仪器分析实验度

合集下载

仪器分析实验一多组分分光光度法

仪器分析实验一多组分分光光度法

仪器分析实验多组分分光光度法【实验目的】掌握可见吸收分光光度计的工作原理掌握并验证朗伯-比耳定律用可见吸收分光光度法测定样品的吸收曲线和摩尔消光系数。

【实验原理】根据Beer-Lambert定律,溶液对于单色光的吸收,遵守下列关系式:(1)式中A为吸光度;I / I。

为透光率; k为摩尔吸光系数,它是溶液的特性常数;I为被测溶液的厚度;c为溶液浓度。

在分光光度分析中,将每一种单色光,分别、依次地通过某一溶液,测定溶液对每一种光波的吸光度,以吸光度A对波长入作图,就可以得到该物质的分光光度曲线,或吸收光谱曲线,如图1所示。

由图可以看出,对应于某一波长有一个最大的吸收峰,用这一波长的入射光通过该溶液就有着最佳的灵敏度。

从(1)式可以看出,对于固定长度吸收槽,在对应最大吸收峰的波长(入)下测定不同浓度c的吸光度,就可作出线图1分光光度曲线性的A〜C线,这就是光度法的定量分析的基础。

以上讨论是对于单组分溶液的情况,对含有两种以上组分的溶液,情况就要复杂一些。

1)若两种被测定组分的吸收曲线彼此不相重合,这种情况很简单,就等于分别测定两种单组分溶液。

2 )两种被测定组分的吸收曲线相重合,且遵守Beer-Lambert定律,则可在两波长入1及入2时(入1、入2是两种组分单独存在时吸收曲线最大吸收峰波长)测定其总吸光度,然后换算成被测定物质的浓度。

根据Beer-Lambert定律,假定吸收槽的长度一定,则对于单组分A T A} = 对于单组分艮去=K;C B j设型",分别代表在A,及A2时混合溶液的总吸光度■则A 严=與 + 碱=K^C A + K?C B(3)此处「、从2、A B x 1、A B x 2分别代表在入1及入2时组分A 和B 的吸光度。

由(3)式可得:—屁—(5)这些不同的K 值均可由纯物质求得, 也就是说,在纯物质的最大吸收峰的波长 入时,测 定吸光度A 和浓度c 的关系。

如果在该波长处符合贝尔一郎比定律,那么 A 〜C 为直线,直线的斜率为K 值,’是混合溶液在 入1、入2时测得的总吸光度,因此根据 (5)、(6)式即可计算混合溶液中组分 A 和组分B 的浓度。

仪器分析实验邻菲罗啉分光光度法测定铁

仪器分析实验邻菲罗啉分光光度法测定铁

仪器分析实验邻菲罗啉分光光度法测定铁邻菲罗啉分光光度法是常用的测定铁含量的方法,该方法利用邻菲罗啉与Fe3+形成复合物时的吸收光谱特性进行定量分析。

本实验旨在通过邻菲罗啉分光光度法准确测定未知样品中铁的含量。

仪器及试剂:1.紫外可见分光光度计:用于测量样品在特定波长下的吸光度。

2.1,10-菲罗啉:作为萃取剂与Fe3+形成有色络合物。

3.盐酸:用于调节溶液的酸碱度。

4.硫酸:用于制备酸性条件下的邻菲罗啉试剂。

实验步骤:1.根据实验室提供的样品,称取适量未知样品,加入锥形烧瓶中。

2.加入10mL盐酸,调节溶液酸碱度,使溶液呈现酸性。

3.加入适量的邻菲罗啉试剂,溶解后进行稀释,拌匀。

4.将样品溶液转移到紫外可见分光光度计的比色皿中,以空白溶液为对照。

5.在特定波长下测量样品的吸光度,并记录下数值。

6.制备一系列已知浓度的铁标准溶液,重复步骤4和5,以绘制铁的标准曲线。

7.根据样品的吸光度和标准曲线,计算出样品中铁的含量。

实验注意事项:1.样品溶液的酸碱度对实验结果有较大影响,应确保样品处于酸性条件下,一般pH为1-2之间。

2.实验过程中尽量避免邻菲罗啉试剂的吸湿,以免影响准确性。

3.各步骤中,尽量保持操作环境清洁,以避免外界因素干扰。

4.标准曲线的绘制应涵盖目标测定范围内的各个浓度点,以保证测定结果的准确度。

分析结果及讨论:分析样品后,根据样品的吸光度和标准曲线,可以计算出样品中铁的含量。

分光光度法测定铁的优点是准确度高,灵敏度较好,样品处理简便。

然而,该方法需要严格控制反应条件,如酸碱度、反应时间等,以保证测定结果的准确性。

另外,样品中其他金属离子的存在也会对测定结果产生干扰。

因此,在分析过程中要注意样品的预处理,并对干扰进行合理处理,以提高分析结果的准确性。

总之,邻菲罗啉分光光度法是一种常用的测定铁含量的方法。

通过实验,可以熟悉该方法的操作步骤,了解标准曲线的绘制和分析结果的计算。

实验结果可用于质量控制、食品安全监测等领域的铁含量测定。

仪器分析实验报告全集

仪器分析实验报告全集

实验一(1)气相色谱-质谱联用仪的基础操作班别:11环科二学号:3111007390姓名:蔡辉东一、实验目的:1. 了解气相色谱-质谱联用仪的基础操作;2. 学习正确执行仪器的开机、关机;3. 参观资源综合利用与清洁生产重点实验室。

二、实验原理:1. 气相色谱-质谱联用仪的调谐目的:采用标准物质全氟三丁胺(FC-43)对质谱仪的质量指示进行校正;对质谱参数进行优化,以实现最好的峰形和分辨率;消除质量歧视;2. EI离子源可获得特征谱图以表征组分分子结构,目前有大量的有机物标准质谱图。

由计算机自动将未知质谱图处理成归一化棒状质谱图,按一定的检索方法与谱库中的标准谱图进行比较,计算它们的相似性指数(匹配度),把最相似的谱图化合物最为未知组分的鉴定结果,并按照相似性指数大小顺序,列出其名称、相对分子质量、分子式等以供分析参考。

三、仪器与试剂:仪器:气相色谱-质谱联用仪(美国安捷伦,型号7890A-5975C)试剂:全氟三丁胺标准品、高纯氦气四、实验步骤:1.打开氦气(纯度99.999%以上)瓶开关;打开UPS电源;打开打印机电源;启动联机电脑后打开气相色谱仪电源开关;2.待气相色谱仪自检完成后,打开质谱仪电源开关。

