运用函数单调性与奇偶性解抽象函数不等式

合集下载

2020年新高考全国Ⅱ卷数学试题与答案

2020年新高考全国Ⅱ卷数学试题与答案

2020年新高考全国Ⅱ卷数学试题与答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A. {x|2<x≤3}B. {x|2≤x≤3}C. {x|1≤x<4}D. {x|1<x<4}【答案】C【解析】根据集合并集概念求解.【详解】[1,3](2,4)[1,4)A B==,故选:C【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.2.2i12i-=+()A. 1B. −1C. iD. −i 【答案】D【解析】根据复数除法法则进行计算.【详解】2(2)(12)512(12)(12)5i i i iii i i----===-++-.故选:D【点睛】本题考查复数除法,考查基本分析求解能力,属基础题.3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A. 120种B. 90种C. 60种D. 30种【答案】C【解析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解.【详解】首先从6名同学中选1名去甲场馆,方法数有16C;然后从其余5名同学中选2名去乙场馆,方法数有25C;最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C⋅=⨯=种.故选:C【点睛】本小题主要考查分步计数原理和组合数的计算,属于基础题.4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A. 20°B. 40°C. 50°D. 90°【答案】B【解析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角.【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直, 根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A. 62% B. 56% C. 46% D. 42%【答案】C【解析】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅,然后根据积事件的概率公式()P A B ⋅=()()()P A P B P A B +-+可得结果.【详解】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅, 则()0.6P A =,()0.82P B =,()0.96P A B +=,所以()P A B ⋅=()()()P A P B P A B +-+0.60.820.960.46=+-=所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C. 【点睛】本题考查了积事件的概率公式,属于基础题.6.基本再生数R 0与世代间隔T 是流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( ) A. 1.2天 B. 1.8天 C. 2.5天 D. 3.5天【答案】B【解析】根据题意可得()0.38rttI t e e==,设在疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,根据10.38()0.382t t t e e +=,解得1t 即可得结果.【详解】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==, 设在疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天, 则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B. 【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范用是( ) A. ()2,6- B. (6,2)- C. (2,4)- D. (4,6)-【答案】A【解析】首先根据题中所给的条件,结合正六边形的特征,得到AP 在AB 方向上的投影的取值范围是(1,3)-,利用向量数量积的定义式,求得结果.【详解】AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-,结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-,故选:A.【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目.8.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( ) A. [)1,1][3,-+∞ B. 3,1][,[01]-- C. [1,0][1,)-⋃+∞ D. [1,0][1,3]-⋃【答案】D【解析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =, 所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得:021012x x x <⎧⎨-≤-≤-≥⎩或或001212x x x >⎧⎨≤-≤-≤-⎩或或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知曲线22:1C mx ny +=.( )A. 若m >n >0,则C 是椭圆,其焦点在y 轴上B. 若m =n >0,则CC. 若mn <0,则C 是双曲线,其渐近线方程为y =D. 若m =0,n >0,则C 是两条直线 【答案】ACD【解析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=, 因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确; 对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 的圆,故B 不正确;对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=,此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny =±,此时曲线C 表示平行于x 轴的两条直线,故D 正确;故选:ACD. 【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.10.下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A. πsin(3x +)B. πsin(2)3x - C. πcos(26x +)D. 5πcos(2)6x - 【答案】BC【解析】首先利用周期确定ω的值,然后确定ϕ的值即可确定函数的解析式,最后利用诱导公式可得正确结果.【详解】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭,故选:BC. 【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法: (1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 11.已知a >0,b >0,且a +b =1,则( ) A. 2212a b +≥B. 122a b ->C. 22log log 2a b +≥-D.≤【答案】ABD【解析】根据1a b +=,结合基本不等式及二次函数知识进行求解. 【详解】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确; 对于B ,211a b a -=->-,所以11222a b -->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭, 当且仅当12a b ==时,等号成立,故C 不正确;对于D ,因为2112a b =+≤++=,≤,当且仅当12a b ==时,等号成立,故D 正确;故选:ABD 【点睛】本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.12.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1n i i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.( )A .若n =1,则H (X )=0B. 若n =2,则H (X )随着1p 的增大而增大C. 若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D. 若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y )【答案】AC【解析】对于A 选项,求得()H X ,由此判断出A 选项的正确性;对于B 选项,利用特殊值法进行排除;对于C 选项,计算出()H X ,利用对数函数的性质可判断出C 选项的正确性;对于D 选项,计算出()(),H X H Y ,利用基本不等式和对数函数的性质判断出D 选项的正确性.【详解】对于A 选项,若1n =,则11,1i p ==,所以()()21log 10H X =-⨯=,所以A 选项正确. 对于B 选项,若2n =,则1,2i =,211p p =-, 所以()()()121121X log 1log 1H p p p p =-⋅+-⋅-⎡⎤⎣⎦, 当114p =时,()221133log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭, 当13p 4=时,()223311log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,两者相等,所以B 选项错误. 对于C 选项,若()11,2,,i p i n n==,则()222111log log log H X n n nn n ⎛⎫=-⋅⨯=-= ⎪⎝⎭,则()H X 随着n 的增大而增大,所以C 选项正确.对于D 选项,若2n m =,随机变量Y 的所有可能的取值为1,2,,m ,且()21j m jP Y j p p +-==+(1,2,,j m =).()2222111log log m mi i i i i iH X p p p p ===-⋅=⋅∑∑122221222122121111log log log log m m m mp p p p p p p p --=⋅+⋅++⋅+⋅. ()H Y =()()()122221212122211111log log log m m m m m m m m p p p p p p p p p p p p -+-++⋅++⋅+++⋅+++12222122212221221121111log log log log m m m m m mp p p p p p p p p p p p ---=⋅+⋅++⋅+⋅++++由于()01,2,,2i p i m >=,所以2111i i m i p p p +->+,所以222111log log i i m ip p p +->+, 所以222111log log i i i i m ip p p p p +-⋅>⋅+,所以()()H X H Y >,所以D 选项错误.故选:AC 【点睛】本小题主要考查对新定义“信息熵”的理解和运用,考查分析、思考和解决问题的能力,涉及对数运算和对数函数及不等式的基本性质的运用,属于难题.三、填空题:本题共4小题,每小题5分,共20分。

专题抽象函数的单调性和奇偶性应用

专题抽象函数的单调性和奇偶性应用

抽象函数的单调性和奇偶性应用抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数。

它是高中数学中的一个难点,因为抽象,解题时思维常常受阻,思路难以展开,而高考中会出现这一题型,本文对抽象函数的单调性和奇偶性问题进行了整理、归类,大概有以下几种题型:一、判断单调性和奇偶性1. 判断单调性根据函数的奇偶性、单调性等有关性质,画出函数的示意图,以形助数,问题迅速获解。

例1.如果奇函数f x ()在区间[]37,上是增函数且有最小值为5,那么f x ()在区间[]--73,上是 A. 增函数且最小值为-5 B. 增函数且最大值为-5 C. 减函数且最小值为-5 D. 减函数且最大值为-5 分析:画出满足题意的示意图,易知选B 。

例2.偶函数f x ()在(0),+∞上是减函数,问f x ()在()-∞,0上是增函数还是减函数,并证明你的结论。

分析:如图所示,易知f x ()在()-∞,0上是增函数,证明如下:任取x x x x 121200<<⇒->->因为f x ()在(0),+∞上是减函数,所以f x f x ()()-<-12。

又f x ()是偶函数,所以f x f x f x f x ()()()()-=-=1122,,从而f x f x ()()12<,故f x ()在()-∞,0上是增函数。

2. 判断奇偶性 根据已知条件,通过恰当的赋值代换,寻求f x ()与f x ()-的关系。

例3.若函数y f x f x =≠()(())0与y f x =-()的图象关于原点对称,判断:函数 y f x =()是什么函数。

解:设y f x =()图象上任意一点为P (x y 00,)y f x =()与y f x =-()的图象关于原点对称,∴P x y ()00,关于原点的对称点()--x y 00,在y f x =-()的图象上,∴-=--∴=-y f x y f x 0000()()又y f x 00=()∴-=f x f x ()()00即对于函数定义域上的任意x 都有f x f x ()()-=,所以y f x =()是偶函数。

抽象函数的单调性与奇偶性讲解

抽象函数的单调性与奇偶性讲解

抽象函数单调性与奇偶性抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。

由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。

常见的特殊模型:特殊模型抽象函数 正比例函数f(x)=kx (k ≠0)f(x+y)=f(x)+f(y)幂函数 f(x)=x nf(xy)=f(x)f(y) [或)y (f )x (f )yx (f =] 指数函数 f(x)=a x(a>0且a ≠1) f(x+y)=f(x)f(y) [)y (f )x (f )y x (f =-或对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )yx (f -=或正、余弦函数 f(x)=sinx f(x)=cosxf(x+T)=f(x)正切函数 f(x)=tanx )y (f )x (f 1)y (f )x (f )y x (f -+=+ 余切函数 f(x)=cotx)y (f )x (f )y (f )x (f 1)y x (f +-=+1.已知()()2()()f x y f x y f x f y ++-=,对一切实数x 、y 都成立,且(0)0f ≠,求证()f x 为偶函数。

证明:令x =0, 则已知等式变为()()2(0)()f y f y f f y +-=……①在①中令y =0则2(0)f =2(0)f ∵ (0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数。

高中数学破题致胜微方法(函数的奇偶性全析):十五、利用函数的奇偶性和单调性解不等式 (1)

高中数学破题致胜微方法(函数的奇偶性全析):十五、利用函数的奇偶性和单调性解不等式 (1)

1利用函数的奇偶性和单调性解不等式函数的奇偶性和单调性是函数的重要性质,同时它也能应用到解决实际问题中去,今天我们就来看用这两种性质解不等式.要注意,当我们遇到的不等式中,没有给出函数解析式,或者解析式很复杂时,就可以考虑借助函数的性质来辅助解题.先看例题:例:已知定义在R 上的偶函数,f (x )在[0,)+∞单调递增,且f (1)=0,则不等式(2)0f x -≥的解集是______.所以不等式的解集为:{|31}x x x ≥≤或练:已知函数21()ln(1||)1f x x x =+-+,若()(21)f x f x >-,则实数x 的取值范围是( ) 首先通过观察函数含有绝对值和平方,应该是一个偶函数,所以f (x )在[0,)+∞单调递增;由偶函数的性质将原不等式转化为:(||)(|21|)f x f x >- 等价于解不等式|||21|x x >- 两边平方得:22441x x x >-+ 整理得:23410x x -+< (31)(1)0x x --<所以x 的取值范围是1(,1)3练:已知函数f (x )是奇函数,且在(0,)+∞上是增函数,f (-3)=0,则()0xf x <的解集是( ) 解:同上面的题目,函数是抽象函数,且为奇函数由已知f (-3)=0,则原不等式等价于0()0(3)x f x f <⎧⎨>=-⎩或 0()0(3)x f x f >⎧⎨<=-⎩2再根据函数的单调性,30x -<< 03x <<所以解集为(3,0)(0,3)-练习:1.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足|1|(2)(a f f ->,则a 的取值范围是________.2.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x ,那么,不等式f (x +2)<5的解集是________.。

第6讲 利用函数性质解决抽象函数不等式(解析版)

第6讲  利用函数性质解决抽象函数不等式(解析版)
本题属于能力题,中等难度.在考查抽象函数问题、绝对值不等式、函数的最值等基础知识的同时,考查了考生的逻辑推理能力、运算能力、分类讨论思想及转化与化归思想.
7.【2018年普通高校招生全国卷一】已知函数 ,任取两个不相等的正数 , ,总有
,对于任意的 ,总有 ,若 有两个不同的零点,则正实数 的取值范围为__________.
3.已知函数 的定义域为 , , 是偶函数,任意 满足 ,则不等式 的解集为()
A. B.
C. D.
【来源】(全国1卷)2021届高三5月卫冕联考数学(理)试题
【答案】D
【分析】
由 是偶函数,得函数图像关于直线 对称,结合单调性求解不等式即可得到结果.
【详解】
因为 是偶函数,所以 的图像关于直线 对称,
【详解】
令 , ,
则 ,
因为 , ,所以 ,所以 在 上为单调递减函数,
当 时,由 可知 ,不满足 ;
当 时, ,所以 可化为 ,即 ,
因为 在 上为单调递减函数,所以 ,
所以不等式 的解集为 .
故选:A
【变式演练3】定义在非零实数集上的函数 满足 ,且 是区间 上的递增函数.
(1)求 的值;
(2)求证: ;
【详解】
令 ,则 可得
所以 是 上的奇函数,

当 时, ,所以 ,
是 上单调递增,
所以 是 上单调递增,
因为 ,
由 可得 即 ,
由 是 上单调递增,可得 解得: ,
所以不等式 的解集为 ,
故选:A.
【点睛】
关键点点睛:本题解题的关键点是:构造函数 ,根据已知条件判断 的奇偶性和单调性,利用单调性解不等式.
【答案】A

2022年高考文数热点题型和提分秘籍 专题05 函数的单调性、最值、奇偶性与周期性(解析版)

2022年高考文数热点题型和提分秘籍 专题05 函数的单调性、最值、奇偶性与周期性(解析版)

