坐标是___________;②在点,中有一个点是函数图象上某一个点的限变点,这个点是_______________;(2)若点在函数的图象上,其限变点的纵坐标的取值范围是,求的取值范围;(3)若点在关于的二次函数的图象上,其限变点的纵坐标的取值范围是或,其中.令,求关于的函数解析式及的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】第29题【答案】。
2024海淀区九年级一模数学参考答案
海淀区九年级第二学期期中练习数学试卷参考答案第一部分 选择题一、选择题 (共16分,每题2分)第二部分 非选择题二、填空题(共16分,每题2分)9.1x ≥ 10.(2)(2)a a a −+11.1x = 12.0 13.8 14.94015.180α︒−16.(1)鲁班锁;(2)1,2,3三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 解:原式212=++− 12=+−3=18. 解:原不等式组为435212.3x x x −<⎧⎪⎨+>−⎪⎩,①②解不等式①,得2x <.解不等式②,得1x >. ∴原不等式组的解集为12x <<. 19. 解: 原式241212a b b b +=−++2411a b +=+.∵240b a−=,∴24b a=.∴原式41 41aa+ =+1 =.20.(1)证明:∵四边形ABCD为平行四边形,∴AD // BC.∴AFO CEO∠=∠,FAO ECO∠=∠.∵O为AC的中点,∴AO CO=.∴△AOF≌△COE.∴AF EC=.∵AF//EC,∴四边形AECF为平行四边形.∵AE AF=,∴四边形AECF为菱形.(2)解:∵O为AC的中点,4AC=,∴122OA AC==.∵四边形AECF为菱形,∴AC EF⊥.∴90AOE∠=︒.∴在Rt△AOE中,由勾股定理得OE=.∵E为BC的中点,∴2AB OE==.21. 解:设每平方米木地板的价格为5x元,则每平方米瓷砖的价格为3x元.由题意可得,123(3615)5100001270x x⨯++⨯=−.解得30x=.∴5150x=,390x=.答:每平方米木地板的价格为150元,每平方米瓷砖的价格为90元.22.解:(1)∵函数(0)y kx b k =+≠的图象经过点(1,2)A 和(0,1)B ,∴21.k b b +=⎧⎨=⎩,解得11.k b =⎧⎨=⎩,∴该函数的解析式为1y x =+. (2)13m ≤≤.23.解:(1)32,25;(2) 60,四; (3) >.24.(1)证明:∵BE BE =,∴BAE BDE ∠=∠. ∵45EDB EAD ∠+∠=︒,∴45BAE EAD ∠+∠=︒,即45BAD ∠=︒. ∵AB 为O 的直径, ∴90ADB ∠=︒. ∴AD BG ⊥. ∵AB AG =,∴45BAD GAD ∠=∠=︒. ∴90BAG ∠=︒. ∴AB AG ⊥.∵AB 为O 的直径, ∴AG 与O 相切.(2)解:连接BE ,如图.∵AB AG =,AD BG ⊥,BG =∴12BD BG == 在Rt △ADB 中,90ADB ∠=︒,45BAD ∠=︒,可得AB =∴12OA AB ==. ∵BAE BDE ∠=∠, ∴1tan tan 3BAE BDE ∠=∠=.∵AB 为O 的直径,∴90AEB ∠=︒.在Rt △AEB 中,1tan 3BAE ∠=,可得13BE AE =.由勾股定理得 222BE AE AB +=.∴2221()3AE AE +=.∴6AE =. ∵290BOD BAD ∠=∠=︒. ∴90AOF ∠=︒.在Rt △AOF 中,1tan 3BAE ∠=,OA =OF =.由勾股定理得 103AF =. ∴108633EF AE AF =−=−=. 25.解:(1)60n ,525n ⨯−;(2) a ,7; (3)1535t <≤.26.解:(1)由题意可知,点(40),在抛物线2(0)y ax bx a =+>上,∴1640a b +=. ∴4b a =−. ∴4222b aa a−==−−. ∴抛物线的对称轴为直线2x =.(2)① 法一:令0y =,则20(0)ax bx a +=>. 解得0x =或b x a=−. ∴抛物线2(0)y ax bx a =+>与x 轴交于点(00),,(0)b a−,. ∵0a >,∴抛物线开口向上. (ⅰ)当0b <时,0ba−>.∴当0bx a <<−时,0y <;当0x <或b x a>−时,0y >. ∵当04m <<时,总有0n <. ∴4ba−≥.∵0a >, ∴40a b +≤. (ⅱ)当0b >时,0ba−<. ∴当0bx a −<<时,0y <;当b x a<−或0x >时,0y >. ∴当04m <<时,0n >,不符合题意. 综上,40a b +≤. 法二:∴由题意可知,2am bm n +=.若0n <,则2()0am bm m am b +=+<. ∵0m >, ∴0am b +<. ∵0a >, ∴b m a<−. ∴当0bm a<<−时,0n <. ∵当04m <<时,总有0n <. ∴4ba−≥.∵0a >, ∴40a b +≤. ② 存在.设抛物线的对称轴为x t =,则2b t a=−. ∵,∴当x t ≥时,y 随x 的增大而增大;当x t ≤时,y 随x 的增大而减小. ∵12k <<,∴336k <<,3k k <. (ⅰ)当1t ≤时,∵3t k k ≤<. ∴12y y <,符合题意. (ⅱ)当12t <≤时,当2t k ≤<时, ∵3t k k <<. ∴12y y <. 当1k t <<时,设点1()P k y ,关于抛物线对称轴x t =的对称点为点01'(,)P x y , 则0x t >,0t k x t −=−. ∴02x t k =−. ∵1k t <<,12t <≤, ∴23t k −<. ∴03t x <<. ∵336k <<. ∴03t x k <<. ∴12y y <.∴当12t <≤时,符合题意. (ⅲ)当23t <≤时,令12k t =,332k t =,则12y y =,不符合题意.(ⅳ)当36t <<时,令3k t =,则3k k t <≤. ∴12y y >,不符合题意. (ⅴ)当6t ≥时,∵3k k t <<,∴12y y >,不符合题意. ∴ 当2t ≤,即22ba−≤时,符合题意. ∵0a >, ∴40a b +≥. 由①可得40a b +≤. ∴40a b +=.27.(1)线段AE 与BD的数量关系:AE .证明:连接BE ,如图1.∵点D ,E 关于直线BC 对称, ∴直线BC 是线段DE 的垂直平分线. ∴BD BE =.∴30DBC EBC ∠=∠=. ∴60DBE ∠=.∴△DBE 是等边三角形.∴BD BE DE ==,60BDE BED ∠=∠=. ∵△ABC 中,90ACB ∠=,30ABC ∠=, ∴2AB AC =.依题意,得AD AC =,点D 在AB 上. ∴2AB AD =. ∴.BD AD = ∴.DE AD =∴30.DAE DEA ∠=∠= ∴90.BEA ∠= ∴在Rt △ABE 中,tan tan 60 3.AEABE BE=∠== ∴AE. ∴.AE =(2)依题意补全图2,如图.B图1方法一:解:延长AC 至F ,使CF AC =,连接BF ,BE ,EF ,CD ,CE ,如图2. ∵90ACB ∠=, ∴.AB BF = ∵60BAC ∠=,∴△ABF 是等边三角形. ∴AB AF BF ==,60BFC ∠=. ∵点D ,E 关于直线BC 对称, ∴直线BC 是线段DE 的垂直平分线. ∴BD BE =,CD CE =. ∴DCB ECB ∠=∠. ∵90ACB DCF ∠=∠=, ∴DCA ECF ∠=∠. ∵AC FC =, ∴△DAC ≌△EFC . ∴CAD CFE ∠=∠. ∵AE BD =, ∴BE AE =.∵EF EF =,BF AF =, ∴△BEF ≌△AEF .∴30BFE AFE ∠=∠=. ∴30CAD AFE ∠=∠=. ∴30.α= 方法二:解:如图3,取AB 中点F ,连接DF ,BE ,CD ,CE ,设DBC β∠=.F∵点D ,E 关于直线BC 对称, ∴直线BC 是线段DE 的垂直平分线. ∴BD BE =,CD CE =. ∴DBC EBC β∠=∠=.∴30EBA β∠=︒+,30DBA β∠=︒−. ∵AE BD =, ∴AE BE =.∴30EAB EBA β∠=∠=︒+. ∵90ACB ∠=︒,30ABC ∠=︒, ∴60BAC ∠=︒. ∴30EAC β∠=︒−. ∴EAC DBA ∠=∠. 由(1)可得2.AB AC = ∵F 为AB 中点, ∴22.AB AF BF == ∴.AC AF BF ==∵AC BF =,EAC DBA ∠=∠,AE BD =, ∴△ACE ≌△BFD . ∴CE FD =. ∴CD FD =.∵AD AD =,AF AC =, ∴△ADF ≌△ADC . ∴30FAD CAD ∠=∠=︒. ∴30α=︒.28.(1)①如图,线段B'C'即为所求.②4t ≤−或2t ≥.图3FD≤≤+. (2)d a。
【中考专题】北京市海淀区中考数学一模试题(含答案解析)
北京市海淀区中考数学一模试题 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P 点照射到抛物线上的光线,PA PB 等反射以后沿着与直线PF 平行的方向射出,若CAP α∠=︒,DBP β∠=︒,则APB ∠的度数为( )° A .2αB .2βC .αβ+D .5()4αβ+ 2、如图,AD ,BE ,CF 是△ABC 的三条中线,则下列结论正确的是( )·线○封○密○外A .2BC AD =B .2AB AF =C .AD CD = D .BE CF =3、点()4,9-关于x 轴的对称点是( )A .()4,9--B .()4,9-C .()4,9-D .()4,94、下列图标中,轴对称图形的是( )A .B .C .D .5、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )A .45︒B .135︒C .75︒D .165︒6、如图,AB CD ∥,45A ∠=︒,30C ∠=︒,则E ∠的度数是( )A .10°B .15°C .20°D .25°7、在如图所示的几何体中,从不同方向看得到的平面图形中有长方形的是()A .①B .②C .①②D .①②③8、下列图形中,不一定是轴对称图形的是( )A .等边三角形B .正方形C .含锐角的直角三角形D .圆 9、下列现象:①用两个钉子就可以把木条固定在墙上②从A 地到B 地架设电线,总是尽可能沿着线段AB 架设 ③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线 ④把弯曲的公路改直,就能缩短路程 其中能用“两点之间线段最短”来解释的现象有( ) A .①④ B .①③ C .②④ D .③④ 10、有理数,a b 在数轴上对应点的位置如图所示,下列结论中正确是( ) A .2a < B .0a b +> C .a b -> D .0b a -< 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分)1、如图,在面积为48的等腰ABC 中,10AB AC ==,12BC =,P 是BC 边上的动点,点P 关于直线AB 、AC 的对称点外别为M 、N ,则线段MN 的最大值为______. ·线○封○密○外2、如图, 已知在 Rt ABC △ 中, 90,30,1,ACB B AC D ∠∠=== 是 AB 边上一点, 将 ACD △ 沿 CD 翻折, 点 A 恰好落在边 BC 上的点 E 处,那么AD =__________3、已知点P 是线段AB 的黄金分割点,AP >PB .若AB =2,则AP =_____.4、某树主干长出x 根枝干,每个枝干又长出x 根小分支,若主干、枝干和小分支总数共133根,则主干长出枝干的根数x 为______.5、二次函数y =(m ﹣1)x 2+x +m 2﹣1的图象经过原点,则m 的值为_____.三、解答题(5小题,每小题10分,共计50分)1、如图,已知Rt ABC 中,90ACB ∠=︒,射线CD 交AB 于点D ,点E 是CD 上一点,且AEC ABC ∠=∠,联结BE .(1)求证:ACD EBD △△∽(2)如果CD 平分ACB ∠,求证:22AB ED EC =⋅.2、如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,且80AOD DOB ∠-∠=︒.求∠AOC 和∠DOE 的度数.3、如图所示的正方形网格中,每个小正方形的边长都为1,ABC △的顶点都在网格线的交点上,点B 坐标为()2,0-,点C 的坐标为()1,2-.