若质谱长时间未使用,真空仓侧门已打开,开质谱电源时需用手轻按真空仓侧门1min,以利于抽真空。

3.开机约1.5小时后打开工作站预热;待开机约2小时,检查真空度合格后,进入调谐菜单,点击自动调谐,进行调谐。

4.待调谐完毕,进入仪器操作界面,建立方法,进行定性分析(苯系物的GC-MS定性分析)5.分析完关机。

进入view菜单,点击“诊断”后,进入“真空”菜单,点击“Vent”,等Vent 结束后(≥50分钟),同时气相色谱仪进样口温度降至80℃以下后,退出工作站,依次关闭气相色谱仪、质谱仪和气瓶开关,关闭UPS电源开关。

五、注意事项:1. 必须严格按操作手册规定顺序进行开、关机程序;2. 仪器通过调谐后才能进行样品分析;3. 谱库检索结果并非定性分析的唯一方法,匹配度大小只表示可能性大小。

仪器分析实验邻二氮菲分光光度法测定铁

仪器分析实验邻二氮菲分光光度法测定铁

组成部分:光源,单色器,吸收池,检测器,显示装置 可见光区采用钨灯光源,玻璃吸收池,单色器为光栅
四、实验步骤:
1.显色标准溶液的配制 在序号为1~6的6只50 mL容量瓶中,用吸量管分别加入0, 0.20,0.40,0.60,0.80,1.0 mL铁标准溶液(含铁0.1 g· L-1), 分别加入1 mL 100 g· L-1盐酸羟胺溶液,摇匀后放置2 min, 再各加入2 mL 1.5 g· L-1邻二氮菲溶液、5 mL 1.0 mol· L-1乙酸 钠溶液,以水稀释至刻度,摇匀。 2.吸收曲线的绘制 在分光光度计上,用1 cm吸收池,以试剂空白溶液(1号)为参 比,在440~560 nm之间,每隔10 nm测定一次待测溶液(5号) 的吸光度A,以波长为横坐标,吸光度为纵坐标,绘制吸收 曲线,从而选择测定铁的最大吸收波长。 比色皿的使用中,每改变一次试液浓度,比色皿都要洗干净
四、实验步骤:
3.显色剂用量的确定 在7只50 mL容量瓶中,各加2.0 mL 10-3 mol· L-1铁标准溶液 和1.0 mL 100 g· L-1盐酸羟胺溶液,摇匀后放置2 min。分别 加入0.2,0.4,0.6,0.8,1.0,2.0,4.0 mL 1.5 g· L-1邻二氮 菲溶液,再各加5.0 mL1.0 mol· L-1 乙酸钠溶液,以水稀释 至刻度,摇匀。以水为参比,在选定波长下测量各溶液的 吸光度。以显色剂邻二氮菲的体积为横坐标、相应的吸光 度为纵坐标,绘制吸光度-显色剂用量曲线,确定显色剂 的用量。
用分光光度法测定物质的含量,一般采用标准曲线法,即 配制一系列浓度的标准溶液,在实验条件下依次测量各标 准溶液的吸光度(A),以溶液的浓度为横坐标,相应的吸 光度为纵坐标,绘制标准曲线。在同样实验条件下,测定 待测溶液的吸光度,根据测得吸光度值从标准曲线上查出 相应的浓度值,即可计算试样中被测物质的质量浓度。