【高频考点解读】1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用函数的图象理解和争辩函数的性质.3.结合具体函数,了解函数奇偶性的含义.4.会运用函数的图象理解和争辩函数的奇偶性. 【热点题型】题型一 函数单调性的推断例1、(1)下列函数f (x )中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x -xD .f (x )=ln(x +1)(2)函数y =x +2x +1在(-1,+∞)上是________(填“增函数”或“减函数”).解析 (1)由(x 1-x 2)[ f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)是减函数,f (x )=1x -x 求导,f ′(x )=1x 2-1<0,∴f (x )=1x -x 在(0,+∞)是减函数.(2)任取x 1,x 2∈(-1,+∞),且x 1<x 2, 则y 1-y 2=x 1+2x 1+1-x 2+2x 2+1=x 2-x 1x 1+1x 2+1.∵x 1>-1,x 2>-1,∴x 1+1>0,x 2+1>0, 又x 1<x 2,∴x 2-x 1>0, ∴x 2-x 1x 1+1x 2+1>0,即y 1-y 2>0.∴y 1>y 2,所以函数y =x +2x +1在(-1,+∞)上是减函数.答案 (1)C (2)减函数 【提分秘籍】 (1)图象法作图象→看升降→归纳单调性区间(2)转化法(3)导数法求导→推断f ′x 正、负→单调性区间 (4)定义法取值→作差→变形→定号→单调性区间求函数的单调区间,肯定要留意定义域优先原则. 【举一反三】下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1B .y =(x -1)2C .y =2-x D .y =log 0.5(x +1)题型二 求函数的单调区间 例2、求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解析 (1)由于y=⎩⎪⎨⎪⎧-x 2+2x +1x ≥0,-x 2-2x +1x <0,即y =⎩⎪⎨⎪⎧-x -12+2x ≥0,-x +12+2x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x 2-3x +2)的单调减区间为(2,+∞),单调增区间为(-∞,1). 【提分秘籍】(1)求函数的单调区间与确定单调性的方法全都.常用的方法有:①利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间. ②定义法:先求定义域,再利用单调性定义确定单调区间.③图象法:假如f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的直观性写出它的单调区间.④导数法:利用导数取值的正负确定函数的单调区间.(2)若函数f (x )的定义域上(或某一区间上)是增函数,则f (x 1)<f (x 2)⇔x 1<x 2.利用上式,可以去掉抽象函数的符号,将函数不等式(或方程)的求解化为一般不等式(或方程)的求解,但无论如何都必需在定义域内或给定的范围内进行.【举一反三】求下列函数的单调区间,并指出其增减性. (1)y =(a >0且a ≠1);(2)y =log 12(4x -x 2).题型三 函数单调性的应用例3、已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝⎛⎭⎫-π2,π2时,f (x )=e x +sin x ,则( ) A .f (1)<f (2)<f (3) B .f (2)<f (3)<f (1) C .f (3)<f (2)<f (1) D .f (3)<f (1)<f (2)解析:由f (x )=f (π-x ),得函数f (x )的图象关于直线x =π2对称,又当x ∈⎝⎛⎭⎫-π2,π2时,f ′(x )=e x +cos x >0恒成立,所以f (x )在⎝⎛⎭⎫-π2,π2上为增函数,f (2)=f (π-2),f (3)=f (π-3),且0<π-3<1<π-2<π2,所以f (π-3)<f (1)<f (π-2),即f (3)<f (1)<f (2).答案:D 【提分秘籍】1.高考对函数单调性的考查多以选择题、填空题的形式消灭,有时也应用于解答题中的某一问中. 2.高考对函数单调性的考查主要有以下几个命题角度: (1)利用函数的单调性比较大小.(2)利用函数的单调性解决与抽象函数有关的不等式问题. (3)利用函数的单调性求参数.(4)利用函数的单调性求解最值(或恒成立)问题.【方法规律】(1)含“f ”号不等式的解法首先依据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后依据函数的单调性去掉“f ”号,转化为具体的不等式(组),此时要留意g (x )与h (x )的取值应在外层函数的定义域内.(2)分段函数单调性解法为了保证函数在整个定义域内是单调的,除了要分别保证各段表达式在对应区间上的单调性全都外,还要留意两段连接点的连接.【举一反三】已知函数f (x )的定义域是(0,+∞),且满足f (xy )=f (x )+f (y ),f ⎝⎛⎭⎫12=1,假如对于0<x <y ,都有f (x )>f (y ).(1)求f (1)的值;(2)解不等式f (-x )+f (3-x )≥-2. 解析:(1)令x =y =1, 则f (1)=f (1)+f (1),f (1)=0.(2)由题意知f (x )为(0,+∞)上的减函数,且⎩⎪⎨⎪⎧-x >0,3-x >0,∴x <0, ∵f (xy )=f (x )+f (y ),x 、y ∈(0,+∞)且f ⎝⎛⎭⎫12=1. ∴f (-x )+f (3-x )≥-2可化为f (-x )+f (3-x )≥-2f ⎝⎛⎭⎫12,即f (-x )+f ⎝⎛⎭⎫12+f (3-x )+f ⎝⎛⎭⎫12≥0=f (1)⇔f ⎝⎛⎭⎫-x 2+f ⎝⎛⎭⎫3-x 2≥f (1)⇔f ⎝⎛⎭⎫-x 2·3-x 2≥f (1), 则⎩⎪⎨⎪⎧x <0,-x 2·3-x 2≤1,解得-1≤x <0.∴不等式的解集为{x |-1≤x <0}. 【变式探究】已知f (x )=⎩⎪⎨⎪⎧3-a x -a x <1log a x x ≥1是(-∞,+∞)上的增函数,则a 的取值范围是( )A .(1,+∞)B .(1,3)C.⎣⎡⎭⎫32,3D.⎝⎛⎭⎫1,32题型四 函数奇偶性的判定例4、(1)下列函数不具有奇偶性的有________. ①f (x )=(x +1) 1-x1+x; ②f (x )=x 3-x ; ③f (x )=x 2+|x |-2; ④f (x )=lg x 2+lg 1x 2;⑤f (x )=⎩⎪⎨⎪⎧x 2+x x <0,-x 2+x x >0(2)对于函数y =f (x ),x ∈R ,“y =|f (x )|的图象关于y 轴对称”是“y =f (x )是奇函数”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件解析 (1)①由1-x1+x ≥0可得函数的定义域为(-1,1],所以函数为非奇非偶函数.②∵x ∈R ,f (-x )=(-x )3-(-x )=-x 3+x =-(x 3-x )=-f (x ).∴f (x )=x 3-x 是奇函数. ③∵x ∈R ,f (-x )=(-x )2+|-x |-2=x 2+|x |-2=f (x ),∴f(x)=x2+|x|-2是偶函数.④定义域为(-∞,0)∪(0,+∞),f(x)=lg x2+lg 1x 2=lg x2+lg(x2)-1=lg x2-lg x2=0,∴f(x)既是奇函数又是偶函数.⑤当x>0时,-x<0,f(x)=-x2+x,∴f(-x)=(-x)2-x=x2-x=-(-x2+x)=-f(x);当x<0时,-x>0,f(x)=x2+x,∴f(-x)=-(-x)2-x=-x2-x=-(x2+x)=-f(x).所以对于x∈(-∞,0)∪(0,+∞),均有f(-x)=-f(x).∴函数为奇函数.(2)若f(x)是奇函数,则对任意的x∈R,均有f(-x)=-f(x),即|f(-x)|=|-f(x)|=|f(x)|,所以y=|f(x)|是偶函数,即y=|f(x)|的图象关于y轴对称.反过来,若y=|f(x)|的图象关于y轴对称,则不能得出y=f(x)肯定是奇函数,比如y=|x2|,明显,其图象关于y轴对称,但是y=x2是偶函数.故“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的必要而不充分条件.答案(1)①(2)B【提分秘籍】(1)判定函数奇偶性的常用方法及思路:①定义法:②图象法:③性质法:a.“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;b.“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;c.“奇·偶”是奇,“奇÷偶”是奇.(2)推断函数奇偶性时应留意问题:①分段函数奇偶性的推断,要留意定义域内x取值的任意性,应分段争辩,争辩时可依据x的范围取相应的解析式,推断f(x)与f(-x)的关系,得出结论,也可以利用图象作推断.②“性质法”中的结论是在两个函数的公共定义域内才成立的.③性质法在小题中可直接运用,但在解答题中应给出性质推导的过程.【举一反三】设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数 D.|f(x)g(x)|是奇函数解析:由题意可知f(-x)=-f(x),g(-x)=g(x),对于选项A,f(-x)·g(-x)=-f(x)·g(x),所以f(x)g(x)是奇函数,故A项错误;对于选项B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),所以|f(x)|g(x)是偶函数,故B项错误;对于选项C,f(-x)|g(-x)|=-f(x)|g(x)|,所以f(x)|g(x)|是奇函数,故C项正确;对于选项D,|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D项错误,选C.答案:C题型五函数的周期性例5、已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若f (2)=2,则f (2 014)的值为( )A .2B .0C .-2D .±2解析 ∵g (-x )=f (-x -1),∴-g (x )=f (x +1). 又g (x )=f (x -1),∴f (x +1)=-f (x -1), ∴f (x +2)=-f (x ),f (x +4)=-f (x +2)=f (x ),则f (x )是以4为周期的周期函数,所以f (2 014)=f (2)=2. 答案 A 【提分秘籍】函数周期性的推断要结合周期性的定义,还可以利用图象法及总结的几个结论,如f (x +a )=-f (x )⇒T =2a . 【举一反三】函数f (x )=lg|sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数解析:易知函数的定义域为{x |x ≠k π,k ∈Z},关于原点对称,又f (-x )=lg|sin(-x )|=lg|-sin x |=lg|sin x |=f (x ),所以f (x )是偶函数,又函数y =|sin x |的最小正周期为π,所以函数f (x )=lg|sin x |是最小正周期为π的偶函数.答案:C题型六 函数奇偶性、周期性等性质的综合应用例6、设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________.解析:依题意知:函数f (x )为奇函数且周期为2,∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52 =f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (1)-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (1)+f (0) =212-1+21-1+20-1 = 2. 答案: 2 【提分秘籍】1.函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中经常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.归纳起来常见的命题角度有: (1)求函数值.(2)与函数图象有关的问题. (3)奇偶性、周期性单调性的综合. 2.应用函数奇偶性可解决的问题及方法 (1)已知函数的奇偶性,求函数值将待求值利用奇偶性转化为已知区间上的函数值求解. (2)已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)已知函数的奇偶性,求函数解析式中参数的值经常利用待定系数法:利用f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解.(4)应用奇偶性画图象和推断单调性. 【举一反三】设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=⎝⎛⎭⎫121-x,则下列命题:①2是函数f (x )的周期;②函数f (x )在(1,2)上递减,在(2,3)上递增; ③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=⎝⎛⎭⎫12x -3.其中正确命题的序号是________.【高考风向标】1.【2021高考四川,文15】已知函数f (x )=2x ,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =1212()()f x f x x x --,n =1212()()g x g x x x --,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0; ③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ; ④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n . 其中真命题有___________________(写出全部真命题的序号). 【答案】①④【解析】对于①,由于f '(x )=2x ln 2>0恒成立,故①正确对于②,取a =-8,即g '(x )=2x -8,当x 1,x 2<4时n <0,②错误 对于③,令f '(x )=g '(x ),即2x ln 2=2x +a 记h (x )=2x ln 2-2x ,则h '(x )=2x (ln 2)2-2存在x 0∈(0,1),使得h (x 0)=0,可知函数h (x )先减后增,有最小值. 因此,对任意的a ,m =n 不肯定成立.③错误 对于④,由f '(x )=-g '(x ),即2x ln 2=-2x -a令h (x )=2x ln 2+2x ,则h '(x )=2x (ln 2)2+2>0恒成立, 即h (x )是单调递增函数, 当x →+∞时,h (x )→+∞ 当x →-∞时,h (x )→-∞因此对任意的a ,存在y =a 与函数h (x )有交点.④正确2.【2021高考陕西,文10】设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q => 【答案】C【解析】1()ln ln 2p f ab ab ab ===;()ln22a b a b q f ++==;11(()())ln 22r f a f b ab =+= 由于2a b ab +>,由()ln f x x =是个递增函数,()()2a b f f ab +>所以q p r >=,故答案选C3.【2021高考浙江,文12】已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()2f f -=⎡⎤⎣⎦ ,()f x 的最小值是 .【答案】1;2662--4.【2021高考上海,文20】(本题满分14分)本题共2小题,第1小题6分,第2小题8分. 已知函数xax x f 1)(2+=,其中a 为实数. (1)依据a 的不同取值,推断函数)(x f 的奇偶性,并说明理由; (2)若)3,1(∈a ,推断函数)(x f 在]2,1[上的单调性,并说明理由. 【答案】(1))(x f 是非奇非偶函数;(2)函数)(x f 在]2,1[上单调递增.1.(2022·北京卷)下列函数中,定义域是R且为增函数的是()A.y=e-x B.y=x3C.y=ln x D.y=|x|【答案】B【解析】由定义域为R,排解选项C,由函数单调递增,排解选项A,D. 2.(2022·湖南卷)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1x2B.f(x)=x2+1C.f(x)=x3D.f(x)=2-x【答案】A【解析】由偶函数的定义,可以排解C,D,又依据单调性,可得B不对.3.(2022·江苏卷)已知函数f(x)=e x+e-x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数.(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(-x30+3x0)成立.试比较e a-1与a e-1的大小,并证明你的结论.【解析】(1)证明:由于对任意x∈R,都有f(-x)=e-x+e-(-x)=e-x+e x=f(x),所以f(x)是R上的偶函数.(2)由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立.令t=e x(x>0),则t>1,所以m≤-t-1t2-t+1=-1t-1+1t-1+ 1对任意t>1成立.由于t-1+1t-1+1≥2 (t-1)·1t- 1+1=3, 所以-1t-1+1t-1+ 1≥-13,当且仅当t=2, 即x=ln 2时等号成立.因此实数m的取值范围是⎝⎛⎦⎤-∞,-13.(3)令函数g(x)=e x+1e x-a(-x3+3x),则g′(x) =e x-1e x+3a(x2-1).当x≥1时,e x-1e x>0,x2-1≥0.又a>0,故g′(x)>0,所以g(x)是[1,+∞)上的单调递增函数,因此g(x)在[1,+∞)上的最小值是g(1)=e+e-1-2a.由于存在x0∈[1,+∞),使e x0+e-x0-a(-x30+3x0 )<0 成立,当且仅当最小值g(1)<0,故e+e-1-2a<0, 即a>e+e-12.令函数h(x) =x-(e-1)ln x-1,则h′(x)=1-e-1x. 令h′(x)=0, 得x=e-1.当x∈(0,e-1)时,h′(x)<0,故h(x)是(0,e-1)上的单调递减函数;当x∈(e-1,+∞)时,h′(x)>0,故h(x)是(e-1,+∞)上的单调递增函数.所以h(x)在(0,+∞)上的最小值是h(e-1).留意到h(1)=h(e)=0,所以当x∈(1,e-1)⊆(0,e-1)时,h(e-1)≤h(x)<h(1)=0;当x∈(e-1,e)⊆(e-1,+∞)时,h(x)<h(e)=0.所以h(x)<0对任意的x∈(1,e)成立.故①当a∈⎝⎛⎭⎫e+e-12,e⊆(1,e)时,h(a)<0,即a-1<(e-1)ln a,从而e a-1<a e-1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1. 4.(2022·四川卷)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ; ④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出全部真命题的序号) 【答案】①③④【解析】若f (x )∈A ,则函数f (x )的值域为R ,于是,对任意的b ∈R ,肯定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得函数f (x )的值域包含于[-M ,M ]=[-1,1],但此时函数f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),假如存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,肯定存在一个a 0∈D ,使得f (x )+f (a 0)=b 0-g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1(x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=x x 2+1(x >-2).易知f (x )∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确5.(2022·四川卷)已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数. (1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.【解析】(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b . 综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知, f (x )在区间(0,x 0)上不行能单调递增,也不行能单调递减. 则g (x )不行能恒为正,也不行能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点. 由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0有a +b =e -1<2,有 g (0)=a -e +2>0,g (1)=1-a >0. 解得e -2<a <1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.6.(2021·北京卷)函数f(x)=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x<1的值域为________.【答案】(-∞,2)【解析】函数y =log 12x 在(0,+∞)上为减函数,当x ≥1时,函数y =log 12x 的值域为(-∞,0];函数y=2x 在R 上是增函数,当x<1时,函数y =2x 的值域为(0,2),所以原函数的值域为(-∞,2).7.(2021·北京卷)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1x B .y =e -xC .y =-x 2+1D .y =lg |x| 【答案】C【解析】对于A ,y =1x 是奇函数,排解.对于B ,y =e -x 既不是奇函数,也不是偶函数,排解.对于D ,y =lg |x|是偶函数,但在(0,+∞)上有y =lgx ,此时单调递增,排解.只有C 符合题意.8.(2021·新课标全国卷Ⅱ] 若存在正数x 使2x (x -a)<1成立,则a 的取值范围是( ) A . (-∞,+∞) B .(-2,+∞) C .(0,+∞) D .(-1,+∞) 【答案】D【解析】由题意存在正数x 使得a>x -12x 成立,即a>⎝⎛⎭⎫x -12x min .由于x -12x是(0,+∞)上的增函数,故x -12x >0-120=-1,所以a>-1.答案为D. 9.(2021·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .x 0∈R ,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的微小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f ′(x 0)=0 【答案】C【解析】x →-∞时,f(x)<0,x →+∞时,f(x)>0,又f(x)连续,x 0∈R ,f(x 0)=0,A 正确.通过平移变换,函数可以化为f(x)=x 3+c ,从而函数y =f(x)的图像是中心对称图形,B 正确.若x 0是f(x)的微小值点,可能还有极大值点x 1,若x 1<x 0,则f(x)在区间(x 1,x 0)单调递减,C 错误.D 正确.故答案为C.10.(2021·四川卷)已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,ln x ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2.(1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线相互垂直,且x 2<0,证明:x 2-x 1≥1;(3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值范围.【解析】(1)函数f(x)的单调递减区间为(-∞,-1 ),单调递增区间为[-1,0),(0,+∞). (2)证明:由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f ′(x 2). 故当点A 处的切线与点B 处的切线垂直时,有f ′(x 1)·f ′(x 2)=-1. 当x<0时,对函数f(x)求导,得f ′(x)=2x +2. 由于x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1, 所以2x 1+2<0,2x 2+2>0,因此x 2-x 1=12[-(2x 1+2)+2x 2+2]≥[-(2x 1+2)](2x 2+2)=1.当且仅当-(2x 1+2)=2x 2+2=1,即x 1=-32且x 2=-12时等号成立所以,函数f(x)的图像在点A ,B 处的切线相互垂直时,有x 2-x 1≥1. (3)当x 1<x 2<0或x 2>x 1>0时,f ′(x 1)≠f ′(x 2),故x 1<0<x 2. 当x 1<0时,函数f(x)的图像在点(x 1,f(x 1))处的切线方程为 y -(x 21+2x 1+a)=(2x 1+2)(x -x 1),即y =(2x 1+2)x -x 21+a. 当x 2>0时,函数f(x)的图像在点(x 2,f(x 2))处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2·x +ln x 2-1.两切线重合的充要条件是 ⎩⎪⎨⎪⎧1x 2=2x 1+2,①ln x 2-1=-x 21+a.② 由①及x 1<0<x 2知,0<1x 2<2.由①②得,a =ln x 2+⎝⎛⎭⎫12x 2-12-1=-ln 1x 2+14⎝⎛⎭⎫1x 2-22-1. 令t =1x 2,则0<t<2,且a =14t 2-t -ln t.设h(t)=14t 2-t -ln t(0<t<2).则h ′(t)=12t -1-1t =(t -1)2-32t <0.所以h(t)(0<t<2)为减函数. 则h(t)>h(2)=-ln 2-1, 所以a>-ln2-1,而当t ∈(0,2)且t 趋近于0时,h(t)无限增大,所以a 的取值范围是(-ln 2-1,+∞).故当函数f(x)的图像在点A ,B 处的切线重合时,a 的取值范围是(-ln 2-1,+∞).11.(2021·四川卷)设函数f(x)=e x +x -a(a ∈R ,e 为自然对数的底数).若存在b ∈[0,1]使f(f(b))=b 成立,则a 的取值范围是( )A .[1,e]B .[1,1+e]C .[e ,1+e]D .[0,1] 【答案】A【高考押题】1.下列函数中,既是偶函数又在(0,+∞)内单调递减的函数是( ). A .y =x 2B .y =|x |+1C .y =-lg|x |D .y =2|x |解析 对于C 中函数,当x >0时,y =-lg x ,故为(0,+∞)上的减函数,且y =-lg |x |为偶函数. 答案 C2.已知函数f (x )为R 上的减函数,则满足f (|x |)<f (1)的实数x 的取值范围是( ) A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析 ∵f (x )在R 上为减函数且f (|x |)<f (1), ∴|x |>1,解得x >1或x <-1. 答案 D3.若函数y =ax 与y =-bx 在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增解析 ∵y =ax 与y =-bx 在(0,+∞)上都是减函数,∴a <0,b <0,∴y =ax 2+bx 的对称轴方程x =-b2a <0,∴y =ax 2+bx 在(0,+∞)上为减函数. 答案 B4.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是 ( ).A .(-∞,0]B .[0,1)C .[1,+∞)D .[-1,0]解析 g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.如图所示,其递减区间是[0,1).故选B.答案 B5.函数y =-x 2+2x -3(x <0)的单调增区间是( ) A .(0,+∞) B .(-∞,1] C .(-∞,0)D .(-∞,-1]解析 二次函数的对称轴为x =1,又由于二次项系数为负数,拋物线开口向下,对称轴在定义域的右侧,所以其单调增区间为(-∞,0).答案 C6.设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)等于( ). A .3 B .1 C .-1 D .-3解析 由f (-0)=-f (0),即f (0)=0.则b =-1, f (x )=2x +2x -1,f (-1)=-f (1)=-3. 答案 D7.已知定义在R 上的奇函数,f (x )满足f (x +2)=-f (x ),则f (6)的值为 ( ). A .-1 B .0 C .1 D .2解析 (构造法)构造函数f (x )=sin π2x ,则有f (x +2)=sin ⎣⎡⎦⎤π2x +2=-sin π2x =-f (x ),所以f (x )=sin π2x是一个满足条件的函数,所以f (6)=sin 3π=0,故选B.答案 B8.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则下列不等式肯定成立的是( ).A .f ⎝⎛⎭⎫cos 2π3>f ⎝⎛⎭⎫sin 2π3B .f (sin 1)<f (cos 1)C .f ⎝⎛⎭⎫sin π6<f ⎝⎛⎭⎫cos π6D .f (cos 2)>f (sin 2)9.已知函数f (x )=⎩⎪⎨⎪⎧1-2-x ,x ≥0,2x -1,x <0,则该函数是( ).A .偶函数,且单调递增B .偶函数,且单调递减C .奇函数,且单调递增D .奇函数,且单调递减解析 当x >0时,f (-x )=2-x-1=-f (x );当x <0时,f (-x )=1-2-(-x )=1-2x=-f (x ).当x =0时,f (0)=0,故f (x )为奇函数,且f (x )=1-2-x 在[0,+∞)上为增函数,f (x )=2x -1在(-∞,0)上为增函数,又x ≥0时1-2-x ≥0,x <0时2x -1<0,故f (x )为R 上的增函数.答案 C10.已知f (x )是定义在R 上的周期为2的周期函数,当x ∈[0,1)时,f (x )=4x -1,则f (-5.5)的值为( ) A .2 B .-1 C .-12D .1解析f (-5.5)=f (-5.5+6)=f (0.5)=40.5-1=1. 答案 D11.设函数D (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是 ( ).A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数 D .D (x )不是单调函数解析 明显D (x )不单调,且D (x )的值域为{0,1},因此选项A 、D 正确.若x 是无理数,-x ,x +1是无理数;若x 是有理数,-x ,x +1也是有理数.∴D (-x )=D (x ),D (x +1)=D (x ).则D (x )是偶函数,D (x )为周期函数,B 正确,C 错误.答案 C12.已知函数f (x )=x 2+ax (x ≠0,a ∈R ).(1)推断函数f (x )的奇偶性;(2)若f (x )在区间[2,+∞)上是增函数,求实数a 的取值范围.13.已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 满足ab ≠0. (1)若ab >0,推断函数f (x )的单调性;(2)若ab <0,求f (x +1)>f (x )时的x 的取值范围.解 (1)当a >0,b >0时,由于a ·2x ,b ·3x 都单调递增,所以函数f (x )单调递增;当a <0,b <0时,由于a ·2x ,b ·3x 都单调递减,所以函数f (x )单调递减.(2)f (x +1)-f (x )=a ·2x +2b ·3x >0. (i)当a <0,b >0时,⎝⎛⎭⎫32x >-a2b , 解得x >log 32⎝⎛⎭⎫-a 2b ; (ii)当a >0,b <0时,⎝⎛⎭⎫32x <-a2b,解得x <log 32⎝⎛⎭⎫-a 2b . 14.函数f (x )对任意的a 、b ∈R ,都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1. (1)求证:f (x )是R 上的增函数; (2)若f (4)=5,解不等式f (3m 2-m -2)<3.15.已知函数f (x )是(-∞,+∞)上的奇函数,且f (x )的图象关于x =1对称,当x ∈[0,1]时,f (x )=2x -1, (1)求证:f (x )是周期函数; (2)当x ∈[1,2]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2021)的值.解析 (1)证明 函数f (x )为奇函数,则f (-x )=-f (x ),函数f (x )的图象关于x =1对称,则f (2+x )=f (-x )=-f (x ),所以f (4+x )=f [(2+x )+2]=-f (2+x )=f (x ),所以f (x )是以4为周期的周期函数.(2)当x ∈[1,2]时,2-x ∈[0,1],又f (x )的图象关于x =1对称,则f (x )=f (2-x )=22-x -1,x ∈[1,2]. (3) ∵f (0)=0,f (1)=1,f (2)=0, f (3)=f (-1)=-f (1)=-1 又f (x )是以4为周期的周期函数. ∴f (0)+f (1)+f (2)+…+f (2021) =f (2 012)+f (2 013)=f (0)+f (1)=1.16.已知函数f (x )的定义域为R ,且满足f (x +2)=-f (x ). (1)求证:f (x )是周期函数;(2)若f (x )为奇函数,且当0≤x ≤1时,f (x )=12x ,求使f (x )=-12在[0,2 014]上的全部x 的个数.(1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴f (x )是以4为周期的周期函数. (2)解 当0≤x ≤1时,f (x )=12x ,设-1≤x ≤0,则0≤-x ≤1, ∴f (-x )=12(-x )=-12x .∵f (x )是奇函数,∴f (-x )=-f (x ), ∴-f (x )=-12x ,即f (x )=12x .故f (x )=12x (-1≤x ≤1).又设1<x <3,则-1<x -2<1, ∴f (x -2)=12(x -2).又∵f (x )是以4为周期的周期函数∴f (x -2)=f (x +2)=-f (x ),∴-f (x )=12(x -2),∴f (x )=-12(x -2)(1<x <3).∴f (x )=⎩⎨⎧12x ,-1≤x ≤1,-12x -2,1<x <3.由f (x )=-12,解得x =-1.∵f (x )是以4为周期的周期函数, ∴f (x )=-12的全部x =4n -1(n ∈Z ).令0≤4n -1≤2 014,则14≤n ≤2 0154.又∵n ∈Z ,∴1≤n ≤503(n ∈Z ),∴在[0,2 014]上共有503个x 使f (x )=-12.。

