公因数公倍数应用题

合集下载

公倍数和公因数的应用题

公倍数和公因数的应用题

10 道公倍数和公因数的应用题题目一:有一张长48 厘米、宽36 厘米的长方形纸,如果要剪成若干同样大小的正方形而没有剩余,剪出的小正方形的边长最大是多少厘米?解析:求剪出的小正方形的边长最大是多少厘米,就是求48 和36 的最大公因数。

48 的因数有1、2、3、4、6、8、12、16、24、48;36 的因数有1、2、3、4、6、9、12、18、36。

它们的公因数有1、2、3、4、6、12,其中最大公因数是12。

所以剪出的小正方形的边长最大是12 厘米。

题目二:把两根分别长24 分米和30 分米的木料锯成若干相等的小段而没有剩余,每段最长是多少分米?解析:求每段最长是多少分米,就是求24 和30 的最大公因数。

24 的因数有1、2、3、4、6、8、12、24;30 的因数有1、2、3、5、6、10、15、30。

它们的公因数有1、2、3、6,其中最大公因数是6。

所以每段最长是 6 分米。

题目三:用96 朵红花和72 朵黄花做成花束,如果每个花束里的红花同样多,黄花也同样多。

那么最多能做几束花?每束花里有几朵红花和几朵黄花?解析:求最多能做几束花,就是求96 和72 的最大公因数。

96 的因数有1、2、3、4、6、8、12、16、24、32、48、96;72 的因数有1、2、3、4、6、8、9、12、18、24、36、72。

它们的公因数有1、2、3、4、6、8、12、24,其中最大公因数是24。

所以最多能做24 束花。

96÷24 = 4(朵),72÷24 = 3(朵),每束花里有4 朵红花和 3 朵黄花。

题目四:有一批图书,总数在1000 本以内。

若按24 本包成一捆,最后一捆差 2 本;若按28 本包成一捆,最后一捆还是差 2 本;若按32 本包成一捆,最后一捆是30 本。

这批图书有多少本?解析:由题意可知,这批图书的数量加上 2 本后,就是24、28、32 的公倍数。

24 的倍数有24、48、72、96、120、144、168、192、216、240、264、288、312、336、360、384、408、432、456、480、504、528、552、576、600、624、648、672、696、720、744、768、792、816、840、864、888、912、936、960、984;28 的倍数有28、56、84、112、140、168、196、224、252、280、308、336、364、392、420、448、476、504、532、560、588、616、644、672、700、728、756、784、812、840、868、896、924、952、980;32 的倍数有32、64、96、128、160、192、224、256、288、320、352、384、416、448、480、512、544、576、608、640、672、704、736、768、800、832、864、896、928、960、992。

最大公因数与最小公倍数应用题

最大公因数与最小公倍数应用题

最大公因数与最小公倍数应用题1、假设这些糖果最少有x个,那么x既能被8整除,又能被10整除,因此x是8和10的最小公倍数,即x=40.2、假设这包糖最少有y块,那么y既能被8整除,又能被10整除,因此y是8和10的最小公倍数,即y=40.3、这个数是4的倍数,因为4除以4余数是0,所以这个数必须被4整除。

这个数是6的倍数,因为6除以6余数是0,所以这个数必须被6整除。

这个数比6的倍数多1,因此这个数必须是6的倍数加1.因此这个数是24+1=25.4、这个人数是30~50的倍数,且是3、4、6、8的公倍数。

这个人数是120的倍数,且小于等于50,因此这个人数是120.5、每个正方形由6块瓷砖组成,因此正方形的面积等于6的倍数。

正方形的边长等于瓷砖的公因数,因此正方形的面积最小是6×6=36.6、假设这堆苹果最少有x千克,那么x既能被8整除,又能被9整除,又能被10整除,因此x是8、9、10的最小公倍数加3,即x=89.7、假设合唱队至少有x人,那么x既能被7整除,又能被8整除,因此x是7和8的最小公倍数加2,即x=54.8、假设最多有x个研究成绩优秀的同学,那么x既能被37和38整除,又要满足钢笔多出一支,书缺2本,因此x是37和38的最小公倍数加1,即x=703.9、这些水果的最大公因数是8,因此每个盘子里的水果数是8的倍数。