仪器分析实训报告总结

仪器分析实训报告总结

一、实训背景随着科技的飞速发展,仪器分析在各个领域得到了广泛应用。

为了提高我们的实践操作能力,加深对仪器分析原理和方法的理解,我们进行了为期两周的仪器分析实训。

本次实训主要包括紫外分光光度计、原子吸收分光光度计、红外光谱仪、气相色谱仪等仪器的操作。

二、实训内容1. 紫外分光光度计(1)实训目的:了解紫外分光光度计的结构、原理及操作方法,掌握其定量分析技术。

(2)实训内容:通过学习,我们了解了紫外分光光度计的基本结构,包括光源、单色器、吸收池、检测器和信号处理与显示器。

掌握了如何正确选择波长、设置吸光度范围、进行样品测量等操作。

2. 原子吸收分光光度计(1)实训目的:了解原子吸收分光光度计的结构、原理及操作方法,掌握其定量分析技术。

(2)实训内容:通过学习,我们了解了原子吸收分光光度计的基本结构,包括光源、原子化器、单色器、检测器和信号处理与显示器。

掌握了如何进行样品前处理、正确设置波长、进行样品测量等操作。

3. 红外光谱仪(1)实训目的:了解红外光谱仪的结构、原理及操作方法,掌握其定性分析技术。

(2)实训内容:通过学习,我们了解了红外光谱仪的基本结构,包括光源、样品池、单色器、检测器和信号处理与显示器。

掌握了如何进行样品制备、正确设置波长、进行样品测量等操作。

4. 气相色谱仪(1)实训目的:了解气相色谱仪的结构、原理及操作方法,掌握其定性、定量分析技术。

(2)实训内容:通过学习,我们了解了气相色谱仪的基本结构,包括气路系统、进样系统、分离系统、检测系统和数据处理系统。

掌握了如何进行样品前处理、正确设置色谱柱、进行样品测量等操作。

三、实训收获1. 理论与实践相结合:通过本次实训,我们将所学的理论知识与实际操作相结合,加深了对仪器分析原理和方法的理解。

2. 操作技能提高:通过实际操作,我们熟练掌握了紫外分光光度计、原子吸收分光光度计、红外光谱仪、气相色谱仪等仪器的操作方法。

3. 分析能力提升:在实训过程中,我们学会了如何根据样品性质选择合适的仪器进行分析,提高了分析问题的能力。

紫外仪器分析实验报告

紫外仪器分析实验报告

一、实验目的1. 熟悉紫外分光光度计的仪器结构和工作原理。

2. 掌握紫外-可见吸收光谱法的基本原理和应用。

3. 通过实验掌握紫外-可见分光光度计的操作方法。

4. 学习利用紫外-可见吸收光谱法进行定量分析。

二、实验原理紫外-可见分光光度法是一种基于物质分子对紫外-可见光的选择性吸收而建立的分析方法。

该方法广泛应用于有机化合物的定性、定量分析以及物质的纯度检验。

紫外-可见光波长范围一般为200-800nm,其中200-400nm为紫外区,400-800nm为可见光区。

当物质分子吸收紫外-可见光时,分子中的电子从基态跃迁到激发态。

不同物质的分子结构不同,吸收光的波长和强度也不同。

因此,通过测定物质的吸收光谱,可以实现对物质的定性和定量分析。

朗伯-比尔定律(Lambert-Beer Law)是紫外-可见分光光度法的基础。

该定律表明,在一定波长下,溶液的吸光度(A)与溶液的浓度(c)和光程(l)成正比,即A= εcl,其中ε为摩尔吸光系数。

三、实验仪器与试剂1. 仪器:紫外-可见分光光度计、移液管、容量瓶、比色皿、洗耳球等。

2. 试剂:待测样品、标准溶液、溶剂等。

四、实验步骤1. 标准溶液的配制:根据待测样品的浓度,配制一系列标准溶液。

2. 吸收光谱的绘制:将标准溶液和待测样品分别置于比色皿中,在紫外-可见分光光度计上测定其在不同波长下的吸光度值。

3. 标准曲线的制作:以吸光度值为纵坐标,浓度为横坐标,绘制标准曲线。

4. 待测样品的定量分析:将待测样品的吸光度值代入标准曲线,计算其浓度。

五、实验结果与分析1. 标准曲线的制作:以吸光度值为纵坐标,浓度为横坐标,绘制标准曲线。

根据实验数据,标准曲线的线性关系良好,相关系数R²大于0.99。

2. 待测样品的定量分析:将待测样品的吸光度值代入标准曲线,计算其浓度。

实验结果表明,待测样品的浓度为X mg/L。

六、实验总结1. 通过本次实验,我们掌握了紫外-可见分光光度计的基本原理和操作方法。

仪器分析实验报告

仪器分析实验报告

仪器分析实验报告概述仪器分析是化学和生物技术研究的重要手段之一,通过使用各种仪器来分析和识别物质的性质、结构和组成,从而为科学研究和工业制造提供数据和信息。

本实验旨在通过对三种常用分析仪器的使用与操作,掌握仪器分析的基本方法和技能。

实验一:紫外可见分光光度计紫外可见分光光度计是一种常用的分析仪器,可以用于测定分子的吸光度,从而确定其浓度。

在实验中,我们使用紫外可见分光光度计来测定苯甲酸的吸收光谱,并根据吸收峰的强度和位置,判断苯甲酸的化学结构和活性。

实验结果表明,苯甲酸的紫外光谱主要在280nm处有一个吸收峰,证明其有芳香环结构;同时,其对紫外光谱的吸收强度与浓度之间呈线性关系,可用于定量分析。

实验二:原子吸收光谱仪原子吸收光谱仪是一种常用的分析仪器,可以用于分析痕量金属元素的含量。

在实验中,我们使用原子吸收光谱仪来测定硬度水样品中钙和镁的含量。

实验结果表明,硬度水样品中钙和镁的含量分别为0.4mg/L和0.5mg/L,与标准值相接近,说明该方法可靠。

实验三:气相色谱-质谱联用仪气相色谱-质谱联用仪是一种高分辨率、高灵敏度的分析仪器,可以用于分离和识别化合物中的各种成分。

在实验中,我们使用气相色谱-质谱联用仪来分析香料中的各种成分,并通过母离子扫描和碎片离子扫描来确定这些成分的分子结构和特征。

实验结果表明,香料中含有多种成分,其中醛类、酮类和酯类物质含量较高,可以作为该香料的主要特征。

同时,根据高准确度的质谱数据,我们还可以对这些成分的分子结构和碎片离子进行进一步分析,为该香料化学成分的研究提供了有力的支持。

结论通过对三种常用的仪器分析方法的使用与操作,我们深入了解了仪器分析的原理和技能,掌握了多种化学和生物信息分析的方法和技术。

同时,我们还进一步加深了对化学和生物学的认知和理解,为今后的科学研究和实践奠定了坚实的基础。

仪器分析实习调查报告

仪器分析实习调查报告

摘要:本报告旨在通过对仪器分析实习的调查,深入了解仪器分析的基本原理、操作方法以及在实际应用中的重要性。

通过对实习过程中的仪器使用、实验操作、数据分析等方面的记录与分析,旨在提升学生对仪器分析技术的认识,为今后的学习和工作打下坚实基础。

关键词:仪器分析;实习;原子吸收光谱;调查报告一、引言仪器分析作为化学领域的重要分支,在现代科学研究和工业生产中扮演着至关重要的角色。

为了使学生更好地掌握仪器分析技术,提高实验操作能力,本报告对仪器分析实习进行了全面调查。

二、调查对象及方法1. 调查对象:本次调查对象为某高校化学专业仪器分析课程实习环节的学生,共计30人。

2. 调查方法:(1)问卷调查:通过设计调查问卷,收集学生对仪器分析实习的满意度、实验操作能力、数据分析能力等方面的评价。

(2)访谈:对部分学生进行个别访谈,深入了解他们在实习过程中的体验和收获。

(3)实验操作观察:观察学生在实验过程中的操作规范、熟练程度等方面。

三、调查结果与分析1. 实验操作能力:调查结果显示,学生在实验操作方面整体表现良好,能够熟练使用原子吸收光谱仪进行样品分析。

具体表现在以下方面:(1)熟悉仪器操作流程:学生能够按照实验步骤进行操作,确保实验顺利进行。

(2)准确测量样品:学生在使用原子吸收光谱仪时,能够准确测量样品的吸光度,为后续数据分析提供可靠数据。

(3)熟练操作计算机:学生在进行数据分析时,能够熟练运用计算机软件进行数据处理和分析。

2. 数据分析能力:调查结果显示,学生在数据分析方面存在一定程度的不足。

具体表现在以下方面:(1)数据处理方法掌握不熟练:部分学生在数据处理过程中,对数据处理方法掌握不熟练,导致数据分析结果不准确。

(2)结果解释能力不足:学生在对实验结果进行解释时,往往缺乏深度和广度,难以从数据中挖掘出更深层次的信息。

3. 实习满意度:调查结果显示,学生对仪器分析实习的满意度较高。

具体表现在以下方面:(1)实验内容丰富:实习内容涵盖了原子吸收光谱仪的基本原理、操作方法、数据分析等多个方面,使学生能够全面了解仪器分析技术。

最新仪器分析实验2——实验报告

最新仪器分析实验2——实验报告

最新仪器分析实验2——实验报告实验目的:1. 熟悉最新仪器的基本操作和功能。

2. 掌握样品的前处理方法和仪器分析过程。

3. 分析并解释实验数据,提高解决实际问题的能力。

实验原理:本次实验使用的仪器为高效液相色谱仪(HPLC),其工作原理是利用样品中的各组分在流动相和固定相之间的分配系数不同,通过色谱柱进行分离,然后通过检测器对各组分进行定量或定性分析。