数学高一上期末经典题(含答案解析)(1)

数学高一上期末经典题(含答案解析)(1)

一、选择题1.(0分)[ID :12115]已知函数()f x 是定义在R 上的偶函数,且在[)0,∞+上是增函数,若对任意[)x 1,∞∈+,都有()()f x a f 2x 1+≤-恒成立,则实数a 的取值范围是( ) A .[]2,0-B .(],8∞--C .[)2,∞+D .(],0∞- 2.(0分)[ID :12087]已知函数()y f x =在定义域()1,1-上是减函数,且()()211f a f a -<-,则实数a 的取值范围是( )A .2,3⎛⎫+∞⎪⎝⎭B .2,13⎛⎫⎪⎝⎭C .()0,2D .()0,∞+3.(0分)[ID :12128]设4log 3a =,8log 6b =,0.12c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .c b a >>4.(0分)[ID :12126]设23a log =,3b =,23c e =,则a b c ,,的大小关系是( ) A .a b c <<B .b a c <<C .b c a <<D . a c b <<5.(0分)[ID :12107]德国数学家狄利克在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f (x )由右表给出,则1102f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值为( )A .0B .1C .2D .36.(0分)[ID :12105]已知131log 4a =,154b=,136c =,则( ) A .a b c >> B .a c b >>C .c a b >>D .b c a >>7.(0分)[ID :12104]若函数*12*log (1),()3,x x x N f x x N⎧+∈⎪=⎨⎪∉⎩,则((0))f f =( ) A .0B .-1C .13D .1 8.(0分)[ID :12084]对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-19.(0分)[ID :12082]设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]10.(0分)[ID :12081]设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦11.(0分)[ID :12066]下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y12.(0分)[ID :12064]下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .1ln||y x = B .3y x = C .||2x y =D .cos y x =13.(0分)[ID :12044]函数()f x 是周期为4的偶函数,当[]0,2x ∈时,()1f x x =-,则不等式()0xf x >在[]1,3-上的解集是 ( ) A .()1,3B .()1,1-C .()()1,01,3-D .()()1,00,1-14.(0分)[ID :12041]若函数()[)[]1,1,0{44,0,1xx x f x x ⎛⎫∈- ⎪=⎝⎭∈,则f (log 43)=( ) A .13B .14C .3D .415.(0分)[ID :12050]已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞二、填空题16.(0分)[ID :12220]已知()f x 是定义域为R 的单调函数,且对任意实数x 都有21()213x f f x ⎡⎤+=⎢⎥+⎣⎦,则52(log )f =__________.17.(0分)[ID :12190]己知函数()221f x x ax a =-++-在区间[]01,上的最大值是2,则实数a =______.18.(0分)[ID :12181]已知常数a R ∈,函数()21x af x x +=+.若()f x 的最大值与最小值之差为2,则a =__________.19.(0分)[ID :12167]若点(4,2)在幂函数()f x 的图像上,则函数()f x 的反函数1()f x -=________.20.(0分)[ID :12164]已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___.21.(0分)[ID :12158]对数式lg 25﹣lg 22+2lg 6﹣2lg 3=_____. 22.(0分)[ID :12155]2()2f x x x =+(0x ≥)的反函数1()f x -=________23.(0分)[ID :12142]若函数()242xx f x a a =+-(0a >,1a ≠)在区间[]1,1-的最大值为10,则a =______.24.(0分)[ID :12150]()()sin cos f x x π=在区间[]0,2π上的零点的个数是______. 25.(0分)[ID :12132]已知函数()f x 为R 上的增函数,且对任意x ∈R 都有()34x f f x ⎡⎤-=⎣⎦,则()4f =______.三、解答题26.(0分)[ID :12294]已知函数()2()log 21xf x kx =+-为偶函数. (1)求实数k 的值; (2)若不等式1()2f x a x >-恒成立,求实数a 的取值范围; (3)若函数1()2()24f x x x h x m +=+⋅,[1,2]x ∈,是否存在实数m ,使得()h x 的最小值为2,若存在,请求出m 的值;若不存在,请说明理由. 27.(0分)[ID :12258]已知函数21()f x x x=-是定义在(0,)+∞上的函数. (1)用定义法证明函数()f x 的单调性;(2)若关于x 的不等式()220f x x m ++<恒成立,求实数m 的取值范围.28.(0分)[ID :12233]已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1,32x ⎡⎤∈⎢⎥⎣⎦时,()2(21)0f kx f x +->恒成立,求实数k 的取值范围.29.(0分)[ID :12232]已知函数()x f x a =(0a >,且1a ≠),且(5)8(2)f f =. (1)若(23)(2)f m f m -<+,求实数m 的取值范围; (2)若方程|()1|f x t -=有两个解,求实数t 的取值范围.30.(0分)[ID :12256]某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入.政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益M 、养鸡的收益N 与投入a(单位:万元)满足25,1536,49,3657,a M a ⎧⎪=⎨<⎪⎩1202N a =+.设甲合作社的投入为x (单位:万元),两个合作社的总收益为()f x (单位:万元). (1)若两个合作社的投入相等,求总收益;(2)试问如何安排甲、乙两个合作社的投入,才能使总收益最大?【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.B 3.D 4.A 5.D 6.C 7.B8.C9.D10.B11.D12.A13.C14.C15.C二、填空题16.【解析】【分析】由已知可得=a恒成立且f(a)=求出a=1后将x=log25代入可得答案【详解】∵函数f(x)是R上的单调函数且对任意实数x都有f=∴=a恒成立且f(a)=即f(x)=﹣+af(a)17.或【解析】【分析】由函数对称轴与区间关系分类讨论求出最大值且等于2解关于的方程即可求解【详解】函数对称轴方程为为;当时;当即(舍去)或(舍去);当时综上或故答案为:或【点睛】本题考查二次函数的图像与18.【解析】【分析】将化简为关于的函数式利用基本不等式求出的最值即可求解【详解】当时当时时当且仅当时等号成立同理时即的最小值和最大值分别为依题意得解得故答案为:【点睛】本题考查函数的最值考查基本不等式的19.【解析】【分析】根据函数经过点求出幂函数的解析式利用反函数的求法即可求解【详解】因为点在幂函数的图象上所以解得所以幂函数的解析式为则所以原函数的反函数为故答案为:【点睛】本题主要考查了幂函数的解析式20.-1【解析】试题解析:因为是奇函数且所以则所以考点:函数的奇偶性21.1【解析】【分析】直接利用对数计算公式计算得到答案【详解】故答案为:【点睛】本题考查了对数式的计算意在考查学生的计算能力22.()【解析】【分析】设()求出再求出原函数的值域即得反函数【详解】设()所以因为x≥0所以所以因为x≥0所以y≥0所以反函数故答案为【点睛】本题主要考查反函数的求法考查函数的值域的求法意在考查学生对23.2或【解析】【分析】将函数化为分和两种情况讨论在区间上的最大值进而求【详解】时最大值为解得时最大值为解得故答案为:或2【点睛】本题考查已知函数最值求参答题时需要结合指数函数与二次函数性质求解24.5【解析】【分析】由求出的范围根据正弦函数为零确定的值再由三角函数值确定角即可【详解】时当时的解有的解有的解有故共有5个零点故答案为:5【点睛】本题主要考查了正弦函数余弦函数的三角函数值属于中档题25.【解析】【分析】采用换元法结合函数的单调性计算出的解析式从而即可求解出的值【详解】令所以又因为所以又因为是上的增函数且所以所以所以故答案为:【点睛】本题考查用换元法求解函数的解析式并求值难度一般已知三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】 【分析】根据偶函数的性质,可知函数在(],0-∞上是减函数,根据不等式在[)1,x ∈+∞上恒成立,可得:21x a x +≤-在[)1,+∞上恒成立,可得a 的范围. 【详解】()f x 为偶函数且在[)0,+∞上是增函数()f x ∴在(],0-∞上是减函数对任意[)1,x ∈+∞都有()()21f x a f x +≤-恒成立等价于21x a x +≤-2121x x a x ∴-+≤+≤- 311x a x ⇒-+≤≤- ()()max min 311x a x ∴-+≤≤-当1x =时,取得两个最值3111a ∴-+≤≤- 20a ⇒-≤≤ 本题正确选项:A 【点睛】本题考查函数奇偶性和单调性解抽象函数不等式的问题,关键在于能够通过单调性确定自变量之间的关系,得到关于自变量的不等式.2.B解析:B 【解析】 【分析】利用函数的单调性和定义域得出不等关系组,即得解. 【详解】已知函数()y f x =在定义域()1,1-上是减函数,且()()211f a f a -<-,2112121113111a aa a a ->-⎧⎪∴-<-<∴<<⎨⎪-<-<⎩故选:B 【点睛】本题考查了利用函数的单调性解不等式,考查了学生转化划归,数学运算能力,属于基础题.3.D解析:D 【解析】 【分析】由对数的运算化简可得2log a =log b =,结合对数函数的性质,求得1a b <<,又由指数函数的性质,求得0.121c =>,即可求解,得到答案.【详解】由题意,对数的运算公式,可得24222log 31log 3log 3log log 42a ====28222log 61log 6log 6log log 83b ====,2<<,所以222log log log 21<<=,即1a b <<,由指数函数的性质,可得0.10221c =>=,所以c b a >>. 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及指数函数的图象与性质的应用,其中解答中熟练应用指数函数与对数函数的图象与性质,求得,,a b c 的范围是解答的关键,着重考查了推理与运算能力,属于基础题.4.A解析:A 【解析】 【分析】根据指数幂与对数式的化简运算,结合函数图像即可比较大小. 【详解】因为23a log =,3b =,23c e = 令()2f x log x =,()g x x =函数图像如下图所示:则()2442f log ==,()442g == 所以当3x =时23log 3>,即a b <3b =23c e = 则66327b ==,626443 2.753.1c e e ⎛⎫⎪==>≈ ⎪⎝⎭所以66b c <,即b c < 综上可知, a b c << 故选:A 【点睛】本题考查了指数函数、对数函数与幂函数大小的比较,因为函数值都大于1,需借助函数图像及不等式性质比较大小,属于中档题.5.D解析:D 【解析】 【分析】采用逐层求解的方式即可得到结果. 【详解】∵(] 121∈-∞,,∴112f ⎛⎫= ⎪⎝⎭, 则110102f ⎛⎫=⎪⎝⎭,∴()1(())21010f f f =, 又∵[)102∈+∞,,∴()103f =,故选D . 【点睛】本题主要考查函数的基础知识,强调一一对应性,属于基础题.6.C解析:C 【解析】 【分析】首先将b 表示为对数的形式,判断出0b <,然后利用中间值以及对数、指数函数的单调性比较32与,a c的大小,即可得到,,a b c 的大小关系. 【详解】因为154b=,所以551log log 104b =<=,又因为(133331log log 4log 3,log 4a ==∈,所以31,2a ⎛⎫∈ ⎪⎝⎭, 又因为131133336,82c ⎛⎫⎛⎫⎛⎫ ⎪=∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,所以3,22c ⎛⎫∈ ⎪⎝⎭, 所以c a b >>. 故选:C. 【点睛】本题考查利用指、对数函数的单调性比较大小,难度一般.利用指、对数函数的单调性比较大小时,注意数值的正负,对于同为正或者负的情况可利用中间值进行比较.7.B解析:B 【解析】 【分析】根据分段函数的解析式代入自变量即可求出函数值.【详解】因为0N *∉,所以0(0)3=1f =,((0))(1)f f f =,因为1N *∈,所以(1)=1f -,故((0))1f f =-,故选B. 【点睛】本题主要考查了分段函数,属于中档题.8.C解析:C 【解析】 【分析】利用换元法求解复合函数的值域即可求得函数的“上界值”. 【详解】 令3,0xt t => 则361133t y t t -==-<++ 故函数()f x 的“上界值”是1; 故选C 【点睛】本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.9.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.10.B解析:B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.11.D解析:D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.12.A解析:A 【解析】本题考察函数的单调性与奇偶性由函数的奇偶性定义易得1ln||y x =,||2x y =,cos y x =是偶函数,3y x =是奇函数 cos y x =是周期为2π的周期函数,单调区间为[2,(21)]()k k k z ππ+∈0x >时,||2x y =变形为2x y =,由于2>1,所以在区间(0,)+∞上单调递增 0x >时,1ln||y x =变形为1ln y x =,可看成1ln ,y t t x==的复合,易知ln (0)y t t =>为增函数,1(0)t x x=>为减函数,所以1ln ||y x =在区间(0,)+∞上单调递减的函数故选择A13.C解析:C 【解析】若[20]x ∈-,,则[02]x -∈,,此时1f x x f x -=--(),()是偶函数,1f x x f x ∴-=--=()(), 即1[20]f x x x =--∈-(),,, 若[24]x ∈, ,则4[20]x -∈-,, ∵函数的周期是4,4413f x f x x x ∴=-=---=-()()(),即120102324x x f x x x x x ---≤≤⎧⎪=-≤≤⎨⎪-≤≤⎩,(),, ,作出函数f x ()在[13]-, 上图象如图, 若03x ≤<,则不等式0xf x ()> 等价为0f x ()> ,此时13x <<, 若10x -≤≤ ,则不等式0xf x ()>等价为0f x ()< ,此时1x -<<0 , 综上不等式0xf x ()> 在[13]-, 上的解集为1310.⋃-(,)(,)故选C.【点睛】本题主要考查不等式的求解,利用函数奇偶性和周期性求出对应的解析式,利用数形结合是解决本题的关键.14.C解析:C 【解析】 【分析】根据自变量范围代入对应解析式,化简得结果. 【详解】f (log 43)=log434=3,选C. 【点睛】本题考查分段函数求值,考查基本求解能力,属基础题.15.C解析:C 【解析】 【分析】由()()2g x f x =-是奇函数,可得()f x 的图像关于()2,0-中心对称,再由已知可得函数()f x 的三个零点为-4,-2,0,画出()f x 的大致形状,数形结合得出答案. 【详解】由()()2g x f x =-是把函数()f x 向右平移2个单位得到的,且()()200g g ==,()()()4220f g g -=-=-=,()()200f g -==,画出()f x 的大致形状结合函数的图像可知,当4x ≤-或2x ≥-时,()0xf x ≤,故选C. 【点睛】本题主要考查了函数性质的应用,作出函数简图,考查了学生数形结合的能力,属于中档题.二、填空题16.【解析】【分析】由已知可得=a 恒成立且f (a )=求出a =1后将x =log25代入可得答案【详解】∵函数f (x )是R 上的单调函数且对任意实数x 都有f =∴=a 恒成立且f (a )=即f (x )=﹣+af (a )解析:23 【解析】 【分析】由已知可得()221x f x ++=a 恒成立,且f (a )=13,求出a =1后,将x =log 25代入可得答案. 【详解】∵函数f (x )是R 上的单调函数,且对任意实数x ,都有f[()221xf x ++]=13,∴()221x f x ++=a 恒成立,且f (a )=13,即f (x )=﹣x 221++a ,f (a )=﹣x 221++a =13, 解得:a =1,∴f (x )=﹣x 221++1, ∴f (log 25)=23, 故答案为:23. 【点睛】本题考查的知识点是函数解析式的求法和函数求值的问题,正确理解对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦成立是解答的关键,属于中档题.17.或【解析】【分析】由函数对称轴与区间关系分类讨论求出最大值且等于2解关于的方程即可求解【详解】函数对称轴方程为为;当时;当即(舍去)或(舍去);当时综上或故答案为:或【点睛】本题考查二次函数的图像与解析:1-或2. 【解析】 【分析】由函数对称轴与区间关系,分类讨论求出最大值且等于2,解关于a 的方程,即可求解. 【详解】函数()22221()1f x x ax a x a a a =-++-=--+-+,对称轴方程为为x a =;当0a ≤时,max ()(0)12,1f x f a a ==-==-;当2max 01,()()12a f x f a a a <<==-+=,即210,a a a --==(舍去),或152a (舍去); 当1a ≥时,max ()(1)2f x f a ===, 综上1a =-或2a =. 故答案为:1-或2. 【点睛】本题考查二次函数的图像与最值,考查分类讨论思想,属于中档题.18.【解析】【分析】将化简为关于的函数式利用基本不等式求出的最值即可求解【详解】当时当时时当且仅当时等号成立同理时即的最小值和最大值分别为依题意得解得故答案为:【点睛】本题考查函数的最值考查基本不等式的解析:【解析】 【分析】将()f x 化简为关于x a +的函数式,利用基本不等式,求出的最值,即可求解. 【详解】当x a =-时,()0f x =, 当xa 时,()222111[()]1()2x a x af x a x x a a x a ax a++===+++-+++-+, x a >-时,21()22a x a a a x a+++-≥+当且仅当x a =时,等号成立,0()2af x ∴<≤=同理x a <-时,()0f x ≤<,()f x ≤≤, 即()f x,2=,解得a =. 故答案为: 【点睛】本题考查函数的最值,考查基本不等式的应用,属于中档题.19.【解析】【分析】根据函数经过点求出幂函数的解析式利用反函数的求法即可求解【详解】因为点在幂函数的图象上所以解得所以幂函数的解析式为则所以原函数的反函数为故答案为:【点睛】本题主要考查了幂函数的解析式 解析:2(0)x x ≥【解析】 【分析】根据函数经过点(4,2)求出幂函数的解析式,利用反函数的求法,即可求解. 【详解】因为点(4,2)在幂函数()()f x x R αα=∈的图象上,所以24α=,解得12α=, 所以幂函数的解析式为12y x =, 则2x y =,所以原函数的反函数为12()(0)fx x x -=≥.故答案为:12()(0)f x x x -=≥ 【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.20.-1【解析】试题解析:因为是奇函数且所以则所以考点:函数的奇偶性解析:-1 【解析】试题解析:因为2()y f x x =+是奇函数且(1)1f =,所以, 则,所以.考点:函数的奇偶性.21.1【解析】【分析】直接利用对数计算公式计算得到答案【详解】故答案为:【点睛】本题考查了对数式的计算意在考查学生的计算能力解析:1 【解析】 【分析】直接利用对数计算公式计算得到答案. 【详解】()()22522lg62lg3lg5lg2lg5lg2lg36lg9lg5lg2lg41lg -+=+-+-=-+=lg ﹣故答案为:1 【点睛】本题考查了对数式的计算,意在考查学生的计算能力.22.()【解析】【分析】设()求出再求出原函数的值域即得反函数【详解】设()所以因为x≥0所以所以因为x≥0所以y≥0所以反函数故答案为【点睛】本题主要考查反函数的求法考查函数的值域的求法意在考查学生对11x +(0x ≥) 【解析】 【分析】设()22f x y x x ==+(0x ≥),求出-1+1x y =+()1f x -.【详解】设()22f x y x x ==+(0x ≥),所以2244+20,1yx x y x y -±+-=∴=±+因为x≥0,所以-1+1x y =+()111f x x -=+.因为x≥0,所以y≥0,所以反函数()111f x x -=+,0x ()≥. 11x +,0x ()≥【点睛】本题主要考查反函数的求法,考查函数的值域的求法,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.23.2或【解析】【分析】将函数化为分和两种情况讨论在区间上的最大值进而求【详解】时最大值为解得时最大值为解得故答案为:或2【点睛】本题考查已知函数最值求参答题时需要结合指数函数与二次函数性质求解解析:2或12【解析】 【分析】 将函数化为()2()26xf x a =+-,分01a <<和1a >两种情况讨论()f x 在区间[]1,1-上的最大值,进而求a . 【详解】()242xxf x a a =+-()226xa =+-,11x -≤≤,01a ∴<<时,1x a a a -<<,()f x 最大值为()21(1)2610f a --=+-=,解得12a =1a >时,1x a a a -≤≤,()f x 最大值为()2(1)2610f a =+-=,解得2a =,故答案为:12或2. 【点睛】本题考查已知函数最值求参,答题时需要结合指数函数与二次函数性质求解.24.5【解析】【分析】由求出的范围根据正弦函数为零确定的值再由三角函数值确定角即可【详解】时当时的解有的解有的解有故共有5个零点故答案为:5【点睛】本题主要考查了正弦函数余弦函数的三角函数值属于中档题解析:5 【解析】 【分析】由[]0,2x π∈,求出cos x π的范围,根据正弦函数为零,确定cos x 的值,再由三角函数值确定角即可. 【详解】cos x πππ-≤≤,()()sin cos 0f x x π∴==时, cos 0x =,1,1-,当[]0,2x π∈时,cos 0x =的解有3,22ππ, cos 1x =-的解有π,cos 1x =的解有0,2π,故共有30,,,,222ππππ5个零点, 故答案为:5 【点睛】本题主要考查了正弦函数、余弦函数的三角函数值,属于中档题.25.【解析】【分析】采用换元法结合函数的单调性计算出的解析式从而即可求解出的值【详解】令所以又因为所以又因为是上的增函数且所以所以所以故答案为:【点睛】本题考查用换元法求解函数的解析式并求值难度一般已知 解析:82【解析】 【分析】采用换元法结合函数的单调性计算出()f x 的解析式,从而即可求解出()4f 的值. 【详解】令()3xf x t -=,所以()3xf x t =+,又因为()4f t =,所以34t t +=,又因为34ty t =+-是R 上的增函数且1314+=,所以1t =, 所以()31xf x =+,所以()443182f =+=.故答案为:82. 【点睛】本题考查用换元法求解函数的解析式并求值,难度一般.已知()()f g x 的解析式,可考虑用换元的方法(令()g x t =)求解出()f x 的解析式.三、解答题 26. (1)12k =(2)0a ≤(3)存在,316m =- 【解析】 【分析】(1)利用公式()()0f x f x --=,求实数k 的值; (2)由题意得()2log 21xa <+恒成立,求a 的取值范围;(3)()214xxh x m =++⋅,[1,2]x ∈,通过换元得21y mt t =++,[2,4]t ∈,讨论m 求函数的最小值,求实数m 的值. 【详解】(1)f x ()是偶函数()()0f x f x ∴--=,()()22log 21log 210x x kx kx -∴++-++=,22112log (21)0210212x x kx x k x x R k k -+∴==∴-=∈∴-=∴=+. (2)由题意得()2log 21xa <+恒成立,()2211log 2100x x a +>∴+>∴≤.(3)()214x xh x m =++⋅,[1,2]x ∈,令2x t =,则21y mt t =++,[2,4]t ∈,1°当0m =时,1y t =+的最小值为3,不合题意,舍去; 2°当0m >时,21y mt t =++开口向上,对称轴为102t m=-<, 21y mt t ∴=++在[2,4]上单调递增min 432y m ∴=+=,104m ∴=-<,故舍去;3°当0m <时,21y mt t =++开口向下,对称轴为102t m=->, 当132m -≤即16m ≤-时,y 在4t =时取得最小值, min 3165216y m m ∴=+=∴=-,符合题意; 当132m->即106m -<<时,y 在2t =时取得最小值,min 14324y m m ∴=+=∴=-,不合题意,故舍去;综上可知,316m =-. 【点睛】本题考查复合型指,对数函数的性质,求参数的取值范围,意在考查分类讨论的思想,转化与化归的思想,以及计算能力,本题的难点是第三问,讨论m ,首先讨论函数类型,和二次函数开口方向讨论,即分0m =,0m >,和0m <三种情况,再讨论对称轴和定义域的关系,求最小值.27.(1)证明见解析(2)m 1≥ 【解析】【分析】(1)12,(0,)x x ∀∈+∞,且12x x <,计算()()120f x f x ->得到证明.(2)根据单调性得到221x x m ++>,即()221212m x x x >--=-++,得到答案. 【详解】(1)函数单调递减,12,(0,)x x ∀∈+∞,且12x x <,()()()()2221121212122222121211x x x x x x f x f x x x x x x x -++⎛⎫⎛⎫-=---= ⎪ ⎪⎝⎭⎝⎭ ∵120x x <<,∴210x x ->,2212120x x x x ++>,22110x x >∴12()()f x f x >,∴()f x 在(0,)+∞单调递减; (2)()()2201f x x m f ++<=,故221x x m ++>,()221212m x x x >--=-++,(0,)x ∈+∞,故m 1≥.【点睛】本题考查了定义法证明函数单调性,利用单调性解不等式,意在考查学生对于函数性质的灵活运用.28.(1)2a =,1b =;(2)单调递减,见解析;(3)(,1)-∞- 【解析】 【分析】(1)根据(0)0f =得到1b =,根据(1)(1)f f -=-计算得到2a =,得到答案. (2)化简得到11()221x f x =++,12x x <,计算()()210f x f x -<,得到是减函数. (3)化简得到212kx x <-,参数分离212x k x -<,求函数212()xg x x -=的最小值得到答案. 【详解】(1)因为()f x 在定义域R 上是奇函数.所以(0)0f =,即102b a-+=+,所以1b =.又由(1)(1)f f -=-,即111214a a-+-=++, 所以2a =,检验知,当2a =,1b =时,原函数是奇函数.(2)()f x 在R 上单调递减.证明:由(1)知11211()22221xx xf x +-==+++, 任取12,x x R ∈,设12x x <,则()()()()12211221112221212121x x x x x x f x f x --=-=++++,因为函数2xy =在R 上是增函数,且12x x <,所以12220x x -<,又()()1221210x x ++>,所以()()210f x f x -<,即()()21f x f x <,所以函数()f x 在R 上单调递减.(3)因为()f x 是奇函数,从而不等式()2(21)0f kx f x +->等价于()2(21)(12)f kx f x f x >--=-,因为()f x 在R 上是减函数,由上式推得212kx x <-, 即对一切1,32x ⎡⎤∈⎢⎥⎣⎦有212x k x -<恒成立,设221211()2()x g x x x x -==-⋅, 令1t x =,1,23t ⎡∈⎤⎢⎥⎣⎦则有2()2h t t t =-,1,23t ⎡∈⎤⎢⎥⎣⎦,所以min min ()()(1)1g x h t h ===-, 所以1k <-,即k 的取值范围为(,1)-∞-.【点睛】本题考查了函数解析式,单调性,恒成立问题,将恒成立问题通过参数分离转化为最值问题是解题的关键.29.(1)(,5)-∞;(2)()0,1.【解析】【分析】(1)由(5)8(2)f f =求得a 的值,再利用指数函数的单调性解不等式,即可得答案; (2)作出函数|()1|y f x =-与y t =的图象,利用两个图象有两个交点,可得实数t 的取值范围.【详解】(1)∵(5)8(2)f f = ∴5328a a a==则2a = 即()2x f x =,则函数()f x 是增函数由(23)(2)f m f m -<+,得232m m -<+得5m <,即实数m 的取值范围是(,5)-∞.(2)()2x f x =,由题知21xy =-图象与y t =图象有两个不同交点,由图知:(0,1)t ∈【点睛】本题考查指数函数的解析式求解、单调性应用、图象交点问题,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力.30.(1)87万元;(2)甲合作社投入16万元,乙合作社投入56万元【解析】【分析】(1)先求出36x =,再求总收益;(2)(2)设甲合作社投入x 万元(1557)x ≤≤,乙合作社投入72x -万元,再对x 分类讨论利用函数求出如何安排甲、乙两个合作社的投入,才能使总收益最大.【详解】(1)两个合作社的投入相等,则36x =,1(36)436253620872f =++⨯+=(万元) (2)设甲合作社投入x 万元(1557)x ≤≤,乙合作社投入72x -万元.当1536x ≤≤时,11()425(72)2048122f x x x x x =+-+=-+, 令t x =156t ≤≤,则总收益2211()481(4)8922g t t t t =-++=--+, 当4t =即16x =时,总收益取最大值为89;当3657x <≤时,11()49(72)2010522f x x x =+-+=-+, ()f x 在(36,57]上单调递减,所以()(36)87f x f <=.因为8987>,所以在甲合作社投入16万元,乙合作社投入56万元时,总收益最大,最大总收益为89万元.【点睛】本题主要考查函数的应用和最值的求法,意在考查学生对这些知识的理解掌握水平和应用能力.。

