抽象函数单调性及奇偶性练习及答案
抽象函数单调性、奇偶性、周期性和对称性典例分析
抽象函数的对称性、奇偶性与周期性一、典例分析1.求函数值例 1.设是上的奇函数,当时,,则等于()(A)0.5; (B)-0.5; (C)1.5; (D)-1.5.例2.已知是定义在实数集上的函数,且,求的值.。
2、比较函数值大小例 3.若是以2为周期的偶函数,当时,试比较、、的大小.3、求函数解析式例4.设是定义在区间上且以2为周期的函数,对,用表示区间已知当时,求在上的解析式.例5.设是定义在上以2为周期的周期函数,且是偶函数,在区间上,求时,的解析式.4、判断函数奇偶性例6.已知的周期为4,且等式对任意均成立,判断函数的奇偶性.5、确定函数图象与轴交点的个数例7.设函数对任意实数满足,判断函数图象在区间上与轴至少有多少个交点.6、在数列中的应用例8.在数列中,,求数列的通项公式,并计算7、在二项式中的应用例9.今天是星期三,试求今天后的第天是星期几?8、复数中的应用例10.(上海市1994年高考题)设,则满足等式且大于1的正整数中最小的是(A) 3 ;(B)4 ;(C)6 ;(D)7.9、解“立几”题例11.ABCD—是单位长方体,黑白二蚁都从点A出发,沿棱向前爬行,每走一条棱称为“走完一段”。
白蚁爬行的路线是黑蚁爬行的路线是它们都遵循如下规则:所爬行的第段所在直线与第段所在直线必须是异面直线(其中.设黑白二蚁走完第1990段后,各停止在正方体的某个顶点处,这时黑白蚁的距离是(A)1;(B);(C);(D)0.例题与应用例1:f(x) 是R上的奇函数f(x)=- f(x+4) ,x∈[0,2]时f(x)=x,求f(2007) 的值例2:已知f(x)是定义在R上的函数,且满足f(x+2)[1-f(x)]=1+f(x),f(1)=2,求f(2009) 的值。
例3:已知f(x)是定义在R上的偶函数,f(x)= f(4-x),且当时,f(x)=-2x+1,则当时求f(x)的解析式例4:已知f(x)是定义在R上的函数,且满足f(x+999)=,f(999+x)=f(999-x),试判断函数f(x)的奇偶性.例5:已知f(x)是定义在R上的偶函数,f(x)= f(4-x),且当时,f(x)是减函数,求证当时f(x)为增函数例6:f(x)满足f(x) =-f(6-x),f(x)= f(2-x),若f(a) =-f(2000),a∈[5,9]且f(x)在[5,9]上单调.求a的值.例7:已知f(x)是定义在R上的函数,f(x)= f(4-x),f(7+x)= f(7-x),f(0)=0,求在区间[-1000,1000]上f(x)=0至少有几个根?例8、函数y=f(x)是定义在实数集R上的函数,那么y=-f(x+4)与y=f(6-x)的图象之间()A.关于直线x=5对称 B.关于直线x=1对称 C.关于点(5,0)对称 D.关于点(1,0)对称例9、设f(x)是定义在R上的偶函数,其图象关于x=1对称,证明f(x)是周期函数。
函数的单调性+奇偶性(含答案)
函数的单调性+奇偶性(含解析)一、单选题1.函数1()lg(21)f x x =-的定义域为( ) A .1|2x x ⎧⎫>⎨⎬⎩⎭ B .12x x ⎧≥⎨⎩且}1x ≠ C .12x x ⎧⎨⎩且}1x ≠ D .1|2x x ⎧⎫≥⎨⎬⎩⎭2.函数()f x = ) A .1,3⎛⎫-+∞ ⎪⎝⎭ B .1,13⎛⎫- ⎪⎝⎭ C .1,13⎡⎫-⎪⎢⎣⎭ D .1,3⎛⎫-∞- ⎪⎝⎭3.已知函数,若方程有两个实数根,则实数k 的取值范围是( ) A .(−1,−12] B .[−12,0) C .[−1,+∞) D .[−12,+∞) 4.设函数()1,02,0x x x f x b x +≥⎧=⎨+<⎩是R 上的单调增函数,则实数b 的取值范围为( ) A .(),1-∞ B .[)0,+∞ C .(],0-∞ D .(]1,1- 5.下列函数既是偶函数,又在(),0-∞上单调递减的是()A .12x y ⎛⎫= ⎪⎝⎭B .23y x -=C .1y x x =-D .()2ln 1y x =+ 6.设 ()212,11,1x x f x x x ⎧--≤⎪=⎨+>⎪⎩,则()()2f f =( ) A .-2B .2C .5D .267.集合{|,P x y =={|,Q y y ==U =R ,则()U P Q ⋂是( ) A .[)1,+∞B .∅C .[)0,1D .[)1,1- 8.函数x x x f 431)(3-=的单调递减区间是( )A .)2,(--∞B .)2,2(-C .),2(∞+D .),2()2,(+∞⋃--∞9.