(推荐)时间测量中随机误差的分布规律

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告

实验名称 时间测量中随机误差的分布规律

实验目的 用常规仪器(如电子秒表、频率计等)测量时间间隔,通过对时间和频率测量

的随机误差分布,学习用统计方法研究物理现象的过程和研究随机误差分布的规律。

实验仪器 机械节拍器,电子秒表。 实验原理 1.常用时间测量仪表的简要原理

(1)机械节拍器

(2)电子节拍器 (3)电子秒表

(4)VAFN 多用数字测试仪

用电子秒表测量机械节拍器发声的时间间隔,机械节拍器按一定的频率发出有规律的声响,电子秒表用石英晶体振荡器作时标,一般用六位液晶数字显示,其连续积累时间为59min59.99s,分辨率为0.01s,平均日差0.5s 。 2.统计分布规律的研究

假设在近似消除了系统误差(或系统误差很小,可忽略不计,或系统误差为

一恒定值)的条件下,对某物理量x 进行N 次等精度测量,当测量次数N 趋向无穷时,各测量值出现的概率密度分布可用正态分布(有成高斯分布)的概率密度函数表示,

]2)x -(x ex p[-21

)(2

2

σπ

σ=x f (1) 其中 n

x

x n

1

i i

∑==

(2)

1

-n )x -(x

n

1

i 2

i

∑==

σ (3)

=a

a

-f(x)dx P(a) (4)

式中a=σ,2σ,3σ分别对应不同的置信概率。

(1)统计直方图方法

用统计直方图表示被研究对象的规律简便易行,直观清晰。

在一组等精度测量所得的N 个结果x 1,x 2,…,x N 中,找出它的最大值x max 与最小值x min ,并求出级差R=x max - x min ,由级差分为K 个小区间,每个小区域的间隔(

△x )的大小就等于

K

x -x K R min

max =

。统计测量结果出现在某个小区域内的次数n i 称为频数,N

n

i 为频率,

N

n

i

∑为累计频率,称为频率密度。以测

量值x 值为横坐标,以

x

N n i

∆⋅为纵坐标,便可得到统计直方图。

(2)概率密度分布曲线

利用式(1)求出各小区域中点的正态分布的概率密度值f (x ),以f (x )为纵坐标,x 为横坐标,可得概率密度分布曲线。若概率密度分布曲线与统计直方图上端相吻合,则可以认为测量值是基本符合正态分布的。实际测量中,受测试者的心理因素,外界环境,仪器系统误差,测量次数不可能无穷多等影响,二者不完全重合是很常见的,因此测量值仅是基本符合正态分布。

实验内容 1.时间间隔测量

用电子秒表测量机械节拍器的摆动周期,测量次数要在200次以上。

2.统计规律研究 (时间测量要求在相同的条件下,重复测量200次以上)。

(1)利用式(2)和式(3)计算x 和σ。

(2)利用式(1)计算各区中点的f (x )值。

(3)根据测量结果的离散程度,极限差R 的大小,合理划分小区间数K ,确定其间隔,计算各区间的频率、相对频率、相对频率密度和累计频率,以频率密度为纵坐标,测量值x 为横坐标,作统计直方图,并将f (x )—x 中曲线绘在统计直方图中,检验测量值分布是否符合正态分布。

(4)利用式(4)计算测量列误差出现在±σ,±2σ,±3σ范围内的概率。 (5)计算测量平均值的标准差,并正确写出测量结果完整的表达式。

测量记录 原始数据记录如下表:

单位:秒(s )

数据处理

对原始数据进行处理,最大值x max=4.10s,最小值x min=3.89s,平均值x

.041,R=0.21,取K=10,则△x=0.021,得下表:

利用origin7.5作图如下:

x

N n i

∆⋅time x/s

P(σ)=0.690,P(2σ)=0.948,P(3σ)=0.990

(理论值 P(σ)=0.683,P(2σ)=0.954,P(3σ)=0.997)

由上述计算和图表,在一定误差范围内,该测量列基本符合正态分布。

算术平均值的标准差u A =

n

σ

=0.0029,即为A 类不确定度。 考虑置信概率P=0.95的情况, 电子秒表误差分布为正态分布,可取

95.0t =1

仪∆=0.01s c=3

B 类不确定度在0.95的置信概率下置信因子为k=1.96

由不确定度合成公式得

2

2

95095.0())

(仪。c

k

u t U At ∆+==0.02 P=0.95 误差分析 1.测量次数为有限次,不可能为无穷大,结果会偏离正态分布。

2.测量仪器本身存在系统误差,结果不能十分精确。

3.受外部因素的干扰较多,很多人围在一起测量,会彼此受到影响。

4.测量200多次,一个人要按400多次秒表,手指会产生疲倦感,按钮超前或

延后,导致测量结果偏离。

思考题 1.测量次数为有限次,不可能为无穷大,测量仪器本身存在系统误差,测量

200多次,一个人要按400多次秒表,手指会产生疲倦感,受外部因素的

干扰较多,很多人围在一起测量,会彼此受到影响等很多因素,都会产生

偏离。

2.若不考虑系统误差的条件下,对某一物理量进行多次等精度测量时随机误差

的分布规律理论上呈正态分布,得到一条连续光滑的曲线,并且

P(σ)=0.683,P(2σ)=0.954,P(3σ)=0.997。具有对称性,单峰性,有界

性和抵偿性(即误差的算术平均值随着n趋向无穷而趋于零)。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

相关文档
最新文档