高一数学:函数奇偶性题型及求解的8种策略

高一数学:函数奇偶性题型及求解的8种策略

高一数学:函数奇偶性题型及求解的8种策略
函数的奇偶性是函数的重要性质,也是每年高考的重要内容和热点内容之一,函数的奇偶性可以解决下列几类问题.
一、利用奇偶性的定义判断
【点评】解抽象函数问题可以通过化抽象为具体的方法,即赋予恰当的数值,利用定义经过运算与推理,最后得出结论.
【点评】本题考查函数奇偶性的判定,注意要先分析函数的定义域.定义域不对称,则非奇非偶.
【点评】本题考查偶函数的定义,根据偶函数的定义,可得一次项系数为0,从而可得结论.
【点评】考查奇函数的定义,已知函数求值的方法,解决本题的关键是利用奇函数的性质把自变量转化为
四、利用奇偶性的对称性解题
【点评】本题考查了偶函数的性质,以及函数的单调性的应用,一般将函数值转化到同一单调区间上再比较大小.
【点评】本题以不等式为载体,考查函数的单调性和奇偶性,由题意可得 f (x) 为R上的奇函数和增函数,故脱掉“f ”,问题转化为解一元不等式问题解决.
【点评】本题考查函数的奇偶性的应用,考查计算能力.一般设出所求自变量解析式所在的范围,把所求范围转化为已知解析式的定义域,利用函数的奇偶性化简即可求出解析式.
七、利用函数的性质求恒成立问题
【点评】本题考查的知识点是奇偶性与单调性的综合,其中根据已知条件及偶函数在对称区间上单调性相反,得到函数的单调性是解答本题的关键.
八、变形构造奇偶函数求参数。

例说抽象函数的解决方法

例说抽象函数的解决方法

例说抽象函数的解决方法函数是高中数学的核心内容,它对于学生掌握双基和发展能力具有十分重要的意义。

通常所说的函数,一般都具有解析式、图表等某种具体的表现形式,但是有一类函数只给出了函数所满足的一部分性质或运算法则,而没有明确的表现形式,这类函数我们通常称之为抽象函数。

抽象函数作为初等数学和近代数学的衔接点,既能体现数学的本质特征、近现代数学发展的威力,又能体现新课标对知识和技能考核的要求和高考的能力命意,必将受到人们的重视。

以下介绍几种解决抽象函数问题的方法,力求使抽象函数问题的解法有“章”可循。

一、赋值法赋值法的基本思路是:将所给函数的性质转化为条件等式,在条件等式中对变量赋予一些具体的值,构造出所需条件或发现某些性质,其中f(0)、f(1)是常常起桥梁作用的重要条件。

例1设函数f(x)的定义域为(0,+∞),且对于任意正实数x,y都有f(xy)=f(x)+f(y)恒成立。

若已知f(2)=1,试求:(1)f(1/2)的值;(2)f(2 - n)的值,其中n为正整数。

思路:合理赋值,化抽象为具体,发现递推规律。

解:(1)令x=y=1,则f(1)=f(1)+f(1)∴f(1)=0再令x=2,y=1/2,则f(1)=f(2)+f(1/2)∴f(1/2)= -f(2)= -1(2)由于f(2 - 2)=f(1/2)+f(1/2)= -2,f(2 - 3)= f(1/2)+f(1/2)+f(1/2)= -3,依此类推就有f(2 - n)= -n,其中n为正整数。

例2已知函数f(x)满足:对任意x、y∈R都有f(x+y 2)=f(x)+2f 2(y),且f(1)≠0,则f(2005)= 。

解:在f(x+y 2)=f(x)+2f 2(y)中,取x=y=0,则f(0)=0,再取x=0,y=1,代入得f(1)=2f 2(1)。

因为f(1)≠0,所以f(1)=1/2。

在条件式中令x=n,y=1,则得递推式f(n+1)-f(n)=1/2。

利用函数性质解不等式5大题型

利用函数性质解不等式5大题型

利用函数性质解不等式5大题型高中数学解不等式主要分为两类,一类是利用不等式性质直接解出解集(如二次不等式,分式不等式,指对数不等式等);另一类是利用函数的性质,尤其是函数的单调性进行运算。

利用函数性质解不等式一般情况以选择题形式出现,考查的角度较多,除了基础的函数性质,有时候还需要构造函数结合导数知识,考验学生的观察能力和运用条件能力,难度较大。

一、利用单调性、奇偶性解不等式原理1、解()()f m f n <型不等式(1)利用函数的单调性,去掉函数符号“f ”,将“抽象”的不等式问题转化为“具体”的不等式问题求解;(2)若不等式一边没有函数符号“f ”,而是常数(如()<f m a ),那么我们应该将常数转化带有函数符号“f ”的函数值再解。

2、()f x 为奇函数,形如()()0f m f n +<的不等式的解法第一步:将()f n 移到不等式的右边,得到()()>-f m f n ;第二步:根据()f x 为奇函数,得到()()>-f m f n ;第三步:利用函数的单调性,去掉函数符号“f ”,列出不等式求解。

