二次函数的动点问题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
2
x =
B(0,4)
A(6,0)
E
F
x
y
O 二次函数与四边形
一.二次函数与四边形的形状
例1.(浙江义乌市) 如图,抛物线2
23y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.
(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值;
(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.
练习1.(河南省实验区) 23.如图,对称轴为直线7
2
x =
的抛物线经过点 A (6,0)和 B (0,4). (1)求抛物线解析式及顶点坐标;
(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;
①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形
②是否存在点E ,使平行四边形OEAF 为正方形若存在,求出点E 的坐标;
若不存在,请说明理由.
练习 2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '.
(1)求抛物线2l 的函数关系式;
(2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形
(3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30的直角三角形若存,求
出点M 的坐标;若不存在,说明理由.
A 5-
4- 3-
2-
1- 1 2 3 4 5
5 4 3 2 1 A E
B
C '
1- O
2l 1l
x y
练习3.(山西卷)如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于
C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;
(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出
此最大值;
(4)在运动过程中,四边形MDNA 能否形成矩形若能,求出此时t 的值;若不能,请说明理由.
二.二次函数与四边形的面积
例1.(资阳市)25.如图10,已知抛物线P :y=ax 2
+bx+c(a ≠0)
与x 轴交于A 、B 两点(点A 在x 轴的正半轴上),与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在线段BC 、AC 上,抛物线P 上部分点的横坐标对应的纵坐标如下:
x … -3 -2 1 2 … y
…
-52
-4
-52
…
(1) 求A 、B 、C 三点的坐标;
(2) 若点D 的坐标为(m ,0),矩形DEFG 的面积为S ,求S 与m 的函数关系,并指出m 的取值范围;
(3) 当矩形DEFG 的面积S 取最大值时,连接DF 并延长至点M ,使FM=k ·DF ,若点M 不在抛物线P 上,求k 的取值范围.
练习1.(辽宁省十二市第26题).如图,平面直角坐标系中有一直角梯形OMNH ,点H 的坐标为(-8,0),点N 的坐标为(-6,-4).
(1)画出直角梯形OMNH 绕点O 旋转180°的图形OABC ,并写出顶点A ,B ,C 的坐标(点M 的对应点为A , 点N 的对应点为B , 点H 的对应点为C );
(2)求出过A ,B ,C 三点的抛物线的表达式;
(3)截取CE =OF =AG =m ,且E ,F ,G 分别在线段CO ,OA ,AB 上,求四边形BEFG 的面积S 与m 之间的函数关系式,并写出自变量m 的取值范围;面积S 是否存在最小值若存在,请求出这个最小值;若不存在,请说明理由;
(4)在(3)的情况下,四边形BEFG 是否存在邻边相等的情况,若存在,请直接写出此时m 的值,并指出相等的邻边;若不存在,说明理由.
图10
练习3.(吉林课改卷)如图,正方形ABCD 的边长为2cm ,在对称中心O 处有一钉子.动点P ,Q 同时从点A 出发,
点P 沿A B C →→方向以每秒2cm 的速度运动,到点C 停止,点Q 沿A D →方向以每秒1cm 的速度运动,到点D 停止.P ,Q 两点用一条可伸缩的细橡皮筋联结,设x 秒后橡皮筋扫过的面积为2
cm y .
(1)当01x ≤≤时,求y 与x 之间的函数关系式; (2)当橡皮筋刚好触及钉子时,求x 值;
(3)当12x ≤≤时,求y 与x 之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时POQ ∠的变化范围;
(4)当02x ≤≤时,请在给出的直角坐标系中画出y 与x 之间的函数图象.
练习4.(四川资阳卷)如图,已知抛物线l 1:y =x 2
-4的图象与x 轴相交于A 、
C 两点,B 是抛物线l 1上的动点(B 不与A 、C 重合),抛物线l 2与l 1关于x 轴对称,以AC 为对角线的平行四边形ABC
D 的第四个顶点为D .
(1) 求l 2的解析式;
(2) 求证:点D 一定在l 2上; (3) □ABCD 能否为矩形如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值
.
三.二次函数与四边形的动态探究
例1.(荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (4,0),C (0,3),点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合.
(1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;
(2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式;
(3)在(2)的情况下,在该抛物线上是否存在点Q ,使△PEQ 是以PE 为直角边的直角三角形若不存在,说明理由;若存在,求出点Q 的坐标.
B C
P
O D Q
A B
P C
O
D
Q A
y
3
2 1 O
1 2 x