已知集合214A x x ⎧⎫=⎨⎬⎩⎭∣,集合{B y y ==∣,则A B =( ) A .11,22⎡⎤-⎢⎥⎣⎦ B .[1,1]- C .[0,1] D .1[0,]210.若函数()f x 满足()2f x x =+,则()32f x +的解析式是( )A .()3298f x x +=+B .()3232f x x +=+C .()3234f x x +=--D .()3234f x x +=+11.函数f (x )是定义域为R 的奇函数,当x>0时,f (x )=x+1,则当x<0时,f (x )的 表达式为( )A .1)(+-=x x fB .1)(--=x x fC .1)(+=x x fD .1)(-=x x f12.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩, 则[(2)]f f -的值为( ) A .1B .2C .4D .5二、多选题13.已知函数()f x 是一次函数,满足()()98ff x x =+,则()f x 的解析式可能为( ) A .()32f x x =+B .()32f x x =-C .()34f x x =-+D .()34f x x =-- 14.已知函数2,[1,2)x y x ∈-=,下列说法正确的是( )A .函数是偶函数B .函数是非奇非偶函数C .函数有最大值是4D .函数的单调增区间是为(0,2)15.下列函数中,与y x =是同一个函数的是( ) A .3log 3x y = B.3log 3x y = C.y = D .2y = 16.中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function ”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合-{}1,1,2,4M =-,{}1,2,4,16N =,给出下列四个对应法则,请由函数定义判断,其中能构成从M 到N 的函数的是( )A .2y x =B .2y x =+C .2x y =D .2y x三、填空题17.函数()f x =_______.18.偶函数()f x 满足当0x >时,()34f x x =+,则()1f -=_____.19.已知定义在R 上的偶函数()f x 在(0,)+∞上单调递增,则()f x 在(,0)-∞上的单调性是________.20.设,0()ln ,0x e x g x x x ⎧≤=⎨>⎩则1()2g g ⎡⎤=⎢⎥⎣⎦____________.四、解答题21.已知()222f x x x =-+.(1)画出()f x 的图象.(2)根据图象写出()f x 的单调区间和值域.22.用函数的单调性的定义证明函数()4f x x x=+在()2,+∞上是增函数. 23.求解下列函数的定义域(1)(2) 24.求函数1,01(),12x f x x x x ⎧<<⎪=⎨⎪⎩的最值25.已知函数1(),f x a x=-其中0a >。
抽象函数单调性、奇偶性、周期性和对称性典例分析
抽象函数的对称性、奇偶性与周期性一、典例分析1.求函数值例1.设)(x f 是),(+∞-∞上的奇函数,),()2(x f x f -=+当10≤≤x 时,x x f =)(,则)5.7(f 等于( )(A )0.5;(B )-0.5; (C )1.5; (D )-1.5.例2.已知)(x f 是定义在实数集上的函数,且[])(1)(1)2(x f x f x f +=-+,,32)1(+=f 求)1989(f 的值.(1989)f = 。
2、比较函数值大小例3.若))((R x x f ∈是以2为周期的偶函数,当[]1,0∈x 时,,)(19981xx f =试比较)1998(f 、)17101(f 、)15104(f 的大小.3、求函数解析式例4.设)(x f 是定义在区间),(+∞-∞上且以2为周期的函数,对Z k ∈,用k I 表示区间),12,12(+-k k 已知当0I x ∈时,.)(2x x f =求)(x f 在k I 上的解析式.例5.设)(x f 是定义在),(+∞-∞上以2为周期的周期函数,且)(x f 是偶函数,在区间[]3,2上,.4)3(2)(2+--=x x f 求[]2,1∈x 时,)(x f 的解析式.4、判断函数奇偶性例6.已知)(x f 的周期为4,且等式)2()2(x f x f -=+对任意R x ∈均成立,判断函数)(x f 的奇偶性.5、确定函数图象与x 轴交点的个数例7.