苹果和梨的总数是24+32=56,因此每个盘子里的水果数最多是56/2=28.每个盘子里苹果和梨的个数相同,因此每个盘子里苹果和梨各有14个。

10、这两路汽车同时发车的时间是它们发车时间的最小公倍数,即3×5=15分钟后。

11、这个年级的人数是6、8和9的公倍数,因此这个年级的人数是216.12、这个数是3的倍数,因为3除以3余数是0,所以这个数必须被3整除。

这个数是4的倍数,因为4除以4余数是0,所以这个数必须被4整除。

这个数比4的倍数多2,因此这个数必须是4的倍数加2.这个数是5的倍数,因为5除以5余数是0,所以这个数必须被5整除。

五年级下学期最大公因数与最小公倍数应用题及练习题

五年级下学期最大公因数与最小公倍数应用题及练习题

1有一个自然数,被6除余1,被5除余1,被4除余1,这个自然数最小是几2把长120厘米,宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少块3)把长132厘米,宽60厘米,厚36厘米的木料锯成尽可能大的,同样大小的正方体木块,锯后不能有剩余,能锯成多少块4)用长120厘米,宽80厘米的长方形砖块去铺一块正方形地,最少需要多少块砖5)一盒钢笔可以平均分给2、3、4、5、6个同学,这盒钢笔最少有多少枝7)每筐梨,按每份2个梨分多1个,每份3个梨分多2个,每份5个梨分4个,则筐里至少有多少个梨8现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三种水果的数量分别相等,那么最多分给了多少个班每个班至少分到了三种水果各多少千克9)有三根铁丝,一根长54米,一根长72米,一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米10有一级茶叶96克,二级茶叶156克,三级茶叶240克,价值相等.现将这三种茶叶分别等分装袋均为整数克,每袋价值相等,要使每袋价值最低应如何装袋11一次考试,参加的学生中有17得优,13得良,12得中,其余的得差,已知参加考试的学生不满50人,那么得差的学生有多少人12一次会餐供有三种饮料.餐后统计,三种饮料共用了65瓶;平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料.问参加会餐的人数是多少人13把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共最多有多少个小朋友14因夜间施工需要,要把施工区的一条长120米的路边路灯有间隔6米改成间隔4米,除两端不需移动,中间还有几盏不需移动15两个数的积是6912,最大公因数是24,求它们的最小公倍数16甲、乙、丙三个学生定期向某老师求教,甲每4天去一次,乙每6天去一次,丙每9天去一次,如果这一次他们三人是3月23日都在这个老师家见面,那么下一次三人都在这个老师家见面的时间是几月几日17求被5除余2,被6除余3,被7除4的大于1000、小于1500的所有自然数.最大公因数与最小公倍数练习题一、填空:最大公约数与最小公倍数1、如果自然数A除以自然数B商是17,那么A与B的最大公因数是,最小公倍数是;2、最小质数与最小合数的最大公因数是,最小公倍数是;3、能被5、7、16整除的最小自然数是;4、17、8最大公因数,7,8最小公倍数225,15最大公因数,25、15最小公倍数3140,35最大公因数,140,35最小公倍数424,36最大公因数,24、36最小公倍数53,4,5最大公因数,3,4,5最小公倍数64,8,16最大公因数,4,8,16最小公倍数5、5和12的最小公倍数减去就等于它们的最大公因数;91和13的最小公倍数是它们最大公因数的倍;6、已知两个互质数的最小公倍数是153,这两个互质数是和;7、甲数=2×3×5×7,乙数=2×3×11,甲乙两数的最大公因数是,最小公倍数是;8、3个连续自然数的最小公倍数是60,这三个数是、和;9、被2、3、5除,结果都余1的最小整数是,最小三位整数是;10、一筐苹果4个4个拿,6个6个拿,或者8个8个拿都正好拿完,这筐苹果最少有个;11、三个连续偶数的和是42,这三个数的最大公因数是;12、三个13、自然数m和n,n=m+1,m和n的最大公因数是,最小公倍数是; 14、把自然数a与b分解质因数,得到a=2×5×7×m,b=3×5×m,如果a与b的最小公倍数是2730,那么m=;15、273,231,117最大公因数,273,231,117最小公倍数16、三个数的和是312,这三个数分别能被7、8、9整除,而且商相同;这三个数分别是、和;17、已知A,40=8,A,40=80,那么A=;18、找一个与众不同的数三个方法并说明理由:1、2、3、5、7、9、151:选,因为2:选,因为3:选,因为19、按要求写互质数两个都是质数和;两个都是合数和;一个质数和一个奇数和;一个偶数5和一个合数和;一个质数和一个合数和;一个偶数和一个合数和;二、解决下列的问题:1、有一行数:1,1,2,3,5,8,13,21,34,55……,从第三个数开始,每个数都是前两个数的和,在前100个数中,偶数有多少个不同质数的最小公倍数是105,这三个质数是、和;2、一个长方形的长和宽都是自然数,面积是36平方米,这样的形状不同的长方形共有多少种3、一种长方形的地砖,长24厘米,宽16厘米,用这种砖铺一个正方形,至少需多少块砖4、有一个长80厘米,宽60厘米,高115厘米的长方体储冰容器,往里面装入大小相同的立方体冰块,这个容器最少能装多少数量冰块5、已知某小学六年级学生超过100人,而不足140人;将他们按每组12人分组,多3人;按每组8人分,也多3人;这个学校六年级学生多少6、有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄的乘积是360;他们中年龄最大是多少岁7、汽车站内每隔3分钟发一辆公交车,4分钟发一辆中巴车,1小时共发了几辆汽车其中有几辆中巴车8、一块长方形铁皮,长96厘米,宽80厘米,要把它剪成同样大小的正方形且没有剩余,这种正方形的边长是多少被剪成几块9、王老师把25本作文和39本数学分别平均分给第一组的同学,结果作文本多1本,数学本多3本,第一组最多有几位同学10、一张长方形纸长16厘米,宽12厘米,把它裁成大小一样的正方形,而没有剩余,最少可以裁成多少个正方形每个正方形的边长是多少11、某班同学,排成7排多3人,排成8排少4人,这个班至少多少人12、五1班同学做操,排成8排少1人,排成10排也少1人,这个班至少多少人。

