高中数学百大经典例题—不等式证明
不等式的证明典型例题
不等式的证明·典型例题【例1】已知a,b,c∈R+,求证:a3+b3+c3≥3abc.【分析】用求差比较法证明.证明:a3+b3+c3-3abc=[(a+b)3+c3]-3a2b-3ab2-3abc=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=(a+b+c)[a2+b2+c2-ab-bc-ca]∵a,b,c∈R+,∴a+b+c>0.(c-a)]2≥0即 a3+b3+c3-3abc≥0,∴a3+b3+c3≥3abc.【例2】已知a,b∈R+,n∈N,求证:(a+b)(a n+b n)≤2(a n+1+b n+1).【分析】用求差比较法证明.证明:左-右=a n+1+ab n+a n b+b n+1-2a n+1-2b n+1=ab n+a n b-a n+1-b n+1=a(b n-a n)+b(a n-b n)=(b n-a n)(a-b)(*) 当a>b>0时,b n-a n<0,a-b>0,∴(*)<0;当b>a>0时,b n-a n>0,a-b<0,∴(*)<0;当a=b>0时,b n-a n=0,a-b=0,∴(*)=0.综上所述,有(a+b)(a n+b n)-2(a n+1+b n+1)≤0.即 (a+b)(a n+b n)≤2(a n+1+b n+1).【说明】在求差比较的三个步骤中,“变形”是关键,常用的变形手段有配方、因式分解等,常将“差式”变形为一个常数,或几个因式积的形式.【例3】已知a,b∈R+,求证a a b b≥a b b a.【分析】采用求商比较法证明.证明:∵a,b∈R+,∴a b b a>0综上所述,当a>0,b>0,必有a a b b≥a b b a.【说明】商值比较法的理论依据是:【例4】已知a、b、c是不全等的正数,求证:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.【分析】采用综合法证明,利用性质a2+b2≥2ab.证明:∵b2+c2≥2bc,a>0,∴a(b2+c2)≥2abc.①同理b(c2+a2)≥2abc②c(a2+b2)≥2abc③∵a,b,c不全相等,∴①,②,③中至少有一个式子不能取“=”号∴①+②+③,得a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.【例5】已知a,b,c∈R+,求证:(1)(ab+a+b+1)(ab+ac+bc+c2)≥16abc;【分析】用综合法证明,注意构造定理所需条件.证明:(1)ab+a+b+1=(a+1)(b+1),ab+ac+bc+c2=(a+c)(b+c).∴(a+1)(b+1)(a+c)(b+c)≥16abc因此,当a,b,c∈R+,有(ab+a+b+1)(ab+ac+bc+c2)≥16abc.【说明】用均值定理证明不等式时,一要注意定理适用的条件,二要为运用定理对式子作适当变形,把式子分成若干分,对每部分运用均值定理后,再把它们相加或相乘.【分析】采用分析法证明.(*)∵a<c,b<c,∴a+b<2c,∴(*)式成立.∴原不等式成立.用充分条件代替前面的不等式.【例7】若a、b、c是不全相等的正数,求证:证明二:(综合法)∵a,b,c∈R+,abc成立.上式两边同取常用对数,得【说明】分析法和综合法是对立统一的两个方面.在证法一中,前面是分析法,后面是综合法,两种方法结合使用,使问题较易解决.分析法的证明过程恰恰是综合法的分析、思考过程,综合法的证明方法是分析思考过程的逆推.【例8】已知a>2,求证log a(a-1)·log a(a+1)<1.【分析】两个对数的积不好处理,而两个同底对数的和却易于处理.因为我们可以先把真数相乘再取对数,从而将两个对数合二为一,平均值不等式恰好有和积转化功能可供利用.证明:∵a>2,∴log a(a-1)>0,log a(a+1)>0.又log a(a-1)≠log a(a+1)∴log a(a-1)·log a(a+1)<1.【说明】上式证明如果从log a(a-1)·log a(a+1)入手,得log a(a-1)二为一了.另外,在上述证明过程中,用较大的log a a2代替较小的log a(a2-1),并用适当的不等号连结,从而得出证明.这种方法通常叫做“放缩法”.同样,也可以用较小的数代替较大的数,并用适当的不等号连结.【例9】已知:a,b,c都是小于1的正数;【分析】采用反证法证明.其证明思路是否定结论从而导出与已知或定理的矛盾.从而证明假设不成立,而原命题成立.对题中“至少∵a,b,c都是小于1的正数,故与上式矛盾,假设不成立,原命题正确.【说明】反证法是利用互为逆否命题具有等价性的思想进行推证的.反证法必须罗列各种与原命题相异的结论,缺少任何一种可能,则反证都是不完全的,遇到“至少”、“至多”、“唯一”等字句的命题常用反证法.|a|≤1.【说明】换元法是将较为复杂的不等式利用等价转换的思想转换成易证明的不等式.常用的换元法有(1),若|x|≤1,可设x=sinα,α∈R;(2)若x2+y2=1,可设x=sinα,y=cosα;(3)若x2+y2≤1,可设x=【例11】已知a1、a2、…a n,b1、b2、…b n为任意实数,求证明:构造一个二次函数它一定非负,因它可化为(a1x-b1)2+(a2x-b2)2+…+(a n x-b n)2.∴Δ≤0,(当a1,a2,…a n都为0时,所构造式子非二次函数,但此时原不等式显然成立.)【说明】上例是用判别式法证明的“柯西不等式”,它可写为:变量分别取|a+b|,|a|、|b|时就得到要证的三个式子.因此,可考虑从函数∴f(x2)>f(x1),f(x)在[0,+∞)上是增函数.取x1=|a+b|,x2=|a|+|b|,显然0≤x1≤x2.∴f(|a+b|)≤f(|a|+|b|).【说明】这里是利用构造函数,通过函数的单调性,结合放缩法来证明不等式的.应注意的是,所给函数的单调整性应予以论证.【例13】已知a,b,m,n∈R,且a2+b2=1,m2+n2=1,求证:|am+bn|≤1.证法一:(比较法)证法二:(分析法)∵a,b,m,n∈R,∴上式成立,因此原不等式成立.证法三:(综合法)∵a,b,m,n∈R,∴(|a|-|m|)2≥0,(|b|-|n|)2≥0.即a2+m2≥2|am|,b2+n2≥2|bn|∴a2+m2+b2+n2≥2(|am|+|bn|)∵a2+b2=1,m2+n2=1,∴|am|+|bn|≤1∴|am+bn|≤|am|+|bn|≤1.证法四:(换元法)由已知,可设a=sinα,b=cosα,m=sinβ,n=cosβ.于是|am+bn|=|sinαsinβ+cosαcosβ|=|cos(α-β)|≤1.【说明】一个不等式的证明方法往往不只一种,要注意依据题目特点选择恰当的方法.【例14】已知f(x)=x2-x+c,且|x-a|<1,(a,b,c∈R)求证:|f(x)-f(a)|<2(|a|+1).【分析】绝对值不等式的证明充分利用绝对值不等式性质:证明:|f(x)-f(a)|=|x2-x+c-a2+a-c|=|(x+a)(x-a)-(x-a)|=|x-a||x+a-1|<|x+a-1|=|(x-a)+2a-1|<|x-a|+|2a|+|(-1)|<1+2|a|+1=2(|a|+1).∴|f(x)-f(a)|<2(|a|+1).【例15】当h与|a|,|b|,1中最大的一个相等,求证:当|x|>h时,由已知,有|x|>h≥|a|,|x|>h≥|b|,|x|>h≥1 ∴|x|2≥b.。
高考不等式经典例题
高考不等式经典例题【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小.【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1),当a >1时,a 3-a +1>a 2-a +1,P >Q ;当0<a <1时,a 3-a +1<a 2-a +1,P >Q ;综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a +1a -2(a >2),n =x -2(x ≥12),则m ,n 之间的大小关系为( ) A.m <nB.m >nC.m ≥nD.m ≤n【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递.m =a +1a -2=a -2+1a -2+2≥2+2=4,而n =x -2≤(12)-2=4.【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围.【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ),所以⎩⎨⎧-=--=+1,94μγμγ⇒⎪⎪⎩⎪⎪⎨⎧=-=38,35μγ 故f (3)=-53(a -c )+83(4a -c )∈[-1,20].题型三 开放性问题【例3】已知三个不等式:①ab >0;② c a >db;③bc >ad .以其中两个作条件,余下的一个作结论,则能组成多少个正确命题?【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ⇔bc -adab>0.(1)由ab >0,bc >ad ⇒bc -adab>0,即①③⇒②; (2)由ab >0,bc -adab>0⇒bc -ad >0⇒bc >ad ,即①②⇒③; (3)由bc -ad >0,bc -adab>0⇒ab >0,即②③⇒①. 故可组成3个正确命题.