设函数)(x f 对任意实数x 满足)2()2(x f x f -=+,=+)7(x f ,0)0()7(=-f x f 且判断函数)(x f 图象在区间[]30,30-上与x 轴至少有多少个交点.6、在数列中的应用例8.在数列{}n a 中,)2(11,3111≥-+==--n a a a a n n n ,求数列的通项公式,并计算.1997951a a a a ++++7、在二项式中的应用例9.今天是星期三,试求今天后的第9292天是星期几?8、复数中的应用例10.(XX 市1994年高考题)设)(2321是虚数单位i i z +-=,则满足等式,z z n =且大于1的正整数n 中最小的是()(A ) 3 ; (B )4 ; (C )6 ; (D )7.9、解“立几”题例11.ABCD —1111D C B A 是单位长方体,黑白二蚁都从点A 出发,沿棱向前爬行,每走一条棱称为“走完一段”。
高中数学《函数的单调性与奇偶性》针对练习及答案
第二章 函数2.2.2 函数的单调性与奇偶性(针对练习)针对练习针对练习一 单调性与奇偶性的判断1.下列函数中,既是奇函数,又是R 上的增函数的是( ) A .cos y x x = B .66x x y -=- C .23y x =+ D .1y x x =+2.下列函数中,是奇函数且在()0,∞+上为增函数的是( )A .()1f x x=- B .()f x C .()f x x = D .()31f x x =+3.下列函数在其定义域内既是奇函数又单调递减的是( ) A .sin y x =- B .cos 2y x = C .tan y x = D .3y x =-4.下列函数是偶函数且在(0,+∞)是增函数的是( ) A .2xy =B .2y xC .12y x =D .13xy ⎛⎫= ⎪⎝⎭5.下列函数中,是奇函数,又在定义域内为减函数的是( )A .12xy ⎛⎫= ⎪⎝⎭B .2y x=C .32y x =-D .2log ()y x =-针对练习二 函数(包含复合函数)的单调区间6.若函数()f x 的图象如图所示,则其单调递减区间是( )A .[]4,1--,[]1,4B .[]1,1-C .[]4,4-D .[]22-,7.函数()1x f x x在( )A .(,1)(1,)-∞⋃+∞上是增函数B .(,1)(1,)-∞⋃+∞上是减函数C .(,1)-∞和(1,)+∞上是增函数D .(,1)-∞和(1,)+∞上是减函数8.已知函数()212f x x x =+-,则下列结论正确的是( )A .()f x 在区间(],1-∞上是增函数B .()f x 在区间[)1,-+∞上是增函数C .()f x 在区间(],1-∞上是减函数D .()f x 在区间[)1,-+∞上是减函数9.函数()f x )A .[)2+∞,B .12⎛⎤-∞ ⎥⎝⎦,C .12⎡⎫+∞⎪⎢⎣⎭, D .(]1-∞-,10.函数12y ⎛= ⎪⎝⎭A .11,2⎡⎤-⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .12⎡⎫+∞⎪⎢⎣⎭D .1,22⎡⎤⎢⎥⎣⎦针对练习三 根据奇偶性求解析式11.设()f x 为奇函数,且当0x ≥时,()21xf x =-,则当0x <时,()f x =( )A .21x --B .21x -+C .21x ---D .21x --+12.已知偶函数()f x ,当0x >时,()23f x x =-,则当0x <时,()f x =( ) A .23x -- B .23x +C .23x -+D .23x -13.函数()y f x =是R 上的奇函数,当0x <时,()2f x x =-,则当0x >时,()f x =( ) A .2x - B .2x -C .2x --D .2x14.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =-,则当0x >时,()f x =( )A .2x x -B .2x x --C .2x x -+D .2x x +15.已知函数()f x 是定义在R 上的奇函数,当0x >时,()ln f x x =,则()f e -=( )A .1-B .1C .2D .2-针对练习四 根据单调性与奇偶性解不等式16.设函数||()x f x e =,则使得(21)()f x f x -<成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .1,(1,)3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭17.