最大公因数和最小公倍数应用的典型例题和专题练习

最大公因数和最小公倍数应用的典型例题和专题练习

最大公因数和最小公倍数应用的典型例题和专题练习TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】最大公因数和最小公倍数应用的典型例题和专题练习[典型例题]例1、有三根铁丝,一根长18米,一根长24米,一根长30米。

现在要把它们截成同样长的小段。

每段最长可以有几米一共可以截成多少段分析与解:截成的小段一定是18、24、30的最大公因数。

先求这三个数的最大公因数,再求一共可以截成多少段。

解答:(18、24、30)=6(18+24+30)÷6=12段答:每段最长可以有6米,一共可以截成12段。

例2、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米能截多少个正方形分析与解:要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公因数。

解答:(36、60)=12(60÷12)×(36÷12)=15个答:正方形的边长可以是12厘米,能截15个正方形。

例3、用96朵红玫瑰花和72朵白玫瑰花做花束。

若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束每个花束里至少要有几朵花分析与解:要把96朵红玫瑰花和72朵白玫瑰花做成花束,每束花里的红白花朵数同样多,那么做成花束的个数一定是96和72的公因数,又要求花束的个数要最多,所以花束的个数应是96和72的最大公因数。

解答:(1)最多可以做多少个花束(96、72)=24(2)每个花束里有几朵红玫瑰花96÷24=4朵(3)每个花束里有几朵白玫瑰花72÷24=3朵(4)每个花束里最少有几朵花4+3=7朵例4、公共汽车站有三路汽车通往不同的地方。

第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。

最大公因数与最小公倍数应用题练习

最大公因数与最小公倍数应用题练习

v1.0 可编辑可修改11、有一些糖果,分给8个人或分给10个人,正好分完,这些糖果最少有多少粒解:【8,10】=402、有一包糖,不论分给8个人,还是分给10个人,都能正好分完。

这包糖至少有多少块 解:【8,10】=40(人)3、一个数被2除余1,被3除余2,被4除余4,被6除余5,此数最小是几解:【2,3,4,6】=12 12-1=114、五年级学生参加植树活动,人数在30~50之间。

如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。

五年级参加植树活动的学生有多少人解:【3,4,6,8】=24(人) 24×2=48(人)5、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。

问:拼成的正方形的面积最小是多少解:【6,4】=12(公分) 12×12=144(CM2)6、有一堆苹果 ,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克解:【8,9,10】=360 360+3=363kg7、学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人解:【7,8】=56(人) 56-2=54(人)8、把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,书还缺2本,最多有几个学习成绩优秀的同学 解:37-1=36(本) 38+2=40(本) (36,40)=4(人)9、有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的个数相同,最多可以装多少盘每个盘子里苹果和梨各多少 解:(24,32)=8(盘) 24÷8=3(个) 32÷8=4(个)10、阜沙市场是20路和21路汽车的起点站。

20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。

这两路汽车同时发车以后,至少再过多少分钟又同时发车 解:【3,5】=15(分钟)11、中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。

公因数公倍数

公因数公倍数

甲.乙.丙三个齿轮咬合,当甲轮转4圈时,乙轮恰好转3圈,当乙轮转4圈时,丙轮恰为转5圈,求这三个轮的齿数最少应分别是多少?1 、用一个数去除30、60、75,都能整除,这个数最大是多少?2、一个数用3、4、5除都能整除,这个数最小是多少?3、有三根铁丝,长度分别是120厘米、180厘米和300厘米.现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?4 、加工某种机器零件,要经过三道工序.第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个,第三道工序每个工人每小时可完成5个,要使加工生产均衡,三道工序至少各分配几个工人?5 、一次会餐供有三种饮料.餐后统计,三种饮料共享了65瓶;平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料.问参加会餐的人数是多少人?6、一张长方形纸,长2703厘米,宽1113厘米.要把它截成若干个同样大小的正方形,纸张不能有剩余且正方形的边长要尽可能大.问:这样的正方形的边长是多少厘米?7 、用辗转相除法求4811和1981的最大公约数。

8、求1008、1260、882和1134四个数的最大公约数是多少?9 、两个数的最大公约数是4,最小公倍数是252,其中一个数是28,另一个数是多少?10 、求21672和11352的最小公倍数。

1.甲数是乙数的三分之一,甲数和乙数的最小公倍数是54,甲数是多少?乙数是多少?2.一块长方形地面,长120米,宽60米,要在它的四周和四角种树,每两棵之间的距离相等,最少要种树苗多少棵?每相邻两棵之间的距离是多少米?3.已知两个自然数的积是5766,它们的最大公约数是31.求这两个自然数。

4.兄弟三人在外工作,大哥6天回家一次,二哥8天回家一次,小弟12天回家一次.兄弟三人同时在十月一日回家,下一次三人再见面是哪一天?5.将长25分米,宽20分米,高15分米的长方体木块锯成完全一样的尽可能大的立方体,不能有剩余,每个立方体的体积是多少?一共可锯多少块?6.一箱地雷,每个地雷的重量相同,且都是超过1的整千克数,去掉箱子后地雷净重201千克,拿出若干个地雷后,净重183千克.求一个地雷的重量?1)五年一班去划船,他们算了一下,如果增加一条船,正好每船坐6个,如果减少一条船,正好每船坐9人,这个班有多少人?2)有一个电子表,每走9分钟这一次灯,每到整点响一次铃,中午12点整,电子表既响铃又灯,请问下一次既响铃又亮灯是几点钟?3)两个整数的最小公倍数为140,最大公约数为4,且小数不能整除大数,求这两个数。