本实验将采用反相色谱法,以提高分析的灵敏度和分离效率。

实验材料:1. 高效液相色谱仪(HPLC)。

2. 待测样品溶液。

3. 流动相溶剂。

4. 色谱柱。

5. 检测器。

实验步骤:1. 准备样品:按照实验要求,将待测样品进行适当稀释和前处理。

2. 仪器校准:根据仪器操作手册,对HPLC进行校准,确保检测器灵敏度和色谱柱性能达到最佳状态。

3. 流动相准备:根据实验方案,配制合适的流动相比例。

4. 色谱分析:将样品溶液注入色谱仪,记录色谱图谱。

5. 数据处理:使用色谱软件对色谱图谱进行积分、定量分析,并进行必要的校正。

实验结果:1. 色谱图谱:展示实验得到的色谱图,包括各组分的保留时间和峰面积。

2. 定量分析:列出各组分的浓度或含量。

3. 分析误差:讨论可能的误差来源,并对实验结果进行评估。

实验讨论:1. 分析实验中可能出现的问题及其原因,如色谱峰的拖尾、分离度不够等。

2. 探讨改进实验方案的可能性,如改变流动相组成、温度控制等。

3. 讨论实验结果对实际应用的意义,例如在环境监测、食品安全等领域的应用前景。

结论:通过本次实验,我们成功地使用最新仪器对样品进行了分析,并得到了可靠的数据。

实验结果表明,所采用的方法和步骤是有效的,可以用于进一步的研究和应用。

同时,我们也认识到了实验操作中需要注意的细节,为未来的实验提供了宝贵的经验。

仪器分析实验处理报告

仪器分析实验处理报告

一、实验目的:1.了解静态液相微萃取过程中萃取剂种类和用量、搅拌速度、萃取时间、pH值及离子强度等因素对酚类污染物萃取效率的影响。

2.了解熟悉气象色谱法的使用方法以及注意事项。

3.学会用分散液相微萃取-气相色谱法测定环境水样中的三种芳香酚(苯酚、邻甲基苯酚、对甲基苯酚)。

二、实验原理:分散液相微萃取:分散液相微萃取是最近发展起来的一种新型样品前处理技术,该方法操作简单、成本低、富集效率高、所需有机溶剂用量极少,是一种环境友好的液相微萃取新技术。

与悬滴液相微萃取和中空纤维液相微萃取相比,萃取时间大为缩短。

分散液相微萃取可与气相色谱、液相色谱和原子吸收分光光度计等仪器联用,并已在环境样品、食品样品分析中得到了较广泛的应用。

分散液相微萃取,首先在样品溶液中加入数十微升萃取剂和一定体积分散剂,混合液经轻轻振荡后即形成一个水/分散剂/萃取剂的乳浊液体系,再经离心分层,用微量进样器取出萃取剂就直接进样分析。

该方法集采样、萃取和浓缩于一体,避免了固相微萃取中可能存在的交叉污染的问题,是一种操作简单、快速、成本低、富集效率高且对环境友好的样品前处理新技术,在痕量分析领域具有广泛的应用前景。

分散液-液微萃取技术是建立在三相溶剂系统如匀质液-液萃取技术和浊点萃取技术的基础上的。

匀质液-液萃取技术是利用匀质溶液中的相分离将目标物萃取到被分离的相中。

在相分离之前,水相与水溶性有机溶剂相是没有分界面的,两相的接触面积很大,因而萃取过程很迅速,不需要机械振荡等外力作用。

但匀质液-液萃取技术由于需加入酸、碱、盐等物质,在萃取时发生热量损失的情况。

在浊点萃取技术中,表面活性剂水溶液达到临界胶束浓度时,会聚合形成具有胶束尺寸的分子聚合体。

由于分子聚合体有很强的萃取能力,目标物能被很好地萃取到表面活性剂相中。

当温度发生改变时,无明显界面的表面活性剂相和水相就发生相分离。

由于表面活性剂的存在,在气相色谱和高效液相色谱检测中可能会造成干扰。

仪器分析实验报告2

仪器分析实验报告2

荧光分析法测定邻羟基苯甲酸和间羟基苯甲酸一、实验目的1.学习荧光分析法的基本原理和操作。

2.掌握邻间羟甲基苯甲酸的荧光性质。

二、实验原理使用荧光光度计测定邻—羟基苯甲酸(亦称水杨酸)和二组分混合物的荧光强度,邻—羟基苯甲酸(亦称水杨酸)和间—羟基苯甲酸分子组成相同,均含一个能发射荧光的苯环,但因其取代基的位置不同而具不同的荧光性质。

在pH= 12的碱性溶液中,二者在310nm附近紫外光的激发下均会发射荧光;在pH= 5. 5的近中性溶液中,间—羟基苯甲酸不发荧光,邻—羟基苯甲酸因分子内形成氢键增加分子刚性而有较强荧光,且其荧光强度与pH= 12时相同。

利用此性质,可在pH= 5. 5时测定二者混合物中邻羟基苯甲酸含量,间—羟基苯甲酸不干扰。

另取同样量混合物溶液,测定pH= 12时的荧光强度,减去pH= 5. 5时测得的邻—羟基苯甲酸的荧光强度,即可求出间—羟基苯甲酸的含量。

三、仪器与试剂仪器:日立M850型荧光分光光度计;10 ml 比色管;分度吸量管。

试剂:邻羟基苯甲酸标准溶液:60 u g/ml(水溶液);间羟基苯甲酸标准溶液:60u g/ml(水溶液);Hac-NaAc缓冲溶液:47gNaAc和6g冰醋酸溶于水并稀释至1L,得pH5.5的缓冲液;NaOH溶液:0.1 mol/L。

四、实验内容与步骤配置标准系列和未知溶液1、分别移取0.40,0.80,1.20,1.60,和2.00 mL邻羟基苯甲酸溶液于已编号的10mL比色管中,各加入1.0mLpH 5.5 HAc-NaAc缓冲液,用去离子水稀释至刻度,摇匀备用。

2、分别移取0.40,0.80,1.20,1.60,和2.00 mL间羟基苯甲酸溶液于已编号的10 mL比色管中,各加入1.20 mL 0.1 mol/L NaOH溶液,用去离子水稀释至刻度,摇匀备用。

3、取未知溶液各2.0 mL于10 mL比色管中,其中一份加入1.0 mL pH 5.5的HAc-NaAc缓冲溶液,另一份加入1.2 mL 0.1 mol/L NaOH溶液,均用去离子水稀释到刻度备用。

仪器分析实验

仪器分析实验

实验一、二邻二氮菲吸光光度法测定铁(条件实验和试样中铁含量的测定)一、实验目的1、掌握吸光光度法的基本原理及操作;2、学习如何选择吸光光度法的实验条件;3、掌握邻二氮菲测定铁的基本原理。

二、实验原理在吸光光度法测量中,若被测组份本身有色,则不用显色剂即可直接测量;若被测组分本身无色或颜色很浅,则需用显色剂与其反应(即显色反应),生成有色化合物,再进行吸光度的测量。

大多数显色反应是络合反应,对显色反应的要求是:1、灵敏度足够高,一般选择反应生成物的摩尔吸光系数ε大的显色反应以适于微量组份的测定;2、选择性好,干扰少或容易消除;3、生成的有色化合物组成恒定,化学性质稳定,与显色剂有较大的颜色区别。

在建立一个新的吸光光度法时,为了获得比较高的灵敏度和准确度,应以显色反应和测量条件两个方面,考虑下列因素:1、研究被测离子、显色剂和有色化合物的吸收光谱,选择适合的测量波长;2、溶液pH值对吸光度的影响;3、显色剂的用量、显色时间、颜色的稳定性及温度对吸光度的影响;4、被测离子符合朗伯—比尔定律的线性浓度范围;5、干扰离子的影响及排除的方法;6、参比溶液的选择。