二、构造函数解不等式的技巧1、此类问题往往条件较零散,不易寻找入手点,所以处理这类问题要将条件与结论结合分析,在草稿上列出条件能够提供什么,也列出要得出结论需要什么,两者对接通常可以确定入手点;2、在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能具备乘除关系的函数,在构造时多进行试验与项的调整;3、此类问题处理的核心要素是单调性与零点,对称性和图象知识辅助手段,所以要能够确定构造函数的单调性,猜出函数的零点,那么问题便易于解决了。

三、利用函数性质解不等式的要点1、构函数:根据所解不等式的结构特征和已知条件构造相应的函数,把不等式看作一个函数的两个函数值大小比较问题;2、析性质:分析所构造函数的相关性质,主要包括函数定义域、单调性、奇偶性、周期性等;3、巧转化:根据函数的单调性,把函数值大小比较转化为某个单调区间内自变量大小比较;4、写解集:解关于自变量的不等式,写出解集。

高考数学 专题06 确定抽象函数单调性解函数不等式黄金解题模板-人教版高三全册数学试题

高考数学 专题06 确定抽象函数单调性解函数不等式黄金解题模板-人教版高三全册数学试题

专题06 确定抽象函数单调性解函数不等式【高考地位】函数的单调性是函数的一个非常重要的性质,也是高中数学考查的重点内容。

而抽象函数的单调性解函数不等式问题,其构思新颖,条件隐蔽,技巧性强,解法灵活,往往让学生感觉头痛。

因此,我们应该掌握一些简单常见的几类抽象函数单调性及其应用问题的基本方法。

【方法点评】确定抽象函数单调性解函数不等式使用情景:几类特殊函数类型解题模板:第一步 (定性)确定函数)(x f 在给定区间上的单调性和奇偶性; 第二步 (转化)将函数不等式转化为)()(N f M f <的形式;第三步 (去f )运用函数的单调性“去掉”函数的抽象符号“f ”,转化成一般的不等式或不等式组;第四步 (求解)解不等式或不等式组确定解集;第五步 (反思)反思回顾,查看关键点,易错点及解题规X.例 1 已知函数()f x 是定义在R 上的奇函数,若对于任意给定的实数12,x x ,且12x x ≠,不等式()()()()11221221x f x x f x x f x x f x +<+恒成立,则不等式()()1120x f x +-<的解集为__________.【答案】11,2⎛⎫- ⎪⎝⎭. 例2.已知定义为R 的函数()f x 满足下列条件:①对任意的实数,x y 都有:()()()1f x y f x f y +=+-;②当0x >时,()1f x >.(1)求()0f ;(2)求证:()f x 在R 上增函数;(3)若()67,3f a =≤-,关于x 的不等式()()223f ax f x x -+-<对任意[)1,x ∈-+∞恒成立,某某数a 的取值X 围.【答案】(1)()01f =;(2)证明见解析;(3)(]5,3--.即()2130x a x -++>在[)1,x ∈-+∞上恒成立,令()()213g x x a x =-++,即()min 0g x >成立即可.①当112a +<-,即3a <-时,()g x 在[)1,x ∈-+∞上单调递增, 则()()()min 11130g x g a =-=+++>解得5a >-,所以53a -<<-,②当112a +≥-即3a ≥-时,有()()2min 111130222a a a g x g a +++⎛⎫⎛⎫==-++> ⎪ ⎪⎝⎭⎝⎭解得231231a -<<,而2313-<-,所以3231a -≤<, 综上,实数a 的取值X 围是(]5,3-- 【变式演练1】设奇函数()f x 在区间[1,1]-上是增函数,且(1)1f -=-.当[1,1]x ∈-时,函数2()21f x t at ≤-+,对一切[1,1]a ∈-恒成立,则实数t 的取值X 围为( ) A.22t -≤≤ B.2t ≤-或2t ≥ C.0t ≤或2t ≥ D.2t ≤-或2t ≥或0t = 【答案】D 【解析】试题分析:由奇函数()f x 在区间[1,1]-上是增函数,且(1)1f -=-,所以在区间[1,1]x ∈-的最大值为1,所以2121t at ≤-+当0t =时显然成立,当0t ≠时,则220t at -≥成立,又[1,1]a ∈-,令()22,[1,1]g a at t a =-∈-,当0t >时,()g a 是减函数,故令()10g ≥,解得2t ≥;当0t <时,()g a 是增函数,故令()10g -≥,解得2t ≤-,综上所述,2t ≥或2t ≤-或0t =,故选D. 考点:函数的单调性与函数的奇偶性的应用.【变式演练2】已知定义在R 上的函数()f x 为增函数,当121x x +=时,不等式()()()()1201f x f f x f +>+恒成立,则实数1x 的取值X 围是( )A. (),0-∞B. 10,2⎛⎫ ⎪⎝⎭C. 1,12⎛⎫⎪⎝⎭D. ()1,+∞ 【答案】D【变式演练3】定义在非零实数集上的函数()f x 满足()()()f xy f x f y =+,且()f x 是区间(0,)+∞上的递增函数.(1)求(1),(1)f f -的值; (2)求证:()()f x f x -=; (3)解不等式1(2)()02f f x +-≤.【答案】(1)(1)0f =,(1)0f -=;(2)证明见解析;(3)⎥⎦⎤ ⎝⎛⎪⎭⎫⎢⎣⎡1,2121,0 .考点:抽象函数及应用.【变式演练4】定义在(1,1)-上的函数()f x 满足下列条件:①对任意,(1,1)x y ∈-,都有()()()1x yf x f y f x y++=++;②当(1,0)x ∈-时,有()0f x >,求证:(1)()f x 是奇函数; (2)()f x 是单调递减函数; (3)21111()()()()1119553f f f f n n +++>++,其中*n N ∈. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】试题分析:(1)由奇函数的定义及特殊值0)0(=f 即可证明;(2)由单调性的定义,做差证明;(3)先由题(3)211()1(3)(2)23()[][]1155(2)(3)11()23n n n n f f f n n n n n n +-+-+++==++++-+-++ 1111()()()()2323f f f f n n n n =+-=-++++∴2111()()()111955f f f n n +++++111111[()()][()()][()()]344523f f f f f f n n =-+-++-++ 1111()()()()3333f f f f n n =-=+-++∵1013n <<+,∴1()03f n ->+,∴111()()()333f f f n +->+.故21111()()()()1119553f f f f n n +++>++.考点:1.抽象函数;2.函数的单调性,奇偶性;3.数列求和. 【高考再现】1.【2017全国卷一理】函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x 的取值X 围是()A .[]22-,B .[]11-,C .[]04,D .[]13,【答案】D【解析】因为()f x 为奇函数,所以()()111f f -=-=,于是()121f x --≤≤等价于()()()121f f x f --≤≤| 【解析】又()f x 在()-∞+∞,单调递减 【解析】121x ∴--≤≤3x ∴1≤≤ 故选D2.【2017某某理】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c << (B )c b a <<(C )b a c <<(D )b c a <<【答案】C3. 【2016高考新课标2理数】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()miii x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】C 【解析】试题分析:由于()()2f x f x -+=,不妨设()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-,故12122x x y y +++=,故选C. 考点:函数图象的性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数的图象有对称中心.4.【2015高考,理7】如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是()A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C础题,首先是函数图象平移变换,把2log y x =沿x 轴向左平移2个单位,得到2log (y x =+2)的图象,要求正确画出画出图象,利用数形结合写出不等式的解集.5. 【2014高考某某版理第7题】下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3x f x =【答案】D6. 【2014某某理12】已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( )A .12B .14C .12πD .18【答案】B 【解析】考点:1.抽象函数问题;2.绝对值不等式.【名师点睛】本题考查抽象函数问题、绝对值不等式、函数的最值等.解答本题的关键,是利用分类讨论思想、转化与化归思想,逐步转化成不含绝对值的式子,得出结论.本题属于能力题,中等难度.在考查抽象函数问题、绝对值不等式、函数的最值等基础知识的同时,考查了考生的逻辑推理能力、运算能力、分类讨论思想及转化与化归思想.7. 【2016高考某某理数】已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 足1(2)(2)a f f ->,则a 的取值X 围是______.【答案】13(,)22考点:利用函数性质解不等式【名师点睛】不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:(1)借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效. (2)借助函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代数式的几何意义实现“数”向“形”的转化. 【反馈练习】1. 【2017-2018学年某某省某某市高一上学期第一次联考数学试题】函数()y f x =在R 上为增函数,且()()29f m f m >+,则实数m 的取值X 围是( )A. ()9+∞,B. [)9+∞,C. (),9-∞-D. (]9-∞, 【答案】A2.【2018届某某省某某市第一中学高三10月调研数学(理)试题】设奇函数()f x 在()0,+∞上为增函数,且()20f =,则不等式()()0f x f x x--<的解集为()A. ()()2,02,-⋃+∞B. ()(),20,2-∞-⋃C. ()(),22,-∞-⋃+∞D. ()()2,00,2-⋃【答案】D 【解析】函数()f x 为奇函数,则()()f x f x -=-,()()0f x f x x--<,化为()20f x x<,等价于()0xf x <,当0x >时,解得02x <<,当0x <时,20x -<<,不等式的解集为:()()2,00,2-⋃,选D.3.【2018届某某省某某市第一中学高三上学期第三次考试数学(文)试题】已知函数是定义在上的偶函数,且在区间上单调递增.若实数满足,则的取值X 围是( )A. B. C. D.【答案】C4.【2017届某某市滨海新区高三上学期八校联考(理科)数学试卷】已知()f x 是定义在R 上的奇函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x -<-,记()0.20.24.14.1f a =, ()2.12.10.40.4f b =,()0.20.2log 4.1log 4.1f c =,则()A. a c b <<B. a b c <<C. c b a <<D. b c a << 【答案】A【解析】设120x x << ,则()()()()122112120f x f x x f x x f x x x ->⇒>所以函数()()f x g x x=在()0,+∞上单调递减,因为()f x 是定义在R 上的奇函数,所以()g x 是定义在R上的偶函数,因此()0.20.24.14.1f a =()()0.24.11gg =<, ()2.12.10.40.4f b =()()()2.120.40.40.5gg g =>> ,()0.20.2log 4.1log 4.1f c =()()()0.251log 4.1log 4.11,2g g g g ⎛⎫⎛⎫==∈ ⎪ ⎪⎝⎭⎝⎭,即a c b << ,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行 5.【2017届某某省高三教育质量诊断性联合考试数学(文)试卷】已知定义在R 上的奇函数()f x 在[)0,+∞上递减,若()()321f x x a f x -+<+对[]1,2x ∈-恒成立,则a 的取值X 围为( ) A. ()3,-+∞ B. (),3-∞- C. ()3,+∞ D. (),3-∞ 【答案】C7.【2018届某某省六校高三上学期第五次联考理数试卷】已知函数是上的奇函数,当时为减函数,且,则=( ) A. B.C.D.【答案】A【解析】∵奇函数满足f (2)=0, ∴f (−2)=−f (2)=0.对于{x |f (x −2)>0},当x −2>0时,f (x −2)>0=f (2), ∵x ∈(0,+∞)时,f (x )为减函数, ∴0<x −2<2, ∴2<x <4.当x −2<0时,不等式化为f (x −2)<0=f (−2), ∵当x ∈(0,+∞)时,f (x )为减函数, ∴函数f (x )在(−∞,0)上单调递减, ∴−2<x −2<0,∴0<x <2.综上可得:不等式的解集为{x ∣∣0<x <2或2<x <4} 故选D. 8.【2017—2018学年某某省某某市邗江区公道中学高一数学第二次学情测试题】()f x 是定义在R 上的偶函数,且对任意的(]0a b ∈-∞,,,当a b ≠时,都有()()0f a f b a b->-.若()()121f m f m +<-,则实数m 的取值X 围为_________. 【答案】(0,2)9. 【2017届某某省某某师X 大学附属中学高三高考模拟考试二数学试题】已知()f x 是定义在区间[]1,1-上的奇函数,当0x <时,()()1f x x x =-.则关于m 的不等式()()2110f m f m -+-<的解集为__________. 【答案】[)0,1【解析】当0x >时,则()()()0,11x f x x x x x -<-=---=+,即()()1f x x x -=+,所以()()1f x x x =-+,结合图像可知:函数在[]1,1-单调递减,所以不等式()()2110f m f m -+-<可化为2220{111 111m m m m -->-≤-≤-≤-≤,解之得01m ≤<,应填答案[)0,1。