(1)根据上述条件,在网格中画出平面直角坐标系xOy ; (2)画出ABC 关于x 轴对称图形111A B C △; (3)点A 绕点B 顺时针旋转90°,点A 对应点的坐标为______. 4、如图1,在平面直角坐标系中,已知(2,0)A 、(0,4)B -、(6,6)C -、(6,6)D ,以CD 为边在CD 下方作正方形CDEF .·线○封○密·○外(1)求直线AB 的解析式;(2)点N 为正方形边上一点,若8ABN S =△,求N 的坐标;(3)点N 为正方形边上一点,(0,)M m 为y 轴上一点,若点N 绕点M 按顺时针方向旋转90︒后落在线段AB 上,请直接写出m 的取值范围.5、如图1所示,已知△ABC 中,∠ACB =90°,BC =2,AC =D 在射线BC 上,以点D 为圆心,BD 为半径画弧交AB 边AB 于点E ,过点E 作EF ⊥AB 交边AC 于点F ,射线ED 交射线AC 于点G .(1)求证:EA =EG ;(2)若点G 在线段AC 延长线上时,设BD =x ,FC =y ,求y 关于x 的函数解析式并写出定义域;(3)联结DF ,当△DFG 是等腰三角形时,请直接写出BD 的长度.-参考答案-一、单选题1、C【解析】【分析】根据平行线的性质可得,EPA PAC EPB PBD ∠=∠∠=∠,进而根据APB APE BPE ∠=∠+∠即可求解【详解】解:,PF AC PF BD ∥∥∴,EPA PAC EPB PBD ∠=∠∠=∠ ∴APB APE BPE ∠=∠+∠αβ=+ 故选C 【点睛】 本题考查了平行线的性质,掌握平行线的性质是解题的关键. 2、B 【解析】 【分析】 根据三角形的中线的定义判断即可. 【详解】 解:∵AD 、BE 、CF 是△ABC 的三条中线,∴AE =EC =12AC ,AB =2BF =2AF ,BC =2BD =2DC , 故A 、C 、D 都不一定正确;B 正确. 故选:B . 【点睛】 本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线. 3、A【解析】 【分析】 直接利用关于x 轴对称点的性质得出答案. 【详解】·线○封○密○外解:点P (−4,9)关于x 轴对称点P ′的坐标是:(−4,−9).故选:A .【点睛】此题主要考查了关于x 轴对称点的性质,正确得出横纵坐标的关系是解题关键.4、A【解析】【详解】解:A 、是轴对称图形,故本选项符合题意;B 、不是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.5、D【解析】【分析】根据题意得出∠1=15°,再求∠1补角即可.【详解】由图形可得1453015∠=︒-︒=︒ ∴∠1补角的度数为18015165︒-︒=︒ 故选:D .·线【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.6、B【解析】【分析】根据平行线的性质求出关于∠DOE ,然后根据外角的性质求解.【详解】解:∵AB ∥CD ,∠A =45°,∴∠A =∠DOE =45°,∵∠DOE =∠C +∠E ,又∵30C ∠=︒,∴∠E =∠DOE -∠C =15°.故选:B【点睛】本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键.7、C【解析】【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,符合要求;②圆柱从左面和正面看都是长方形,从上边看是圆,符合要求;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,不符合要求;故选:C .【点睛】本题考查了从不同方向看几何体,掌握定义是关键.注意正方形是特殊的长方形.8、C【解析】【分析】根据轴对称图形的概念逐一判断即可得.【详解】解:A .等边三角形一定是轴对称图形;B .正方形一定是轴对称图形;C .含锐角的直角三角形不一定是轴对称图形;D .圆一定是轴对称图形;故选:C .【点睛】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.9、C【解析】【分析】直接利用直线的性质和线段的性质分别判断得出答案. 【详解】 解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意; ·线②从A 地到B 地架设电线,总是尽可能沿着线段AB 架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意. 故选:C .【点睛】本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.10、C【解析】【分析】利用数轴,得到32a -<<-,01b <<,然后对每个选项进行判断,即可得到答案.【详解】解:根据数轴可知,32a -<<-,01b <<, ∴2a >,故A 错误;0a b +<,故B 错误;a b ->,故C 正确;0b a ->,故D 错误;故选:C【点睛】本题考查了数轴,解题的关键是由数轴得出32a -<<-,01b <<,本题属于基础题型.二、填空题1、19.2【解析】【分析】点P 关于直线AB 、AC 的对称点分别为M 、N ,根据三角形三边关系可得PM PN MN +>,当点P 与点B 或点C 重合时,P 、M 、N 三点共线,MN 最长,由轴对称可得BF AC ⊥,BF FN =,再由三角形等面积法即可确定MN 长度.【详解】解:如图所示:点P 关于直线AB 、AC 的对称点分别为M 、N ,由图可得:PM PN MN +>,当点P 与点B 或点C 重合时,如图所示,MN 交AC 于点F ,此时P 、M 、N 三点共线,MN 最长,∴BF AC ⊥,BF FN =,·线∵等腰ABC 面积为48,10AB AC ==, ∴1·482AC BF =, 9.6BF =,∴219.2MN BF ==,故答案为:19.2.【点睛】题目主要考查对称点的性质及三角形三边关系,三角形等面积法等,理解题意,根据图形得出三点共线时线段最长是解题关键.21##1-【解析】【分析】翻折的性质可知AD DE AC CE ==,,A CED ∠=∠;在Rt ABC 中有60A ∠=︒,BC =CED B EDB ∠=∠+∠,得DEB 是等腰三角形,AD DE BE BC CE BC AC ===-=-即可求出长度.【详解】解:翻折可知:ACD ECD ≌,AD DE AC CE ==,∵30B ∠=︒,1AC =,90ACB ∠=︒∴在Rt ABC 中,22AB AC ==∴60A CED ∠=∠=︒,BC =∵CED B EDB ∠=∠+∠∴30EDB B ∠=∠=︒∴DEB 是等腰三角形∴DE EB =∴1AD EB BC CE ==-=1.【点睛】本题考查了轴对称的性质,等腰三角形的判定与性质,三角形的外角,勾股定理等知识点.解题的关键在于找出边相等的关系.31##1-【解析】【分析】根据黄金分割点的定义,知AP 是较长线段;则AP AB ,代入数据即可得出AP 的长. 【详解】解:由于P 为线段AB =2的黄金分割点,且AP 是较长线段;则AP 1,1.【点睛】本题考查了黄金分割点即线段上一点把线段分成较长和较短的两条线段,且较长线段的平方等于较短线段与全线段的积,熟练掌握黄金分割点的公式是解题的关键.4、11【解析】【分析】某树主干长出x 根枝干,每个枝干又长出x 根小分支,则小分支有2x 根,可得主干、枝干和小分支总数为()21x x ++根,再列方程解方程,从而可得答案.【详解】解:某树主干长出x 根枝干,每个枝干又长出x 根小分支,则21133,x x 21320,x x 12110,x x 解得:1212,11,x x 经检验:12x =-不符合题意;取11,x = 答:主干长出枝干的根数x 为11. 故答案为:11. 【点睛】 本题考查的是一元二次方程的应用,理解题意,用含x 的代数式表示主干、枝干和小分支总数是解本题的关键. 5、-1 【解析】 【分析】 将原点坐标(0,0)代入二次函数解析式,列方程求m 即可. 【详解】 解:∵点(0,0)在抛物线y =(m ﹣1)x 2+x +m 2﹣1上, ∴m 2﹣1=0, 解得m 1=1或m 2=﹣1, ∵m =1不合题意, ·线○封○密·○外∴m=1,故答案为:﹣1.【点睛】本题考查利用待定系数法求解二次函数解析式,能够熟练掌握待定系数法是解决本题的关键.三、解答题1、 (1)见解析;(2)见解析【解析】【分析】(1)先根据相似三角形的判定证明△ADE∽△CDB,则可证得AD DECD DB=即AD CDDE DB=,再根据相似三角形的判定即可证得结论;(2)根据角平分线定义和相似三角形的性质证明∠DCB=∠EAB=∠EBA=45°,则△AEB为等腰直角三角形,根据勾股定理可得AB2=2BE2,再根据相似三角形的判定证明△EBD∽△ECB即可证得结论.(1)证明:∵AEC ABC∠=∠,∠ADE=∠CDB,∴△ADE∽△CDB,∴AD DECD DB=即AD CDDE DB=,又∠ADC=∠EDB,∴ACD EBD△△∽;(2)证明:∵CD平分ACB∠,∠ACB=90°,∴∠ACD=∠DCB=45°,∵△ADE∽△CDB,ACD EBD△△∽,∴∠DCB =∠EAD =∠EBD =45°,∴AE=BE ,∠AEB =90°,∴△AEB 为等腰直角三角形,∴AB 2=AE 2+BE 2=2BE 2,∵∠DCB =∠EBD ,∠CEB =∠BED ,∴△CEB ∽△BED , ∴BE EC ED BE =即2BE ED EC =⋅, ∴AB 2=2BE 2=2ED ·EC . 【点睛】 本题主要考查相似三角形的判定与性质、角平分线的定义、三角形内角和定理、等腰直角三角形的判定、勾股定理,熟练掌握相似三角形的判定与性质是解答的关键. 2、50°,25°. 【解析】 【分析】 根据邻补角的性质,可得∠AOD +∠BOD =180°,即∠AAA =180°−∠AAA ,代入80AOD DOB ∠-∠=︒可得∠BOD ,根据对顶角的性质,可得∠∠AOC 的度数,根据角平分线的性质,可得∠DOE 的数. 【详解】 解:由邻补角的性质,得∠AOD +∠BOD =180°,即∠AAA =180°−∠AAA ∵80AOD DOB ∠-∠=︒, ∴180°−∠AAA −∠AAA =80°. ∴∠AAA =50°, ∴∠AOC =∠BOD =50°, ·线○封○密○外∵OE 平分∠BOD ,得∠DOE =12∠DOB =25°.【点睛】本题考查了角平分线的定义,对顶角、邻补角的性质,解题关键是熟记相关性质,根据角之间的关系建立方程求解.3、 (1)见解析(2)见解析(3)(2,2)【解析】【分析】(1)根据点B 坐标为()2,0-,点C 的坐标为()1,2-确定原点,再画出坐标系即可;(2)画出三角形顶点的对称点,再顺次连接即可;(3)画出旋转后点的位置,写出坐标即可.