此外,对方法的精密度和准确度,也需要进行实验。

铁的显色剂很多,如硫氰酸铵、巯基乙酸、磺基水杨酸钠和邻二氮菲等。

其中,邻二氮菲是测定微量铁的一种较好的试剂,它与二价铁离子反应,生成稳定的橙红色络合物(L g K稳定=21.3)Fe2++3phen==[Fe(phen)3]2+此反应很灵敏,络合物的摩尔吸光系数为:ε=1.1 104 L / mol.cm 。

在pH=2~9之间,颜色深度与酸度无关,而且很稳定,在有还原剂存在的条件下,颜色的深度可以维持几个月不变。

本方法的选择性很高,干扰很少,相当于铁含量40倍的Sn2+、Al3+、Ca2+、Mg2+、Zn2+、SiO32-;20倍的Cr3+、Mn2+、VO3-、PO43-;5倍的Co2+、Cu2+等均不干扰测定,所以此方法应用很广。

现代仪器分析实验报告

现代仪器分析实验报告

现代仪器分析实验报告实验报告:现代仪器分析实验一、实验目的本实验旨在介绍现代仪器分析的原理和应用,并通过实验操作,让学生掌握常用仪器的使用方法和数据分析技能。

二、实验步骤1.使用原子吸收光谱仪分析食品样品中的微量金属元素。

a.将食品样品与硝酸混合,进行酸解。

b.用氧/乙炔火焰产生气体,并使用火焰稳定器进行稳定。

c.将产生的气体通过光谱仪进行测试,记录吸光度的数据。

d.使用标准曲线法计算食品样品中金属元素的浓度。

2.使用气相色谱仪分析环境空气中的有机污染物。

a.装配气相色谱仪并进行参数设置。

b.存储样品并进行进样操作。

c.通过色谱柱分离样品中的有机污染物,并记录峰面积数据。

d.使用峰面积法计算样品中有机污染物的浓度。

3.使用核磁共振仪分析有机化合物的结构。

a.将样品溶解于溶剂中,并将溶液装入核磁管。

b.运行核磁共振仪,采集样品的核磁共振谱图。

c.根据谱图确定样品的分子结构。

4.使用超高效液相色谱仪分析药物中的成分。

a.预处理样品,将其溶解于溶剂中。

b.设置色谱仪的参数,包括流速、柱温等。

c.进行样品进样和色谱分离,记录峰面积和保留时间。

d.使用指纹图谱法进行数据分析,确定样品中药物成分的种类和含量。

三、实验结果1.食品样品中金属元素的浓度如下:金:0.05 mg/kg银:0.02 mg/kg铜:0.03 mg/kg2.环境空气中有机污染物的浓度如下:苯:10μg/m³甲苯:5μg/m³二甲苯:2μg/m³3.样品的核磁共振谱图如下:化合物A:含4个苯环化合物B:含1个醇基和1个甲基4.药物中的成分和含量如下:成分A:含量0.1%成分B:含量0.2%成分C:含量0.3%四、实验讨论1.通过原子吸收光谱仪分析食品样品中的金属元素含量,可以判断食品的安全性。

2.气相色谱仪能够高效地分离和检测环境空气中的有机污染物,对环保工作具有重要意义。

3.核磁共振仪能够精确地确定有机化合物的结构,为有机化学研究提供重要依据。

现在仪器分析实验报告

现在仪器分析实验报告

一、实验目的1. 掌握气相色谱-质谱联用仪(GC-MS)的基本原理和操作方法。

2. 学习如何进行样品前处理,包括提取、净化和浓缩。

3. 通过实验,分析样品中的未知化合物,并鉴定其结构。

4. 熟悉数据处理和分析方法,如峰面积归一化、保留时间校正等。

二、实验原理气相色谱-质谱联用仪(GC-MS)是一种分离和分析复杂混合物中化合物的高效手段。

它结合了气相色谱(GC)的高分离能力和质谱(MS)的高灵敏度和高选择性。

GC-MS的原理是:首先,将样品通过气相色谱柱进行分离,然后进入质谱仪进行检测和鉴定。

三、实验仪器与试剂1. 仪器:气相色谱-质谱联用仪(美国安捷伦,型号7890A-5975C)、气相色谱柱(DB-5MS,30m×0.25mm×0.25μm)、进样器、质谱仪、工作站等。

2. 试剂:正己烷、乙酸乙酯、环己烷、石油醚、丙酮、无水硫酸钠、样品等。

四、实验步骤1. 样品前处理- 称取一定量的样品,用正己烷溶解,转移至离心管中。

- 加入适量无水硫酸钠,振荡混匀,静置,取上层溶液。

- 将溶液转移至浓缩管中,在氮气吹扫下浓缩至近干。

- 用正己烷溶解残渣,转移至进样瓶中,备用。

2. 气相色谱-质谱联用仪操作- 打开气相色谱-质谱联用仪,预热约30分钟。

- 设置气相色谱参数:柱温程序、流速、进样量等。

- 设置质谱参数:扫描范围、扫描速度、离子源温度等。

- 启动工作站,进行数据处理和分析。

3. 数据分析- 将色谱图导入工作站,进行峰面积归一化。

- 根据保留时间和质谱图,对未知化合物进行鉴定。

- 查阅标准谱库,确定化合物的结构。

五、实验结果与讨论1. 通过气相色谱-质谱联用仪,成功分离并鉴定了样品中的多种化合物。

2. 鉴定结果与标准谱库中的谱图高度一致,证明鉴定结果的准确性。

3. 实验过程中,发现以下问题:- 样品前处理过程中,部分样品溶液出现浑浊现象,可能是因为样品中含有杂质。

- 部分化合物的质谱图与标准谱库中的谱图相似度不高,可能是因为样品浓度较低或存在同分异构体。

仪器分析实验

仪器分析实验

仪器分析实验Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】仪器分析实验指导实验一气相色谱内标法测定白酒中乙酸乙酯含量一、实验目的1、掌握气相色谱内标法测定白酒中乙酸乙酯含量2、掌握气相色谱仪的结构及使用方法二、实验原理试样被汽化后,随同载气进入色谱柱,利用被测定的各组分在气液两相中具有不同的分配系数,在柱内形成迁移速度的差异而得到分离。

分离后的组分先后流出色谱柱,进入氢火焰离子化检测器,根据色谱图上各组分峰的保留值与标样对照进行定性,利用峰面积(或峰高),以内标法定量。

三、实验仪器及试剂仪器:气相色谱仪,氢火焰离子化检测器(FID);色谱柱:白酒专用填充柱,微量注射器:10微升试剂:乙醇,色谱纯(分析纯代替)。

配成60%乙醇水溶液;乙酸乙酯,色谱纯,作标样用。

2%溶液(用60%乙醇水溶液配制);乙酸正丁酯,色谱纯,作内标用。

2%溶液(用60%乙醇水溶液配制);四、实验步骤1.仪器的准备,色谱条件的确定检测器温度:260℃;进样口温度:240℃;柱温程序: 60℃保持1分钟,以3℃/分钟的速率升到90℃,然后以40℃/分钟升到220℃。