高考数学压轴专题达州备战高考《不等式选讲》知识点总复习含答案解析

高考数学压轴专题达州备战高考《不等式选讲》知识点总复习含答案解析

新数学《不等式选讲》专题解析一、141.设不等式3412xx a +->-对所有的[1,2]x ∈均成立,则实数a 的取值范围是( )A .15a <-或47a >B .15a <-C .47a >或01a <<D .15a <-或1064a <<【答案】A 【解析】 【分析】根据不等式3412xx a +->-对所有的[1,2]x ∈均成立,取2x =时,可得2431a ->,解得15a <-或47a >,利用换元法把不等式换为281t a t ->-,分47a >和15a <-两种情况讨论2()81h t t t =+-的最大值即可求得实数a 的取值范围.【详解】解:因为不等式3412x x a +->-对所有的[1,2]x ∈均成立,当2x =时,312x +-有最大值31,不等式显然要成立,即2431a ->,解得15a <-或47a >,当[1,2]x ∈时,令2[2,4]xt =∈,则24[4,16]x t =∈,328[16,32]x t +=∈,所以3412xx a +->-等价于281t a t ->-,①当47a >时,即281a t t ->-在[2,4]t ∈恒成立, 即281()a t t h t >+-=,即求2()81h t t t =+-的最大值,max ()(4)47h t h ==,所以47a >;②当15a <-时,281t a t ->-在[2,4]t ∈恒成立, 即281()a t t f t <-+=,即求2()81f t t t =-+的最小值,min ()(4)15f t f ==-;综上:15a <-或47a >. 故选:A 【点睛】本题考查利用二次函数的最值求绝对值不等式中的参数问题,利用换元法是关键,属于中档题.2.关于x 不等式2x x a a -+-≥在R 上恒成立,则实数a 的最大值是 A .0 B .1C .-1D .2【答案】B【解析】由于|x -2|+|x -a |≥|a -2|,∴等价于|a -2|≥a ,即a ≤1.故实数a 的最大值为1.3.已知f (x )=|x +2|+|x -4|的最小值为n ,则二项式1nx x ⎛⎫- ⎪⎝⎭展开式中x 2项的系数为( ) A .11 B .20 C .15 D .16 【答案】C 【解析】 【分析】由题意利用绝对值三角不等式求得n=6,在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得展开式中x 2项的系数. 【详解】∵f (x )=|x+2|+|x ﹣4|≥|(x+2)﹣(x ﹣4)|=6,故函数的最小值为6, 再根据函数的最小值为n ,∴n=6. 则二项式(x ﹣1x )n =(x ﹣1x)6 展开式中的通项公式为 T r+1=6rC •(﹣1)r •x 6﹣2r , 令6﹣2r=2,求得r=2,∴展开式中x 2项的系为26C =15, 故选:C . 【点睛】本题主要考查绝对值三角不等式的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数,属于中档题.4.2018年9月24日,英国数学家.M F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和,记222111123S n =+++++L L ,则( ) A .413S << B .4332S << C .322S << D .2S >【答案】C 【解析】 【分析】由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--,利用放缩法和极限,即可得到答案. 【详解】 由题意,可知21111111(2,)1(1)(1)1n n N n n n n n n n n n+-=<<=-≥∈++--, 所以2221111111113111()()()232334121n S n n n n =+++++>+-+-++-=-++L L L 22211111111111(1)()()2232231n S n n n nL L =++++<+-+-++-=--, 当n →+∞且n N +∈时,101n →+,且10n →,所以322S <<,故选C. 【点睛】本题主要考查了数列思想的应用问题,其中解答中,认真审题,利用21n 进行合理放缩,再利用极限求解是解答本题的关键,着重考查了分析问题和解答问题的能力,以及放缩思想的应用,属于中档试题.5.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是 ( ) A .|a+b|+|a-b|>2 B .|a+b|+|a-b|<2 C .|a+b|+|a-b|=2 D .不能比较大小【答案】B 【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2, 当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.6.若关于x 的不等式2|1|30ax x a -++≥的解集为R ,则实数a 的取值范围为 A .1[,+)6∞ B .1[,+)3∞ C .1[,+)2∞ D .1[,+)12∞ 【答案】C 【解析】 【分析】先将不等式2130ax x a -++≥变形为213x a x +≥+,由不等式2130ax x a -++≥的解集是(),-∞+∞,可得213x a x +≥+恒成立,因此只需求出213x x ++的最大值即可.【详解】解:不等式2130ax x a -++≥的解集是(),-∞+∞,即x R ∀∈,2130ax x a -++≥恒成立, ∴221133x x a x x ++≥=++, 令()213x g x x +=+, 当1x =-时,()0g x =;当1x ≠-时,()21143121x g x x x x +==+++-+, 若10x +>,则()41221x x ++-≥=+, 当且仅当411x x +=+,即x 1=时上式“=”成立; 若x 10+<,则()()()441212611x x x x ⎡⎤++-=--++-≤-=-⎢⎥+-+⎢⎥⎣⎦, 当且仅当()()411x x -+=-+,即3x =-时上式“=”成立.()()][()412,62,1x x ∴++-∈-∞-⋃+∞+. ()10,2g x ⎛⎤∴∈ ⎥⎝⎦.12a ∴≥. 则实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 故选C . 【点睛】本题主要考查不等式恒成立的问题,由不等式恒成立求参数的范围,通常用分离参数的方法,将不等式转化为参数与一个函数比较大小的形式,只需求出函数的最大值或最小值即可,属于常考题型.7.已知,,x y z ∈R ,2221x y z ++=,则22x y z ++的最大值为( ) A .9 B .3C .1D .27【答案】B 【解析】 【分析】由已知2221x y z ++=,可利用柯西不等式2222222()()()a b c e f g ae bf cg ++++≥++,构造柯西不等式,即可求解.【详解】由已知,可知,,x y z ∈R ,2221x y z ++=,利用柯西不等式2222222()()()a b c e f g ae bf cg ++++≥++, 可构造得2222222(122)()(22)x y x x y z ++++≥++, 即2(22)9x y z ++≤,所以22x y z ++的最大值为3,故选B . 【点睛】本题主要考查了柯西不等式的应用,其中解答中熟记柯西不等式,合理构造柯西不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.8.已知集合{|||2}A x x =≥,2{|30}B x x x =->,则A B =I ( ) A .∅B .{|3x x >或2}x ?C .{|3x x >或0}x <D .{|3x x >或0}x <【答案】B 【解析】 【分析】可以求出集合A ,B ,然后进行交集的运算即可. 【详解】∵A ={x |x ≤﹣2,或x ≥2},B ={x |x <0,或x >3}, ∴A ∩B ={x |x ≤﹣2,或x >3}. 故选:B . 【点睛】考查描述法的定义,绝对值不等式和一元二次不等式的解法,以及交集的运算.9.函数y =|x -3|-|x +1|的( ) A .最小值是0,最大值是4 B .最小值是-4,最大值是0 C .最小值是-4,最大值是4 D .没有最大值也没有最小值【答案】C 【解析】因为y =|x -3|-|x +1|4,322,134,1x x x x -≥⎧⎪=--<<⎨⎪≤-⎩,所以最小值是-4,最大值是4,选C.点睛:分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.10.已知全集U =R ,{|13}P x x x =+-<,{|213}Q x x =-<,则集合P ,Q 之间的关系为( )A .集合P 是集合Q 的真子集B .集合Q 是集合P 的真子集C .P Q =D .集合P 是集合Q 的补集的真子集【答案】C 【解析】 【分析】先化简得{|12}P x x =-<<.求出{||21|3}{|12}Q x x x x =-<=-<<,由此得到P Q =. 【详解】 |||1|3x x +-<Q ,∴当0x „时,|||1|1213x x x x x +-=-+-=-+<,解得1x >-.10x ∴-<„;当01x <„时,|||1|113x x x x +-=+-=<,成立;当1x >时,|||1|1213x x x x x +-=+-=-<,解得2x <.12x ∴<<. {|12}P x x ∴=-<<.{||21|3}{|12}Q x x x x =-<=-<<, P Q ∴=.故选:C . 【点睛】本题考查两个集合的关系的判断,考查集合与集合的包含关系等基础知识,考查运算求解能力,是基础题.11.已知数列{}n a ,{}n b 满足11132n n n a a b +=+,11132n n n b a b +=-.设数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,则存在正常数M ,对任意*n N ∈都有( ) A .n S M <且n T M > B .n S M <且n T M < C .n S M >且n T M < D .n S M >且n T M >【答案】B 【解析】 【分析】设{}max ,n n n c a b =,则0n c ≥,根据三角不等式结合已知可得115566n nn n a c b c ++≤≤,进而有156n n c c +≤,求出{}n c 的前n 项和的范围,即可求出结论.【详解】设{}max ,n n n c a b =,则0n c ≥,由三角不等式可知11111532326n n n n n n a a b a b c +=+≤+≤, 11111532326n n n n n n b a b a b c +=-≤+≤, 所以156n n c c +≤,设{}n c 的前n 项和为n H , 若0n c =时,则0n n n S T H ===, 存在0M >,使得n n S T M =<,若0n c ≠时,则156n n c c +≤,115[1()]66516nn c H c -≤<-, 取16M c =,,n n S M T M ∴<<. 故选:B. 【点睛】本题考查数列的前n 项和,构造数列转化为等比数列是解题的关键,作为选择题或直接取0,0n n a b ==即可得出答案,要注意特殊方法的选取,属于中档题.12.不等式||x x x <的解集是( ) A .{|01}x x <<B .{|11}x x -<<C .{|01x x <<或1}x <-D .{|10x x -<<或1}x >【答案】C 【解析】 【分析】原不等式即()||10x x -<,等价转化为①010x x >⎧⎨-<⎩,或 ②010x x <⎧⎨->⎩.分别求得①、②的解集,再取并集,即得所求. 【详解】解:不等||x x x <,即()||10x x -<,∴①010x x >⎧⎨-<⎩或 ②010x x <⎧⎨->⎩.解①可得01x <<,解②可得1x <-.把①②的解集取并集,即得原不等式的解集为{|01x x <<或1}x <-, 故选:C . 【点睛】本题主要考查绝对值不等式的解法,体现了分类讨论和等价转化的数学思想,属于中档题.13.使不等式(1||)(1)0x x -+>成立的充分而不必要的条件是( ) A .{|11}x x x <->或 B .{|11}x x -<< C .{|11}x x x >-≠且 D .{|11}x x x <≠-且【答案】B 【解析】 【分析】解不等式()()1||10x x -+>,求得集合A,使不等式成立的充分而不必要的条件为B,则B A Ü,即可对比选项得解.【详解】不等式()()1||10x x -+>则()()1010x x ⎧->⎪⎨+>⎪⎩ 或()()1010x x ⎧-<⎪⎨+<⎪⎩ 解不等式组可得11x -<<或1x <-则不等式()()1||10x x -+>的解集为{11A x x =-<<或}1x <- 使得不等式(1||)(1)0x x -+>成立的充分而不必要的条件为B,则B A Ü 对比选项可知B 符合要求 故答案为:B 【点睛】本题考查了绝对值不等式的解法,充分不必要条件的应用,属于中档题.14.已知()f x 是定义在R 上的偶函数,且在区间(],0-∞上单调递增,若实数m 满足321(log (211))(log )2f m f -+>,则m 的取值范围是( )A .13(,)(,)22-∞-+∞U )B .3(,)2-∞ C .1(,)2-+∞D .13(,)22-【答案】D 【解析】 【分析】不等式等价于()()()3log 2111f m f -+>,利用函数是偶函数和其单调性可知()3log 2111m -+<,转化为解对数和含绝对值的不等式.【详解】()f x Q 是偶函数,()()21log 112f f f ⎛⎫∴=-= ⎪⎝⎭,即不等式等价于()()()3log 2111f m f -+>()3log 2110m -+≥Q ,Q ()f x 是定义在R 上的偶函数,且在区间(],0-∞上单调递增,()f x ∴在[)0,+∞单调递减, ()3log 2111m ∴-+<,即2113m -+<,整理为:212m -< ,2212m ∴-<-<,解得:1322m -<<.故选:D 【点睛】本题考查利用函数的性质解不等式,主要考查转化与化归的思想和计算能力,属于中档题型,一般利用函数是偶函数,并且已知函数在区间上的单调性时,()()()()1212f x f x f x f x >⇒>,然后利用()0,∞+或[)0,+∞的单调性解不等式.15.函数()f x cosx = ,则()f x 的最大值是( )A BC .1D .2【答案】A 【解析】 【分析】将()f x 化为()f x cosx =,利用柯西不等式即可得出答案.【详解】因为()f x cosx =所以()f x cosx =…=当且仅当cosx =. 故选:A 【点睛】本题主要考查了求函数的最值,涉及了柯西不等式的应用,属于中档题.16.不等式33log log x x x x +<+的解集( ) A .(),-∞+∞ B .()0,1C .()1,+∞D .()0,∞+【答案】B 【解析】 【分析】依题意知,0x >,32log 0x x <,原不等式等价于3log 0x <,解不等式即可. 【详解】根据对数的意义可知,0x >, 因为33log log x x x x +<+,两边同时平方可得,332log 2log x x x x <, 即32log 0x x <,因为0x >, 所以原不等式等价于3log 0x <, 所以原不等式的解集为}{01x x <<, 故选:B 【点睛】本题考查绝对值不等式的解法;熟练掌握对数函数的定义域和单调性是求解本题的关键;属于中档题.17.在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为两点()11,P x y ,()22,Q x y 之间的“折线距离”.则下列命题中:①若C 点在线段AB 上,则有(,)(,)(,)d A C d C B d A B +=②若点A ,B ,C 是三角形的三个顶点,则有(,)(,)(,)d A C d C B d A B +=. ③到(1,0),(1,0)M N -两点的“折线距离”相等的点的轨迹是直线0x =.④若A 为坐标原点,B 在直线0x y +-上,则(),d A B 的最小值为 真命题的个数为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】根据“折线距离”的定义,证明①③④为真命题,②为假命题,由此确定正确选项.【详解】对于①,C 点在线段AB 上,设C 点坐标为()00,x y ,0x 在12,x x 之间,0y 在12,y y 之间,不妨设102102,x x x y y y <<<<,则(,)(,)d A C d C B +=01012020x x y y x x y y -+-+-+-01012020x x y y x x y y =-+-+-+-21212121x x y y x x y y =-+-=-+-(),d A B =成立,故①正确.对于②,在三角形ABC 中,()()01012020,,d A C d C B x x y y x x y y +=-+-+-+-()()()()01200120x x x x y y y y ≥-+-+-+-()2121,x x y y d A B =-+-=,故②错误.对于③,到(1,0),(1,0)M N -两点的“折线距离”相等的点的集合是(){},|11x y x y x y ++=-+,即11x x +=-,即0x =.所以到(1,0),(1,0)M N -两点的“折线距离”相等的点的轨迹是直线0x =,即③正确.对于④,设(),B x y ,则(),d A B 1212x x y y x x x x =-+-=+≥+=(),d A B 的最小值为④正确.综上所述,正确的有①③④,共3个.故选:C.【点睛】本小题主要考查新定义运算的理解和运用,属于中档题.18.定义在R 上的偶函数()y f x =在[)0,+∞上递减,且()10f =,则满足12log 0f x ⎛⎫< ⎪⎝⎭的x 的取值范围是( ) A .()10,2,2⎛⎫+∞ ⎪⎝⎭U B .()1,11,22⎛⎫ ⎪⎝⎭U C .()1,2,2⎛⎫-∞+∞ ⎪⎝⎭U D .()1,12,2⎛⎫⋃+∞ ⎪⎝⎭【答案】A【解析】【分析】利用函数()f x 的奇偶性和单调性化简不等式12log 0f x ⎛⎫< ⎪⎝⎭,得到12log 1x >,解绝对值不等式和对数不等式,求得x 的取值范围.【详解】偶函数()y f x =在[)0,+∞上递减,且()10f =,所以()y f x =在(),0-∞上递增,且()10f -=,且距离对称轴越远,函数值越小, 由12log 0f x ⎛⎫< ⎪⎝⎭可得12log 1x >, 所以12log 1x >或12log 1x <-, 解可得,102x <<或2x >. 故选:A.【点睛】 本小题主要考查利用函数的奇偶性的单调性解抽象函数不等式,考查绝对值不等式、对数不等式的解法,属于中档题.19.集合{}|12A x x =-<,1393x B x⎧⎫=<<⎨⎬⎩⎭,则A B I 为( ) A .()1,2B .()1,2-C .()1,3D .()1,3- 【答案】B【解析】【分析】 计算得到{}13A x x =-<<,{}12B x x =-<<,再计算A B I 得到答案.【详解】 18{}13x x =-<<,{}139123x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭, 故()1,2A B =-I .故选:B .【点睛】本题考查了集合的交集运算,意在考查学生的计算能力.20.“31a -<<”是“存在x ∈R ,使得|||1|2x a x -++<”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】C【解析】【分析】设:31p a -<<,1:,|||2x R x a x q ∃∈-++<,考虑命题“若p 则q ”及其逆命题的真假后可得两者之间的条件关系.【详解】设:31p a -<<,||:|1|2q x a x -++<,当31a -<<时,|||1|1x a x a -++≥+总成立,而12a +<,故|||1|2x a x -++<在R 上有解,故,|||1|2x R x a x ∃∈-++<,所以“若p 则q ”为真命题.若,|||1|2x R x a x ∃∈-++<,则()min 21x a x >-++, 由绝对值不等式可知11x a x a -++≥+,当且仅当()()10x a x --≤时等号成立, 所以1x a x -++的最小值为1a +, 故21a >-即31a -<<,所以“若q 则p ”为真命题.综上,“31a -<<”是“存在x ∈R ,使得|||1|2x a x -++<”的充要条件.故选:C.【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若p 则q ”是真命题,“若q 则p ”是假命题,则p 是q 的充分不必要条件;若“若p 则q ”是真命题,“若q 则p ”是真命题,则p 是q 的充分必要条件;若“若p 则q ”是假命题,“若q 则p ”是真命题,则p 是q 的必要不充分条件;若“若p 则q ”是假命题,“若q 则p ”是假命题,则p 是q 的既不充分也不必要条件.。

例谈抽象函数不等式的求解

例谈抽象函数不等式的求解

例谈抽象函数不等式的求解抽象函数不等式由于其解析式的不确定性,成为同学们学习的一个难点,其解决问题的关键在于利用函数的的单调性去掉函数符号“”这一外衣,就可以把抽象函数的不等式转化为同学们熟悉的不等式(组)。

现选辑一组抽象函数不等式的习题,请同学们不妨一试一.已知函数的奇偶性、单调性①已知f (x )是定义在[-1,+1]上的增函数,且f (x -1)<f (x 2-1),求x 的取值范围. 解:依题意,f(x-1)<f(x 2-1)可以转化为不等式组:⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧≤≤-≤≤≤≤⇒-≤≤≤≤⇒--≤-≤-≤-≤-1002202002020111111112222x >x <x x x x >x x x <x x x x 或或所以;1<x <2②定义在[-2,+2]上的偶函数g (x ),当x ≥0时,g (x )单调递减,若g (1-m )<g (m )成立,求m 的取值范围.解:∵g(x)为偶函数,对于任意x ∈[-1,+1],总有g(-x)= g (x )=g (∣x ∣).于是不等式g (1-m )<g (m )等价于g (∣1-m ∣)<g (∣m ∣),由此有⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧---⇒----2212231122212>m m <m<<m<m >m <m<m <<)(解得-1<m <21 ③.设f (x )是定义在(0,∞)上的增函数,f (y x )=f (x )-f (y ), 解不等式f (x+1)-f (5x 1-)≤f(7) 二.单调性通过定义形式告知 ④.设f(x)的定义域为R ,且f(-x)=-f(x),f(x+d)<f(x),(d>0),当不等式f(a)+f(a 2)<0成立时,a 的取值范围是 ( )A. (-∞,1)∪(1,+∞)B.(-1,0)C.(-∞,0)∪(1,+∞)D.(-∞,-1)∪(0,+∞) 解: ∵ f(-x)=-f(x),f(x+d)<f(x),(d>0), ∴ f(x)为定义域在R 上的奇函数且是单调递减的,∴f(a)+f(a 2)<0可以转化为不等式:a >-a 2解得a <-1或a >0,故知选D.三.已知函数的解析式.⑤.函数f(x)在(-1,1)上有定义且f(x)=x 3+x,f(1-a)+f(1-a 2)>0时的取值范围是( ) A. (-2,1) B. (0, 2) C. (0,1) D.(-2,2)解:∵函数f(x)在(-1,1)上有定义且f(x)=x 3+x, ∴故知函数f(x)为单调递增的奇函数∴不等式f(1-a)+f(1-a 2)>0可以转化为⎪⎩⎪⎨⎧->-----1111111122a a <a <a << ,解得 0<a <1 四.单调性、奇偶性须证明⑥.已知定义在(0,+∞)上的函数f (x )满足⑴.x>1时,f (x )<0;⑵.f(21)=1;⑶.对任意的x 、y ∈(0,∞)都有f (xy )=f (x )+f (y )求不等式f (x )+f (5-x )≥-2的解集。

函数专题:利用函数单调性与奇偶性解不等式的6种常见考法-【题型分类归纳】

函数专题:利用函数单调性与奇偶性解不等式的6种常见考法-【题型分类归纳】

函数专题:利用函数单调性与奇偶性解不等式的6种常见考法一、单调性定义的等价形式(1)函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<-x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x f x f x x .(2)函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>-x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x f x f x x .二、定义法判断函数奇偶性判断()f x -与()f x 的关系时,也可以使用如下结论:如果()0()f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数; 如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数. 三、利用单调性、奇偶性解不等式原理 1、解()()<f m f n 型不等式(1)利用函数的单调性,去掉函数符号“f ”,将“抽象”的不等式问题转化为“具体”的不等式问题求解;(2)若不等式一边没有函数符号“f ”,而是常数(如()<f m a ),那么我们应该将常数转化带有函数符号“f ”的函数值再解。