若函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+,则实数m 的取值范围是( ) A .(1,0)- B .(2,1)- C .(0,1) D .(,1)(0,)-∞-+∞18.已知定义在实数集R 上的偶函数()f x 在区间[0,)+∞是单调增函数,若(1)(2)f a f -<,则实数a 的取值范围是( )A .13a -<<B .1a <-或3a >C .31a -<<D .3a <-或1a >19.函数()y f x =在R 上为增函数,且(2)(9)f m f m >+,则实数m 的取值范围是( ) A .()9,+∞B .[)9,+∞C .(),9-∞-D .(],9-∞-20.已知函数21()ln(1)1f x x x=+-+,若实数a 满足313(log )(log )2(1)f a f a f +≤,则a 取值范围( ) A .[]1,3 B .10,3⎛⎤⎥⎝⎦C .(]0,3D .1,33⎡⎤⎢⎥⎣⎦针对练习五 根据单调性与奇偶性比大小21.若定义在R 上偶函数()f x 在[)0,+∞上是减函数,下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-22.设偶函数()f x 的定义域为R ,当(,0]x ∈-∞时,()f x 是增函数,则52f ⎛⎫⎪⎝⎭,(f ,()f π的大小关系是( )A.5()(2f f f π⎛⎫>> ⎪⎝⎭B.5(()2f f f π⎛⎫>> ⎪⎝⎭C.5(()2f f f π⎛⎫>> ⎪⎝⎭D.5()(2f f f π⎛⎫>> ⎪⎝⎭23.若函数()f x 是偶函数,且在区间[0,3]上单调递减,则( ) A .()()1(2)3f f f ->> B .()()()312f f f >-> C .()()()213f f f >-> D .()()()321f f f >>-24.定义在R 上的偶函数()f x 满足:对任意的()1212,(,0]x x x x ∈-∞≠,有()()()21210x x f x f x -->⎡⎤⎣⎦.则当n *∈N 时,有( )A .(1)()(1)f n f n f n +<-<-B .(1)()(1)f n f n f n -<-<+C .()(1)(1)f n f n f n -<-<+D .(1)(1)()f n f n f n +<-<-25.定义在R 上的偶函数()f x 在[)0+∞,上是减函数,则( ) A .(1)(2)(3)f f f <-< B .(3)(2)(1)f f f <-< C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-针对练习六 根据单调性求参数26.设函数()()12f x a x b =-+R 上的增函数,则有( ) A .12a < B .12a >C .12a <-D .12a >-27.函数221y x mx =++在[2,)+∞单调递增,则实数m 的取值范围是( ) A .[2,)-+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞28.若函数()()212f x a x =-+为R 上的减函数,则实数a 的取值范围为( )A .a >1B .a <1C .11a -<<D .-1≤a ≤129.已知0a >且1a ≠,函数(1)34,(0)(),(0)xa x a x f x a x -+-≤⎧=⎨>⎩满足对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,则a 的取值范围是( )A .0,1B .1,C .51,3⎛⎤⎥⎝⎦D .5,23⎡⎫⎪⎢⎣⎭30.已知(32)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩, 对任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,那么实数a 的取值范围是 A .()0,1B .2(0,)3C .1173⎡⎫⎪⎢⎣⎭, D .22,73⎡⎫⎪⎢⎣⎭针对练习七 根据奇偶性求参数31.若函数(31)()y x x a =+-为偶函数,则a =( ) A .1 B .-1 C .13D .232.