公倍数、公因数的应用题讲解和练习

公倍数、公因数的应用题讲解和练习

公倍数、公因数的应用题讲解和练习有一个长方体的木头,长3.25米,宽1.75米,厚0.75米。

如果把这块木头截成许多相等的小立方体,并使每个小立方体尽可能大,小立方体的棱长及个数各是多少?解:根据题意,小立方体一条棱长应是长方体长、宽、厚各数的最大公约数。

即:(325、175、75)=25(厘米)因为325÷25=13175÷25=775÷25=3所以13×7×3=273(个)答:能分为小立方体273个,小立方体的每条棱长为25厘米。

2、有一个两位数,除50余2,除60余3,除73余1。

求这个两位数是多少?解:这个两位数除50余2,则用他除48(52-2)恰好整除。

也就是说,这个两位数是48的约数。

同理,这个两位数也是60、72的约数。

所以,这个两位数只可能是48、60、72的公约数1、2、3、4、6、12,而满足条件的只有公约数12,即(48、60、72)=12。

答:这个两位数是12。

3、张老师利用晚上时间给甲、乙、丙三个学生补课,至少经过多少天又在一起补课?分析:经过多少天三人又一起补课?这个天数一定是4的倍数、5的倍数和8的倍数,即4、5和8的公倍数。

因为问至少经过多少天,所以应经过4、5和8的最小公倍数。

解:(4、5、8)=40(天)答:经过40天三人又在一起补课。

1、有一堆西瓜与一堆木瓜,分别为24个与36个,将其各分成若干小堆,各小堆的个数要相等,则每小堆最多几个?这时候西瓜分成多少小堆?木瓜分成多少小堆?2、甲、乙两队学生,甲队有121人,乙队有143人,各分成若干组,各组人数要相等,则每组最多有几人?这时候甲队可分成多少组?乙队可分成多少组?3、今有梨320个、糖果240个、饼干200个,将这些东西分成相同的礼品包送给儿童,但包数要最多,则每包有多少个梨?有多少个糖果?有多少个饼干?4、把一张长30厘米,宽24厘米的长方形纸裁成同样大小的正方形,且没有剩余,裁成的正方形的边长最大是几厘米?一共可以裁成多少个?5、有两根同样长的铁丝,第一根长15厘米,第二根长18厘米,要把它们截成同样长的小段,而且不能有剩余,每小段最长是多少?一共能截成多少段?6、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。

五年级公因数和公倍数的题120道

五年级公因数和公倍数的题120道

五年级公因数和公倍数的题120道一、公因数相关题目(60道,先20道带解析)1. 求12和18的最大公因数。

- 解析:分别列出12和18的因数。

12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。

它们共有的因数有1、2、3、6,其中最大的是6,所以12和18的最大公因数是6。

2. 求24和36的最大公因数。

- 解析:24的因数有1、2、3、4、6、8、12、24;36的因数有1、2、3、4、6、9、12、18、36。

共有的因数为1、2、3、4、6、12,最大公因数是12。

3. 求15和25的最大公因数。

- 解析:15的因数是1、3、5、15,25的因数是1、5、25。

它们的公因数有1和5,最大公因数是5。

4. 求8和12的最大公因数。

- 解析:8的因数有1、2、4、8,12的因数有1、2、3、4、6、12。

共有的因数为1、2、4,最大公因数是4。

5. 求20和30的最大公因数。

- 解析:20的因数有1、2、4、5、10、20,30的因数有1、2、3、5、6、10、15、30。

公因数有1、2、5、10,最大公因数是10。

6. 求16和24的最大公因数。

- 解析:16的因数有1、2、4、8、16,24的因数有1、2、3、4、6、8、12、24。

共有的因数为1、2、4、8,最大公因数是8。

7. 求9和15的最大公因数。

- 解析:9的因数有1、3、9,15的因数有1、3、5、15。

公因数为1和3,最大公因数是3。

8. 求14和21的最大公因数。

- 解析:14的因数有1、2、7、14,21的因数有1、3、7、21。

共有的因数为1、7,最大公因数是7。

9. 求28和42的最大公因数。

- 解析:28的因数有1、2、4、7、14、28,42的因数有1、2、3、6、7、14、21、42。

公因数有1、2、7、14,最大公因数是14。

10. 求10和15的最大公因数。

- 解析:10的因数有1、2、5、10,15的因数有1、3、5、15。

公因数、公倍数综合练习题

公因数、公倍数综合练习题

公因数、公倍数综合练习题
1、a与b是互质数,它们的最大公约数是1,它们的最小公倍数是ab。

2、一筐苹果4个4个拿,6个6个拿,或者8个8个拿都正好拿完,这筐苹果最少有24个。

3、a=2ab,b=2bc,a、b两数的最大公约数是2b,最小公倍数是4abc。

4、一个数的最大因数是13,这个数的最小倍数是13.
5、连续两个偶数之和是30,它们的最大公因数是2.
6、两个数的最大公因数是12,最小公倍数是60,这两个数分别是24和30.
7、两个数的最大公因数是3,最小公倍数是30,其中一个数是6,另一个数是15.
8、两个自然数的最大公约数是5,最小公倍数是300,其中一个数是75,另一个数是200.
三、选择填空
1.两个不同质数的最大公约数是1.
五、求下列每组数的最大公因数(每题2分,共12分)
22和99的最大公因数是11;
34和51的最大公因数是17;
14和25的最大公因数是1;
16和28的最大公因数是4;
18和20的最大公因数是2.
应用题(共12分)
1、这两个数可能是8和6,12和4,16和3,24和2,48和1.
2、小正方形的边长最大可以是6厘米,至少可以分成24个正方形。