2. 校正因子(f )的测定吸取2%乙酸乙酯标准溶液,移入100mL 容量瓶中,然后加入2%内标液,用60%乙醇溶液稀释至刻度。

上述溶液中乙酸乙酯和内标的浓度均为%(体积分数)。

进行GC 检测,记录乙酸乙酯和内标峰的保留值及其峰面积(或峰高),其比值计算出乙酸乙酯的相对校正因子(f )。

f= A 1* d 2/ A 2* d 1C= f* A 3* C 1*10-3/ A 1其中:C---试样中乙酸乙酯的质量浓度,g/L;f---乙酸乙酯的相对校正因子;A 1---标样f 值测定时内标的峰面积(或峰高);A 2---标样f 值测定时乙酸乙酯的峰面积(或峰高)A 3---试样中乙酸乙酯的峰面积(或峰高)A 4---添加于酒样中内标的峰面积(或峰高)C 1---添加在酒样中)内标的质量浓度,mg/L 。

仪器分析实验报告

仪器分析实验报告

实验一气相色谱仪一、技术参数:1、温度范围:室温+4℃~450℃2、检测器:FID、TCD、ECD3、载气流量控制部最小检测量P:0.2pgP/s二、主要特点:1、采用新一代AFC(先进的流量控制器)设计,使载气控制方面有更高精度,实现了保留时间、峰面积、峰高的优良重现性。

2、为满足复杂样品分析,主机可安装3个进样口和4个检测器,从而省去了拆换检测器的麻烦。

使用GCsolution 可进行4种检测器同时检测。

3、柱温箱可达到最快的升温速率250℃/min,加快分析物流出,满足了快速分析所需要的升温要求,并方便用户对色谱柱进行老化。

4、岛津专利的“载气恒线速度控制方式”,可以在最短时间内得到最优化分离条件。

5、工作站GCsolution的检测器数据采集速率高达250Hz(4msec),保证快速分析时数据的准确性和完整性。

三、主要用途:除用于定量和定性分析外,还能测定样品在固定相上的分配系数、活度系数、分子量和比表面积等物理化学常数。

在石油化学工业中大部分的原料和产品都可采用气相色谱法来分析;在电力部门中可用来检查变压器的潜伏性故障;在环境保护工作中可用来监测城市大气和水的质量;在农业上可用来监测农作物中残留的农药;在商业部门可和来检验及鉴定食品质量的好坏;在医学上可用来研究人体新陈代谢、生理机能;在临床上用于鉴别药物中毒或疾病类型;在宇宙飞船中可用来自动监测飞船密封仓内的气体等等。

四.仪器构造载气系统气相色谱仪中的气路是一个载气连续运行的密闭管路系统。

整个载气系统要求载气纯净、密闭性好、流速稳定及流速测量准确。

进样系统进样就是把气体或液体样品匀速而定量地加到色谱柱上端。

(3)分离系统分离系统的核心是色谱柱,它的作用是将多组分样品分离为单个组分。

色谱柱分为填充柱和毛细管柱两类。

(4)检测系统检测器的作用是把被色谱柱分离的样品组分根据其特性和含量转化成电信号,经放大后,由记录仪记录成色谱图。

(5)信号记录或微机数据处理系统近年来气相色谱仪主要采用色谱数据处理机。

仪器分析实验报告

仪器分析实验报告

实验一 紫外-可见分光光度计的性能检验一、实验目的1.掌握紫外-可见分光光度计性能的检验方法2.学会UV-1100型紫外-可见分光光度计的使用方法二、实验原理分光光度计的性能的好坏,直接影响到测定结果的准确程度。

因此,要对仪器进行性能检查,以保证测定结果的准确性。

三、仪器和试剂UV -1100型紫外-可见分光光度仪石英比色皿(一对)擦镜纸K 2Cr 2O 7溶液 KMnO 4溶液蒸馏水四、实验内容及操作步骤1. 比色皿的配对性 将蒸馏水注入到比色皿中,以其中一个比色皿作空白,在 440 nm 波长处分别测定其他各比色皿中的透光率。

2.波长精度的检查 用KMnO 4溶液的最大吸收波长525nm 为标准,在待测仪器上测绘KMnO 4溶液的吸收曲线,若测得的最大吸收波长在525±1nm 以内,则仪器的波长精度符合使用要求。

3. 重复性 以0.02mol/L 的H 2SO 4溶液的透光率为100%,用同一K 2Cr 2O 7溶液连续测定7次,求出极差,如小于0.5%,则重复性符合要求。

4.吸收值的准确度考察 取K 2Cr 2O 7溶液,在以下波长处测定并计算其吸收系数,并与规定的吸收系数比较,如下表所示,其相对偏差在±1%以内,则吸收值的准确度符合要求。

波长/cm235 (最小) 257 (最大) 313 (最小) 350 (最大) 吸收系数1%1E cm 123.0~126.0 142.8~146.247.0~50.3 105.5~108.5五、思考题1. 同种比色皿透光度的差异对测定有何影响?2. 检查分光光度计的重复性对测定有什么实际意义?实验二、吸收曲线的测绘及吸收系数的测定一、实验目的1. 掌握测绘吸收曲线的方法实验三、分光光度法测定槐花中总黄酮的含量一、实验目的1.掌握用标准曲线法测定槐花中总黄酮含量的方法2.巩固紫外-可见分光光度计的操作方法二、实验原理黄酮类化合物分子结构中多含有羰基和羟基等结构,这些结构可与金属盐类试剂如铝盐、铅盐等生成有色配合物。

仪器分析实验

仪器分析实验

实验1:紫外分光光度法测定芳香族化合物一、实验目的了解紫外吸收光谱在有机化合物结构分析中的应用,籍注“标准吸收光谱鉴定未知物。

学习有机物的定量分析方法。

二、基本原理许多有机物在紫外区有特征吸收光谱,从而可用来进行有机物的鉴定及结构分析(主要用于鉴定有机物的官能团)。

此外,还可对同分异构体进行鉴别,对具有π键电子及共扼双键的化合物特别灵敏,在紫外光区有极强烈的吸收谱。

该法在有机物分析中主要可进行如下分析:①纯度检查。

②未知样的鉴定。

③互变异构体的判别。

④分子结构的推测。

⑤定量测定。

三、仪器试剂仪器:紫外可见分光光度计,1cm石英皿试剂:萘-乙醇溶液,10μg/mL、1μg/mL,苯酚,环己烷四、实验步骤1.未知物鉴定(苯酚)取约0.1mg的苯酚晶体,溶于5~10mL环己烷中。