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .1- B .13C .0D .333.已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.则实数m 的值是( )A .0B .2C .4D .-234.若()3351f x x x a =++-为奇函数,则a 的值为( )A .0B .-1C .1D .235.若函数()(21)()xf x x x a =+-为奇函数,则a =( )A .12 B .23C .34D .1第二章 函数2.2.2 函数的单调性与奇偶性(针对练习)针对练习针对练习一 单调性与奇偶性的判断1.下列函数中,既是奇函数,又是R 上的增函数的是( ) A .cos y x x = B .66x x y -=- C .23y x =+ D .1y x x =+【答案】B 【解析】 【分析】利用函数奇偶性的定义和单调性的定义逐个分析判断 【详解】对于A ,因为()()cos()cos ()f x x x x x f x -=--=-=-,所以cos y x x =是奇函数,但不单调,所以A 错误;对于B ,因为()66(66)()x x x x f x f x ---=-=--=-,所以66x x y -=-是奇函数,因为6x y =是增函数,6x y -=是减函数,所以66x x y -=-是增函数,所以B 正确;对于C ,因为22()()33()f x x x f x -=-+=+=,所以23y x =+是偶函数,所以C 错误; 对于D ,因为()()()11f x x x x x f x f x -=--+=-+≠-≠,所以1y x x =+是非奇非偶函数,所以D 错误. 故选:B2.下列函数中,是奇函数且在()0,∞+上为增函数的是( ) A .()1f x x=- B .()f x C .()f x x = D .()31f x x =+【答案】A 【解析】 【分析】利用函数奇偶性的定义和单调性的定义逐个分析判断即可 【详解】对于A ,定义域为{}0x x ≠,因为()()11f x f x x x-=-==--,所以函数是奇函数,任取12,(0,)x x ∈+∞,且12x x <,则2121211211()()x xf x f x x x x x --=-+=,因为12,(0,)x x ∈+∞,且12x x <,所以21()()0f x f x ->,即21()()f x f x >,所以()f x 在()0,∞+上为增函数,所以A 正确,对于B ,因为定义域为{}0x x ≥,所以函数()f x 为非奇非偶函数,所以B 错误, 对于C ,因为定义域为R ,因为()()f x x x f x -=-==,所以()f x 为偶函数,所以C 错误,对于D ,因为定义域为R ,因为()()3311()()f x x x f x f x -=-+=-+≠≠-,所以函数()f x 为非奇非偶函数,所以D 错误, 故选:A3.下列函数在其定义域内既是奇函数又单调递减的是( ) A .sin y x =- B .cos 2y x = C .tan y x = D .3y x =-【答案】D 【解析】对于基本初等函数,直接判断其奇偶性和单调性. 【详解】选项A: sin y x =-为偶函数,故A 错误; 选项B: cos 2y x =为偶函数,故B 错误;选项C: tan y x =为奇函数但是在,22k k ππππ⎛⎫-++ ⎪⎝⎭上单增,故C 错误;选项D: 3y x =-既是奇函数又是R 上单调递减. 故选:D4.下列函数是偶函数且在(0,是增函数的是( ) A .2xy =B .2y xC .12y x =D .13xy ⎛⎫= ⎪⎝⎭【答案】B 【解析】 【分析】根据指数函数、二次函数、幂函数的性质进行判断即可. 【详解】因为指数函数不具有奇偶性,所以排除A 、D ,因为幂函数12y x =的定义域为非负实数集,不关于原点对称,所以不具有奇偶性,故排除, 二次函数2yx 图象关于纵轴对称,所以该二次函数是偶函数,它又在(0,+∞)单调递增, 故选:B5.