(1)解:坐标系如图所示,(2) 解:如图所示,111A B C △就是所求作三角形;·线○封○密○外(3)解:如图所示,点A 绕点B 顺时针旋转90°的对应点为A ',坐标为(2,2);故答案为:(2,2)【点睛】本题考查了平面直角坐标系作图,解题关键是明确轴对称和旋转的性质,准确作出图形,写出坐标.4、 (1)24y x =-(2)(1,6)N ,(5,6)N --,(6,0)N ,(3,6).N - (3)2143m ≤≤或2263m -≤≤- 【解析】【分析】(1)待定系数法求直线解析式,代入坐标(2,0)A 、(0,4)B -得出402b k b -=⎧⎨=+⎩,解方程组即可;(1)根据OA =2,OB =4,设点P 在y 轴上,点P 坐标为(0,m ),根据S △ABP =8,求出点P (0,4)或(0,-12),过P (0,4)作AB 的平行线交正方形CDEF 边两点N 1和N 2,利用平行线性质求出与AB 平行过点P 的解析式24y x =+,与CD ,FE 的交点,过点P (0,-12)作AB 的平行线交正方形CDEF 边两点N 3和N 4,利用平行线性质求出与AB 平行过点P 的解析式212y x =-,求出与DE ,EF 的交点即可; (3):根据点N 在正方形边上,分四种情况①N 在DE 上,过N′作GN′⊥y 轴于G ,正方形边CD 与y 轴交于H ,(0,)M m 在y 轴正半轴上,先证△HNM 1≌△GM 1N ′(AAS ),求出点N ′(6-m ,m -6)在线段AB 上,代入解析式直线AB 的解析式24y x =-得出()6264m m -=--,当点N 旋转与点B 重合,可得M 2N ′=NM 2-OB =6-4=2②N 在CD 上,当点N 绕点M 3旋转与点A 重合,先证△HNM 3≌△GM 3N ′(AAS ),DH =M 3G =6-2=4,HM 3=GN ′=2,③N 在CF 上,当点N 与点F 重合绕点M 4旋转到AB 上N ′先证△M 5NM 3≌△GM 3N ′(AAS ),得出点N ′(-6-m ,m +6),点N′在线段AB 上,直线AB 的解析式24y x =-,得出方程,()6264m m +=---,当点N 绕点M 5旋转点N ′与点A 重合,证明△FM 3N ≌△OM 5N ′(AAS ),可得FM 5=M 5O =6,FN =ON ′=2,④N 在FE 上,点N 绕点M 6旋转点N ′与点B 重合,MN =MB =2即可. (1) 解:设:AB y kx b =+,代入坐标(2,0)A 、(0,4)B -得: 402b k b -=⎧⎨=+⎩, 24k b =⎧⎨=-⎩, ∴直线AB 的解析式24y x =-; (2) 解:∵(2,0)A 、(0,4)B -、OA =2,OB =4,设点P 在y 轴上,点P 坐标为(0,m ) ∵S △ABP =8, ∴14282m +⨯=, ∴48m +=±, ·线○封○密·○外解得12412m m ==-,,∴点P (0,4)或(0,-12),过P (0,4)作AB 的平行线交正方形CDEF 边两点N 1和N 2,设解析式为y mx n =+,m =2,n =4,∴24y x =+,当y=6时,246x +=,解得61y x =⎧⎨=⎩, 当y=-6时,246x +=-,解得65y x =-⎧⎨=-⎩, 1(1,6)N ∴,2(5,6)N --,过点P (0,-12)作AB 的平行线交正方形CDEF 边两点N 3和N 4,设解析式为,2,12y px q p q =+==-,212y x =-,当y =-6, 2126x -=-,解得:63y x =-⎧⎨=⎩, 当x =6, 26120y =⨯-=,解得60x y =⎧⎨=⎩, 3(3,6).N -4(6,0)N ,∴8ABN S =△,N 的坐标为(1,6)或(5,6)--或(3,6)-或(6,0),(3) 解:①N 在DE 上,过N′作GN′⊥y 轴于G ,正方形边CD 与y 轴交于H ,(0,)M m 在y 轴正半轴上, ∵M 1N =M 1N ′,∠NM 1N ′=90°, ∴∠HNM 1+∠HM 1N =90°,∠HM 1N +∠GM 1N′=90°, ∴∠HNM 1=∠GM 1N′, 在△HNM 1和△GM 1N ′中, 111111HDM GM N DHM M GN M N N M ∠=∠⎧⎪∠=∠'='⎨'⎪⎩, ∴△HNM 1≌△GM 1N ′(AAS ), ∴DH =M 1G =6,HM 1=GN ′=6-m , ∵点N ′(6-m ,m -6)在线段AB 上,直线AB 的解析式24y x =-; 即()6264m m -=--, ·线○封○密○外解得143m =, 当点N 旋转与点B 重合,∴M 2N ′=NM 2-OB =6-4=2,114(0,)3M ,2(0,2)M , 1423m ∴≤≤, ②N 在CD 上,当点N 绕点M 3旋转与点A 重合,∵M 3N =M 3N ′,∠NM 3N ′=90°,∴∠HNM 3+∠HM 3N =90°,∠HM 3N +∠GM 3N′=90°,∴∠HNM 3=∠GM 3N′,在△HNM 3和△GM 3N ′中,333333HDM GM N DHM M GN M N N M ∠=∠⎧⎪∠=∠'='⎨'⎪⎩, ∴△HNM 3≌△GM 3N ′(AAS ),∴DH =M 3G =6-2=4,HM 3=GN ′=2, 114(0,)3M ,3(0,4)M ,1443m ∴≤≤ ③N 在CF 上, 当点N 与点F 重合绕点M 4旋转到AB 上N ′,∵M 4N =M 4N ′,∠NM 4N ′=90°,∴∠M 5NM 4+∠M5M 4N =90°,∠M 5M 4N +∠GM 4N′=90°,∴∠M5NM 4=∠GM 4N′,在△M5NM 4和△GM 4N ′中, 54454444M NM GM N NM M M GN M N N M ∠=∠⎧⎪∠='='∠⎨'⎪⎩, ∴△M 5NM 3≌△GM 3N ′(AAS ), ∴FM 5=M 4G =6,M 5M 4=GN ′=-6-m , ·线○封○密○外∴点N ′(-6-m ,m +6),点N ′在线段AB 上,直线AB 的解析式24y x =-;()6264m m +=---, 解得223m =-, 当点N 绕点M 5旋转点N ′与点A 重合,∵M 5N =M 5N ′,∠NM 5N ′=90°,∴∠NM 5O +∠FM 5N =90°,∠OM 5N +∠OM 5N′=90°,∴∠FM 5N =∠OM 5N′,在△FM 5N 和△OM 5N ′中,555555FM N OM N NFM N OM M N M N ∠=∠⎧⎪∠=∠'='⎨'⎪⎩, ∴△FM 3N ≌△OM 5N ′(AAS ),∴FM 5=M 5O =6,FN =ON ′=2,56(0,)M -,422(0,)3M -,2263m -≤≤-, ④N 在FE 上,点N 绕点M 6旋转点N ′与点B 重合,MN =MB =2,66(0,)M -,422(0,)3M -,2263m -≤≤-, 综上:2143m ≤≤或2263m -≤≤- 【点睛】 本题考查图形与坐标,待定系数法求一次函数解析式,正方形的性质,平行线性质,图形旋转,三角形全等判定与性质,一元一次方程,不等式,本题难度,图形复杂,应用知识多,要求有很强的解题能力. 5、 (1)见解析·线○封○密○外(2)A=2√3A−2√33(1≤A<2)(3)85,20−4√311,20+4√311【解析】【分析】(1)在BA上截取BM=BC=2,在Rt△ACB中,由勾股定理AA2+AA2=AA2,可得AB=4,进而可得∠A=30°,∠B=60°;由DE=DB,可证△DEB是等边三角形,∠BED=60°,由外角和定理得∠BED=∠A+∠G,进而得∠G=30°,所以∠A=∠G,即可证EA=EG;(2)由△DEB是等边三角形可得BE=DE,由BD=x,FC=y,得BE=x, DE=x,AE=AB-BE=4-x,在Rt△AEF中,由勾股定理可表示出AA=2√3(4−A)3,,把相关量代入FC=AC-AF,整理即可得y关于x 的函数解析式;当F点与C点重合时,x取得最小值1,G在线段AC延长线上,可知,D点不能与C点重合,所以x最大值小于2,故可得1≤x<2;(3)连接DF,根据等腰三角形的判定定理,有两条边相等的三角形是等腰三角形,分三种情况①当AA=AA时,②当AA=AA时③当AA=AA时,分别计算即可得BD的长.(1)如图,在BA上截取BM=BC=2,Rt △ACB 中,∠C =90° ∵ACBC =2, ∴AB =√22+(2√3)2=4 ∴AM =AB -BM =2, ∴CM =BM =AM =2, ∴△BCM 是等边三角形, ∴∠B =60°, ∴∠A =30°, ∵DE =DB ,∴△DEB 是等边三角形, ∴∠BED =60°, ∵∠BED =∠A +∠G , ∴∠G =30° ∴∠A =∠G , ∴EA =EG . (2) ∵△DEB 是等边三角形, ∴BE =DE 设BE =x ,则DE =x ,AE =AB -BE =4-x∵∠A =30°,∠AEF =90°,∴EF =12AA , Rt △AEF 中,AA 2+AA 2=AA 2 ·线○封○密○外∴AA=2√3(4−A)3,∵FC=AC-AF,∴A=2√3−2√3(4−A)3, y =2√3A−2√33定义域:1≤x<2(3)连接DF,Rt△ACB中,∠C=90°∴AA2+AA2=AA2∵AC BC=2,BD=x,∴AB=4,EA=EG=4-x,AA=4−2A,AA=2−A,①当AA=AA时,在Rt△DCG中,∴AA2=AA2+AA2,(4−2A)2=(2−A)2+(2√3A−2√33)2,解得:A1=4(舍去),A2=85;②当AA =AA 时,在Rt △DCG 中,∠G =30°, ∴DG =2DC ,∴CG =√AA 2−AA 2=√3AA =√3(2−A ) ∴4−2A =√3(2−A )+2√3A −2√33, 解之得:A =20−4√311; ③当AA =AA 时,在Rt △DCF 中,AA 2=AA 2+AA 2=(2−A )2+(2√3A −2√33)2, ∴AA 2=AA 2, (2−A )2+(2√3A −2√33)2=[√32(4−2A )+2√3A −2√33]2, 解得:A =20+4√311; 综上所述:BD 的长为85或20−4√311或20+4√311. 【点睛】 本题主要考查了勾股定理,等腰三角形的判定等有关知识,正确进行分析,熟练掌握和灵活运用相关知识是解题的关键,注意分类思想的运用. ·线○封○密·○外。
2023-2024学年北京市海淀区中国人民大学附属中学本部中考模拟数学试题+答案解析
2023-2024学年北京市海淀区中国人民大学附属中学本部中考模拟数学试题一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.2022年5月18日是第46个国际博物馆日,今年国际博物馆日的宣传主题是“博物馆的力量”,在以下几幅古代纹样图案中,利用中心对称进行整体构图的是()A. B.C. D.2.在第46个国际博物馆日来临之际.中国国家博物馆推出了丰富多彩的“云上观展”活动.观众有机会在屏幕上欣赏国博140万余件藏品的真容,将140万用科学记数法表示为()A. B. C. D.3.下列各组角中,互为余角的是()A.与B.与C.与D.与4.下列说法中错误的是()A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B.关于某条直线对称的两个图形全等C.两个全等三角形的对应高相等D.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧5.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的点数记为x,则的概率是()A. B. C. D.6.实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A. B. C. D.7.李老师是一位运动达人,他通过佩戴智能手环来记录自己一个月天每天所走的步数,并绘制成如右统计表:在每天所走的步数这组数据中,众数和中位数分别是()A.,B.,C.,D.,8.某学校对教室采用药薰消毒法进行消毒.现测得不同时刻的y与x的数据如表:时间分钟0246810121620含药量毫克03643则下列图象中,能表示y与x的函数关系的图象可能是()A. B.C. D.二、填空题:本题共8小题,每小题3分,共24分。
9.若有意义,则x的取值范围是__________.10.把多项式分解因式的结果是__________.11.若n为整数,且,则n的值为__________.12.分式方程的解__________.13.如图,点A,B,C,D在上,,,则__________.14.如图,在中,按以下步骤作图:①以点A为圆心,适当长为半径作弧,分别交于点M,N;②分别以点M,N为圆心,大于的长为半径作弧,两弧交于点P;③作射线AP交BC于点若,的面积为4,则的面积为__________.15.如图,已知等腰三角形ABC,,,若以点B为圆心,BC长为半径画弧,则__________16.以下是小亮的妈妈做晚饭的食材准备及加工时间列表,有一个炒菜锅,一个电饭煲,一个煲汤锅,两个燃气灶可用,做好这顿晚餐一般情况下至少需要__________分钟.用时种类准备时间分钟加工时间分钟米饭330炒菜156炒菜258汤56三、计算题:本大题共1小题,共6分。
海淀区初三一模数学试卷和参考答案