【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1;当m ≠0时,可分为两种情况:(1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2m.所以不等式的解集为{x |x <-1或x >2m};(2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0,其对应方程两根为x 1=-1,x 2=2m,x 2-x 1=2m-(-1)=m +2m.①m <-2时,m +2<0,m <0,所以x 2-x 1>0,x 2>x 1, 不等式的解集为{x |-1<x <2m};②m =-2时,x 2=x 1=-1,原不等式可化为(x +1)2<0,解集为∅;③-2<m <0时,x 2-x 1<0,即x 2<x 1,不等式解集为{x |2m<x <-1}.【变式训练2】解关于x 的不等式ax -1x +1>0. 【解析】原不等式等价于(ax -1)(x +1)>0.当a =0时,不等式的解集为{x |x <-1};当a >0时,不等式的解集为{x |x >1a或x <-1};当-1<a <0时,不等式的解集为{x |1a<x <-1};当a =-1时,不等式的解集为∅;当a <-1时,不等式的解集为{x |-1<x <1a}.【例3】已知ax 2+bx +c >0的解集为{x |1<x <3},求不等式cx 2+bx +a <0的解集. 【解析】由于ax 2+bx +c >0的解集为{x |1<x <3},因此a <0, 解得x <13或x >1.(1)z =x +2y -4的最大值; (2)z =x 2+y 2-10y +25的最小值; (3)z =2y +1x +1的取值范围.【解析】作出可行域如图所示,并求出顶点的坐标A (1,3),B (3,1),C (7,9). (1)易知直线x +2y -4=z 过点C 时,z 最大. 所以x =7,y =9时,z 取最大值21.(2)z =x 2+(y -5)2表示可行域内任一点(x ,y )到定点M (0,5)的距离的平方,过点M 作直线AC 的垂线,易知垂足N 在线段AC 上, 故z 的最小值是(|0-5+2|2)2=92.(3)z =2·y -(-12)x -(-1)表示可行域内任一点(x ,y )与定点Q (-1,-12)连线斜率的2倍.因为k QA =74,k QB =38,所以z 的取值范围为[34,72].【例1】(1)设x ,y ∈R +,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1)B .x +y ≤2(2+1) C. x +y ≤2(2+1)2D. x +y ≥(2+1)2(2)已知a ,b ∈R +,则ab ,a +b2,a 2+b 22,2aba +b的大小顺序是 . 【解析】(1)选A.由已知得xy =1+(x +y ),又xy ≤(x +y2)2,所以(x +y2)2≥1+(x +y ).解得x +y ≥2(2+1)或x +y ≤2(1-2). 因为x +y >0,所以x +y ≥2(2+1). (2)由a +b2≥ab 有a +b ≥2ab ,即a +b ≥2abab,所以ab ≥2aba +b.又a +b2=a 2+2ab +b 24≤2(a 2+b 2)4,所以a 2+b 22≥a +b2, 所以a 2+b 22≥a +b2≥ab ≥2aba +b.【变式训练1】设a >b >c ,不等式1a -b +1b -c >λa -c恒成立,则λ的取值范围是 . 【解析】(-∞,4).因为a >b >c ,所以a -b >0,b -c >0,a -c >0.而(a -c )(1a -b +1b -c )=[(a -b )+(b -c )](1a -b +1b -c)≥4,所以λ<4.【例2】(1)已知x <54,则函数y =4x -2+14x -5的最大值为 ;【解析】(1)因为x <54,所以5-4x >0. 所以y =4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立. 所以x =1时,y max =1.【变式训练2】已知x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,求(a +b )2cd的取值范围.【解析】由等差数列、等比数列的性质得a +b =x +y ,cd =xy ,所以(a +b )2cd =(x +y )2xy =2+x y +y x ,当y x >0时,(a +b )2cd ≥4;当yx <0时,(a +b )2cd≤0,故(a +b )2cd的取值范围是(-∞,0]∪[4,+∞).例 已知28,,0,1x y x y>+=,求xy 的最小值。
不等式的证明方法经典例题
不等式的证明方法经典例题第一篇:不等式的证明方法经典例题不等式的证明方法不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。
a2+b2a+b注意a+b≥2ab的变式应用。
常用(其中a,b∈R+)来解决有≥2222关根式不等式的问题。
一、比较法比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。
1、已知a,b,c均为正数,求证:111111++≥++ 2a2b2ca+bb+cc+a二、综合法综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。
2、a、b、c∈(0,+∞),a+b+c=1,求证:4a2+b2+c2≥44133、设a、b、c是互不相等的正数,求证:a+b+c>abc(a+b+c)4、知a,b,c∈R,求证:a2+b+2b2+c+2c2+a≥2(a+b+c)211(1+)(1+)≥9xy5、x、y∈(0,+∞)且x+y=1,证:。
6、已知a,b∈R,a+b=1求证: 1++⎛⎝1⎫⎛1⎫1⎪1+⎪≥.a⎭⎝b⎭9三、分析法分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。
7、已知a、b、c为正数,求证:2(a+ba+b+c3-ab)≤3(-abc)238、a、b、c∈(0,+∞)且a+b+c=1,求证a+b+c≤3。
四、换元法换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目的。
9、b<1,求证:ab+(1-a2)(1-b2)≤1。
22x+y=1,求证:-2≤x+y≤210、114+≥.a-bb-ca-c1222212、已知1≤x+y≤2,求证:≤x-xy+y≤3.211、已知a>b>c,求证:13、已知x-2xy+y≤2,求证:| x+y |≤10.14、解不等式5-x-221x+1>2215、-1≤1-x-x≤2.五、增量代换法在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a>b>c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.16、已知a,b∈R,且a+b = 1,求证:(a+2)+(b+2)≥六、利用“1”的代换型2225.2111已知a,b,c∈R+,且a+b+c=1,求证:++≥9.abc17、七、反证法反证法的思路是“假设→矛盾→肯定”,采用反证法时,应从与结论相反的假设出发,推出矛盾的过程中,每一步推理必须是正确的。
高中不等式证明练习题及参考答案
高中不等式证明练习题及参考答案高中不等式证明练习题及参考答案不等式证明是可以作文练习题经常出现的,这类的练习题是的呢?下面就是店铺给大家整理的不等式证明练习题内容,希望大家喜欢。
不等式证明练习题解答(1/a+2/b+4/c)*1=(1/a+2/b+4/c)*(a+b+c)展开,得=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4=7+2a/b+4a/c+b/a+4b/c+c/a+2c/b基本不等式,得>=19>=18用柯西不等式:(a+b+c)(1/a + 2/b + 4/c)≥(1+√2+2)^2=(3+√2)^2=11+6√2≥18楼上的,用基本不等式要考虑等号时候成立,而且如果你的式子里7+2a/b+4a/c+b/a+4b/c+c/a+2c/b直接用基本不等式得出的并不是≥18设ab=x,bc=y,ca=z则原不等式等价于:x^2+y^2+z^2>=xy+yz+zx<=>2(x^2+y^2+z^2)>=2(xy+yz+zx)<=>(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)>=0<=>(x-y)^2+(y-z)^2+(z-x)^2>=0含有绝对值的不等式练习。
1.实数x的不等式|x-|7|x+1|成立的前提条件是:x7x+7, -1-7x-7, x>-2,因此有:-20的解,∵a<0,不等式变形为x2+x-<0,它与不等式x2+x+<0比较系数得:a=-4,b=-9.函数y=arcsinx的定义域是 [-1, 1] ,值域是,函数y=arccosx的定义域是 [-1, 1] ,值域是[0, π] ,函数y=arctgx的定义域是 R ,值域是 .,函数y=arcctgx的定义域是 R ,值域是(0, π) .直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。
高中数学经典代数不等式100题及解答
x2 y 2 x y 2 xy xy 2 2 x y
x y x y
欢迎加入高中数学竞赛及高考群:766755640
7 : a, b, c 0, prove : solution one : S .O.S .