以环己烷为参比,用1cm石英比色皿测定215-290nm波长的吸收光谱。

(注意:每隔0.2nm测定一个点,其中波峰处0.1nm测一个点,所有波长处测定前都应先以参比调整零点。

)2.萘的测定以无水乙醇为参比溶液,用1cm石英皿对浓度1μg/mL的萘乙醇溶液测其在210-230nm的紫外区间的吸收光谱(间隔2nm),准确找出最大吸收峰位置。

用10mL容量瓶6支,分别配制0.2,0.4,0.6,0.8,1.0,1.5μg/mL的萘标准溶液各10mL。

在最大吸收波长处分别测定各标准溶液的吸光度,浓度由低向高记录所测定的吸光度。

测定未知样品的吸光度,注意测定条件应与标准一致。

五、实验数据及处理1.未知物的鉴定:记录不同波长及相应吸光度数据。

绘制吸收曲线,并与标准吸收光谱进行比较,以确定未知物的成分。

2.萘的定量分析:记录萘-乙醇溶液的波长—吸光度数据,绘制萘的吸收光谱,确定最大吸收峰波长。

记录萘系列标准溶液及未知试样的吸光度数据,绘制萘-乙醇标准溶液的标准工作曲线,由标准曲线查得样品的浓度。

实验2 原子吸收分光光度法测定饮用水中的钙一、实验目的掌握以原子吸收分光光度法进行定量测定的原理、方法,并了解原子吸收分光光度计的大致结构及使用方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仪器分析实验指导实验一气相色谱内标法测定白酒中乙酸乙酯含量一、实验目的1、掌握气相色谱内标法测定白酒中乙酸乙酯含量2、掌握气相色谱仪的结构及使用方法二、实验原理试样被汽化后,随同载气进入色谱柱,利用被测定的各组分在气液两相中具有不同的分配系数,在柱内形成迁移速度的差异而得到分离。

分离后的组分先后流出色谱柱,进入氢火焰离子化检测器,根据色谱图上各组分峰的保留值与标样对照进行定性,利用峰面积(或峰高),以内标法定量。

三、实验仪器及试剂仪器:气相色谱仪,氢火焰离子化检测器(FID);色谱柱:白酒专用填充柱,微量注射器:10 微升试剂:乙醇,色谱纯(分析纯代替)。

配成60% 乙醇水溶液;乙酸乙酯,色谱纯,作标样用。

2%溶液(用60% 乙醇水溶液配制);乙酸正丁酯,色谱纯,作内标用。

2%溶液(用60% 乙醇水溶液配制);四、实验步骤1. 仪器的准备,色谱条件的确定检测器温度:260 ℃;进样口温度:240 ℃;柱温程序:60℃保持1分钟,以3℃/分钟的速率升到90 ℃,然后以40℃ /分钟升到220 ℃。

2. 校正因子(f )的测定吸取2%乙酸乙酯标准溶液1.0mL ,移入100mL 容量瓶中,然后加入2% 内标液1.0mL ,用60% 乙醇溶液稀释至刻度。

上述溶液中乙酸乙酯和内标的浓度均为0.02% (体积分数)。

进行GC 检测,记录乙酸乙酯和内标峰的保留值及其峰面积(或峰高),其比值计算出乙酸乙酯的相对校正因子(f )。

f= A 1* d 2/ A 2* d 1C= f* A 3* C 1*10 -3 / A1其中:C--- 试样中乙酸乙酯的质量浓度,g/L;f--- 乙酸乙酯的相对校正因子;A1--- 标样f 值测定时内标的峰面积(或峰高);A2--- 标样f 值测定时乙酸乙酯的峰面积(或峰高)A3--- 试样中乙酸乙酯的峰面积(或峰高)A4--- 添加于酒样中内标的峰面积(或峰高)C1--- 添加在酒样中)内标的质量浓度,mg/L 。

d1--- 内标物的相对密度;d2--- 乙酸乙酯的相对密度。

五、试样的测定吸取10.0mL 酒样于10mL 容量瓶中,加入2% 内标液0.20mL ,混匀后,在与f 值测定相同的条件性进样,根据保留时间测定乙酸乙酯峰的位置,并测定乙酸乙酯与内标峰面积,求出峰面积之比,计算出酒样中乙酸乙酯的含量。

六、思考题1. 简述程序升温的优点。

2. 白酒分析采用内标法定量,为什么?实验准备:仪器2 台:气相色谱仪,备用氢火焰离子化检测器 (FID );色谱柱:SE-54 色谱柱( 50m*0.32mm*0..25mm ),微量注射器:10 微升试剂:60% 乙醇水溶液配制:吸取60mL 无水乙醇至100mL 量筒,加纯净水至100mL 即得;2% 乙酸乙酯标样:吸取1mL 色谱纯乙酸乙酯至50mL 量筒,加上述60% 乙醇水溶液至50mL 即得;2% 乙酸正丁酯内标:吸取1mL 色谱纯乙酸正丁酯至50mL 量筒,加上述60% 乙醇水溶液至50mL 即得;实验二HPLC 法测定饮料中人工色素的含量一、目的与要求1. 理解反相色谱的原理和应用。

2. 掌握外标定量方法。

二、基本原理食品着色剂是以给食品着色为主要目的的添加剂,也称食用色素。

食品着色剂使食品具有悦目的色泽,对增加食品的嗜好性及刺激食欲有重要意义。

大量的研究报告指出,过多的食用合成色素不仅不能向人体提供营养物质,某些合成色素甚至会危害人体健康,导致生育力下降、畸胎等等,有些色素在人体内可能转换成致癌物质。

危害包括一般毒性、致泻性、致突性(基因突变)与致癌作用。

高效液相色谱分离是利用试样中各组分在色谱柱中的淋洗液和固定相间的分配系数不同,当试样随着流动相进入色谱柱中后,组分就在其中的两相间进行反复多次的分配(吸附-脱附-放出),由于固定相对各种组分的吸附能力不同(即保存作用不同),因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,顺序离开色谱柱进入检测器,产生的离子流信号经放大后,在记录器上描绘出各组分的色谱峰。

三、仪器与试剂仪器: LC100高效液相色谱仪(ΜV检测器;二元梯度泵),上海五丰。

样品:前处理后的“美年达”色素浓缩样品液、日落黄色素标准溶液。

试剂:甲醇(HPLC纯) ,重蒸馏水、乙酸铵。

四、实验内容与步骤1. 色谱条件色谱柱Agilent XDB-C18 色谱柱(4.6mm ×250 mm ,5μm) ;流动相:(A )0.02mol/L 乙酸铵溶液,(B)甲醇;柱温:30 ℃;梯度洗脱程序为0 min~5.0 min ,20 %B~35 %B ;3.0 min~5.0 min ,35 %B ;5.0 min~10.0 min ,35 % B ~98 % B;10.0 min ~12.0 min ,98 % B ;12.0 min ~13.0 min ,98 %B~20 %B ;13.0 min~15.0 min ,20 %B~20 %B ;检测波长484nm 。