EDCBA海淀区九年级第二学期期中测评数学试卷答案及评分参考一、选择题(本题共32分,每小题4分)三、解答题(本题共30分,每小题5分) 130112cos301)()8-︒+-- .解:原式218=+-………………………4分 陈老师,联系电话:7=.………………………5分解:由①得 2x >-.………………………2分 由②得 1x ≤.………………………4分则不等式组的解集为12≤<-x .………………………5分 15.先化简,再求值:4212112--÷⎪⎭⎫ ⎝⎛-+x x x ,其中3=x . 解:原式2212421x x x x -+-=⋅--………………………2分)1)(1()2(221+--⋅--=x x x x x ………………………3分 12+=x .………………………4分 海淀一线语文陈老师,联系电话:当3=x 时,原式=2112=+x .………………………5分 16.证明:AB ∥EC ,∴.A DCE ∠=∠………………………1分 在△ABC 和△CDE 中,,,,B EDC A DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CDE .………………………4分 ∴.BC DE =………………………5分17.解:(1)∵ 点A (1,)n -在反比例函数xy 2-=的图象上, ∴ 2n =. ………………………1分∴ 点A 的坐标为12-(,).∵ 点A 在一次函数y kx k =-的图象上,陈老师,联系电话: ∴2k k =--.∴1-=k .………………………2分∴ 一次函数的解读式为1+-=x y .………………………3分 (2)点P 的坐标为(-3,0)或(1,0).………………………5分 (写对一个给1分)18.解:设原计划每天加工x 顶帐篷.………………………1分1500300150030042x x---=.………………………3分 解得 150x =. ………………………4分 经检验,150x =是原方程的解,且符合题意.答:原计划每天加工150顶帐篷.………………………5分陈老师,联系电话: 四、解答题(本题共20分,每小题5分)19. 解:过点A 作AF ⊥BD 于F . ∵∠CDB =90°,∠1=30°,∴∠2=∠3=60°. ………………………1分 在△AFB 中,∠AFB =90°.海淀一线语文陈老师,联系电话:∵∠4=45°,AB =∴AF =BF ………………………2分 在△AFE 中,∠AFE =90°.∴1,2EF AE ==.………………………3分 在△ABD 中,∠DAB =90°.∴DB =∴1DE DB BF EF =--=.………………………4分陈老师,联系电话:∴111)22ADE S DE AF ∆=⋅==………………………5分 20.(1)证明:连接OD .………………………1分∵AB =AC , ∴B C ∠=∠.又∵OB OD =, ∴1B ∠=∠. ∴1C ∠=∠. ∴OD ∥AC .∵DE ⊥AC 于E ,陈老师,联系电话: ∴DE ⊥OD .∵点D 在⊙O 上,∴DE 与⊙O 相切. ………………………2分 (2)解:连接AD .海淀一线语文陈老师,联系电话:∵AB 为⊙O 的直径,∴∠ADB =90°. ∵AB =6,sin B =55,陈老师,联系电话: ∴sin AD AB B =⋅=556.………………3分 ∵123290∠+∠=∠+∠=︒, ∴13∠=∠. ∴ 3.B ∠=∠在△AED 中,∠AED =90°.∵sin 35AE AD ∠==,∴65AE AD ===.………………………4分 又∵OD ∥AE ,∴△FAE ∽△FOD .∴FA AEFO OD =. ∵6AB =,∴3OD AO ==.∴235FA FA =+.陈老师,联系电话: ∴2AF =.………………………5分21.(1)13.………………………1分(2)∵(3318)80%30++÷=,∴被小博同学抽取的监测点个数为30个. ………………………2分………………………3分(3)设去年同期销售x 万箱烟花爆竹.陈老师,联系电话:(135%)37x -=.解得125613x =.………………………4分 ∴1212563719201313-=≈. 答:今年比去年同期少销售约20万箱烟花爆竹. ……………………… 5分22.(1………………………2分 (2)①如图:(答案不唯一) ………………………4分………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)依题意,可得抛物线的对称轴为212mx m-=-=.………………………1分 ∵抛物线与x 轴交于A 、B 两点,点A 的坐标为(2,0)-,陈老师,联系电话: ∴点B 的坐标为 (4,0).………………………2分(2)∵点B 在直线y =12x +4m +n 上, ∴024m n =++①.∵点A 在二次函数2-2y mx mx n =+的图象上,陈老师,联系电话: ∴044m m n =++②. ………………………3分 由①、②可得12m =,4n =-. ………………………4分 ∴ 抛物线的解读式为y =2142x x --,直线的解读式为y =122x -. ……………5分(3)-502d <<.………………………7分 24.(1)2AE =.………………………1分陈老师,联系电话:(2)线段AE 、CD 之间的数量关系为2AE CD =.………………………2分 证明:如图1,延长AC 与直线l 交于点G .依题意,可得∠1=∠2.∵∠ACB =90︒,∴∠3=∠4.∴BA BG =.∴CA =CG .………………………3分陈老师,联系电话:∵AE ⊥l ,CD ⊥l ,∴CD ∥AE .∴△GCD ∽△GAE . ∴12CD GC AE GA ==. ∴2AE CD =.………………………4分(3)解:当点F 在线段AB 上时,如图2,过点C 作CG ∥l 交AB 于点H 陈老师,联系电话:,交AE 于点G . ∴∠2=∠HCB .∵∠1=∠2,∴∠1=∠HCB .∴CH BH =.∵∠ACB =90︒,∴∠3+∠1=∠HCB +∠4=90︒.海淀一线语文陈老师,联系电话:∴∠3=∠4.∴CH AH BH ==.∵CG ∥l ,∴△FCH ∽△FEB . ∴56CF CH EF EB ==.陈老师,联系电话: 设5,6CH x BE x ==,则10AB x =.∴在△AEB 中,∠AEB =90︒,8AE x =.由(2)得,2AE CD =.∵4CD =,图2∴8AE =.∴1x =.∴10,6,5AB BE CH ===.∵CG ∥l ,∴△AGH ∽△AEB . ∴12HG AH BE AB ==. ∴3HG =.………………………5分∴8CG CH HG =+=.∵CG ∥l ,CD ∥AE ,海淀一线语文陈老师,联系电话:∴四边形CDEG 为平行四边形.∴8DE CG ==.∴2BD DE BE =-=.……………………6分当点F 在线段BA 的延长线上时,如图3,同理可得5CH =,3GH =,6BE =.∴DE =2CG CH HG =-=.陈老师,联系电话:∴8BD DE BE =+=.∴2BD =或8.……………………7分25.解:(1)()2222y x mx m m x m m =-++=-+,……………………1分 ∴顶点坐标为C m ,m ().……………………2分(2)①2y x =+与抛物线222y x mx m m =-++交于A 、B 两点,∴2222x x mx m m +=-++.陈老师,联系电话:解方程,得121,2x m x m =-=+.……………………4分 A 点在点B 的左侧,∴(1,1),(2,4).A m m B m m -+++∴AB =……………………5分陈老师,联系电话:直线OC 的解读式为y x =,直线AB 的解读式为2y x =+,∴AB ∥OC ,两直线AB 、OC 之间距离h =∴11322APB S AB h =⋅=⨯=.………………………6分……………………8分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)。
2021-2022学年度北京市海淀区中考数学一模试卷及答案解析
北京市海淀区中考数学一模试卷一、选择题1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π2.下列各式的变形中,正确的是()A.(﹣x﹣y)(﹣x+y)=x2﹣y2B.﹣x=C.x2﹣4x+3=(x﹣2)2+1 D.x÷(x2+x)=+13.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%4.如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.5.下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m为常数),当x>0时,y随x增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中偶函数的个数为2个.A.1 B.2 C.3 D.46.下列图形中,阴影部分面积最大的是()A.B.C.D.7.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.8.为了解中学生获取资讯的主要渠道,设置“A.报纸.B.电视.C.网络,D.身边的人.E.其他”五个选项(五项中必选且只能选一项)的调查问卷.先随机抽取50名中学生进行该问卷调查.根据调查的结果绘制条形图如图.该调查的方式是(),图中的a的值是()A.全面调查,26 B.全面调查,24C.抽样调查,26 D.抽样调查,249.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.10.定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.二、填空题11.计算(﹣π)0﹣(﹣1)2018的值是.12.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是.13.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式.若,则x=.14.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起分钟该容器内的水恰好放完.15.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为米(结果保留根号).16.一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为cm.三、解答题17.先化简,再求值(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣18.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?19.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.20.某商场为缓解我市“停车难”问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(参考数据:sin18°=0.31,cos18°=0.95,tan18°=0.325)(结果精确到0.1m)21.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1 152 a3 b4 5(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?22.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.23.在平面直角坐标系中xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图的方式放置.点A1,A2,A…、A n和点C1,C2,C3…、∁n分别落在直线y=x+1和x轴上.抛物线L1过点A1、B1,且顶点在直线y 3=x+1上,抛物线L2过点A2、B2,且顶点在直线y=x+1上,…,按此规律,抛物线L n过点A n、B n,且顶点也在直线y=x+1上,其中抛物线L1交正方形A1B1C1O的边A1B1于点D1,抛物线L2交正方形A2B2C2C1的边A2B2于点D2…,抛物线L n交正方形A n B n∁n C n﹣1的边A n B n于点D n(其中n≥2且n为正整数).(1)直接写出下列点的坐标:B1,B2,B3;(2)写出抛物线L2,、L3的解析式,并写出其中一个解析式的求解过程,再猜想抛物线L n的顶点坐标;(3)①设A1D1=k•D1B1,A2D2=k2•D2B2,试判断k1与k2的数量关系并说明理由;②点D1、D2、…,D n是否在一条直线上?若是,直接写出这条直线与直线y=x+1的交点坐标;若不是,请说明理由.北京市海淀区首都师大附中中考数学一模试卷参考答案与试题解析一、选择题1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.【点评】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.2.下列各式的变形中,正确的是()A.(﹣x﹣y)(﹣x+y)=x2﹣y2B.﹣x=C.x2﹣4x+3=(x﹣2)2+1 D.x÷(x2+x)=+1【分析】根据平方差公式和分式的加减以及整式的除法计算即可.【解答】解:A、(﹣x﹣y)(﹣x+y)=x2﹣y2,正确;B、,错误;C、x2﹣4x+3=(x﹣2)2﹣1,错误;D、x÷(x2+x)=,错误;故选:A.【点评】此题考查平方差公式和分式的加减以及整式的除法,关键是根据法则计算.3.