例析求解抽象函数问题的几种途径

例析求解抽象函数问题的几种途径

解题宝典抽象函数问题对同学们的抽象思维能力和分析能力有较高的要求.抽象函数问题中往往不会给出具体的函数解析式,要求我们根据已知条件求函数的单调区间、最值、定义域,解函数不等式.下面结合实例,谈一谈解答抽象函数问题的几种途径.一、利用函数的单调性对于一些有关抽象函数的值域、单调区间、函数不等式、单调性问题,通常需根据函数单调性的定义判断出函数的单调性,进一步利用函数的单调性解题.在利用函数的单调性解题时,往往要先根据题意确定函数的定义域,判断抽象函数的单调性和单调区间,再根据函数的单调性建立关系式.例1.函数f()x是定义在R上的奇函数,且满足以下两个条件:①对任意x、y∈R,都有f()x+y=f()x+f()y;②当x>0时,f()x<0,且f()1=-2.则函数f()x在区间[]-3,3上的值域为_____.解:设x1,x2∈[]-3,3,且x1>x2,则f()x1-f()x2=f()x1+f()-x2=f()x1-x2<0,所以f()x1<f()x2,则函数f()x在区间[]-3,3上是减函数,所以f()x max=f()-3=-f()3=-f()1+2=-f()1-f()1+1=-3f()1=6,f()x min=f()3=-f()-3=-6,即函数f()x在区间[]-3,3上的值域为[]-6,6.我们根据函数单调性的定义,先令x1,x2∈[]-3,3,x1>x2;然后将f()x1-f()x2,判断出差式的符号,即可判断出函数的单调性;再根据函数在[]-3,3上的单调性确定函数的最值点,即可解题.对于闭区间上的函数最值问题,通常要重点关注区间端点值,由函数的单调性可知函数的最值往往在区间端点处取得.例2.已知函数f()x对于任意正数a,b都有f()ab=f()a⋅f()b,且f()0=1,当x>1时,f()x>1,若f()x⋅f()5-x>1,求x的取值范围.解:令x1,x2∈()0,+∞,x1<x2,则f()x2f()x1=f()x2x1⋅x1f()x1=f()x2x1f()x1f()x1=f()x2x1,因为x2x1>1,所以f()x2f()x1=f()x2x1>1,f()x2>f()x1,可知函数f()x在()0,+∞上单调递增,因为f()ab=f()a f()b,所以不等式f()x f()5-x>1等价于f()x()5-x>f()0,可得x()5-x>0,解得0<x<5,故x的取值范围为()0,5.首先将f()x1、f()x2作商,即可根据函数单调性的定义判断出抽象函数在()0,+∞上的单调性;然后利用函数的单调性去掉f()x()5-x>f()0中函数符号“f”,将不等式转化为常规不等式,即可通过解不等式求得问题的答案.解函数不等式,通常要将不等式中的自变量转化到同一单调区间内,才能根据函数的单调性将问题转化为常规不等式问题.二、换元对于含有复杂式子、复合函数的抽象函数问题,往39往要采用换元法求解.即将复杂的式子、复合函数中的某一部分式子用一个新元替换,即可将函数简化,根据函数的性质、定义域求得问题的答案.例3.已知函数y =f ()2x 的定义域为[]-1,1,求函数y =f ()x +3的定义域.解:由函数y =f ()2x 的定义域为[]-1,1,可知-1≤x ≤1,∴-2≤2x ≤2,设t =2x ,∴y =f ()t 的定义域为[]-2,2,令t =x +3,可得-2≤x +3≤2,解得-5≤x ≤-1,∴函数y =f ()x +3的定义域为[]-5,-1.函数y =f ()2x 、y =f ()x +3均为复合函数,而y =f ()2x 中的2x ,y =f ()x +3中的x +3均与y =f ()x 中的x 的意义相同,于是令t =x +3,并将t 替换2x ,通过等量代换,求得函数y =f ()x +3的定义域.三、数形结合数形结合法是解答函数问题的重要思想方法.在解答抽象函数问题时,我们可以先根据已知条件确定抽象函数的周期性、单调性、奇偶性、对称性;然后画出相应的函数图象,以明确函数图象的变化趋势,尤其要关注函数的最高点、最低点、单调区间、对称轴、对称中心、周期;再建立新的关系式,即可求得问题的答案.例4.已知f ()x 在R 上是奇函数,在区间[]0,2上单调递增,且f ()x -4=-f ()x .若方程f ()x =m ()m >0在区间[]-8,8上有四个不相等的根x 1、x 2、x 3、x 4,求x 1+x 2+x 3+x 4的值.图1解:∵f ()x 在R 上是奇函数且满足f ()x -4=-f ()x ,∴f ()x -4=f ()-x ,f ()4-x =f ()x ,∴函数的对称轴为直线x =±2,且f ()0=0,∵f ()x -4=-f ()x ,∴f ()x -8=f ()x ,∴函数的周期为8,∵函数f ()x 在区间[]0,2上单调递增,∴函数f ()x 在区间[]-2,2上单调递增,令x 1<x 2<x 3<x 4,根据图象的对称性可知x 1+x 2=-12,x 3+x 4=4,∴x 1+x 2+x 3+x 4=-12+4=-8.解答本题,需先根据已知条件确定函数的对称轴、周期以及单调性;然后画出f ()x 的大致图象,即可通过研究图象的变化情况,确定f ()x 与函数y =m 在区间[]-8,8上的4个交点的位置;再结合图象的对称性,求出x 1+x 2+x 3+x 4的值.例5.设函数f ()x 满足f ()2+x =f ()2-x ,f ()x 在[)2,+∞上是减函数,若f ()3x -1>f ()x +3,则x 的取值范围是_________.解:由题意知f ()x 的图象关于直线x =2对称,∵f ()x 在[)2,+∞上是减函数,∴f ()x 在()-∞,2上是增函数,其图象如图2所示.图2∵f ()3x -1>f ()x +3,可知点()3x -1,0到点()2,0的距离比点()x +3,0到点()2,0的距离小,∴||()3x -1-2<||()x +3-2,将不等式两边的式子平方并化简得:2x 2-5x -2<0,解得:12<x <2,∴x 的取值范围为()12,2.首先根据已知关系式确定函数的对称轴x =2和函数的单调性,即可画出函数的图象;然后结合图象,比较出点()3x -1,0和点()x +3,0到点()2,0的距离的大小关系,进而得到新不等式,通过解不等式得到x 的取值范围.解答抽象函数的问题方法很多,同学们只需根据已知条件和解题需求,进行赋值、换元、画图,灵活运用函数的性质,选择合适的方法,即可快速获得问题的答案.(作者单位:安徽省临泉第一中学)解题宝典40。

山东省泰安第一中学函数的概念与基本初等函数多选题试题含答案

山东省泰安第一中学函数的概念与基本初等函数多选题试题含答案

山东省泰安第一中学函数的概念与基本初等函数多选题试题含答案一、函数的概念与基本初等函数多选题1.已知函数123,12 ()1,222x xf x xf x⎧--≤≤⎪=⎨⎛⎫>⎪⎪⎝⎭⎩,则下列说法正确的是()A.若函数()=-y f x kx有4个零点,则实数k的取值范围为11,246⎛⎫⎪⎝⎭B.关于x的方程*1()0()2nf x n N-=∈有24n+个不同的解C.对于实数[1,)x∈+∞,不等式2()30xf x-≤恒成立D.当1[2,2](*)n nx n N-∈∈时,函数()f x的图象与x轴围成的图形的面积为1【答案】AC【分析】根据函数的表达式,作出函数的图像,对于A,C利用数形结合进行判断,对于B,D利用特值法进行判断.【详解】当312x≤≤时,()22f x x=-;当322x<≤时,()42f x x=-;当23x<≤,则3122<≤x,1()1222⎛⎫==-⎪⎝⎭x xf x f;当34x<≤,则3222<≤x,1()2222⎛⎫==-⎪⎝⎭x xf x f;当46x<≤,则232<≤x,11()2242⎛⎫==-⎪⎝⎭x xf x f;当68x<≤,则342<≤x,1()1224⎛⎫==-⎪⎝⎭x xf x f;依次类推,作出函数()f x的图像:对于A ,函数()=-y f x kx 有4个零点,即()y f x =与y kx =有4个交点,如图,直线y kx =的斜率应该在直线m , n 之间,又16m k =,124=n k ,11,246⎛⎫∴∈⎪⎝⎭k ,故A 正确; 对于B ,当1n =时,1()2f x =有3个交点,与246+=n 不符合,故B 错误; 对于C ,对于实数[1,)x ∈+∞,不等式2()30xf x -≤恒成立,即3()2≤f x x恒成立,由图知函数()f x 的每一个上顶点都在曲线32y x =上,故3()2≤f x x恒成立,故C 正确; 对于D , 取1n =,[1,2]x ∈,此时函数()f x 的图像与x 轴围成的图形的面积为111122⨯⨯=,故D 错误; 故选:AC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.2.对于函数()9f x x x=+,则下列判断正确的是( ) A .()f x 在定义域内是奇函数B .函数()f x 的值域是(][),66,-∞-⋃+∞ C .()12,0,3x x ∀∈,12x x ≠,有()()12120f x f x x x ->-D .对任意()12,0,x x ∈+∞且12x x ≠,有()()1212122x x f f x f x +⎛⎫<+⎡⎤ ⎪⎣⎦⎝⎭【答案】ABD 【分析】根据函数奇偶性定义判断()f x 的奇偶性,利用基本不等式求()f x 的值域,设1203x x <<<,根据解析式判断()()12,f x f x 的大小,进而确定()()1212,0f x f x x x --的大小关系,应用作差、作商法判断12122,2()()f x f x x x f +⎛⎫⎪+⎝⎭大小关系,进而确定各项的正误. 【详解】A :由解析式知:定义域为0x ≠,99()()()f x x x f x x x-=-+=-+=--,即()f x 在定义域内是奇函数,正确; B :当0x >时,()96f x x x =+≥=当且仅当3x =时等号成立;当0x <时有0x ->,()9[()()]6f x x x=--+-≤-=-当且仅当3x =-时等号成立;故其值域(][),66,-∞-⋃+∞,正确;C :当1203x x <<<时,()()1212121212999()(1)f x f x x x x x x x x x -=-+-=--,而120x x -<,12910x x -<,则()()120f x f x ->,所以()()12120f x f x x x -<-,错误;D :若120x x >>,1212123622x x f x x x x +⎛⎫=++⎪+⎝⎭,12121299()()f x f x x x x x +=+++,所以121212123699()()]2[()2f x f x x x x x x x f +⎛⎫- ⎪⎝+=-++⎭,而121221212364199()x x x x x x x x +=<++,即()()1212122x x f f x f x +⎛⎫<+⎡⎤ ⎪⎣⎦⎝⎭,正确; 故选:ABD 【点睛】关键点点睛:综合应用函数奇偶性的证明、对勾函数值域的求法、作差(作商)法比较大小,判断各选项的正误.3.已知定义域为R 的奇函数()f x ,满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<≤⎩,下列叙述正确的是( )A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,恒有12()()f x f x >C .若当(0,]x a ∈时,()f x 的最小值为1,则5[1,]2a ∈ D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =-【答案】AC 【分析】根据奇函数()()f x f x -=-,利用已知定义域的解析式,可得到对称区间上的函数解析式,然后结合函数的图象分析各选项的正误,即可确定答案 【详解】函数是奇函数,故()f x 在R 上的解析式为:222,22322,20()0,022,022,223x x x x x f x x x x x x x ⎧<-⎪+⎪----≤<⎪⎪==⎨⎪-+<≤⎪⎪>⎪-⎩绘制该函数的图象如所示:对A :如下图所示直线1l 与该函数有7个交点,故A 正确;对B :当1211x x -<<<时,函数不是减函数,故B 错误; 对C :如下图直线2:1l y =,与函数图交于5(1,1),(,1)2,故当()f x 的最小值为1时有5[1,]2a ∈,故C 正确对D :3()2f x =时,函数的零点有136x =、212x =+、212x =-; 若使得其与()f x m =的所有零点之和为0, 则32m =-或38m =-,如图直线4l 、5l ,故D 错误故选:AC 【点睛】本题考查了分段函数的图象,根据奇函数确定对称区间上函数的解析式,进而根据函数的图象分析命题是否成立4.已知函数()()23,03,0x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩,以下结论正确的是( )A .()f x 在区间[]4,6上是增函数 B .()()220204f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619ii x==∑D .若方程()1f x kx =+恰有3个实根,则{}11,13k ⎛⎫∈-- ⎪⎝⎭【答案】BCD 【分析】根据()f x 在[2-,0]上的单调性判断A ,根据(2020)(2)f f =-判断B ,根据图象的对称性判断C ,根据直线1y kx =+与()y f x =的图象有3个交点判断D . 【详解】解:由题意可知当3x -时,()f x 是以3为周期的函数, 故()f x 在[4,6]上的单调性与()f x 在[2-,0]上的单调性相同, 而当0x <时,239()()24f x x =-++,()f x ∴在[2-,0]上不单调,故A 错误;又(2020)(2)2f f =-=,故(2)(2020)4f f -+=,故B 正确; 作出()y f x =的函数图象如图所示:由于()y f x b =-在(,6)-∞上有6个零点,故直线y b =与()y f x =在(,6)-∞上有6个交点,不妨设1i i x x +<,1i =,2,3,4,5, 由图象可知1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称, ∴613392229222i i x ==-⨯+⨯+⨯=∑,故C 正确;若直线1y kx =+经过点(3,0),则13k =-,若直线1y kx =+与23(0)y x x x =--<相切,则消元可得:2(3)10x k x +++=, 令0∆=可得2(3)40k +-=,解得1k =-或5k =-, 当1k =-时,1x =-,当5k =-时,1x =(舍),故1k =-.若直线1y kx =+与()y f x =在(0,3)上的图象相切,由对称性可得1k =.因为方程()1f x kx =+恰有3个实根,故直线1y kx =+与()y f x =的图象有3个交点, 113k ∴-<<-或1k =,故D 正确.故选:BCD . 【点睛】本题考查了函数零点与函数图象的关系,考查函数周期性、对称性的应用,属于中档题.5.下列选项中a 的范围能使得关于x 的不等式220x x a +--<至少有一个负数解的是( ) A .9,04⎛⎫-⎪⎝⎭B .()2,3C .1,2D .0,1【答案】ACD 【分析】将不等式变形为22x a x -<-,作出函数2,2y x a y x =-=-的图象,根据恰有一个负数解时判断出临界位置,再通过平移图象得到a 的取值范围. 【详解】因为220x x a +--<,所以22x a x -<-且220x ,在同一坐标系中作出2,2y x a y x =-=-的图象如下图:当y x a =-与22y x =-在y 轴左侧相切时,22x a x -=-仅有一解,所以()1420a ∆=++=,所以94a =-,将y x a =-向右移动至第二次过点()0,2时,02a -=,此时2a =或2a =-(舍),结合图象可知:9,24a ⎛⎫∈- ⎪⎝⎭,所以ACD 满足要求. 故选:ACD. 【点睛】本题考查函数与方程的综合应用,着重考查数形结合的思想,难度较难.利用数形结合可解决的常见问题有:函数的零点或方程根的个数问题、求解参数范围或者解不等式、研究函数的性质等.6.下列说法中,正确的有( ) A .若0a b >>,则b a a b> B .若0a >,0b >,1a b +=,则11a b+的最小值为4 C .己知()11212xf x =-+,且()()2110f a f a -+-<,则实数a 的取值范围为()2,1- D .已知函数()()22log 38f x x ax =-+在[)1,-+∞上是增函数,则实数a 的取值范围是(]11,6--【答案】BCD 【分析】利用不等式的基本性质可判断A 选项的正误;将+a b 与11a b+相乘,展开后利用基本不等式可判断B 选项的正误;判断函数()f x 的单调性与奇偶性,解不等式()()2110f a f a -+-<可判断C 选项的正误;利用复合函数法可得出关于实数a 的不等式组,解出a 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,0a b >>,则1a bb a>>,A 选项错误; 对于B 选项,0a >,0b >,1a b +=,()1111224b a a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭, 当且仅当12a b ==时,等号成立,所以,11a b+的最小值为4,B 选项正确; 对于C 选项,函数()f x 的定义域为R , 任取1x 、2x R ∈且12x x <,则21220x x >>, 所以,()()()()211212121211111122021221221212121x x x x x x x x f x f x -⎛⎫⎛⎫-=---=-=> ⎪ ⎪++++++⎝⎭⎝⎭,即()()12f x f x >,所以,函数()f x 为R 上的减函数,()()()()2211112212221212xxx xx f x -+-=-==+++, 则()()()()()()21212212122212221x x x x x x x xf x f x --------====-+⋅++, 所以,函数()f x 为R 上的奇函数,且为减函数, 由()()2110f a f a-+-<可得()()()22111f a f a f a-<--=-,所以,211a a -<-,即220a a +-<,解得21a -<<,C 选项正确; 对于D 选项,对于函数()()22log 38f x x ax =-+,令238u x ax =-+,由于外层函数2log y u =为增函数,则内层函数238u x ax =-+在[)1,-+∞上为增函数,所以min 16380au a ⎧≤-⎪⎨⎪=++>⎩,解得116a -<≤-,D 选项正确.故选:BCD. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.7.已知()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩,则关于x 的方程12f x a x ⎛⎫+-= ⎪⎝⎭()1a <的实根个数可能为( ) A .2 B .3C .4D .5【答案】ABC 【分析】画出()f x 的图像,由1a <,可分类讨论01a <<,0a =,0a <三种情况,令12t x x =+-,并画出图像,结合两个函数图像以及12f x a x ⎛⎫+-= ⎪⎝⎭,判断出实根个数构成的集合. 【详解】画出()f x 的图像如图所示,令12t x x=+-,画出图像如图所示. 由()5log 11t -=,解得:4544,5t t =-=,由()2221t --+=,解得671,3t t ==.. 由()5log 10t -=,解得:80t =,由()()22201t t --+=≥,解得922t =+. (1)当01a <<时,()f t a =,有3解,且40t -<<或405t <<或322t <<+,结合12t x x =+-的图像可知,40t -<<时没有x 与其对应,405t <<或322t <<+时每个t 都有2个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有4个实数根. (2)当0a =时,()f t a =,有2解,且0t =或22t =+,0t =有一个1x =与其对应,22t =+有两个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有3个实数根. (3)当0a <时,()f t a =,有1解,且22t >+,结合12t x x=+-的图像可知,每个t 有两个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有2个实数根.综上所述,关于x 的方程12f x a x ⎛⎫+-=⎪⎝⎭的实根个数构成的集合为{2,3,4}. 故选:ABC【点睛】方法点睛:本题考查分类讨论参数,求函数零点个数问题,讨论函数零点个数常用方法: (1)直接法:直接求解方程得到方程的根;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解,考查学生的数形结合的数学思想方法,考查分类讨论的数学思想方法,属于难题.8.对于具有相同定义域D 的函数()f x 和()g x ,若存在函数()h x kx b =+(k ,b 为常数),对任给的正数m ,存在相应的0x D ∈,使得当x D ∈且0x x >时,总有()()()()00f x h x m h x g x m ⎧<-<⎪⎨<-<⎪⎩,则称直线:l y kx b =+为曲线()y f x =与()y g x =的“分渐近线”.给出定义域均为{}|1D x x =>的四组函数,其中曲线()y f x =与()y g x =存在“分渐近线”的是( )A .()2f x x =,()g x x =B .()102x f x -=+,()23x g x x -=C .()21x f x x+=,()ln 1ln x x g x x += D .()221x f x x =+,()()21x g x x e -=-- 【答案】BD【分析】根据分渐近线的定义,对四组函数逐一分析,由此确定存在“分渐近线”的函数.【详解】解:()f x 和()g x 存在分渐近线的充要条件是x →∞时,()()0,()()f x g x f x g x -→>.对于①,()2f x x =,()g x =当1x >时,令()()()2F x f x g x x =-=, 由于()20F x x '=->,所以()h x 为增函数,不符合x →∞时,()()0f x g x -→,所以不存在分渐近线;对于②,()1022x f x -=+>,()232,(1)x g x x x-=<> ()()f x g x ∴>, 2313()()10210x xx f x g x x x --⎛⎫-=+-=+ ⎪⎝⎭, 因为当1x >且x →∞时,()()0f x g x -→,所以存在分渐近线;对于③,21()x f x x+=,ln 1()ln x x g x x +=,21111111()()ln ln ln x x nx f x g x x x x x x x x x++-=-=+--=- 当1x >且x →∞时,1x 与1ln x 均单调递减,但1x 的递减速度比1ln x 快, 所以当x →∞时,()()f x g x -会越来越小,不会趋近于0,所以不存在分渐近线;对于④,22()1x f x x =+,()()21x g x x e -=--, 当x →∞时,22()()220+1222+1x x x f x g x x e x x e--=-+++=→,且()()0f x g x ->, 因此存在分渐近线.故存在分渐近线的是BD .故选:BD .【点睛】本小题主要考查新定义概念的理解和运用,考查函数的单调性,属于难题.二、导数及其应用多选题9.若直线l 与曲线C 满足下列两个条件:(i )直线l 在点()00,P x y 处与曲线C 相切;(ii )曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是( )A .直线:0l y =在点()0,0P 处“切过”曲线3:C y x =B .直线:1l x =-在点()1,0P -处“切过”曲线()2:1C y x =+ C .直线:l y x =在点()0,0P 处“切过”曲线:sin C y x =D .直线:l y x =在点()0,0P 处“切过”曲线:tan C y x =【答案】ACD【分析】分别求出每个选项中命题中曲线C 对应函数的导数,求出曲线C 在点P 处的切线方程,再由曲线C 在点P 处两侧的函数值对应直线上的点的值的大小关系是否满足(ii ),由此可得出合适的选项.【详解】对于A 选项,由3y x =,可得23y x '=,则00x y ='=,所以,曲线C 在点()0,0P 处的切线方程为0y =,当0x >时,0y >;当0x <时,0y <,满足曲线C 在点()0,0P 附近位于直线0y =两侧,A 选项正确;对于B 选项,由()21y x =+,可得()21y x '=+,则10x y =-'=,而直线:1l x =-的斜率不存在,所以,直线l 在点()1,0P -处不与曲线C 相切,B 选项错误;对于C 选项,由sin y x =,可得cos y x '=,则01x y ='=,所以,曲线C 在点()0,0P 处的切线方程为y x =,设()sin x x x f -=,则()1cos 0f x x '=-≥,所以,函数()f x 为R 上的增函数, 当0x <时,()()00f x f <=,即sin x x <;当0x >时,()()00f x f >=,即sin x x >.满足曲线C 在点()0,0P 附近位于直线y x =两侧,C 选项正确;对于D 选项,由sin tan cos x y x x ==,可得21cos y x '=,01x y ='=,所以,曲线C 在点()0,0P 处的切线方程为y x =, 当,22x ππ⎛⎫∈- ⎪⎝⎭时,设()tan g x x x =-,则()2221sin 10cos cos x g x x x=-=-≤', 所以,函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减.当02x π-<<时,()()00g x g >=,即tan x x >; 当02x π<<时,()()00g x g <=,即tan x x <.满足曲线C 在点()0,0P 附近位于直线y x =两侧,D 选项正确.故选:ACD.【点睛】关键点点睛:本题考查导数新定义,解题的关键就是理解新定义,并把新定义进行转化,一是求切线方程,二是判断在切点两侧函数值与切线对应的函数值的大小关系,从而得出结论.10.经研究发现:任意一个三次多项式函数32()(0)f x ax bx cx d a =+++≠的图象都只有一个对称中心点()()00,x f x ,其中0x 是()0f x ''=的根,()'f x 是()f x 的导数,()f x ''是()'f x 的导数.若函数32()f x x ax x b =+++图象的对称点为(1,2)-,且不等式(ln 1)x e e mx x -+32()3e f x x x e x ⎡⎤≥--+⎣⎦对任意(1,)x ∈+∞恒成立,则( ) A .3a =B .1b =C .m 的值可能是e -D .m 的值可能是1e- 【答案】ABC【分析】 求导得()62f x x a ''=+,故由题意得()1620f a ''=-+=-,()1112f a b -=-+-+=,即3,1a b ==,故()3231f x x x x =+++.进而将问题转化为()1ln 1e x x e x e m x --++<+,由于1x e x >+,故ln ln 1e e x x x x e e x e x --+=≥-+,进而得()1ln ln 1ln 1e x x e x e e x e e x x --++--≥=-++,即m e ≤-,进而得ABC 满足条件. 【详解】由题意可得()1112f a b -=-+-+=,因为()2321x ax f x =++',所以()62f x x a ''=+,所以()1620f a ''=-+=-,解得3,1a b ==,故()3231f x x x x =+++. 因为1x >,所以()()32ln []13x e ee mx xf x x x e x -+≥--+等价于()1ln 1e x x e x e m x --++≤+. 设()()10x g x e x x =-->,则()10xg x e '=->,从而()g x 在()0,∞+上单调递增.因为()00g =,所以()0g x >,即1x e x >+,则ln ln 1e e x x x x e e x e x --+=≥-+(当且仅当x e =时,等号成立),从而()1ln ln 1ln 1e x x e x e e x e e x x --++--≥=-++,故m e ≤-. 故选:ABC.【点睛】本题解题的关键在于根据题意得()3231f x x x x =+++,进而将不等式恒成立问题转化为()1ln 1e x x e x e m x --++≤+恒成立问题,再结合1x e x >+得ln ln 1e e x xx x e e x e x --+=≥-+,进而得m e ≤-.考查运算求解能力与化归转化思想,是难题.。