2(a 3 b3 c 3 ) 9(a b c) 2 2 33 abc (a b 2 c 2 )
2(a 3 b3 c 3 ) 9(a b c) 2 6 27 2 abc (a b 2 c 2 ) 9 abc 2 a b2 c2 abc solution two : pqr 做代换 : p a b c, q ab bc ca, r abc
8 : x, y, z 0, prove : 3 xyz
x yz 3 3 2x 2z x y z x y 不妨x y z , 原不等式 3 xyz 3 xyz z 3 3 3 3 x y y 注意到 : 3 xyz 3 y 2 z z , done. 3 3 3
x y yz zx
9 : a, b, c, x, y, z 0, prove : 3 (a x)(b y )(c z ) 3 abc 3 xyz
3 a b c abc 3 3 ( a x )(b y )(c z ) a x b y c z 注意到 : 3 xyz y z x 3 a x b y c z 3 ( a x )(b y )(c z ) 两式相加整理得原不等式
高中不等式证明例题(一题多解)
多种方法证明高中不等式例1证明不等式n n2131211<++++(n ∈N *)证法一:(1)当n 等于1时,不等式左端等于1,右端等于2,所以不等式成立; (2)假设n =k (k ≥1)时,不等式成立,即1+k13121+++ <2k ,,1211)1(11)1(21121131211+=++++<+++=++<+++++k k k k k k k k k k 则∴当n =k +1时,不等式成立.综合(1)、(2)得:当n ∈N *时,都有1+n13121+++ <2n .另从k 到k +1时的证明还有下列证法:,1111212212:.12112,01),1(21)1(2,0)1()1()1(2)1(21)1(22+=+++>++=-++<++∴>++<++∴>+-=+++-=+--+k k k kk k k k k k k k k k k k k k k k k k k 又如.12112+<++∴k k k证法二:对任意k ∈N *,都有:.2)1(2)23(2)12(22131211),1(21221n n n n k k k k k k k =--++-+-+<++++--=-+<+=因此证法三:设f (n )=),131211(2nn ++++-那么对任意k ∈N*都有:1)1(])1(2)1[(11]1)1(2)1(2[1111)1(2)()1(2>+-+=++-+⋅+=-+-++=+--+=-+k k k k k k k k k k k k k k k k f k f∴f (k +1)>f (k )因此,对任意n ∈N * 都有f (n )>f (n -1)>…>f (1)=1>0, ∴.2131211n n <++++例2求使y x +≤a y x +(x >0,y >0)恒成立的a 的最小值. 解法一:由于a 的值为正数,将已知不等式两边平方,得: x +y +2xy ≤a 2(x +y ),即2xy ≤(a 2-1)(x +y ),①∴x ,y >0,∴x +y ≥2xy ,②当且仅当x =y 时,②中有等号成立. 比较①、②得a 的最小值满足a 2-1=1, ∴a 2=2,a =2 (因a >0),∴a 的最小值是2. 解法二:设yx xyy x xy y x y x y x yx yx u ++=+++=++=++=212)(2. ∵x >0,y >0,∴x +y ≥2xy (当x =y 时“=”成立), ∴y x xy +2≤1,yx xy+2的最大值是1. 从而可知,u 的最大值为211=+, 又由已知,得a ≥u ,∴a 的最小值为2. 解法三:∵y >0, ∴原不等式可化为yx+1≤a 1+yx, 设y x =tan θ,θ∈(0,2π). ∴tan θ+1≤a 1tan 2+θ;即tan θ+1≤a se c θ ∴a ≥sin θ+cos θ=2sin(θ+4π),③又∵sin(θ+4π)的最大值为1(此时θ=4π). 由③式可知a 的最小值为2.例3 已知a >0,b >0,且a +b =1.求证:(a +a 1)(b +b 1)≥425证法一:(分析综合法)欲证原式,即证4(ab )2+4(a 2+b 2)-25ab +4≥0,即证4(ab )2-33(ab )+8≥0,即证ab ≤41或ab ≥8.∵a >0,b >0,a +b =1,∴ab ≥8不可能成立 ∵1=a +b ≥2ab ,∴ab ≤41,从而得证. 证法二:(均值代换法) 设a =21+t 1,b =21+t 2.∵a +b =1,a >0,b >0,∴t 1+t 2=0,|t 1|<21,|t 2|<21.4254116254123162541)45(41)141)(141()21)(21()141)(141(211)21(211)21(11)1)(1(2242222222222222222112122221122212122=≥-++=--+=-++++++=++++++++=+++⨯+++=+⨯+=++∴t t t t t t t t t t t t t t t t t t t t t b b a a b b a a 显然当且仅当t =0,即a =b =21时,等号成立.证法三:(比较法)∵a +b =1,a >0,b >0,∴a +b ≥2ab ,∴ab ≤41425)1)(1(04)8)(41(4833442511425)1)(1(2222≥++∴≥--=++=-+⋅+=-++b b a a ab ab ab ab ab b a b b a a b b a a 证法四:(综合法)∵a +b =1, a >0,b >0,∴a +b ≥2ab ,∴ab ≤41.4251)1(41 16251)1(169)1(434111222≥+-⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥≥+-⇒≥-⇒=-≥-∴ab ab ab ab ab ab 425)1)(1(≥++b b a a 即 证法五:(三角代换法)∵a >0,b >0,a +b =1,故令a =sin 2α,b =cos 2α,α∈(0,2π) .425)1)(1(4252sin 4)2sin 4(412sin 125162sin 24.3142sin 4,12sin 2sin 416)sin 4(2sin 42cos sin 2cos sin )cos 1)(cos sin 1(sin )1)(1(2222222222222442222≥++≥-⇒⎪⎭⎪⎬⎫≥≥+-=-≥-∴≤+-=+-+=++=++b b a a b b a a 即得ααααααααααααααααα例4.已知a ,b ,c 为正实数,a +b +c =1. 求证:(1)a 2+b 2+c 2≥31(2)232323+++++c b a ≤6证明:(1)证法一:a 2+b 2+c 2-31=31(3a 2+3b 2+3c 2-1)=31[3a 2+3b 2+3c 2-(a +b +c )2]=31[3a 2+3b 2+3c 2-a 2-b 2-c 2-2ab -2ac -2bc ]=31[(a -b )2+(b -c )2+(c -a )2]≥0 ∴a 2+b 2+c 2≥31证法二:∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ≤a 2+b 2+c 2+a 2+b 2+a 2+c 2+b 2+c 2 ∴3(a 2+b 2+c 2)≥(a +b +c )2=1 ∴a 2+b 2+c 2≥31证法三:∵33222c b a c b a ++≥++∴a 2+b 2+c 2≥3cb a ++ ∴a 2+b 2+c 2≥31证法四:设a =31+α,b =31+β,c =31+γ. ∵a +b +c =1,∴α+β+γ=0∴a 2+b 2+c 2=(31+α)2+(31+β)2+(31+γ)2=31+32 (α+β+γ)+α2+β2+γ2=31+α2+β2+γ2≥31 ∴a 2+b 2+c 2≥31629)(323232323323,23323,21231)23(23:)2(=+++<+++++∴+<++<+++<⨯+=+c b a c b a c c b b a a a 同理证法一 ∴原不等式成立. 证法二:3)23()23()23(3232323+++++≤+++++c b a c b a336)(3=+++=c b a∴232323+++++c b a ≤33<6 ∴原不等式成立.例5.已知x ,y ,z ∈R ,且x +y +z =1,x 2+y 2+z 2=21,证明:x ,y ,z ∈[0,32]证法一:由x +y +z =1,x 2+y 2+z 2=21,得x 2+y 2+(1-x -y )2=21,整理成关于y 的一元二次方程得:2y 2-2(1-x )y +2x 2-2x +21=0,∵y ∈R ,故Δ≥0∴4(1-x )2-4×2(2x 2-2x +21)≥0,得0≤x ≤32,∴x ∈[0,32] 同理可得y ,z ∈[0,32]证法二:设x =31+x ′,y =31+y ′,z =31+z ′,则x ′+y ′+z ′=0, 于是21=(31+x ′)2+(31+y ′)2+(31+z ′)2 =31+x ′2+y ′2+z ′2+32 (x ′+y ′+z ′)=31+x ′2+y ′2+z ′2≥31+x ′2+2)(2z y '+'=31+23x ′2故x ′2≤91,x ′∈[-31,31],x ∈[0,32],同理y ,z ∈[0,32]证法三:设x 、y 、z 三数中若有负数,不妨设x <0,则x 2>0,21=x 2+y 2+z 2≥x 2+21232)1(2)(2222+-=+-=+x x x x z y >21,矛盾.x 、y 、z 三数中若有最大者大于32,不妨设x >32,则21=x 2+y 2+z 2≥x 2+2)(2z y +=x 2+2)1(2x -=23x 2-x +21=23x (x -32)+21>21;矛盾. 故x 、y 、z ∈[0,32]例6 .证明下列不等式:(1)若x ,y ,z ∈R ,a ,b ,c ∈R +,则cb a y b ac x a c b +++++22z 2≥2(xy +yz +zx ) (2)若x ,y ,z ∈R +,且x +y +z =xyz , 则zyx y x z x z y +++++≥2(z y x 111++))()()()()()(222)(4)(2))(()(2)]()()([)(2)(:)2()(20)()()()2()2()2()(22:)1.