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%【分析】缺少质量和进价,应设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,根据题意得:购进这批水果用去ay元,但在售出时,只剩下(1﹣10%)a千克,售货款为(1﹣10%)a×(1+x)y元,根据公式×100%=利润率可列出不等式,解不等式即可.【解答】解:设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,由题意得:×100%≥20%,解得:x≥≈33.4%,经检验,x≥是原不等式的解.∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%.故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是弄清题意,设出必要的未知数,表示出售价,售货款,进货款,利润.注意在解出结果后,要考虑实际问题,利用收尾法,不能用四舍五入.4.如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cos A=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cos A=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=xcm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.5.下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m为常数),当x>0时,y随x增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中偶函数的个数为2个.A.1 B.2 C.3 D.4【分析】根据有关的定理和定义作出判断即可得到答案.【解答】解:①若代数式有意义,则x的取值范围为x<1且x≠0,原命题错误;②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元正确.③根据反比例函数(m为常数)的增减性得出m<0,故一次函数y=﹣2x+m的图象一定不经过第一象限.,此选项正确;④若函数的图象关于y轴对称,则函数称为偶函数,三个函数中有y=3,y=x2是偶函数,原命题正确,故选:C.【点评】本题考查了命题与定理的知识,在判断一个命题正误的时候可以举出反例.6.下列图形中,阴影部分面积最大的是()A.B.C.D.【分析】分别根据反比例函数系数k的几何意义以及三角形面积求法以及梯形面积求法得出即可.【解答】解:A、根据反比例函数系数k的几何意义,阴影部分面积和为:xy=3,B、根据反比例函数系数k的几何意义,阴影部分面积和为:3,C、根据反比例函数系数k的几何意义,以及梯形面积求法可得出:阴影部分面积为:3+×(1+3)×2﹣﹣=4,D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:×1×6=3,阴影部分面积最大的是4.故选:C.【点评】此题主要考查了反比例函数系数k的几何意义以及三角形面积求法等知识,将图形正确分割得出阴影部分面积是解题关键.7.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.8.为了解中学生获取资讯的主要渠道,设置“A.报纸.B.电视.C.网络,D.身边的人.E.其他”五个选项(五项中必选且只能选一项)的调查问卷.先随机抽取50名中学生进行该问卷调查.根据调查的结果绘制条形图如图.该调查的方式是(),图中的a的值是()A.全面调查,26 B.全面调查,24C.抽样调查,26 D.抽样调查,24【分析】根据题意得到此调查为抽样调查,由样本容量求出a的值即可.【解答】解:根据题意得:该调查的方式是抽样调查,a=50﹣(6+10+6+4)=24,故选:D.【点评】此题考查了条形统计图,以及全面调查与抽样调查,弄清题意是解本题的关键.9.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.【分析】求得阴影部分的面积后除以正方形的面积即可求得概率.【解答】解:如图,连接PA、PB、OP;则S半圆O==,S△ABP=×2×1=1,由题意得:图中阴影部分的面积=4(S半圆O﹣S△ABP)=4(﹣1)=2π﹣4,∴米粒落在阴影部分的概率为=,故选:A.【点评】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.10.定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.【分析】根据题意可得y=2⊕x=,再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.【解答】解:由题意得:y=2⊕x=,当x>0时,反比例函数y=在第一象限,当x<0时,反比例函数y=﹣在第二象限,又因为反比例函数图象是双曲线,因此D选项符合.故选:D.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数的图象是双曲线.二、填空题11.计算(﹣π)0﹣(﹣1)2018的值是0 .【分析】根据零指数幂的意义以及实数的运算法则即可求出答案.【解答】解:原式=1﹣1=0,故答案为:0【点评】本题考查实数的运算,解题的关键熟练运用实数的运算法则,本题属于基础题型.12.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是.【分析】利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组可整理为:解得:方法二:关于x、y的二元一次方程组的解是,由关于a、b的二元一次方程组可知解得:故答案为:【点评】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.13.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式.若,则x= 2 .【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x的值.【解答】解:根据题意化简=8,得:(x+1)2﹣(1﹣x)2=8,整理得:x2+2x+1﹣(1﹣2x+x2)﹣8=0,即4x=8,解得:x=2.故答案为:2【点评】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键.14.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起8 分钟该容器内的水恰好放完.【分析】先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.【解答】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升设出水管每分钟的出水量为a升,由函数图象,得20+8(5﹣a)=30,解得:a=,故关闭进水管后出水管放完水的时间为:30÷=8分钟.故答案为:8.【点评】本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.15.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为1200(﹣1)米(结果保留根号).【分析】在Rt△ACH和Rt△HCB中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=∴HB====1200(米).∴AB=HB﹣HA=1200﹣1200=1200(﹣1)米故答案为:1200(﹣1)【点评】本题考查了锐角三角函数的仰角、俯角问题.题目难度不大,解决本题的关键是用含CH的式子表示出AH和BH.16.一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为cm.【分析】由题意易得△ABC∽△A1B1C1,根据相似比求A1B1即可.【解答】解:∵∠ACB=90°,BC=12cm,AC=8cm,∴AB=4,∵△ABC∽△A1B1C1,∴A1B1:AB=B1C1:BC=2:1,即A1B1=8cm.【点评】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组三角形相似,利用其相似比作为相等关系求出所需要的线段.三、解答题17.先化简,再求值(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣【分析】利用平方差公式、单项式乘多项式及完全平方公式去括号,再合并同类项化简后,再将x的值代入计算可得.【解答】解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5,当x=﹣时,原式=(﹣)2﹣5=3﹣5=﹣2.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.18.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【分析】(1)设每千克核桃降价x元,利用销售量×每件利润=2240元列出方程求解即可;(2)为了让利于顾客因此应下降6元,求出此时的销售单价即可确定几折.【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.【点评】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.19.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.【分析】(1)根据矩形的性质,可得A,E点坐标,根据待定系数法,可得答案;(2)根据勾股定理,可得AE的长,根据线段的和差,可得FB,可得F点坐标,根据待定系数法,可得m的值,可得答案.【解答】解:(1)点B坐标为(﹣6,0),AD=3,AB=8,E为CD的中点,∴点A(﹣6,8),E(﹣3,4),函数图象经过E点,∴m=﹣3×4=﹣12,设AE的解析式为y=kx+b,,解得,∴一次函数的解析式为y=﹣x;(2)AD=3,DE=4,∴AE==5,∵AF﹣AE=2,∴AF=7,BF=1,设E点坐标为(a,4),则F点坐标为(a﹣3,1),∵E,F两点在函数y=图象上,∴4a=a﹣3,解得a=﹣1,∴E(﹣1,4),∴m=﹣1×4=﹣4,∴y=﹣.【点评】本题考查了反比例函数,解(1)的关键是利用待定系数法,又利用了矩形的性质;解(2)的关键利用E,F两点在函数y=图象上得出关于a的方程.20.某商场为缓解我市“停车难”问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(参考数据:sin18°=0.31,cos18°=0.95,tan18°=0.325)(结果精确到0.1m)【分析】先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.【解答】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=,∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5=2.75(m).在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=,∴CE=sin∠CDE×CD=sin72°×2.75=cos18°×2.75=0.95×2.75=2.6125≈2.6(m),∵2.6m<2.75m,且CE⊥AE,∴小亮说的对.答:小亮说的对,CE为2.6m.【点评】此题考查了三角函数的基本概念,主要是正弦、正切概念及运算,关键把实际问题转化为数学问题加以计算.21.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1 152 a3 b4 5(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?【分析】(1)根据题意和统计图中的数据可以求得m、a、b的值;(2)根据统计图中的数据可以求得该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本.【解答】解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.