高三数学函数的奇偶性试题答案及解析

高三数学函数的奇偶性试题答案及解析

高三数学函数的奇偶性试题答案及解析1.已知函数是定义在R上的奇函数,,当时,有成立,则不等式的解集是A.B.C.D.【答案】A【解析】由当时,有成立,知函数的导函数在上恒成立,所以函数在上是增函数,又因为函数是定义在R上的奇函数,所以函数是定义域上的偶函数,且由得,由此可得函数的大致图象为:由图可知不等式的解集是.故选A.【考点】1.函数导数的求导法则;2.函数的奇偶性;3. 利用函数的单调性解不等式.2.若为偶函数,则实数 .【答案】.【解析】∵为偶函数,∴,.【考点】偶函数的性质.3.已知f(x)是定义在R上的奇函数,且当x<0时,f(x)=3x,则f(log94)的值为()A.-2B.C.D.2【答案】B【解析】根据对数性质,f(log94)=f(log32)因为f(x)是奇函数,于是f(log32)=-f(-log32)=-f(log3),且log3<0故f(log94)=-f(log3)=-【考点】函数的奇偶性,分段函数4.对于函数,若存在常数,使得取定义域内的每一个值,都有,则称为准偶函数,下列函数中是准偶函数的是()A.B.C.D.【答案】D【解析】由为准偶函数的定义可知,若的图象关于对称,则为准偶函数.在D 中,的图象关于对称,故选D.【考点】新定义,函数的图象和性质.5.下列函数为奇函数的是()A.B.C.D.【答案】A【解析】对于A选项中的函数,函数定义域为,,故A选项中的函数为奇函数;对于B选项中的函数,由于函数与函数均为奇函数,则函数为偶函数;对于C选项中的函数,定义域为,,故函数为偶函数;对于D选项中的函数,,,则,因此函数为非奇非偶函数,故选A.【考点】本题考查函数的奇偶性的判定,着重考查利用定义来进行判断,属于中等题.6.已知是定义在上的奇函数,当时,,则函数的零点的集合为()A.B.C.D.【答案】D【解析】因为是定义在上的奇函数,当时,,所以,所以,由解得或;由解得,所以函数的零点的集合为,故选D.【考点】函数的奇偶性的运用,分段函数,函数的零点,一元二次方程的解法,难度中等.7.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)当-4≤x≤4时,求f(x)的图象与x轴所围图形的面积.【答案】(1)π-4. (2)4【解析】解:(1)由f(x+2)=-f(x),得f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),所以f(x)是以4为周期的周期函数,从而得f(π)=f(π-4)=-f(4-π)=-(4-π)=π-4.(2)由f(x)是奇函数与f(x+2)=-f(x),得f[(x-1)+2]=-f(x-1)=f[-(x-1)],即f(1+x)=f(1-x).故知函数y=f(x)的图象关于直线x=1对称.又0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.当-4≤x≤4时,f(x)的图象与x轴围成的图形面积为S,=4×(×2×1)=4.则S=4S△OAB8. x为实数,[x]表示不超过x的最大整数,则函数f(x)=x-[x]的最小正周期是________.【答案】1【解析】如图,当x∈[0,1)时,画出函数图像,再左右扩展知f(x)为周期函数.9.已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于________.【答案】3【解析】由已知可得,-f(1)+g(1)=2,f(1)+g(1)=4,两式相加解得,g(1)=3.10.已知函数f(x)=为奇函数,则a+b=________.【解析】当x>0时,-x<0,由题意得f(-x)=-f(x),所以x2-x=-ax2-bx,从而a=-1,b=1,a+b=0.11.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(-1)=( )A.-2B.0C.1D.2【答案】A【解析】当x>0时,f(x)=x2+,∴f(1)=12+=2.∵f(x)为奇函数,∴f(-1)=-f(1)=-2.12.函数的图象大致是()A.B.C.D.【答案】A【解析】易知函数是偶函数,当x=0时,. 所以选A.13.设为定义在R上的奇函数,当时,(b为常数),则()A.3B.1C.D.【答案】D【解析】因为为定义在R上的奇函数,所以有,解得,所以当时,,即.14.设是上的奇函数,且,下面关于的判定:其中正确命题的序号为_______.①;②是以4为周期的函数;③的图象关于对称;④的图象关于对称.【答案】①②③【解析】∵,∴,即的周期为4,②正确.∴(∵为奇函数),即①正确.又∵,∴的图象关于对称,∴③正确,又∵,当时,显然的图象不关于对称,∴④错误.15.将函数的图象向左平移个单位长度后得到函数,则函数()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数,也不是偶函数【答案】B【解析】,由题意知,因此函数为偶函数,故选B.【考点】1.三角函数图像变换;2.辅助角公式;3.三角函数的奇偶性16.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2-4x,则不等式f(x)>x的解集用区间表示为________.【答案】(-5,0)∪(5,+∞)【解析】作出f(x)=x2-4x(x>0)的图象,如图所示.由于f(x)是定义在R上的奇函数,利用奇函数图象关于原点对称,作出x<0的图象.不等式f(x)>x表示函数y=f(x)的图象在y=x的上方,观察图象易得,原不等式的解集为(-5,0)∪(5,+∞)17.函数y=f(x-1)为奇函数,y=f(x+1)为偶函数(定义域均为R).若0≤x<1时,f(x)=2x,则f(10)=.【答案】1【解析】依题意得f(-x-1)=-f(x-1),f(-x+1)=f(x+1),所以f(x+4)=-f(x),f(x+8)=f(x),故函数周期为8.f(10)=f(2)=f(1+1)=f(1-1)=f(0)=1.18.设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)-|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|-g(x)是奇函数【答案】A【解析】∵g(x)是R上的奇函数,∴|g(x)|是R上的偶函数,从而f(x)+|g(x)|是偶函数,故选A.19.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.【解析】由题意知,函数f(x)=x2-|x+a|为偶函数,则f(1)=f(-1),故1-|1+a|=1-|-1+a|,所以a=0.20.函数是上的奇函数,是上的周期为4的周期函数,已知,且,则的值为___________.【答案】2【解析】本题就是要待计算式中的每个式子计算化简,由已知,,因此,,,,,从而已知式为,∴.【考点】奇函数与周期函数的定义.21.已知,函数且,且.(1) 如果实数满足且,函数是否具有奇偶性? 如果有,求出相应的值;如果没有,说明原因;(2) 如果,讨论函数的单调性。

(完整版)新高考真题《函数的概念与基本初等函数》小题专题训练(含答案)

 (完整版)新高考真题《函数的概念与基本初等函数》小题专题训练(含答案)
【解析】因为 ,故 ,
因为 为偶函数,故 ,
时 ,整理得到 ,
故 ,
7.【2020年高考全国I卷理数】若 ,则
A. B.
C. D.
【答案】B
【解析】设 ,则 为增函数,因为
所以 ,
所以 ,所以 .

当 时, ,此时 ,有
当 时, ,此时 ,有 ,所以C、D错误.
【点晴】本题主要考查函数与方程的综合应用,涉及到构造函数,利用函数的单调性比较大小,是一道中档题.
13.【2020年高考天津】函数 的图象大致为
A B
CD
【答案】A
【解析】由函数的解析式可得: ,则函数 为奇函数,其图象关于坐标原点对称,选项CD错误;
当 时, ,选项B错误.
【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.
14.【2020年高考天津】设 ,则 的大小关系为
A. B.
C. D.
【答案】D
【解析】因为 ,


所以 .
故选:D.
【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.
比较指对幂形式的数的大小关系,常用方法:
(1)利用指数函数的单调性: ,当 时,函数递增;当 时,函数递减;
A.10名B.18名
C.24名D.32名
【答案】B
【解析】由题意,第二天新增订单数为 ,设需要志愿者x名,

【高考数学】抽象函数的奇偶性_单调性问题

【高考数学】抽象函数的奇偶性_单调性问题

1 ) f( ) n 2 ( n 1) ( n 2) 1 3n 1
n 1 2n 3 2
思考题: 设函数y=f(x)的定义域为R,当x>0时,f(x)>1;对任意 的x,y∈R有f(x+y)=f(x)f(y)成立, 1 解不等式 f ( x)
f ( x 1)
解: x∈R由已知得
y
(2)当f(3)=1时f(a)>f(a-1)+2.求a取值范围;
例4,已知y=f(x)是定义在R上的函数 当x>0时,f(x)>0且f(x-y)=f(x)-f(y), 求证:y=f(x)是增函数 证明:设任意x1,x2R且x1<x2即x2-x1>0 由已知得f(x2-x1)>0 即f(x2-x1)= f(x2)-f(x1)>0 所以y=f(x)是增函数
1 1 1 f ( ) f ( ) f ( 2 ) 5 11 n 3n 1 1 1 1 1 1 1 f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) 2 3 3 4 n 1 n2 1 1 n 1 f ( ) f ( ) f( ) f( ) 2 n2 2n 3 2

f ( x2 )
并写出一个满足以上条件的函数.
解:(Ⅰ)令 x1 x2 0 ,则 f(0)=f(0)f(0)f(0)[f(0)-1]=0…..2分 (直接得出f(0)=1给2分) 下证f(0)≠0,假设有f(x0)=0, 则f(x0+2)=f(x0)f(2)=0,f(x0+3)=f(x0)f(3)=0这样 x0+2≠x0+3,但有f(x0+2)=f(x0+3)=0与已知条件 矛盾,∴f(x0)≠0即f(0)=1 ……..4分 x x x 2 (Ⅱ)又 , f ( x) f ( ) f ( ) [ f ( )] 0 ….3分

专题:抽象函数的单调性与奇偶性的证明

专题:抽象函数的单调性与奇偶性的证明

专题:抽象函数的单调性与奇偶性的证明抽象函数单调性与奇偶性特殊模型:正比例函数$f(x)=kx$($k≠0$)幂函数$f(x)=x^n$($n$为正整数)指数函数$f(x)=a^x$($a>0$且$a≠1$)对数函数$f(x)=\log_a x$($a>0$且$a≠1$)正、余弦函数$f(x)=\sin x$,$f(x)=\cos x$正切函数$f(x)=\tan x$余切函数$f(x)=\cot x$抽象函数:f(x+y)=f(x)+f(y)$f(xy)=f(x)f(y)$或$\frac{f(x)}{f(y)}$f(x+y)=f(x)f(y)$或$f(x-y)=\frac{f(x)}{f(y)}$f(xy)=f(x)+f(y)$或$f(x)=f(x)-f(y)$1.已知$f(x+y)+f(x-y)=2f(x)f(y)$,对一切实数$x$、$y$都成立,且$f(0)≠0$,求证$f(x)$为偶函数。

证明:令$x=0$,则已知等式变为$f(y)+f(-y)=2f(0)f(y)$……①在①中令$y=0$则$2f(0)=2f(0)$,由$f(0)≠0$得$f(0)=1$f(y)+f(-y)=2f(y)$,即$f(-y)=f(y)$,故$f(x)$为偶函数。

2.奇函数$f(x)$在定义域$(-1,1)$内递减,求满足$f(1-m)+f(1+m)<0$的实数$m$的取值范围。

解:由$f(1-m)+f(1+m)<0$得$f(1-m)<-f(1+m)$。

f(x)$为函数,∴$f(1-m)<f(m-1)$because f(x)$在$(-1,1)$内递减,∴$-1<1-m<1$,$-1<m-1<1$,即$-1<m<1$又$f(1-m)>f(m-1)$,故$m<0$,所以$-1<m<0$3.如果$f(x)=ax^2+bx+c(a>0)$对任意的$t$有$f(2+t)=f(2-t)$,比较$f(1)$、$f(2)$、$f(4)$的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运用函数单调性与奇偶性解抽象函数不等式
【典例1】函数()f x 是R 上的单调函数,满足()()21f f >,且()()2f m f m >-,求实数m 的取值范围;
【问题解决】
由已知函数()f x 是R 上的单调函数,且满足()()21f f >,
得函数是R 上的单调递增函数,
又()()2f m f m >-,
所以2m m >-,解得10m m <->或
所以实数m 的取值范围是10m m <->或;
【典例2】已知奇函数()f x 的定义域为[2,2]-,且在区间[2,0]-内单调递减,求满足2(1)(1)0f m f m -+-<的实数m 的取值范围.
【问题解决】
∵()f x 的定义域为[2,2]-,
∴有2212212m m -≤-≤⎧⎨-≤-≤⎩,解得1m -≤≤① 由2(1)(1)0f m f m -+-<
∴2(1)(1)f m f m -<--
又由()f x 为奇函数,得22(1)(1)f m f m --=-
∴2(1)(1)f m f m -<-
又()f x 为奇函数,且在[2,0]-上单调递减,
∴()f x 在[2,2]-上单调递减.(要证明)
∴211m m ->-.
即21m -<< ②
综合①②,可知11m -≤<.
【牛刀小试】
1、已知函数f (x )=⎩⎨⎧
x 2+4x (x ≥0),4x -x 2 (x <0),
若f (2-a 2)>f (a ),则实数a 的取值范围是( )
A .(-∞,-1)∪(2,+∞)
B .(-1,2)
C .(-2,1)
D .(-∞,-2)∪(1,+∞) 答案:C
2、设定义在[-2,2]上的偶函数()f x 在区间[0,2]上单调递减,若(1)()f m f m -<,求实数m 的取值范围. 答案:112
m -≤<。

3、函数()f x 对任意的a ,b ∈R ,都有()()()1f a b f a f b +=+-,并且当0x >时,()1f x >,若(4)5f =,解不等式2(32)3f m m --<。

答案:413
m -<<。

4、如果函数()f x 在[,]a b 上是增函数,对于任意的1212,[,],()x x a b x x ∈≠,给出下列结论:
(1)、2121
()()0f x f x x x ->-, (2)、2121()(()())0x x f x f x -->,
(3)、12()()()()f a f x f x f b <<<,
(4)、21210()()
x x f x f x ->-; 其中正确的是____________(将正确的序号都填上); 答案:(1),(2),(4);。

相关文档
最新文档