2. 标准液制备及标准曲线制备准确称取制备好的日落黄色素标准样品5mg ,加蒸馏水溶解后移人10mL 的容量瓶中,用甲醇稀释至刻度,摇晃使其浓度均匀,制得1mg/ml 日落黄色素标准液,分别取该标溶液2μL, 4μL, 6μL, 8μL,10 μL进样,分别测出峰面积, 不强制过原点,以浓度对峰面积进行回归, 得标准曲线和回归方程。

数据处理机给出峰面积值,以标准品进样量(μg) 为纵坐标( Y) ,峰面积为横坐标( X) ,得标准曲线。

3. 样品液制备取商品“美年达” 50ml 于100ml 烧杯中,80 ℃加热10分钟驱除二氧化碳,间歇搅拌。

用水定容至100ml 。

4. 色谱测定用微量注射器分别吸取10μL 标品、试样溶液注入色谱仪,取得色谱图,以保留时间对照定性,确定落日黄色谱峰,并记录锋面积。

五、实验数据及处理1. 以色谱峰面积为纵坐标。

落日黄标准系列溶液的浓度为横坐标,绘制标准曲线。

2. 根据试样溶液色谱图中落日黄峰面积,查出试样溶液中落日黄的含量,并计算样品中落日黄的含量(μg/mL )。

六、问题与讨论1. 正相、反相色谱分离系统是如何定义的,它们分别适用于什么情况?2. 为什么可以利用色谱峰的保留时间进行色谱定性分析?实验三紫外吸收光谱法测定食品中苯甲酸的含量一、实验目的1. 了解紫外光谱法原理及苯甲酸的紫外吸收特征。

2. 了解紫外可见分光光度计的使用。

3. 学习利用吸收光谱曲线进行化合物鉴定和含量分析。

二、实验原理许多有机化合物或其衍生物,在可见光或紫外光区有吸收光谱,各种物质分子有其特征的吸收光谱。

吸收光谱的形状和物质的特性有关,可作为定型鉴定的依据,而在某选定的波长下,测量其吸收光度即可对物质进行定量分析。

紫外吸收光谱用于定量分析时,符合朗伯比尔定律。

据朗伯-比尔定律:当一定波长的单色光通过某物质的溶液时,入射光强I0 与透过光强It 之比的对数与该物质的浓度及液层厚度成正比,数学表达式为:A= log I I0=kbc ,A 为吸光度,b为溶液层厚度,单位cm ;c 为被测物质浓度,I t当浓度单位为mol/L ;k 为摩尔吸光系数。

在比色皿及入射光强度一定时,吸光度正比于被测物质浓度,这便是定量分析的依据。

苯甲酸别名安息香酸,白色单斜晶系片状或针状结晶体,略带安息香或苯甲醛气味。

熔点122.4 ℃,在100 ℃时迅速升华,它的蒸气有很强的刺激性,吸入后易引起咳嗽。

苯甲酸在常温下微溶于水,石油醚,但溶于热水,水溶液呈酸性;易溶于醇、醚、丙酮等有机溶剂,也溶于非挥发性油。

对霉菌,酵母和细菌等有较好的抑制作用,因而对微生物有强烈毒性,但对人体毒害不明显。

苯甲酸及其钠盐可用作乳胶、牙膏、果酱或其他食品的抑菌剂和防腐剂,也可作染色和印色的媒染剂。

在碱性条件下,苯甲酸形成苯甲酸盐,对紫外光有选择性吸收,其吸收光谱的最大吸收波长在225nm 。

可采用紫外分光光度计测定物质在紫外光区的吸收光谱并进行定量分析。

三、仪器和试剂1、仪器紫外-可见分光光度计,1cm 石英比色皿,移液管,容量瓶。

2、试剂苯甲酸(AR),0.01mol/L 氢氧化钠溶液。

四、实验步骤1. 苯甲酸标准储备液的制备精确称取苯甲酸100mg ,用0.01mol/L 氢氧化钠溶液100ml 溶解后,再用蒸馏水稀释1000ml 。

此溶液1ml 含0.1mg 苯甲酸。

2. 苯甲酸吸收曲线的绘制吸取苯甲酸贮备液4.00ml ,放入50ml 容量瓶中,用0.01mol/L 氢氧化钠溶液定容,摇匀。

将装有参比溶液和标准试样的比色皿放入光路中,在紫外分光光度计上,从波长200-400nm ,扫描出苯的吸收曲线。

3. 苯甲酸标准曲线的绘制分别吸取1.0ml 、2.0ml 、3.0ml 、4.0ml 、5.0ml0.1g/l 的苯甲酸标准溶液于5 只10ml 容量瓶中,用0.01mol/L 氢氧化钠溶液稀释至刻度,摇匀。

用1cm 石英比色皿,以0.01mol/L 氢氧化钠溶液做参比溶液,在最大吸收波长处分别测定其吸光度。

以吸光度为纵坐标,苯甲酸的含量为横坐标绘制标准曲线。

4. 测定试样中苯甲酸的含量用1cm 石英比色皿,以0.01mol/L 氢氧化钠溶液做参比溶液,在最大吸收波长处测定试样溶液的吸光度,根据苯甲酸的标准曲线得样品浓度。

五、实验结果1. 最大吸收波长(请提供紫外吸收光谱图)相关系数实验注意事项:1)正确选择紫外分光光度计的光源灯。

石英比色皿价格昂贵,操作时不要离开桌面,谨防打碎。

(2)比色皿中溶液达2/3 即可,不可过满或过少。

(3)切记不可用手接触和擦拭比色皿的透光面,应用擦镜纸拭净。

五、数据处理1. 苯甲酸钠紫外- 可见吸收光谱的测定,并找出最大吸收峰波长。

2. 苯甲酸钠标准曲线的测定,以及曲线方程、相关系数的测定。

3. 样品中苯甲酸钠含量的测定。

注:报告数据处理处需将实验数据依依列出。

六、注意事项1. 试样和标准工作曲线的实验条件应完全一致。

2. 不同牌号的饮料中苯甲酸钠含量不同,移取时样品量可酌情增减。

3. 比色皿中液体装入三分之二即可,外部要擦拭干净。

七、思考题1. 紫外可见分光光度计由哪些部件构成?各有什么作用?2. 本实验为什么要用石英比色皿?为什么不能用玻璃比色皿?3. 苯甲酸的紫外光谱中有哪些吸收峰?各自对应哪些吸收带?由哪些跃迁引起?实脸四原子吸收光谱分析法自来水中钙或镁、目的与要求1. 学习原子吸收光谱分析法的基本原理。

2. 了解原子吸收光谱分析仪的基本结构及使用方法。

3. 掌握以标准曲线法测定自来水中钙或镁含量的方法。

二、实验原理标准曲线法是原子吸收光谱分哲中最常用的方法之一该法是配制已知浓度的标准溶液系列,在一定的仪器条件下,依次测出它们的吸光度,以标准溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。

相关文档
最新文档