【点评】本题考查扇形统计图、用样本估计总体、统计表,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB 为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.【分析】(1)在RT△OAB中,利用勾股定理OA=求解,(2)由四边形ABCD是菱形,求出△AFM为等边三角形,∠M=∠AFM=60°,再求出∠MAC=90°,在Rt △ACM中tan∠M=,求出AC.(3)求出△AEM≌△ABF,利用△AEM的面积为40求出BF,在利用勾股定理AF===,得出△AFM的周长为3.【解答】解:(1)∵四边形ABCD是菱形,∴AC⊥BD,OB=OD=BD,∵BD=24,∴OB=12,在Rt△OAB中,∵AB=13,∴OA===5.(2)如图2,∵四边形ABCD是菱形,∴BD垂直平分AC,∴FA=FC,∠FAC=∠FCA,由已知AF=AM,∠MAF=60°,∴△AFM为等边三角形,∴∠M=∠AFM=60°,∵点M,F,C三点在同一条直线上,∴∠FAC+∠FCA=∠AFM=60°,∴∠FAC=∠FCA=30°,∴∠MAC=∠MAF+∠FAC=60°+30°=90°,在Rt△ACM中∵tan∠M=,∴tan60°=,∴AC=AM.(3)如图,连接EM,∵△ABE是等边三角形,∴AE=AB,∠EAB=60°,由(2)知△AFM为等边三角形,∴AM=AF,∠MAF=60°,∴∠EAM=∠BAF,在△AEM和△ABF中,,∴△AEM≌△ABF(SAS),∵△AEM的面积为40,△ABF的高为AO ∴BF•AO=40,BF=16,∴FO=BF﹣BO=16﹣12=4AF===,∴△AFM的周长为3.【点评】本题主要考查四边形的综合题,解题的关键是灵活运用等边三角形的性质及菱形的性质.23.在平面直角坐标系中xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图的方式放置.点A1,A2,A…、A n和点C1,C2,C3…、∁n分别落在直线y=x+1和x轴上.抛物线L1过点A1、B1,且顶点在直线y 3=x+1上,抛物线L2过点A2、B2,且顶点在直线y=x+1上,…,按此规律,抛物线L n过点A n、B n,且顶点也在直线y=x+1上,其中抛物线L1交正方形A1B1C1O的边A1B1于点D1,抛物线L2交正方形A2B2C2C1的边A2B2于点D2…,抛物线L n交正方形A n B n∁n C n﹣1的边A n B n于点D n(其中n≥2且n为正整数).(1)直接写出下列点的坐标:B1(1,1),B2(3,2),B3(7,4);(2)写出抛物线L2,、L3的解析式,并写出其中一个解析式的求解过程,再猜想抛物线L n的顶点坐标(3×2n﹣2﹣1,3×2n﹣2);(3)①设A1D1=k•D1B1,A2D2=k2•D2B2,试判断k1与k2的数量关系并说明理由;②点D1、D2、…,D n是否在一条直线上?若是,直接写出这条直线与直线y=x+1的交点坐标;若不是,请说明理由.【分析】(1)先求出直线y=x+1与y轴的交点坐标即可得出A1的坐标,故可得出OA1的长,根据四边形A1B1C1O是正方形即可得出B1的坐标,再把B1的横坐标代入直线y=x+1即可得出A1的坐标,同理可得出B2,B3的坐标;(2)根据四边形A1B1C1O是正方形得出C1的坐标,再由点A2在直线y=x+1上可知A2(1,2),B2的坐标为(3,2),由抛物线L2的对称轴为直线x=2可知抛物线L2的顶点为(2,3),再用待定系数法求出直线L2的解析式;根据B3的坐标为(7,3),同上可求得点A3的坐标为(3,4),抛物线L3的对称轴为直线x=5,同理可得出直线L2的解析式;(3)①同(2)可求得L2的解析式为y=(x﹣2)2+3,当y=1时,求出x的值,由A1D1=﹣D1B1,可得出k1的值,同理可得出k2的值,由此可得出结论;②由①中的结论可知点D1、D2、…,D n是否在一条直线上,再用待定系数法求出直线D1D2的解析式,求出与直线y=x+1的交点坐标即可.【解答】解:(1)∵令x=0,则y=1,∴A1(0,1),∴OA1=1.∵四边形A1B1C1O是正方形,∴A1B1=1,∴B1(1,1).∵当x=1时,y=1+1=2,∴B2(3,2);同理可得,B3(7,4).故答案为:(1,1),(3,2),(7,4);(2)抛物线L2、L3的解析式分别为:y=﹣(x﹣2)2+3;,y=﹣(x﹣5)2+6;抛物线L2的解析式的求解过程:对于直线y=x+1,设x=0,可得y=1,A1(0,1),∵四边形A1B1C1O是正方形,∴C1(1,0),又∵点A2在直线y=x+1上,∴点A2(1,2),又∵B2的坐标为(3,2),∴抛物线L2的对称轴为直线x=2,∴抛物线L2的顶点为(2,3),设抛物线L2的解析式为:y=a(x﹣2)2+3,∵L2过点B2(3,2),∴当x=3时,y=2,∴2=a(3﹣2)2+3,解得:a=﹣1,∴抛物线L2的解析式为:y=﹣(x﹣2)2+3;抛物线L3的解析式的求解过程:又∵B3的坐标为(7,3),同上可求得点A3的坐标为(3,4),∴抛物线L3的对称轴为直线x=5,∴抛物线L3的顶点为(5,6),设抛物线L3的解析式为:y=a(x﹣5)2+6,∵L3过点B3(7,4),∴当x=7时,y=﹣4,∴4=a×(7﹣5)2+6,解得:a=﹣,∴抛物线L3的解析式为:y=﹣(x﹣5)2+6;猜想抛物线L n的顶点坐标为(3×2n﹣2﹣1,3×2n﹣2);(猜想过程:方法1:可由抛物线L1、L2、L3…的解析式:∵y=﹣2(x﹣)2+,y=﹣(x﹣2)2+3,y=﹣(x﹣5)2+6…,归纳总结;方法2:可由正方形A n B n∁n C n﹣1顶点A n、B n的坐标规律A n(2n﹣1﹣1,2n﹣1)与B n(2n,2n﹣1),再利用对称性可得抛物线L n的对称轴为直线x=,即x==3×2n﹣2﹣1,又顶点在直线y =x+1上,所以可得抛物线L n的顶点坐标为(3×2n﹣2﹣1,3×2n﹣2).故答案为:(3×2n﹣2﹣1,3×2n﹣2);(3)①、k1与k1的数量关系为:k1=k2,理由如下:同(2)可求得L2的解析式为y=(x﹣2)2+3,当y=1时,1=﹣(x﹣2)2+3解得:x1=2﹣,x2=2+,∴x=2﹣,∴A1D1=2﹣=(﹣1),∴D1B1=1﹣(2﹣)=﹣1,∴A1D1=﹣D1B1,即k1=;同理可求得A2D2=4﹣2=2(﹣1),D 2B2=2﹣(4﹣2)=2﹣2=2(﹣1),A 2D2=﹣D2B2,即k2=,∴k1=k2;②∵由①知,k1=k2,∴点D1、D2、…,D n在一条直线上;∵抛物线L2的解析式为y=﹣(x﹣2)2+3,∴当y=1时,x=2﹣,∴D1(2﹣,1);。
北京市海淀区2023年中考一模数学试题
北京市海淀区2023年中考一模数学试题2023年中考即将到来,以下是海淀区某中学的数学一模试题。
试题共计30题,满分120分,考试时间120分钟。
选择题(每小题4分,共20分)1. 下列函数中,奇点最多的是()A. $y=\dfrac{x+2}{x^2+1}$B. $y=\dfrac{1}{x-\sqrt{2}}$C. $y=\dfrac{1}{\sin x}$D. $y=\dfrac{x-2}{x^2-3x+2}$2. 如下图,四边形$ABCD$的内角$A$、$B$、$C$、$D$依次为$75^\circ$、$105^\circ$、$80^\circ$、$100^\circ$,则$AC$与$BD$的交点为$O$,则$\triangle AOB$的形状为()A. 直角三角形B.等腰三角形C.锐角三角形D.钝角三角形3. 等差数列$\{a_n\}$的第1项为1,公差为2,则$\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}$等于()A. $\dfrac{2}{3}$B. $\dfrac{4}{3}$C. $\dfrac{3}{2}$D.$\dfrac{5}{2}$4. 在单位圆$O$上,点$P(x,y)$和点$Q(t,0)$($0\leq t \leq 1$)与$x$轴夹角相等,且$\angle POQ=\dfrac{\pi}{3}$,则$5t-4x$的最小值是()A. $-\sqrt{3}$B. $-\dfrac{1}{2}$C. $-\dfrac{\sqrt{3}}{2}$D. $-\dfrac{1}{4}$5. 已知$f(x)=x^2+px+q$($p$、$q$为实数)在$(-1,1)$内恰有两个零点,且$f(-1)f(1)<0$,则满足以上条件的实数对$(p,q)$的个数是()A. 无穷多B.1C. 2D. 3解答题(每小题10分,共60分)6. (本题满分12分)已知四面体$ABCD$中,$AB=3a$,$AC=4a$,$AD=5a$,$\angle BAC=90^\circ$,$\angleBAD=120^\circ$,则四面体$ABCD$的重心到$BC$边所在平面的距离为多少?7. (本题满分12分)设$a$、$b$为实数,函数$f(x)=ax^3+bx^2+x+2$的图象过点$A(-1,1)$和点$B(1,3)$,且与直线$x=-1$相切,求$a$、$b$的值。
2023年北京市海淀区中考一模数学试卷(含答案解析)
2023年北京市海淀区中考一模数学试卷学校:___________姓名:___________班级:___________考号:___________A....【答案】A【分析】在正面内得到的由前向后观察物体的视图,叫做主视图;再结合常见几何体的主视图特征判断即可【详解】解:.主视图为矩形,符合题意;.主视图为三角形,不符合题意;.主视图为有一公共边的两个三角形,不符合题意;.主视图为圆,不符合题意;..C..【分析】根据两点之间线段最短即可得出答案.甲、乙位于直线MN的两侧,A .m n<B .0m n +>C .【答案】B 【分析】根据数轴上点的位置可知21n -<<-<【详解】解:由题意得,2134n m -<<-<<<,A .63︒B .36︒【答案】C【分析】如解析图所示,Rt △ABD 中,9090BAD ACD =︒=︒∠,∠,27CAD ∠=︒,由此利用直角三角形两锐角互余即可求出答案.【详解】解:如图所示,在Rt △ABD 中,9090BAD ACD =︒=︒∠,∠,27CAD ∠=︒,∴90CAD ADC ABD ADB +=︒=+∠∠∠∠,∴27ABD CAD ==︒∠∠,∴被测物体表面的倾斜角α为27︒,故选C .【点睛】本题主要考查了直角三角形两锐角互余,正确理解题意是解题的关键.8.图1是变量y 与变量x 的函数关系的图象,图2是变量z 与变量y 的函数关系的图象,则z 与x 的函数关系的图象可能是()A .B .C .D .【答案】C【分析】设两个直线关系式,再表示出z ,x 之间的关系式,即可得出图象.【详解】根据图像可知y 与x 是一次函数,z 和y 是正比例函数,设关系式为y kx b =+,1z k y =,所以1111()z k y k kx b k kx k b ==+=+,可知z 与x 是一次函数,所以图像C 符合题意.故选:C .【点睛】本题主要考查了函数图像的判断,表示出各函数关系式是解题的关键.二、填空题【答案】5【分析】由菱形的性质可得出结合勾股定理即可求出BC =【详解】解:∵四边形ABCD ∴142OB OD BD ===,OC ∴2225BC OB OC =+=.【答案】31︒(答案不唯一)当点M 在点E 处时,延长EF 交∵120AFE FAB ∠∠==︒,AFE ∠∴60AFH FAH ∠∠==︒,∴AH HF =,∴AHF 是正三角形,∴60H ∠=︒,AB烧制一个大尺寸陶艺品的位置可替换为烧制两个中尺寸或六个小尺寸陶艺品,小陶艺品的位置不能替换为烧制较大陶艺品.某批次需要生产10个大尺寸陶艺品,(1)烧制这批陶艺品,(2)若A款电热窑每次烧制成本为这批陶艺品成本最低为【答案】2【分析】(1)根据需要生产品,B款电热窑每次烧制故答案为:135.【点睛】本题主要考查了一元一次不等式的实际应用,正确理解题意是解题的关键.方法一证明:如图,延长BC 到点得CD BC =,连接AD .【答案】证明见解析【分析】方法一:如图,延长BC 到点CD BC =,连接AD ,先证明ACB 得到AB AD =,进而证明ABD △是等边三角形,得到AB BD =,由此即可证明方法二:如图,在线段AB 上取一点,使得BD BC =,连接CD ,先求出进而证明BCD △是等边三角形,得到CD BD =,60BCD ∠=︒,进一步证明(1)求证:四边形ABEF 为矩形;(2)若634AB BC CE ===,,,求ED 【答案】(1)见解析(2)10【分析】(1)由题意易证四边形ABEF 边形是矩形即可判定;(2)由题意易证BEC EDF ∽,即得出后由勾股定理即可求解.【详解】(1)证明:∵BE AD ∥,即∴四边形ABEF 为平行四边形.