(62222222222223333332222222222222222222222222222222222≥-+-+-+-+-+-⇔++≥+++++⇔+++++≥+++++++⇔++≥+++++⋅⇔++≥+++++++≥+++++∴≥-+-+-=-++-++-+=++-+++++y x z x z y z y x y x xy x z zx z y yz xyz z xy yz x xy y x zx x z yz z y xyz z xy yz x x z z y y x xy y x zx x z yz z y z y x zx yz xy y x xy x z zx z y yz xyz zx yz xy z yx y x z x z y z y x zx yz xy z c b a y b a c x a c b x a c z c a z c b y b c y b a x a b zx x a cz c a yz z c b y b c xy y b a x a b zx yz xy z cb a y b ac x c b 所证不等式等介于证明证明∵上式显然成立,∴原不等式得证.例7.已知i ,m 、n 是正整数,且1<i ≤m <n . (1)证明:n i A i m <m i A i n ; (2)证明:(1+m )n >(1+n )m7.证明:(1)对于1<i ≤m ,且A i m =m ·…·(m -i +1),n i n n n n n nm i m m m m m m i i m i i m 11A ,11A +-⋅⋅-⋅=+-⋅⋅-⋅= 同理, 由于m <n ,对于整数k =1,2,…,i -1,有mkm n k n ->-, 所以i m i i n i i i mi i n n m mn A A ,A A >>即(2)由二项式定理有:(1+m )n =1+C 1n m +C 2n m 2+…+C nn m n ,(1+n )m =1+C 1m n +C 2m n 2+…+C m m n m ,由(1)知m iA in>n iA i m (1<i ≤m ),而C i m=!A C ,!A i i i ni n i m =∴m i C i n >n i C i m (1<m <n )∴m 0C 0n =n 0C 0n =1,m C 1n =n C 1m =m ·n ,m 2C 2n >n 2C 2m ,…, m m C m n >n m C m m ,m m +1C 1+m n >0,…,m n C n n >0, ∴1+C 1n m +C 2n m 2+…+C n n m n >1+C 1m n +C 2m n 2+…+C m m n m ,即(1+m )n >(1+n )m 成立.例8.若a >0,b >0,a 3+b 3=2,求证:a +b ≤2,ab ≤1. 证法一:因a >0,b >0,a 3+b 3=2,所以 (a +b )3-23=a 3+b 3+3a 2b +3ab 2-8=3a 2b +3ab 2-6=3[ab (a +b )-2]=3[ab (a +b )-(a 3+b 3)]=-3(a +b )(a -b )2≤0. 即(a +b )3≤23,又a +b >0,所以a +b ≤2,因为2ab ≤a +b ≤2, 所以ab ≤1.证法二:设a 、b 为方程x 2-mx +n =0的两根,则⎩⎨⎧=+=ab n ba m ,因为a >0,b >0,所以m >0,n >0,且Δ=m 2-4n ≥0 ① 因为2=a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]=m (m 2-3n )所以n =mm 3232-② 将②代入①得m 2-4(mm 3232-)≥0, 即mm 383+-≥0,所以-m 3+8≥0,即m ≤2,所以a +b ≤2,由2≥m 得4≥m 2,又m 2≥4n ,所以4≥4n , 即n ≤1,所以ab ≤1.证法三:因a >0,b >0,a 3+b 3=2,所以2=a 3+b 3=(a +b )(a 2+b 2-ab )≥(a +b )(2ab -ab )=ab (a +b )于是有6≥3ab (a +b ),从而8≥3ab (a +b )+2=3a 2b +3ab 2+a 3+b 3=(a +b )3,所以a +b ≤2,(下略)证法四:因为333)2(2b a b a +-+8))((38]2444)[(22222b a b a ab b a ab b a b a -+=----++=≥0, 所以对任意非负实数a 、b ,有233b a +≥3)2(b a +因为a >0,b >0,a 3+b 3=2,所以1=233b a +≥3)2(b a +,∴2b a +≤1,即a +b ≤2,(以下略)证法五:假设a +b >2,则a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]>(a +b )ab >2ab ,所以ab <1, 又a 3+b 3=(a +b )[a 2-ab +b 2]=(a +b )[(a +b )2-3ab ]>2(22-3ab )因为a 3+b 3=2,所以2>2(4-3ab ),因此ab >1,前后矛盾,故a +b ≤2(以下略)。
高考不等式经典例题
高考不等式经典例题高考数学中的不等式经典例题通常包括比较两个数(式)的大小、不等式的性质、一元二次不等式恒成立问题、特值法判断不等式等。
以下是一些高考数学中不等式的经典例题:例1:比较两个数的大小题目:若a = 1/2, b = 3, c = 2, 请比较a, b, c的大小。
解答:因为a = 1/2 < 1 < 2 < 3 = b < c,所以a < b < c。
例2:不等式的性质题目:若x > 0, y > 0, 且x + y > 2, 请证明:xy < 1。
解答:根据不等式的性质,可以得到以下推导:x > 0, y > 0, 则x + y > 2 > 0, 所以xy < (x + y) / 2 < 1。
例3:一元二次不等式恒成立问题题目:若a, b, c均为实数,且a > 0, b > 0, c > 0。
求解不等式:ax2 + bx + c > 0。
解答:首先考虑判别式,由一元二次方程的判别式可知,当判别式小于0时,不等式恒成立。
因此,我们需要求解判别式:Δ= b2 - 4ac < 0,所以不等式ax2 + bx + c > 0恒成立。
例4:特值法判断不等式题目:若a, b为实数,且a > 0, b > 0。
求解不等式:a2 + b2 > ab。
解答:我们可以使用特值法来求解这个不等式。
取a = 2, b = 1,则a2 = 4, b2 = 1, ab = 2。
因为4 > 2 > 1,所以a2 + b2 > ab。
希望以上例题能够帮助你复习不等式部分的知识,祝你高考取得好成绩!。
高三数学不等式证明试题答案及解析
高三数学不等式证明试题答案及解析1.已知均为正数,证明:.【答案】证明见解析.【解析】不等式是对称式,特别是本题中不等式成立的条件是,因此我们可以用基本不等式,注意对称式的应用,如,对应的有,,这样可得①,同样方法可得,因此有②,①②相加,再应用基本不等式就可证明本题不等式了.因为a,b,c均为正数,由均值不等式得a2+b2≥2ab, b2+c2≥2bc, c2+a2≥2ac.所以a2+b2+c2≥ab+bc+ac.同理,故a2+b2+c2+≥ab+bc+ac+≥6.所以原不等式成立. 10分【考点】不等式的证明.2. [2014·保定模拟]若P=-,Q=-,a≥0,则P、Q的大小关系是________.【答案】P>Q【解析】分析法,要证P>Q,需证+>+,平方可得>,即证a2+6a+8>a2+6a,即8>0,显然成立,∴P>Q.3.已知a,b均为正数,且a+b=1,证明:(1)(2)【答案】见解析【解析】(1)因为a+b=1,所以,a-1=-b,b-1=-a,故=,当且仅当a=b时等号成立。
(2)==当且仅当a=b时等号成立。
4.在中,不等式成立;在凸四边形ABCD中,不等式成立;在凸五边形ABCDE中,不等式成立,,依此类推,在凸n边形中,不等式__ ___成立.【答案】【解析】我们可以利用归纳推理的方法得到不等式,从而得出结论.【考点】归纳推理.5.已知a,b,x,y均为正数且>,x>y.求证:>.【答案】见解析【解析】证明:∵-=,又>且a,b均为正数,∴b>a>0.又x>y>0,∴bx>ay.∴>0,即>.6.若a,b,c为不全相等的正数,求证:lg+lg+lg>lga+lgb+lgc.【答案】见解析【解析】证明:由a,b,c为正数,得lg≥lg;lg≥lg;lg≥lg.而a,b,c不全相等,所以lg+lg+lg>lg+lg+lg="lg" (abc)=lga+lgb+lgc.即lg+lg+lg>lga+lgb+lgc.7.已知a,b,c均为正数,证明:a2+b2+c2+2≥6,并确定a,b,c为何值时,等号成立.【答案】见解析【解析】法一:因为a、b、c均为正数,由平均值不等式得a2+b2+c2≥3(abc),①≥3(abc)-,②所以2≥9(abc)-.故a2+b2+c2+2≥3(abc)+9(abc)-.又3(abc)+9(abc)-≥2=6 ,③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立.当且仅当3(abc)=9(abc)-时,③式等号成立.即当且仅当a=b=c=3时,原式等号成立.法二:因为a,b,c均为正数,由基本不等式得a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,所以a2+b2+c2≥ab+bc+ac.①同理≥,②故a2+b2+c2+2≥ab+bc+ac+3+3+3≥6.③所以原不等式成立,当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.即当且仅当a=b=c=3时,原式等号成立.8.已知是关于的方程的根,证明:(Ⅰ);(Ⅱ).【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】(Ⅰ)构造函数,通过导函数可知函数在上是增函数,而,,故在上有唯一实根,即,然后利用函数的单调性,用反证法证明;(Ⅱ)先证,再由,可得.注意放缩法的技巧.试题解析:(Ⅰ)设,则显然,在上是增函数在上有唯一实根,即 4分假设,则,矛盾,故 8分(Ⅱ)(),13分方法二:由(Ⅰ)=【考点】1.函数的零点;2.函数的单调性的应用;3.放缩法证明不等式9.(几何证明选讲选做题)如右图,从圆外一点引圆的切线和割线,已知,,圆的半径为3,则圆心到直线的距离为 .【答案】.【解析】由切割线定理得,,故点到直线的距离.【考点】1.切割线定理;2.勾股定理10.设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)ab+bc+ac;(Ⅱ)【答案】见解析【解析】(Ⅰ)由,,得:,由题设得,即,所以,即.(Ⅱ)因为,,,所以,即,所以.本题第(Ⅰ)(Ⅱ)两问,都可以由均值不等式,相加即得到.在应用均值不等式时,注意等号成立的条件:一正二定三相等.【考点】本小题主要考查不等式的证明,熟练基础知识是解答好本类题目的关键.11.