3、至少要用16块这样的砖,才能铺成一块正方形。

4(1)、这个班至少有10人。

4(2)、这个自然数最小是67.
4(3)、五年级至少有158个同学排队做操。

4(4)、六年级共有95个学生。

5、经过两步操作后,仍面向老师的同学有13名。

6、中间挂有23个红气球。

最大公因数最小公倍数应用题

最大公因数最小公倍数应用题

1.有两根铁丝,一根长18米,另一根长24米。

现在要把他们截成长短相同的小
段,每段最长多少米?一共可以截成几段?
2.一张长方形的纸,长60厘米,宽36厘米,要把他们截成同样大小的正方形,并
使他们的面积尽可能大。

截完后又正好没有剩余,正方形的边长最长可以是多少厘米?
3.用96朵红玫瑰花和72朵白玫瑰花做花束。

如果每个花束里的红玫瑰花的朵数相
同,白玫瑰花的朵数也相同,最多可以做多少个花束?每个花束里至少有多少朵花?
4.公共汽车站有两路汽车通往不同的地方,第一路每隔5分钟发车一次,第二路每隔
10分钟发车一次,两路汽车在同一时间发车以后,再过多少分钟再同时发车?
5.学校将40支彩色笔,45本笔记本平均奖给优秀学生。

结果彩色笔多出4支,练习
本少3本。

问评出的优秀学生最多有几人?
6.办公室地面长3米30厘米,宽4米50厘米。

准备用同样的方砖铺地,方砖的边
长最长是多少?需要多少块方砖?
7.有12分米长的铁丝12根,18分米长的铁丝9根,现在要把他们截成一样长的铁
丝,不能浪费,截下的铁丝要最长,铁丝长多少分米,可以截成多少根?
8.学校运动队分别按4、5分分组,结果都多出2人,运动员至少多少人?。

公因数公倍数典型例题

公因数公倍数典型例题

公因数公倍数典型例题公因数和公倍数是数学中常见的概念,它们在解决实际问题中起着重要的作用。

下面我们来看几个典型的例题。

例题一:求两个数的最大公因数和最小公倍数。

问题描述:求48和60的最大公因数和最小公倍数。

解答:首先,我们可以列出48和60的所有因数,然后找出它们的公因数,再从中找出最大的一个作为最大公因数。

48的因数为1、2、3、4、6、8、12、16、24、48,而60的因数为1、2、3、4、5、6、10、12、15、20、30、60。

它们的公因数有1、2、3、4、6、12,所以48和60的最大公因数为12。

接下来,我们可以列出48和60的所有倍数,然后找出它们的公倍数,再从中找出最小的一个作为最小公倍数。

48的倍数为48、96、144、192、240、288、336、384、432、480,而60的倍数为60、120、180、240、300、360、420、480。

它们的公倍数有240和480,所以48和60的最小公倍数为240。

例题二:利用公因数求未知数的值。

问题描述:某数的最大公因数是24,最小公倍数是120,求这个数是多少。

解答:假设这个数为x,根据最大公因数和最小公倍数的定义,我们可以得到以下等式:x的因数可以整除24,x的倍数可以被120整除。

因此,x的因数为1、2、3、4、6、8、12、24,x的倍数为120、240、360、480、600、720、840、960、1080、1200。

从中我们可以找到24是x的因数,而120是x的倍数。

因此,这个数为24的倍数,同时也是120的因数,即x=24。

通过以上例题,我们可以看到公因数和公倍数在解决实际问题中的重要性。

它们不仅可以用于求解最大公因数和最小公倍数,还可以用于解决一些未知数的问题。

因此,我们在学习数学的过程中要重视公因数和公倍数的学习,掌握它们的求解方法和应用技巧,提高自己的数学应用能力。

最大公因数与最小公倍数综合应用题练习及答案④

最大公因数与最小公倍数综合应用题练习及答案④

最大公因数与最小公倍数综合应用练习及答案(四)1、有一些糖果,分给8个人或分给10个人,正好分完,这些糖果最少有多少粒?2、有一包糖,不论分给8个人,还是分给10个人,都能正好分完。

这包糖至少有多少块?3、一个数被2除余1,被3除余2,被4除余4,被6除余5,此数最小是几?4、五年级学生参加植树活动,人数在30~50之间。

如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。

五年级参加植树活动的学生有多少人?5、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。

问:拼成的正方形的面积最小是多少?6、有一堆苹果,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克?7、学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人?8、把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,书还缺2本,最多有几个学习成绩优秀的同学?9、有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的个数相同,最多可以装多少盘?每个盘子里苹果和梨各多少?10、阜沙市场是20路和21路汽车的起点站。

20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。

这两路汽车同时发车以后,至少再过多少分钟又同时发车?11、中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。