∵90A ∠=︒,∴四边形ABEF 为矩形;(2)解:∵BE AD ∥,∴BEC D ∠=∠.∵四边形ABEF 为矩形,∴90C EFD ∠=∠=︒,6EF AB ==,∴BEC EDF ∽,∴CE BC DF EF=,即436DF =,【点睛】本题考查矩形的判定和性质,平行线的性质,相似三角形的判定和性质,勾股定理.熟练掌握上述知识是解题关键.22.在平面直角坐标系xOy 中,一次函数y kx b =+的图象过点()()1,3,2,2.(1)求这个一次函数的解析式;(2)当2x >时,对于x 的每一个值,一次函数y mx =的值大于一次函数y kx b =+的值,直接写出m 的取值范围.【答案】(1)一次函数的解析式+4y x =-;(2)1m ≥【分析】(1)用待定系数法求解即可;(2)根据题意列出关于m 的不等式即可求解.【详解】(1)解:∵一次函数y kx b =+的图象过点()()1,3,2,2,∴把()()1,3,2,2代入得:+32+2k b k b =⎧⎨=⎩,解得:14k b =-⎧⎨=⎩,∴一次函数的解析式+4y x =-;(2)解:由(1)得:一次函数的解析式+4y x =-,当2x =时,2y =,当2x >时,对于x 的每一个值,一次函数y mx =的值大于一次函数y kx b =+的值,把2x =代入y mx =得:2y m =,∴22m ≥,解得:1m ≥.【点睛】本题考查了一次函数的应用,灵活掌握所学知识是解题关键.23.如图,AB 为O 的直径,C 为O 上一点,D 为 BC的中点,DE AC ⊥交AC 的延长线于点E .(1)求证:直线DE 为O (2)延长,AB ED 交于点F 【答案】(1)证明见解析(2)23【分析】(1)连接BC ,连接根据垂径定理可得CFD ∠(2)设O 的半径为r ,则1r =,则2AB =,再证明【详解】(1)证明:连接∵AB 是O 的直径,∴90ACB ∠=︒,∵点D 是 BC的中点,∴OD BC ⊥,又∵DE AC ⊥,∴四边形CEDF 是矩形,∴90ODE ∠=︒,【点睛】本题考查了切线的性质判定,垂径定理,矩形的性质与判定,解直角三角形,圆周角定理,正确的作出辅助线是解题的关键.24.某小组对当地2022年3月至述和分析得到了部分信息.a.西红柿与黄瓜市场价格的折线图:b.西红柿与黄瓜价格的众数和中位数:(1)建立如图所示的平面直角坐标系.通过对某只野兔一次跳跃中水平距离x (单位:m 测量,得到以下数据:水平距离/mx 00.41 1.42 2.4竖直高度/m y 00.480.90.980.80.48根据上述数据,回答下列问题:①野兔本次跳跃的最远水平距离为_________m ,最大竖直高度为②求满足条件的抛物线的解析式;(2)已知野兔在高速奔跑时,某次跳跃的最远水平距离为在野兔起跳点前方2m 处有高为0.8m 的篱笆,则野兔此次跳跃能”)跃过篱笆.【答案】(1)①2.8,0.98;②()20.5 1.40.98y x =--+(2)能(1)求AGF ∠的度数;(2)在线段AG 上截取MG BG =,连接,DM AGF ∠的角平分线交DM 于点N .①依题意补全图形;②用等式表示线段MN 与ND 的数量关系,并证明.【答案】(1)90︒(2)①见解析②MN ND =,证明见解析【分析】(1)根据正方形的性质,得90AB BC ABE BCF ∠∠ =,==,利用SAS 证明ABE BCF ≌得出角相等,再将角进行等量代换便可得结论.(2)①根据题意画出图形即可,②作AH AG ⊥交GN 的延长线于点H ,构造全等三角形,得出BG MG DH DHN MGN ==∠=∠,,再证MGN DHN ≅ ,问题即可解决.【详解】(1)∵四边形ABCD 是正方形,∴90AB BC ABE BCF =∠=∠=︒,,在ABE 和BCF 中,,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩∴ABE BCF SAS ≌(),∴BAE CBF∠=∠∴90AGF BAE ABG CBF ABG ABE ∠=∠+∠=∠+∠=∠=︒.(2)①根据题意画图如下②MN ND =,理由如下作AH AG ⊥交GN 的延长线于点∵GN 平分AGF ∠,AGF ∠=∴1452AGH AGF ∠=∠=︒∴AGH 为等腰直角三角形∴,AG AH AGH AHG =∠=∠∵四边形ABCD 为正方形(2)解:①设直线CD 的解析式为由题意得,点()02C ,,点D ∴202k b b +=⎧⎨=⎩,∴12k b =-⎧⎨=⎩,∴直线CD 的解析式为y =-设点M 的坐标为(2m m -+,∴点M 的关联直线为y mx =∴点M 的关联直线经过定点②同理可得直线CD 的解析式为设点M 的坐标为2n n d ⎛- ⎝,∴点M 的关联直线为y =∴点M 的关联直线经过定点如图所示,过点T 作TN ⊥∴222EF NF TF TN ==-∴要想EF 最小,则要使TN ∵EF 的最小值为4,即NF ∴22TN TF NF =-=最大由(2)①可知,当点N 与点∴()(222112d ⎛⎫--+-= ⎪⎝⎭∴244115d d +++=,∴23440d d --=,∴()()3220d d +-=,解得2d =或23d =-.正确推出点M的关联直线经过定点是解题的关键.。
海淀中考一模数学试卷答案
一、选择题1. 答案:C解析:根据勾股定理,直角三角形的斜边平方等于两直角边的平方和,即a² + b² = c²。
代入题目中的数据,得到3² + 4² = 5²,所以直角三角形的斜边长度为5。
2. 答案:B解析:根据一元二次方程的解法,将方程x² - 5x + 6 = 0分解因式,得到(x - 2)(x - 3) = 0。
解得x = 2或x = 3。
3. 答案:D解析:根据平行四边形的性质,对边相等,即AB = CD,AD = BC。
代入题目中的数据,得到2x + 3 = 4x - 5,解得x = 4。
4. 答案:A解析:根据三角形的外角定理,三角形的一个外角等于不相邻的两个内角之和。
代入题目中的数据,得到∠B + ∠C = 180° - ∠A = 180° - 60° = 120°。
5. 答案:B解析:根据二次函数的性质,二次函数的图像是一个开口向上或向下的抛物线。
当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
代入题目中的数据,得到a = -1,所以抛物线开口向下。
二、填空题6. 答案:1/2解析:根据指数运算规则,2的-1次方等于1/2。
7. 答案:9解析:根据完全平方公式,(a + b)² = a² + 2ab + b²。
代入题目中的数据,得到(3 + 2)² = 3² + 2×3×2 + 2² = 9 + 12 + 4 = 25。
8. 答案:4解析:根据概率计算公式,事件A发生的概率P(A) = 事件A发生的情况数 / 所有可能的情况数。
代入题目中的数据,得到P(A) = 4 / 12 = 1/3。
9. 答案:-2解析:根据一元二次方程的解法,将方程x² + 3x - 4 = 0分解因式,得到(x + 4)(x - 1) = 0。
2024年北京海淀中考数学试题及答案
2024年北京海淀中考数学试题及答案考生须知:1.本试卷共6页,共两部分.三道大题,28道小题。
满分100分。
考试时间120分钟。
2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上.选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D.2.如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒3.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .1b >-B .2b >C .0a b +>D .0ab >4.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .165.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( )A .34B .12C .13D .146.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯7.下面是“作一个角使其等于AOB ”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD 长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等8.如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区九年级第二学期期中练习数学2016.5学校班级___________姓名成绩考生须知1.本试卷共8页,共三道大题,29道小题,满分120分,考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、画图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为A.96.5×107B.9.65×107 C.9.65×108 D.0.965×1092.如图是某个几何体的三视图,该几何体是A.长方体B.正方体C.圆柱D.三棱柱3.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为A.B.C.D.4.下列图形中,是轴对称图形但不是中心对称图形的是14341545A .B .C .D .5.如图,在ABCD 中,AB=3,BC =5,∠ABC 的平分线交AD 于点E ,则DE 的长为 A .5 B .4C .3D .26.如图,等腰直角三角板的顶点A ,C 分别在直线,b 上.若∥b ,,则的度数为A .B .C .D .7.初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是 A .9,8 B .9,8.5 C .8,8 D .8,8.58.京津冀都市圈是指以北京、天津两座直辖市以及河北 省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数 对”19043︒(,)表示图中承德的位置,“数对” 160238︒(,)表示图中保定的位置,则与图中张家口 的位置对应的“数对”为a a 1=35∠︒2∠35︒15︒10︒5︒DBA(,)A.176145︒(,)B.17635︒(,)C.100145︒(,)D.10035︒9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少..为A.5 000B.10 000C.15 000D.20 00010.小明在暗室做小孔成像实验.如图1,固定光源(线段MN)发出的光经过小孔(动点K)成像(线段M'N')于足够长的固定挡板(直线l)上,其中MN// l.已知点K匀速运动,其运动路径由AB,BC,CD,DA,AC,BD组成.记它的运动时间为x,M'N'的长度为y ,若y 关于x 的函数图象大致如图2所示,则点K 的运动路径可能为 A .A→B→C→D→A B .B→C→D→A→B C .B→C→A→D→B D .D→A→B→C→D图1 图2二、填空题(本题共18分,每小题3分) 11. 分解因式:a 2b -2ab +b =________________.12. 如图,AB 为⊙O 的弦,OC ⊥AB于点C .若AB=8,OC =3,则⊙O 的半径长为________.13.埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.”设这个数是x ,可列方程为.14.在下列函数①;②;③;④中,与众不同的一 个是_____(填序号),你的理由是________.15.北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为________万人,你的预估理由是____________.21y x =+22y x x =+3y x=3y x =-16.阅读下面材料:在数学课上,老师提出如下问题:l 小云的作法如下:老师说:“小云的作法正确.”请回答:小云的作图依据是________________________________________.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:.18.解不等式组并写出它的所有整数解.... 19.已知,求代数式的值.20.如图,在△ABC 中,,AD BC ⊥于点D ,DE 为AC 边上的中线.求证:.21.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的 能量消耗.