设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)ab+bc+ac;(Ⅱ)【答案】解析【解析】(Ⅰ)由,,得:,由题设得,即,所以,即.(Ⅱ)因为,,,所以,即,所以.本题第(Ⅰ)(Ⅱ)两问,都可以由均值不等式,相加即得到.在应用均值不等式时,注意等号成立的条件:一正二定三相等.【考点】本小题主要考查不等式的证明,熟练基础知识是解答好本类题目的关键.12.已知,求证:.【答案】见解析【解析】[证明]∵,∴,,,从而,即.【考点】本小题主要考查利用比较法证明不等式,考查推理论证能力.13.设f(x)=lnx+-1,证明:(1)当x>1时,f(x)< (x-1);(2)当1<x<3时,f(x)<.【答案】(1)见解析(2)见解析【解析】证明:(1)(证法一)记g(x)=lnx+-1- (x-1).则当x>1时,g′(x)=+-<0,g(x)在(1,+∞)上单调递减.又g(1)=0,有g(x)<0,即f(x)< (x-1).(证法二)由均值不等式,当x>1时,2<x+1,故<+.①令k(x)=lnx-x+1,则k(1)=0,k′(x)=-1<0,故k(x)<0,即lnx<x-1.②由①②得,当x>1时,f(x)< (x-1).(2)(证法一)记h(x)=f(x)-,由(1)得h′(x)=+-=-<-=.令g(x)=(x+5)3-216x,则当1<x<3时,g′(x)=3(x+5)2-216<0.因此g(x)在(1,3)内是递减函数,又由g(1)=0,得g(x)<0,所以h′(x)<0.因此h(x)在(1,3)内是递减函数,又由h(1)=0,得h(x)<0.于是当1<x<3时,f(x)<. (证法二)记h(x)=(x+5)f(x)-9(x-1),则当1<x<3时,由(1)得h′(x)=f(x)+(x+5)f′(x)-9< (x-1)+(x+5)-9= [3x(x-1)+(x+5)(2+)-18x]<= (7x2-32x+25)<0.因此h(x)在(1,3)内单调递减,又,所以,即.14.( 本小题满分12分)已知集合中的元素都是正整数,且,对任意的且,有.(Ⅰ)求证:;(Ⅱ)求证:;(Ⅲ)对于,试给出一个满足条件的集合【答案】(Ⅰ) 证明:见解析;(Ⅱ)证明:见解析;(Ⅲ).【解析】(1)因为,对任意的且,有.所以两边分别相加得.即.(2)由(Ⅰ)可得;同理,所以,即.(3)由(1)知,令,可取大于1的任意整数,令;同理令;;,则,令,则,令,则,令,则,令.就得到满足条件的一个集合.(Ⅰ) 证明:依题意有,又,因此.可得.所以.即.…………………4分(Ⅱ)证明:由(Ⅰ)可得.又,可得,因此.同理,可知.又,可得,所以均成立.当时,取,则,可知.又当时,.所以.……………………………………………………8分(Ⅲ)解:对于任意,,由可知,,即.因此,只需对,成立即可.因为;;;,因此可设;;;;.由,可得,取.由,可得,取.由,可得,取.由,可得,取.所以满足条件的一个集合.……………12分其它解法,请酌情给分.15.设正有理数是的一个近似值,令.(Ⅰ)若,求证:;(Ⅱ)比较与哪一个更接近于?【答案】见解析【解析】本试题主要是考查了不等式的证明以及比较大小的运用。
高中数学-不等式的证明精选练习(详解)
高中数学-不等式的证明精选练习(详解)1.设a ,b ,c ∈R +,且a +b +c =1.(1)求证:2ab +bc +ca +c 22≤12; (2)求证:a 2+c 2b +b 2+a 2c +c 2+b 2a ≥2.证明:(1)因为1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca ≥4ab +2bc +2ca +c 2,所以2ab +bc +ca +c 22=12(4ab +2bc +2ca +c 2)≤12. (2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bc a, 所以a 2+c 2b +b 2+a 2c +c 2+b 2a≥⎝⎛⎭⎫ac b +ab c +⎝⎛⎭⎫ab c +bc a +⎝⎛⎭⎫ac b +bc a =a ⎝⎛⎭⎫c b +b c +b ⎝⎛⎭⎫a c +c a +c ⎝⎛⎭⎫a b +b a ≥2a +2b +2c =2.2.若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.解:(1)由ab =1a +1b ≥2ab, 得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.3.设a ,b ,c ,d 均为正数,且a +b =c +d ,求证:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd ,得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①必要性:若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1),得a +b >c +d . ②充分性:若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |. 综上,a +b >c +d 是|a -b |<|c -d |的充要条件.4.已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a .(1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3.解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立,所以f (x )的最小值等于3,即a =3.(2)证明:由(1)知p +q +r =3,又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3.5.已知函数f (x )=|x -1|.(1)解不等式f (2x )+f (x +4)≥8;(2)若|a |<1,|b |<1,a ≠0,求证:f (ab )|a |>f ⎝⎛⎭⎫b a . 解:(1)f (2x )+f (x +4)=|2x -1|+|x +3|=⎩⎪⎨⎪⎧ -3x -2,x <-3,-x +4,-3≤x <12,3x +2,x ≥12,当x <-3时,由-3x -2≥8,解得x ≤-103; 当-3≤x <12时,-x +4≥8无解; 当x ≥12时,由3x +2≥8,解得x ≥2. 所以不等式f (2x )+f (x +4)≥8的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-103或x ≥2. (2)证明:f (ab )|a |>f ⎝⎛⎭⎫b a 等价于f (ab )>|a |f ⎝⎛⎭⎫b a , 即|ab -1|>|a -b |.因为|a |<1,|b |<1,所以|ab -1|2-|a -b |2=(a 2b 2-2ab +1)-(a 2-2ab +b 2)=(a 2-1)(b 2-1)>0,所以|ab -1|>|a -b |.故所证不等式成立.6.(·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M .(1)求M ;(2)当x ∈M 时,证明:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2. 当x ≤2时,由f (x )=x -1≤-1,解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1,解得x ≤43,显然不成立. 故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x=-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数,∴g (x )≤g (0)=0.故x [f (x )]2-x 2f (x )≤0.7.已知a ,b 都是正实数,且a +b =2,求证:a 2a +1+b 2b +1≥1. 证明:∵a >0,b >0,a +b =2,∴a 2a +1+b 2b +1-1=a 2(b +1)+b 2(a +1)-(a +1)(b +1)(a +1)(b +1)=a 2b +a 2+b 2a +b 2-ab -a -b -1(a +1)(b +1)=a 2+b 2+ab (a +b )-ab -(a +b )-1(a +1)(b +1)=a 2+b 2+2ab -ab -3(a +1)(b +1)=(a +b )2-3-ab (a +1)(b +1)=1-ab (a +1)(b +1). ∵a +b =2≥2ab ,∴ab ≤1.∴1-ab (a +1)(b +1)≥0. ∴a 2a +1+b 2b +1≥1. 8.设函数f (x )=x -|x +2|-|x -3|-m ,若∀x ∈R ,1m-4≥f (x )恒成立. (1)求实数m 的取值范围;(2)求证:log (m +1)(m +2)>log (m +2)(m +3).解:(1)∵∀x ∈R ,1m -4≥f (x )恒成立,∴m +1m ≥x -|x +2|-|x -3|+4恒成立.令g (x )=x -|x +2|-|x -3|+4=⎩⎪⎨⎪⎧ 3x +3,x <-2,x -1,-2≤x ≤3,-x +5,x >3.∴函数g (x )在(-∞,3]上是增函数,在(3,+∞)上是减函数, ∴g (x )max =g (3)=2,∴m +1m ≥g (x )max =2,即m +1m -2≥0⇒m 2-2m +1m =(m -1)2m≥0, ∴m >0,综上,实数m 的取值范围是(0,+∞).(2)证明:由m >0,知m +3>m +2>m +1>1,即lg(m +3)>lg(m +2)>lg(m +1)>lg 1=0.∴要证log (m +1)(m +2)>log (m +2)(m +3).只需证lg (m +2)lg (m +1)>lg (m +3)lg (m +2), 即证lg(m +1)·lg(m +3)<lg 2(m +2),又lg(m +1)·lg(m +3)< ⎣⎡⎦⎤lg (m +1)+lg (m +3)2 2 =[lg (m +1)(m +3)]24<[lg (m 2+4m +4)]24=lg 2(m +2), ∴log (m +1)(m +2)>log (m +2)(m +3)成立.。
高中数学不等式证明题目训练卷及答案
高中数学不等式证明题目训练卷及答案一、选择题1、若\(a > b > 0\),则下列不等式中一定成立的是()A \(a +\frac{1}{b} > b +\frac{1}{a}\)B \(\frac{b + 1}{a + 1} >\frac{b}{a}\)C \(a \frac{1}{b} > b \frac{1}{a}\)D \(\frac{2a + b}{a + 2b} >\frac{a}{b}\)答案:A解析:因为\(a > b > 0\),所以\(a b > 0\)。