这个年级至少有学生多少人?12、有一盘水果,3个3个地数余2个,4个4个数余3,5个5个数余4个,问个盘子里最少有多少个水果?13、有一个电子表,每走9分钟亮一次灯,每到整点响一次铃,中午12点整,电子表既响铃又亮灯,请问下一次既响铃又亮灯的是几点钟?14、数学兴趣小组有24个男同学,20个女同学,现要分成小组,每个小组男、女同学人数分别相同,最多可以分成多少个小组?每组至少有多少个男同学?多少个女同学?15、有38支铅笔和41本练习本平均奖给若干个好少年,结果铅笔多出3支,练习本还缺1本。

五年级下学期最大公因数和最小公倍数应用题及练习题

五年级下学期最大公因数和最小公倍数应用题及练习题

五年级下学期最大公因数和最小公倍数应用题及练习题应用题:1. 甲、乙两个人同时从一个城市出发,往同一方向走, 甲每三天走12公里,乙每四天走16公里,问他们在同时走了96公里后第一次相遇的位置,相遇时的时间是几天?解析:甲、乙在同时走了96公里后第一次相遇,说明他们走的总路程相等。

设他们相遇时走了x天,则有:甲走的路程:12 × x / 3 = 4 × x乙走的路程:16 × x / 4 = 4 × x因此,他们在走了4x公里后相遇。

根据题意,得到:4x = 96解得:x = 24因此,他们在走了24天后第一次相遇,相遇的位置为走了每人相应的步数。

甲和乙在这个位置所走的路程即为他们的最小公倍数,也就是:lcm(12, 16) = 48因此,他们在走了24天后第一次相遇的位置为48公里处。

2. 一支乐队有男、女成员各若干名。

如果男成员每6人排成一排,女成员每8人排成一排,排成的队伍的长度相等。

问这个乐队的男、女成员分别最少有多少人?解析:设男、女成员分别有x、y名,则男成员排成的队伍有x/6个,女成员排成的队伍有y/8个。

由题意得到:(x/6) × 6 = (y/8) × 8因此,x和y的最小公倍数为48。

同时,又要保证x和y都是正整数,所以x和y分别为48和48的约数。

因此,这个乐队的男、女成员分别最少有6名和8名。

练习题:1. 求下列各组数的最大公因数和最小公倍数:(1)24, 36(2)15, 25(3)18, 30(4)40, 60, 100解析:(1)24, 36的最大公因数为12,最小公倍数为72。

(2)15, 25的最大公因数为5,最小公倍数为75。

(3)18, 30的最大公因数为6,最小公倍数为90。

(4)40, 60, 100的最大公因数为20,最小公倍数为300。

2. 奶妈每隔4小时喂一次奶,夏天每隔6小时给婴儿喝一次水,如果他们同时开始工作,那么在何时第一次同时给婴儿喝奶和水?解析:奶妈每隔4小时给婴儿喝一次奶,夏天每隔6小时给婴儿喝一次水,因此,每过12小时就会同时给婴儿喝奶和水。

公因数公倍数应用题

公因数公倍数应用题

1.一块长方体木料,长2.5米,宽1.75米,厚0.75米。

如果把这块木料锯成同样大小的正方体木块,不准有剩余,而且每块的体积尽可能的大,那么,正方体木块的棱长是多少共锯了多少块2.两啮合齿轮,一个有24个齿,另一个有40个齿,求某一对齿从第一次接触到第二次接触,每个齿轮至少要转多少周3.一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。

问正方形的边长是多少4.甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇5.一个四边形广场,边长分别为60米,72米,96米,84米,现要在四角和四边植树,若四边上每两棵树间距相等,至少要植多少棵树6.一盒围棋子,4个4个地数多1个,5个5个地数多1个,6个6个地数还多1个。

又知棋子总数在150到200之间,求棋子总数。

7.有一个长方体的木头,长米,宽米,厚米。

如果把这块木头截成许多相等的小立方体,并使每个小立方体尽可能大,小立方体的棱长及个数各是多少8.有一个两位数,除50余2,除63余3,除73余1。

求这个两位数是多少9.张老师利用晚上时间给甲、乙、丙三个学生补课,每4天给甲补一次课,每5天给乙补一次课,每8天给丙补一次课,今天晚上甲、乙、丙三个学生都在补课,至少经过多少天又在一起补课10.有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的个数相同,最多可以装多少盘数学兴趣小组有24个男同学,20个女同学,现要分成小组,每个小组男、女同学人数分别相同,最多可以分成多少个小组每组至少有多少个男同学多少个女同学11.有38支铅笔和41本练习本平均奖给若干个好少年,结果铅笔多出3支,练习本还缺1本。