对比手机数据发现小琼步行12 000步与小博步行9 000步消耗的能量相同.若 每消耗1千卡能量小琼行走的步数比小博多10步,求小博每消耗1千卡能量需要行走多 少步.)216tan 3012π-⎛⎫-︒++ ⎪⎝⎭41)3(2),14,2x x x x -≤+⎧⎪⎨-<-⎪⎩(250x x +-=2(1)(3)(2)(2)x x x x x ---++-90BAC ∠=︒BAD EDC ∠=∠22.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC的平行线交DC 的延长线于点E . (1)求证:BD=BE ;(2)若BE =10,CE =6,连接OE ,求tan ∠OED 的值.23.在平面直角坐标系xOy 中,直线与双曲线ky x=(0k ≠)的一个交点为.(1)求k 的值;(2)将直线向上平移b (b>0)个单位长度后,与x 轴,y 轴分别交于点A ,点B ,与双曲线ky x =(0k ≠)的一个交点记为Q .若,求b 的值.24.如图,AB ,AD 是⊙O 的弦,AO 平分.过点B作⊙O 的切线交AO 的延长线于点C ,连接CD ,BO . 延长BO 交⊙O 于点E ,交AD 于点F ,连接AE ,DE . (1)求证:是⊙O 的切线; (2)若,求的长.y x =-(6,)P m y x =-2BQ AB =BAD ∠CD 3AE DE ==AF O ED ABC25.阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影,票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A梦之伴我同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入.2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015年中国内地动画电影票房收入为亿元;(2)右图为2015年国产..动画电影票房金字塔,则B=;(3)选择统计表或.统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.26.有这样一个问题:探究函数的图象与性质.小东对函数的图象与性质进行了探究. 下面是小东的探究过程,请补充完成:(1)函数的自变量x 的取值范围是全体实数; (2)下表是y 与x 的几组对应值. x …0 1 2 3 4 5 6 … y…m24- 6-62460…①m =;②若M (7-,720-),N (,720)为该函数图象上的 两点,则;(3)在平面直角坐标系中, A (),B ()为该函数图象上的两点,且A 为范围内的最低点, A 点的位置如图所示.(1)(2)(3)y x x x =---(1)(2)(3)y x x x =---(1)(2)(3)y x x x =---2-1-n n =xOy ,A A x y ,B A x y -23x ≤≤①标出点B 的位置;②画出函数()的图象.27.在平面直角坐标系中,抛物线(0m ≠)的顶点为A ,与x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C ,D 之间的部分记为图象G (包含 C ,D 两点).若过点A 的直线 与图象G 有两个交点,结合函数的图象,求k 的取值范围.28.在△ABC 中,AB =AC ,∠BAC =,点D 在射线BC 上(与B 、C 两点不重合),以AD 为边作正方形ADEF ,使点E 与点B 在直线AD 的异侧,射线BA 与射线CF 相交于点G .(1)(2)(3)y x x x =---04x ≤≤xOy 224y mx mx m =-+-+(0)y kx b k =≠90︒(1)若点D 在线段BC 上,如图1.①依题意补全图1;②判断BC 与CG 的数量关系与位置关系,并加以证明;(2)若点D 在线段BC 的延长线上,且G 为CF 中点,连接GE ,AB =,则GE 的长为_______,并简述求GE 长的思路.图1 备用图29.在平面直角坐标系中,⊙C 的半径为r ,P 是与圆心C不重合的点,点P 关于⊙C 的限距点的定义如下:若为 直线PC 与⊙C 的一个交点,满足,则称 为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限 距点的示意图.(1)当⊙O 的半径为1时.①分别判断点M ,N ,T 关 于⊙O 的限距点是否存在?若存在,求其坐标;②点D 的坐标为(2,0),DE ,DF 分别切⊙O 于点E ,点F ,点P 在△DEF 的 边上.若点P 关于⊙O 的限距点存在,求点的横坐标的取值范围;(2)保持(1)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E 的方向运动,⊙C 的圆心C 的坐标为(1,0),半径为r .请从下面两个问题中任选一个作答.2xOy P '2r PP r '≤≤P 'P '(3,4)5(,0)2(1,2)P 'P '温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.海淀区九年级第二学期期中练习数学试卷参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式 ……………………4分.………………………5分解不等式①,得 .………………………2分 解不等式②,得 . ………………………3分∴ 原不等式组的解集为.………………………4分 ∴ 原不等式组的所有整数解为8,9,10.………………………5分19. 解:原式………………………3分 .………………………4分∵ , ∴ .∴ 原式=. .………………………5分 20.证明:∵ ,∴ . ∵ , ∴ . ∴ .16413=-⨯+4=10≤x 7>x 107≤<x 4312222-++-+-=x x x x x 32-+=x x 250x x +-=52=+x x 532-=90BAC ∠=︒90BAD DAC ∠+∠=︒AD BC ⊥90ADC ∠=︒90DAC C ∠+∠=︒∴ . ………………………2分 ∵ 为边上的中线, ∴ .∴ . .………………………4分 ∴ BAD EDC ∠=∠. ………………………5分21.解:设小博每消耗1千卡能量需要行走x 步.………………………1分由题意,得. ………………………3分 解得 . ………………………4分 经检验,是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形为矩形,∴ ,∥. ∵ ∥,∴ 四边形为平行四边形. ………………………2分 ∴ .∴ . ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==,BAD C ∠=∠DE AC DE EC =EDC C ∠=∠xx 90001012000=+30=x 30=x ABCD AC BD =AB DC AC BE ABEC AC BE =BD BE =ABCD FD AC∴ 6CD CE ==. 同理,可得132CF DF CD ===. ∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分23. 解:(1)∵在直线上,∴. ………………………1分∵在双曲线上, ∴. ………………………2分图1 图2)P m y x =-m =P ky x=(6k ==-(2) ∵向上平移(0b >)个单位长度后,与轴,轴分别交于A ,B ,∴. ………………………3分作⊥轴于H ,可得△∽△.如图1,当点Q 在AB 的延长线上时,∵,∴3===ABAQOA HA OB HQ . ∵OA OB b ==, ∴,2HO b =.∴的坐标为.由点在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时,同理可得,的坐标为.由点在双曲线6y x=-上,可得. 综上所述,或. ………………………5分24. (1) 证明:如图,连接. ………………………1分∵为⊙的切线, ∴.y x =-b x y (,0),(0,)A b B b QH x HAQ OAB 2BQ AB =3HQ b =Q (2,3)b b -Q Q (2,)b b -Q 3b =1b =3b =OD BC O 90CBO ∠=︒∵平分BAD ∠, ∴. ∵OA OB OD ==, ∴1=4=2=5∠∠∠∠. ∴. ∴△△. ∴90CBO CDO ∠=∠=︒.∴为⊙的切线. ……………2分(2) ∵, ∴AE DE =.∴. ………………………3分 ∵124∠=∠=∠, ∴. ∵为⊙的直径, ∴.∴.………………………4分 ∴ . 在Rt △AFE 中, ∵,︒=∠303, ∴. ………………………5分25. (1) 45;………………………2分 (2) 21;………………………3分AO 12∠=∠BOC DOC ∠=∠BOC ≌DOC CD O AE DE =34∠=∠123∠=∠=∠BE O 90BAE ∠=︒123430∠=∠=∠=∠=︒90AFE ∠=︒3AE=AF =(3) .2015年中国内地动画电影市场票房收入前5名的票房成绩统计表………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分26. (2) ①;………………………1分 ②;………………………2分 (3)2.4(120%) 2.88⨯+=60m =-11n =正确标出点B 的位置,画出函数图象. …………………5分 27. 解:(1).∴ 点的坐标为. ………………………2分 (2)①由(1)得,抛物线的对称轴为x =1.∵ 抛物线与轴交于,两点(点B 在点C 左侧),BC =4,∴ 点的坐标为 ,点的坐标为 .………………………3分 ∴ . ∴ .∴ 抛物线的解析式为.……4分② 由①可得点的坐标为 .224y mx mx m =-+-2(21)4m x x =-+-2(1)4m x =--A (1,4)-x B C B (1,0)-C (3,0)240m m m ++-=1m =223y x x =--D (0,3)-当直线过点,时,解得.………5分当直线过点,时,解得. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. …………7分28. 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵,∴,.∵射线、的延长线相交于点,∴.∵四边形为正方形,∴,.∴.∴△≌△.…………………3分∴.∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分A D 1k =-A C 2k=︒=∠=90,BAC AC AB ︒=∠=∠45ACB B ︒=∠+∠9021BA CF G ︒=∠=∠90BAC CAG ADEF ︒=∠+∠=∠9032DAF AF AD =31∠=∠ABD ACF ︒=∠=∠45ACF B(2) .…………………5分思路如下:a . 由G 为CF 中点画出图形,如图2所示.b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =,即10GE FE AD ===. ……7分29.解:(1)①点M ,点T 关于⊙的限距点不存在;点N 关于⊙的限距点存在,坐标为(1,0).………………………2分②∵点D 的坐标为(2,0),⊙半径为1,DE ,DF 分别切⊙于点E ,点F , ∴切点坐标为13()2,,13()2,-.……………3分 如图所示,不妨设点E 的坐标为13()22,,点F 的坐标为13()2,-,EO ,FO 的延长线分别交⊙于点'E ,'F ,则13'()2E --,,13'()2F -,. 设点关于⊙的限距点的横坐标为.10GE =2=AB O O O O O P O xⅠ.当点在线段上时,直线PO 与的交点'P 满足2'1≤≤PP ,故点关于⊙的限距点存在,其横坐标满足.………5分 Ⅱ.当点在线段,(不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙的限距点不存在.Ⅲ.当点与点重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙的限距点存在,其横坐标=1.综上所述,点关于⊙的限距点的横坐标的范围为或=1. ……………………6分 (2)问题1: . ………………8分问题2:0 < r < 16. ………………7分P EF ''E F P O x 112x -≤≤-P DE DF O P D O x P O x 112x -≤≤-x。