A 选项:\((a +\frac{1}{b})(b +\frac{1}{a})=(a b) +(\frac{1}{b} \frac{1}{a})=(a b) +\frac{a b}{ab}> 0\),所以\(a +\frac{1}{b} > b +\frac{1}{a}\),A 选项正确。
B 选项:\(\frac{b + 1}{a + 1} \frac{b}{a} =\frac{a(b+ 1) b(a + 1)}{a(a + 1)}=\frac{a b}{a(a + 1)}\),因为\(a(a + 1) > 0\),但\(a b\)的正负不确定,所以\(\frac{b + 1}{a + 1}\)与\(\frac{b}{a}\)大小不确定,B 选项错误。
C 选项:\((a \frac{1}{b})(b \frac{1}{a})=(a b) (\frac{1}{b} \frac{1}{a})=(a b) \frac{a b}{ab}\),当\(ab > 1\)时,\((a b) \frac{a b}{ab} < 0\),C 选项错误。
D 选项:\(\frac{2a + b}{a + 2b} \frac{a}{b} =\frac{b(2a + b) a(a + 2b)}{b(a + 2b)}=\frac{b^2 a^2}{b(a +2b)}\),因为\(b^2 a^2 < 0\),\(b(a + 2b) > 0\),所以\(\frac{2a + b}{a + 2b} \frac{a}{b} < 0\),D 选项错误。
高考数学百大经典例题——不等式证明之欧阳文创编
典型例题一例1 若10<<x ,证明)1(log )1(log x x a a +>-(0>a 且1≠a ).分析 1 用作差法来证明.需分为1>a 和10<<a 两种情况,去掉绝对值符号,然后比较法证明.解法1 (1)当1>a 时, 因为 11,110>+<-<x x ,所以 )1(log )1(log x x a a +--0)1(log 2>--=x a .(2)当10<<a 时, 因为 11,110>+<-<x x所以 )1(log )1(log x x a a +-- 0)1(log 2>-=x a .综合(1)(2)知)1(log )1(log x x a a +>-.分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法.因为 )1(log )1(log x x a a +--0)1lg(lg 12>--=x a, 所以)1(log )1(log x x a a +>-.说明:解法一用分类相当于增设了已知条件,便于在变形中脱去绝对值符号;解法二用对数性质(换底公式)也能达到同样的目的,且不必分而治之,其解法自然简捷、明快.典型例题二例2 设0>>b a ,求证:.a b b a b a b a >分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式. 证明:b a a b b a a b b a b a b a ba b a ---=⋅=)( ∵0>>b a ,∴.0,1>->b a ba ∴1)(>-b a b a . ∴a b b a ba b a .1> 又∵0>a b b a ,∴.a b b a b a b a >.说明:本题考查不等式的证明方法——比较法(作商比较法).作商比较法证明不等式的步骤是:判断符号、作商、变形、判断与1的大小.典型例题三例3 对于任意实数a 、b ,求证444()22a b a b ++≥(当且仅当a b =时取等号)分析 这个题若使用比较法来证明,将会很麻烦,因为,所要证明的不等式中有4()2a b +,展开后很复杂。
高中数学不等式证明典型例题
不等式证明典型例题例1 若10<<x ,证明)1(log )1(log x x a a +>-(0>a 且1≠a ).分析1 用作差法来证明.需分为1>a 和10<<a 两种情况,去掉绝对值符号,然后比较法证明. 解法1 (1)当1>a 时, 因为 11,110>+<-<x x ,所以 )1(log )1(log x x a a +-- )1(log )1(log x x a a +---= 0)1(log 2>--=x a .(2)当10<<a 时, 因为 11,110>+<-<x x所以 )1(log )1(log x x a a +-- )1(log )1(log x x a a ++-=0)1(log 2>-=x a .综合(1)(2)知)1(log )1(log x x a a +>-.分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法.因为 )1(log )1(log x x a a +-- ax a x lg )1lg(lg )1lg(+--=[])1lg()1lg(lg 1x x a +--=[])1lg()1lg(lg 1x x a +---=0)1lg(lg 12>--=x a, 所以)1(log )1(log x x a a +>-. 例2 设0>>b a ,求证:.ab ba b a b a >证明:b a a b ba ab b a b a b aba b a ---=⋅=)( ∵0>>b a ,∴.0,1>->b a ba ∴1)(>-ba b a . ∴a b b a b a b a .1> 又∵0>abb a , ∴.ab ba b a b a >.例3 对于任意实数a 、b ,求证444()22a b a b ++≥(当且仅当a b =时取等号) 证明:∵ 222a b ab +≥(当且仅当22a b =时取等号) 两边同加4444222():2()()a b a b a b ++≥+,即:44222()22a b a b ++≥ (1) 又:∵ 222a b ab +≥(当且仅当a b =时取等号) 两边同加22222():2()()a b a b a b ++≥+∴222()22a b a b ++≥ ∴ 2224()()22a b a b ++≥ (2) 由(1)和(2)可得444()22a b a b ++≥(当且仅当a b =时取等号). 例4 已知a 、b 、c R +∈,1a b c ++=,求证1119.a b c++≥ 证明:∵1a b c ++=∴ 111a b c ++a b c a b c a b c a b c++++++=++ (1)(1)(1)b c a c a b a a b b c c =++++++++3()()()b a c a c ba b a c b c=++++++∵2b a a b +≥=,同理:2c a a c+≥,2c bb c +≥。
高中数学不等式的证明方法典型例题
浅谈高中数学不等式的证明方法一.比较法所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法。
例1 已知:0>a ,0>b ,求证:ab b a ≥+2. 分析:两个多项式的大小比较可用作差法证明 02)(2222≥-=-+=-+b a ab b a ab b a , 故得 ab b a ≥+2. 例2 设0>>b a ,求证:a b b a b a b a >.分析:对于含有幂指数类的用作商法证明 因为 0>>b a ,所以 1>ba ,0>-b a . 而 1>⎪⎭⎫ ⎝⎛=-b a a b b a b a b a b a ,故 a b b a b a b a >二.分析法从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立,这种方法叫做分析法。
例3:求证3<证明:0>>Q5456<Q 成立∴原不等式成立例3、),0(∞+∈c b a 、、且1=++c b a ,求证3≤++c b a 。
证:3≤++c b a 3)(2≤++⇔c b a 即:2222≤++ac bc ab ∵b a ab +≤2 c b bc +≤2 c a ac +≤2即2)()()(222=+++++≤++c a c b b a ac bc ab ∴原命题成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱碰,从而加强针对性,较快地探明解题途。
三.综合法从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法。
关于证明不等式的高考题
1、已知a, b ∈ R,且a + b = 1。
求证:3a + 3b < 4。
以下哪个选项是正确的推导步骤?A. 利用均值不等式,得到3a + 3b ≥ 2√(3a * 3b)B. 直接计算3a + 3b的值C. 利用指数函数的性质,得到3a + 3b > 4D. 通过代入a + b = 1,化简得到3a + 3b < 4(答案:A,后续需进一步推导至D的结论)2、设x, y > 0,且x + y = 4。
下列不等式中正确的是:A. x2 + y2 ≥ 8B. √(xy) ≥ 2C. 1/(x + 1) + 1/(y + 1) ≤ 1/2D. x3 + y3 ≥ 64(答案:A)3、若a, b, c > 0,且a + b + c = 1,则下列不等式成立的是:A. a2 + b2 + c2 ≥ 1/3B. abc ≥ (1/3)3C. 1/(a + b) + 1/c ≥ 4D. √a + √b + √c ≤ 1(答案:A)4、设x > 1,y > 1,且xy = 4。
下列不等式正确的是:A. x + y ≥ 4B. x + y ≤ 4C. 1/x + 1/y ≥ 1D. 1/x + 1/y ≤ 1/2(答案:C)5、已知a, b > 0,且a + b = 2。
下列不等式中正确的是:A. a3 + b3 ≥ 8B. ab ≥ 1C. 1/a + 1/b ≤ 2D. √(a2 + b2) ≤ 2(答案:D)6、设x, y ∈ R,且xy ≠ 0。
若|x| + |y| = 2,则下列不等式恒成立的是:A. x2 + y2 ≥ 2B. 1/x2 + 1/y2 ≥ 1C. |x + y| ≥ 2D. |x - y| ≤ 2(答案:A)7、已知a, b, c ∈ R,且a - b = b - c = 1/2。