得奖的好少年有多少人有一包糖,不论分给8个人,还是分给10个人,都能正好分完。

这包糖至少有多少块12.阜沙市场是20路和21路汽车的起点站。

最大公因数和最小公倍数应用

最大公因数和最小公倍数应用
1、求15,36和90的最大公因数和最 小公倍数
2、两个数的最大公因数是15,最 小公倍数是90.求这两个数
3、图书馆批入甲、乙两种书,甲 厚12毫米,乙厚15毫米。分别叠放 起来,高度第一次一样时,各叠几 本?
4、有两根绳子分别长12米,18米, 现在要把他们分别截成相等的小段 而且没有剩余,那么每段最长的是 多少米?
5.有一筐梨,每次拿出4个或者每次 拿出6个或每次拿出8个,若干次后 都恰好拿完,这筐梨至少有多少个?
6、少先队员参加登高比赛,分成 若干组,如果分成4人,5人,30人 一组都余2人,至少有多少个少先 队员参加?
7 .一个长方形的操场,长90米,宽 66米,在四角和四周种上树苗,使 得相邻的两棵苗间的距离都相等。 问:最远应每间隔多少米种一棵? ห้องสมุดไป่ตู้共需要树苗多少棵?
8、小丽妈妈和小杰妈妈同一天去 超市。小丽妈妈每隔6天去一次超 市,小杰妈妈每隔8天去一次超市。 问:
(1)再过几天两位妈妈同一天去超市? (2)第一次去超市时间是 3月6日,下一次是几月几日?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的个数相同,最多可以装多少盘?2.数学兴趣小组有24个男同学,20个女同学,现要分成小组,每个小组男、女同学人数分别相同,最多可以分成多少个小组?每组至少有多少个男同学?多少个女同学?3.有38支铅笔和41本练习本平均奖给若干个好少年,结果铅笔多出3支,练习本还缺1本。

得奖的好少年有多少人?4.有一包糖,不论分给8个人,还是分给10个人,都能正好分完。

这包糖至少有多少块?5.阜沙市场是20路和21路汽车的起点站。

20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。

这两路汽车同时发车以后,至少再过多少分钟又同时发车?6.中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。

这个年级至少有学生多少人?7.五年级学生参加植树活动,人数在30~50之间。

如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。

五年级参加植树活动的学生有多少人?8.有一个数,用4、5、6去除,都能整除,这个数最小是多少?一些小朋友做游戏,第一次分组每组4人余下2人,第二次每组5人也余下2人,第三次分组每组6人还是余下2人。

问最少多少名小朋友做游戏?一间浴室长1.8米,宽1.44米。

现在要给浴室地面铺满整块的正方形瓷砖,正方形瓷砖的边长最长是多少厘米?有一袋水果糖,8块8块数多5块;6块6块数多3块;4块4块数多1块。

这代水果糖最少有多少块?一个数被3除余1,被6除余4,被8除余6。

这个数最小是几?王老师买回一些练习本,如果平均分给5个班则多出3本,如果平均分给6个班则多出4本。

已知这些练习本在80——100本之间,你知道王老师买了多少本练习本?工人师傅买了一块长方体木块,体积是693立方分米,只知道它的长、宽、高分别相差2分米,你能求出长、宽、高各是多少分米吗?公约数、公倍数问题,是指用求几个数的(最大)公约数或(最小)公倍数的方法来解答的应用题。

这类题一般都没有直接指明是求公约数或公倍数,要通过对已知条件的仔细分析,才能发现解题方法。

解答公约数或公倍数问题的关键是:从约数和倍数的意义入手来分析,把原题归结为求几个数的公约数问题。

例如:1、有一个长方体的木头,长3.25米,宽1.75米,厚0.75米。

如果把这块木头截成许多相等的小立方体,并使每个小立方体尽可能大,小立方体的棱长及个数各是多少?解:根据题意,小立方体一条棱长应是长方体长、宽、厚各数的最大公约数。

即:(325、175、75)=25(厘米)因为325÷25=13175÷25=775÷25=3所以13×7×3=273(个)答:能分为小立方体273个,小立方体的每条棱长为25厘米。

2、有一个两位数,除50余2,除63余3,除73余1。

求这个两位数是多少?解:这个两位数除50余2,则用他除48(52-2)恰好整除。

也就是说,这个两位数是48的约数。

同理,这个两位数也是60、72的约数。

所以,这个两位数只可能是48、60、72的公约数1、2、3、4、6、12,而满足条件的只有公约数12,即(48、60、72)=12。

答:这个两位数是12。

几个数公有的因数叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数。

几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

应用最大公因数与最小公倍数方法求解的应用题,叫做公约数与公倍数问题。

解题的关键是先求出几个数的最大公因数或最小公倍数,然后按题意解答要求的问题。

三、考点分析最大公因数和最小公倍数的性质。

(1)两个数分别除以它们的最大公因数,所得的商一定是互质数。

(2)两个数的最大公因数的因数,都是这两个数的公因数,(3)两个自然数的最大公因数与最小公倍数的乘积等于这两个数的乘积。

四、典型例题例1、有三根铁丝,一根长18米,一根长24米,一根长30米。

现在要把它们截成同样长的小段。

每段最长可以有几米?一共可以截成多少段?分析与解:截成的小段一定是18、24、30的最大公因数。

先求这三个数的最大公因数,再求一共可以截成多少段。

解答:(18、24、30)=6(18+24+30)÷6=12段答:每段最长可以有6米,一共可以截成12段。

例2、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米?能截多少个正方形?分析与解:要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公因数。

解答:(36、60)=12(60÷12)×(36÷12)=15个答:正方形的边长可以是12厘米,能截15个正方形。

例3、用96朵红玫瑰花和72朵白玫瑰花做花束。

若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束?每个花束里至少要有几朵花?分析与解:要把96朵红玫瑰花和72朵白玫瑰花做成花束,每束花里的红白花朵数同样多,那么做成花束的个数一定是96和72的公因数,又要求花束的个数要最多,所以花束的个数应是96和72的最大公因数。