则下列不等式中正确的是:A. a2 + b2 + c2 ≥ 3/2B. ab + bc + ca ≥ -1/4C. a + b + c ≤ 3/2D. |a| + |b| + |c| ≥ 3/2(答案:B,注意此题需利用平方和与平方差公式进行推导)8、设x > 0,y > 0,且x + y = 5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学 典型例题一例1 若10<<x ,证明)1(log )1(log x x a a +>-(0>a 且1≠a ).分析1 用作差法来证明.需分为1>a 和10<<a 两种情况,去掉绝对值符号,然后比较法证明. 解法1 (1)当1>a 时, 因为 11,110>+<-<x x , 所以 )1(log )1(log x x a a +-- )1(log )1(log x x a a +---=0)1(log 2>--=x a .(2)当10<<a 时, 因为 11,110>+<-<x x 所以 )1(log )1(log x x a a +-- )1(log )1(log x x a a ++-=0)1(log 2>-=x a .综合(1)(2)知)1(log )1(log x x a a +>-.分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法.因为 )1(log )1(log x x a a +-- ax a x lg )1lg(lg )1lg(+--=[])1lg()1lg(lg 1x x a+--=[])1lg()1lg(lg 1x x a+---=0)1lg(lg 12>--=x a, 所以)1(log )1(log x x a a +>-.说明:解法一用分类相当于增设了已知条件,便于在变形中脱去绝对值符号;解法二用对数性质(换底公式)也能达到同样的目的,且不必分而治之,其解法自然简捷、明快.典型例题二例2 设0>>b a ,求证:.ab ba b a b a >分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式.证明:b a a b ba ab b a b a b aba b a ---=⋅=)( ∵0>>b a ,∴.0,1>->b a ba∴1)(>-ba ba . ∴ab b a b a b a .1>又∵0>abb a , ∴.ab ba b a b a >.说明:本题考查不等式的证明方法——比较法(作商比较法).作商比较法证明不等式的步骤是:判断符号、作商、变形、判断与1的大小.典型例题三例3 对于任意实数a 、b ,求证444()22a b a b ++≥(当且仅当a b =时取等号) 分析 这个题若使用比较法来证明,将会很麻烦,因为,所要证明的不等式中有4()2a b +,展开后很复杂。
若使用综合法,从重要不等式:222a b ab +≥出发,再恰当地利用不等式的有关性质及“配方”的技巧可得到证明。
证明:∵ 222a b ab +≥(当且仅当22a b =时取等号) 两边同加4444222():2()()a b a b a b ++≥+,即:44222()22a b a b ++≥ (1) 又:∵ 222a b ab +≥(当且仅当a b =时取等号)两边同加22222():2()()a b a b a b ++≥+∴222()22a b a b ++≥ ∴ 2224()()22a b a b ++≥ (2) 由(1)和(2)可得444()22a b a b ++≥(当且仅当a b =时取等号). 说明:此题参考用综合法证明不等式.综合法证明不等式主要是应用均值不等式来证明,要注意均值不等式的变形应用,一般式子中出现有平方和乘积形式后可以考虑用综合法来解.典型例题四例4 已知a 、b 、c R +∈,1a b c ++=,求证1119.a b c ++≥ 分析 显然这个题用比较法是不易证出的。
若把111a b c++通分,则会把不等式变得较复杂而不易得到证明.由于右边是一个常数,故可考虑把左边的式子变为具有“倒数”特征的形式,比如b aa b+,再利用“均值定理”就有可能找到正确的证明途径,这也常称为“凑倒数”的技巧.证明:∵1a b c ++=∴ 111a b c ++a b c a b c a b ca b c++++++=++(1)(1)(1)b c a c a ba ab bc c =++++++++3()()()b a c a c ba b a c b c=++++++∵2b a b a a b a b +≥⋅=,同理:2c a a c +≥,2c bb c+≥。
∴11132229.a b c++≥+++= 说明:此题考查了变形应用综合法证明不等式.题目中用到了“凑倒数”,这种技巧在很多不等式证明中都可应用,但有时要首先对代数式进行适当变形,以期达到可以“凑倒数”的目的.典型例题五例5 已知c b a >>,求证:ac c b b a -+-+-111>0. 分析:此题直接入手不容易,考虑用分析法来证明,由于分析法的过程可以用综合法来书写,所以此题用两种方法来书写证明过程.证明一:(分析法书写过程)为了证明ac c b b a -+-+-111>0 只需要证明c b b a -+-11>ca -1∵c b a >>∴0,0>->->-c b b a c a∴c b c a b a ---1,11 >0 ∴c b b a -+-11>c a -1成立 ∴ac c b b a -+-+-111>0成立 证明二:(综合法书写过程)∵c b a >> ∴0,0>->->-c b b a c a∴b a -1>c a -1 c b -1>0 ∴c b b a -+-11>c a -1成立 ∴ac c b b a -+-+-111>0成立 说明:学会分析法入手,综合法书写证明过程,但有时这两种方法经常混在一起应用,混合应用时,应用语言叙述清楚.典型例题六例6 若0,0a b >>,且2c a b >+,求证:22.c c ab a c c ab -<<-分析 这个不等式从形式上不易看出其规律性,与我们掌握的定理和重要的结论也没有什么直接的联系,所以可以采用分析的方法来寻找证明途径.但用“分析”法证不等式,要有严格的格式,即每一步推出的都是上一步的充分条件,直到推出的条件是明显成立的(已知条件或某些定理等).证明:为要证22.c c ab a c c ab -<<- 只需证22c ab a c c ab --<-<- 即证2a c c ab -<-也就是22()a c c ab -<-,即证22a ac ab -<-, 即证2()ac a a b >+, ∵0,2,0a c a b b >>+>, ∴2a bc ab +>≥2c ab >即有20c ab ->, 又 由2c a b >+可得2()ac a a b >+成立,∴ 所求不等式22c c ab a c c ab -<<-说明:此题考查了用分析法证明不等式.在题目中分析法和综合法是综合运用的,要注意在书写时,分析法的书写过程应该是:“欲证……需证……”,综合法的书写过程是:“因为(∵)……所以(∴)……”,即使在一个题目中是边分析边说明也应该注意不要弄混.典型例题七例7 若233=+b a ,求证2≤+b a .分析:本题结论的反面比原结论更具体、更简、宜用反证法.证法一:假设2>+b a ,则)(2))((222233b ab a b ab a b a b a +->+-+=+,而233=+b a ,故1)(22<+-b ab a .∴ab b a ab 2122≥+>+.从而1<ab , ∴2122<+<+ab b a .∴4222)(222<+<++=+ab ab b a b a . ∴2<+b a .这与假设矛盾,故2≤+b a .证法二:假设2>+b a ,则b a ->2,故3333)2(2b b b a +->+=,即261282b b +->,即0)1(2<-b , 这不可能.从而2≤+b a .证法三:假设2>+b a ,则8)(3)(333>+++=+b a ab b a b a . 由233=+b a ,得6)(3>+b a ab ,故2)(>+b a ab . 又2))((2233=+-+=+b ab a b a b a ,∴))(()(22b ab a b a b a ab +-+>+. ∴ab b ab a <+-22,即0)(2<-b a .这不可能,故2≤+b a .说明:本题三种方法均采用反证法,有的推至与已知矛盾,有的推至与已知事实矛盾. 一般说来,结论中出现“至少”“至多”“唯一”等字句,或结论以否定语句出现,或结论肯定“过头”时,都可以考虑用反证法.典型例题八例8 设x 、y 为正数,求证33322y x y x +>+. 分析:用综合法证明比较困难,可试用分析法.证明:要证33322y x y x +>+,只需证233322)()(y x y x +>+, 即证6336642246233y y x x y y x y x x ++>+++,化简得334224233y x y x y x >+,0)323(2222>+-y xy x y x . ∵0334422<⨯⨯-=∆y y , ∴032322>+-y xy x . ∴0)323(2222>+-y xy x y x . ∴原不等式成立.说明:1.本题证明易出现以下错误证法:xy y x 222≥+,323233332y x y x ≥+,然后分(1)1>>y x ;(2)1<<y x ;(3)1>x 且10<<y ;(4)1>y 且10<<x 来讨论,结果无效.2.用分析法证明数学问题,要求相邻两步的关系是B A ⇐,前一步是后一步的必要条件,后一步是前一步的充分条件,当然相互为充要条件也可以.典型例题九例9 已知2122≤+≤y x ,求证32122≤+-≤y xy x . 分析:联想三角函数知识,进行三角换元,然后利用三角函数的值域进行证明. 证明:从条件看,可用三角代换,但需要引入半径参数r .∵2122≤+≤y x ,∴可设θ=cos r x ,θ=sin r y ,其中π≤θ≤≤≤2021,r .∴)2sin 211(cos sin 22222θ-=θθ-=+-r r r y xy x . 由232sin 21121≤θ-≤,故22223)2sin 211(21r r r ≤θ-≤. 而21212≥r ,3232≤r ,故32122≤+-≤y xy x .说明:1.三角代换是最常见的变量代换,当条件为222r y x =+或222r y x ≤+或12222=±by a x 时,均可用三角代换.2.用换元法一定要注意新元的范围,否则所证不等式的变量和取值的变化会影响其结果的正确性.典型例题十例10 设n 是正整数,求证121211121<+++++≤n n n . 分析:要求一个n 项分式nn n 212111+++++ 的范围,它的和又求不出来,可以采用“化整为零”的方法,观察每一项的范围,再求整体的范围.证明:由),,2,1(2n k n k n n =>+≥,得nk n n 1121<+≤.当1=k 时,n n n 11121<+≤;当2=k 时,n n n 12121<+≤…… 当n k =时,nn n n 1121<+≤.∴1212111221=<+++++≤=nn n n n n n . 说明:1、用放缩法证明不等式,放缩要适应,否则会走入困境.例如证明4712111222<+++n.由k k k 11112--<,如果从第3项开始放缩,正好可证明;如果从第2项放缩,可得小于2.当放缩方式不同,结果也在变化.2、放缩法一般包括:用缩小分母,扩大分子,分式值增大;缩小分子,扩大分母,分式值缩小;全量不少于部分;每一次缩小其和变小,但需大于所求,第一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头,同时放缩后便于求和.典型例题十一例11 已知0>>b a ,求证:bb a ab b a a b a 8)(28)(22-<-+<-. 分析:欲证不等式看起来较为“复杂”,宜将它化为较“简单”的形式,因而用分析法证明较好.证明:欲证b b a ab b a a b a 8)(28)(22-<-+<-, 只须证bb a ab b a a b a 4)(24)(22-<-+<-. 即要证2222)(2⎪⎪⎭⎫ ⎝⎛-<-<⎪⎪⎭⎫ ⎝⎛-b b a b a a b a ,即要证bb a b a ab a 22-<-<-.即要证bb a a b a 212+<<+,即要证bb a ab a +<<+2.即要证121+<<+ba ab ,即baa b <<1. 即要证baa b <<1 (*) ∵0>>b a ,∴(*)显然成立,故bb a ab b a a b a 8)(28)(22-<-+<- 说明:分析法证明不等式,实质上是寻求结论成立的一个充分条件.分析法通常采用“欲证——只要证——即证——已知”的格式.典型例题十二例12 如果x ,y ,z R ∈,求证:332332332888y x z x z y z y x z y x ++≥++.分析:注意到不等式左边各字母在项中的分布处于分离状态,而右边却结合在一起,因而要寻求一个熟知的不等式具有这种转换功能(保持两边项数相同),由0)()()(222≥-+-+-a c c b b a ,易得ca bc ab c b a ++≥++222,此式的外形特征符合要求,因此,我们用如下的结合法证明.证明:∵242424888)()()(z y x z y x ++=++444444x z x y y x ++≥222222222)()()(x z z y y x ++=222222222222y x x z x z z y z y y x ⋅+⋅+⋅≥222222)()()(y zx x yz z xy ++= z xy y zx y zx x yz x yz z xy 222222⋅+⋅+⋅≥ 332332332y x z x z y z y x ++=.∴332332332888y x z x z y z y x z y x ++≥++.说明:分析时也可以认为是连续应用基本不等式ab b a 222≥+而得到的.左右两边都是三项,实质上是ca bc ab c b a ++≥++222公式的连续使用.如果原题限定x ,y ,z +∈R ,则不等式可作如下变形:)111(333888z y x z y x z y x ++≥++进一步可得到:z y x yx z z x y z y x 111335335335++≥++.显然其证明过程仍然可套用原题的思路,但比原题要难,因为发现思路还要有一个转化的过程.典型例题十三例13 已知10<<a ,10<<b ,10<<c ,求证:在a c c b b a )1()1()1(---,,三数中,不可能都大于41. 分析:此命题的形式为否定式,宜采用反证法证明.假设命题不成立,则a c c b b a )1()1()1(---,,三数都大于41,从这个结论出发,进一步去导出矛盾. 证明:假设a c c b b a )1()1()1(---,,三数都大于41,即41)1(>-b a ,41)1(>-c b ,41)1(>-a c .又∵10<<a ,10<<b ,10<<c ,∴21)1(>-b a ,21)1(>-c b ,21)1(>-a c .∴23)1()1()1(>-+-+-a c c b b a ①又∵21)1(b a b a +-≤-,21)1(c b c b +-≤-,21)1(ac a c +-≤-.以上三式相加,即得:23)1()1()1(≤⋅-+⋅-+⋅-a c c b b a ②显然①与②相矛盾,假设不成立,故命题获证. 说明:一般情况下,如果命题中有“至多”、“至少”、“都”等字样,通常情况下要用反证法,反证法的关键在于“归谬”,同时,在反证法的证明过程中,也贯穿了分析法和综合法的解题思想.典型例题十四例14 已知a 、b 、c 都是正数,求证:⎪⎭⎫⎝⎛-++≤⎪⎭⎫⎝⎛-+33322abc c b a ab b a .分析:用分析法去找一找证题的突破口.要证原不等式,只需证332abc c ab -≤-,即只需证332abc ab c ≥+.把ab 2变为ab ab +,问题就解决了.或有分析法的途径,也很容易用综合法的形式写出证明过程.证法一:要证⎪⎭⎫⎝⎛-++≤-⎪⎭⎫ ⎝⎛+33322abc c b a ab b a , 只需证332abc c b a ab b a -++≤-+,即332abc c ab -≤-,移项,得332abc ab c ≥+. 由a 、b 、c 为正数,得332abc ab ab c ab c ≥++=+. ∴原不等式成立.证法二:∵a 、b 、c 为正数,3333abc ab ab c ab ab c =⋅≥++∴.即332abc ab c ≥+,故332abc c ab -≤-.332abc c b a ab b a -++≤-+∴,⎪⎭⎫⎝⎛-++≤-⎪⎭⎫ ⎝⎛+∴33322abc c b a ab b a . 说明:题中给出的2ba +,ab ,3c b a ++,3abc ,只因为a 、b 、c 都是正数,形式同算术平均数与几何平均数定理一样,不加分析就用算术平均数与几何平均数定理来求证,问题就不好解决了.原不等式中是用“不大于”连结,应该知道取等号的条件,本题当且仅当ab c =时取“=”号.证明不等式不论采用何种方法,仅仅是一个手段或形式问题,我们必须掌握证题的关键.本题的关键是证明332abc ab c ≥+.典型例题十五例15 已知0>a ,0>b ,且1=-b a .求证:1)1)(1(10<+-<bb a a a . 分析:记)1)(1(10bb a a a M +-<=,欲证10<<M ,联想到正、余弦函数的值域,本题采用三角换元,借助三角函数的变换手段将很方便,由条件1=-b a ,+∈R b a 、可换元,围绕公式1tan sec 22=θ-θ来进行.证明:令θ=2sec a ,θ=2tan b ,且20π<θ<, 则)tan 1(tan )sec 1(sec sec 1)1)(1(12θ+θ⋅θ-θθ=+-bb a a a )sin cos cos sin ()cos cos 1(cos 2θθ+θθ⋅θ-θθ= θ=θθ⋅θθ⋅θ=sin cos sin 1cos sin cos 22 ∵20π<θ<,∴1sin 0<θ<,即1)1)(1(10<+-<bb a a a 成立. 说明:换元的思想随处可见,这里用的是三角代换法,这种代换如能将其几何意义挖掘出来,对代换实质的认识将会深刻得多,常用的换元法有:(1)若1≤x ,可设R x ∈αα=,sin ;(2)若122=+y x ,可设α=cos x ,α=sin y ,R ∈α;(3)若122≤+y x ,可设α=cos r x ,α=sin r y ,且1≤r .典型例题十六例16 已知x 是不等于1的正数,n 是正整数,求证n n n n x x x ⋅>+++12)1)(1(.分析:从求证的不等式看,左边是两项式的积,且各项均为正,右边有2的因子,因此可考虑使用均值不等式.证明:∵x 是不等于1的正数, ∴021>>+x x , ∴n n n x x 2)1(>+. ① 又021>>+n n x x . ②将式①,②两边分别相乘得n n n n n x x x x ⋅⋅>++22)1)(1(,∴n n n n x x x ⋅>+++12)1)(1(.说明:本题看起来很复杂,但根据题中特点,选择综合法求证非常顺利.由特点选方法是解题的关键,这里因为1≠x ,所以等号不成立,又因为①,②两个不等式两边均为正,所以可利用不等式的同向乘性证得结果.这也是今后解题中要注意的问题.典型例题十七例17 已知,x ,y ,z +∈R ,且1=++z y x ,求证3≤++z y x .分析:从本题结构和特点看,使用比较法和综合法都难以奏效.为找出使不等式成立的充分条件不妨先用分析法一试,待思路清晰后,再决定证题方法.证明:要证3≤++z y x , 只需证3)(2≤+++++yz xz xy z y x , 只需证1≤++yz xz xy .∵x ,y ,z +∈R , ∴xy y x 2≥+,xz z x 2≥+,yz z y 2≥+, ∴)(2)(2yz xz xy z y x ++≥++, ∴1≤++yz xz xy 成立. ∴3≤++z y x .说明:此题若一味地用分析法去做,难以得到结果.在题中得到只需证1≤++yz xz xy 后,思路已较清晰,这时改用综合法,是一种好的做法.通过此例可以看出,用分析法寻求不等式的证明途径时,有时还要与比较法、综合法等结合运用,决不可把某种方法看成是孤立的.典型例题十八例18 求证2131211222<++++n . 分析:此题的难度在于,所求证不等式的左端有多项和且难以合并,右边只有一项.注意到这是一个严格不等式,为了左边的合并需要考查左边的式子是否有规律,这只需从21n 下手考查即可. 证明:∵)2(111)1(11112≥--=-<⋅=n nn n n n n n , ∴ +⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+<++++312121111131211222n 212111<-=⎪⎭⎫ ⎝⎛--+n n n . 说明:此题证明过程并不复杂,但思路难寻.本题所采用的方法也是解不等式时常用的一种方法,即放缩法.这类题目灵活多样,需要巧妙变形,问题才能化隐为显,这里变形的这一步极为关键.典型例题十九例19 在ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c ,若B C A 2≤+,求证4442b c a ≤+. 分析:因为涉及到三角形的边角关系,故可用正弦定理或余弦定理进行边角的转化.证明:∵B B C A 2≤-π=+,∴21cos 3≤π≥B B ,. 由余弦定理得ac c a B ac c a b -+≥-+=22222cos 2∴ac b c a +≤+222,∴22222442)(c a c a c a -+=+=)2)(2(2222ac c a ac c a -+++])12([])12([22ac b ac b --⋅++≤22242c a b ac b -⋅+=44222)(b b b ac ≤+--=说明:三角形中最常使用的两个定理就是正弦和余弦定理,另外还有面积公式C ab S sin 21=.本题应用知识较为丰富,变形较多.这种综合、变形能力需要读者在平时解题时体会和总结,证明不等式的能力和直觉需要长期培养.。