解答:(1)最多可以做多少个花束(96、72)=24(2)每个花束里有几朵红玫瑰花96÷24=4朵(3)每个花束里有几朵白玫瑰花72÷24=3朵(4)每个花束里最少有几朵花4+3=7朵例4、公共汽车站有三路汽车通往不同的地方。

第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。

三路汽车在同一时间发车以后,最少过多少分钟再同时发车?分析与解:这个时间一定是5的倍数、10的倍数、6的倍数,也就是说是5、10和6的公倍数,“最少多少时间”,那么,一定是5、10、6的最小公倍数。

解答:[5、10、6]=30答:最少过30分钟再同时发车。

例5、某厂加工一种零件要经过三道工序。

第一道工序每个工人每小时可完成3个;第二道工序每个工人每小时可完成12个;第三道工序每个工人每小时可完成5个。

要使流水线能正常生产,各道工序每小时至少安排几个工人最合理?分析与解:安排每道工序人力时,应使每道工序在相同的时间内完成同样多的零件个数。

这个零件个数一定是每道工序每人每小时完成零件个数的公倍数。

至少安排的人数,一定是每道工序每人每小时完成零件个数的最小公倍数。

解答:(1)在相同的时间内,每道工序完成相等的零件个数至少是多少?[3、12、5]=60(2)第一道工序应安排多少人60÷3=20人(3)第二道工序应安排多少人60÷12=5人(4)第三道工序应安排多少人60÷5=12人例6、有一批机器零件。

每12个放一盒,就多出11个;每18个放一盒,就少1个;每15个放一盒,就有7盒各多2个。

这些零件总数在300至400之间。

这批零件共有多少个?分析与解:每12个放一盒,就多出11个,就是说,这批零件的个数被12除少1个;每18个放一盒,就少1个,就是说,这批零件的个数被18除少1;每15个放一盒,就有7盒各多2个,多了2×7=14个,应是少1个。

也就是说,这批零件的个数被15除也少1个。

解答:如果这批零件的个数增加1,恰好是12、18和15的公倍数。

1、刚好能12个、18个或15个放一盒的零件最少是多少个[12、18、15]=1802、在300至400之间的180的倍数是多少180×2=3603、这批零件共有多少个360-1=359个例7、公路上一排电线杆,共25根。

每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需要移动?分析与解:不需要移动的电线杆,一定既是45的倍数又是60的倍数。

要先求45和60的最小公倍数和这条公路的全长,再求可以有几根不需要移动。

解答:1、从第一根起至少相隔多少米的一根电线杆不需移动?[45、60]=180(米)2、公路全长多少米?45×(25-1)=1080(米)3、可以有几根不需要移动?1080÷180+1=7(根)例8、两个数的最大公因数是4,最小公倍数是252,其中一个数是28,另一个数是多少?分析与解:根据“两个自然数的最大公因数与最小公倍数的乘积等于这两个数的乘积。

”先求出4与252的乘积,再用积去除以28即可。

4×252÷28=1008÷28=36【模拟试题】1、24的因数共有多少个?36的因数共有多少个?24和36的公因数是哪几个?其中最大的一个是?2、一个长方形的面积是323平方厘米,这个长方形的长和宽各是多少厘米?(长和宽都是素数)3、两个自然数的乘积是420,它们的最大公因数是12,求它们的最小公倍数。

4、两个自然数相乘的积是960,它们的最大公因数是8,这两个数各是多少?5、两个数的最小公倍数是126,最大公因数是6,已知两个数中的一个数是18,求另一个数。

6、有一种长51厘米,宽39厘米的水泥板,用这种水泥板铺成一块正方形地,至少需要多少块水泥板?7、有三根铁丝长度分别为120厘米、90厘米、150厘米,现在要把它们截成相等的小段,每根无剩余,每段最长多少厘米?一共可以截成多少段?8、有两个不同的自然数,它们的和是48,它们的最大公因数是6,求这两个数。

9、同学们参加野餐活动准备了若干个碗,如果每人分得3个碗或4个碗或5个碗,都正好分完,这些碗最少有多少个?10、有A、B两个两位数,它们的最大公因数是6,最小公倍数是90,则A、B两个自然数的和是多少?【试题答案】1、24的因数共有多少个?36的因数共有多少个?24和36的公因数是哪几个?其中最大的一个是?答:24的因数共有8个,36的因数共有9个,24和36的公因数是1、2、3、4、6、12。

其中最大的一个是12。

2、一个长方形的面积是323平方厘米,这个长方形的长和宽各是多少厘米?(长和宽都是素数)答:长方形的长是19厘米,宽是17厘米。

3、两个自然数的乘积是420,它们的最大公因数是12,求它们的最小公倍数。

答:它们的最小公倍数是35。

4、两个自然数相乘的积是960,它们的最大公因数是8,这两个数各是多少?答:这两个数分别是24和40。

5、两个数的最小公倍数是126,最大公因数是6,已知两个数中的一个数是18,求另一个数。

答:另一个数是42。

6、有一种长51厘米,宽39厘米的水泥板,用这种水泥板铺成一块正方形地,至少需要多少块水泥板?答:至少需要221块水泥板。

7、有三根铁丝长度分别为120厘米、90厘米、150厘米,现在要把它们截成相等的小段,每根无剩余,每段最长多少厘米?一共可以截成多少段?答:每段最长30厘米,一共可以截成12段。

相关文档
最新文档