下列函数中,是奇函数,又在定义域内为减函数的是( )A .12xy ⎛⎫= ⎪⎝⎭B .2y x=C .32y x =-D .2log ()y x =-【答案】C 【解析】利用奇函数的定义和减函数的定义,再结合基本函数的性质求解即可 【详解】解:对于A ,D ,由指数函数和对数函数的性质可知其为非奇非偶函数,所以A ,D 不符合题意,对于B ,由反比例函数的性质可知,其为奇函数,在(,0)-∞和(0,)+∞上为减函数,所以不符合题意,对于C ,由于33()2()2()f x x x f x -=--==-,所以3()2f x x =-为奇函数,任取12,x x R ∈,且12x x <,则120x x -<332121()()2(2)f x f x x x -=---33122()x x =- 221211222()()x x x x x x =-++222121232()[()]024x x x x x =-++< 所以21()()f x f x <,所以3()2f x x =-为R 上的减函数,所以C 符合题意, 故选:C针对练习二 函数(包含复合函数)的单调区间6.若函数()f x 的图象如图所示,则其单调递减区间是( )A .[]4,1--,[]1,4B .[]1,1-C .[]4,4-D .[]22-,【答案】B 【解析】 【分析】利用图象判断函数单调性的方法直接写出函数()f x 单调递减区间. 【详解】观察函数()f x 的图象,可知函数()f x 的单调递减区间为[]1,1-. 故选:B 7.函数()1x f x x在( )A .(,1)(1,)-∞⋃+∞上是增函数B .(,1)(1,)-∞⋃+∞上是减函数C .(,1)-∞和(1,)+∞上是增函数D .(,1)-∞和(1,)+∞上是减函数【答案】C 【解析】 【分析】分离常数,作出函数图象,观察即可得出结果. 【详解】1111()1111111x x x f x xxxxx,函数的定义域为(,1)(1,)-∞⋃+∞, 其图象如下:由图象可得函数在(,1)-∞和(1,)+∞上是增函数. 故选:C8.已知函数()212f x x x =+-,则下列结论正确的是( )A .()f x 在区间(],1-∞上是增函数B .()f x 在区间[)1,-+∞上是增函数C .()f x 在区间(],1-∞上是减函数D .()f x 在区间[)1,-+∞上是减函数【答案】A 【解析】配方得二次函数的对称轴,然后判断. 【详解】2()(1)2f x x =--+,对称轴为1x =,二次项系数为10-<,因此()f x 在(,1]-∞上递增,在[1,)+∞上递减, 故选:A .9.函数()f x )A .[)2+∞,B .12⎛⎤-∞ ⎥⎝⎦,C .12⎡⎫+∞⎪⎢⎣⎭, D .(]1-∞-,【答案】C 【解析】根据解析式,先求出函数的定义域;再令22t x x =-+,结合二次函数单调性,以及. 【详解】因为22172024x x x ⎛⎫-+=-+> ⎪⎝⎭显然恒成立,所以函数()f x =R ;令22t x x =-+,则22t x x =-+是开口向上的二次函数,且对称轴为12x =,所以22t x x =-+在12⎛⎤-∞ ⎥⎝⎦,上单调递减,在12⎡⎫+∞⎪⎢⎣⎭,上单调递增; 根据复合函数单调性的判定方法可得,()f x 12⎡⎫+∞⎪⎢⎣⎭,. 故选:C. 【点睛】本题主要考查求根式型复合函数的单调区间,属于基础题型.10.函数12y ⎛= ⎪⎝⎭A .11,2⎡⎤-⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .12⎡⎫+∞⎪⎢⎣⎭D .1,22⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】利用复合函数的单调性求解即可. 【详解】由题得函数的定义域为{|12}x x -≤≤,设函数u u 在1]2[-1,单调递增,在1[2]2,单调递减, 因为函数1()2uv =在定义域上单调递减,所以函数12y ⎛= ⎪⎝⎭1[2]2,单调递增. 故选D 【点睛】和分析推理能力.针对练习三 根据奇偶性求解析式11.设()f x 为奇函数,且当0x ≥时,()21xf x =-,则当0x <时,()f x =( )A .21x --B .21x -+C .21x ---D .21x --+【答案】D 【解析】 【分析】根据题意,设0x <,则0x ->,由函数的解析式可得()21x f x ---=,结合函数的奇偶性分析可得答案. 【详解】根据题意,设0x <,则0x ->, 则()21x f x ---=,又由()f x 为奇函数,则()()21x f x f x -=-=-+-, 故选:D12.已知偶函数()f x ,当0x >时,()23f x x =-,则当0x <时,()f x =( ) A .23x -- B .23x +C .23x -+D .23x -【答案】A 【解析】设0x <,则0x ->,可得()23f x x -=--,利用偶函数的定义()()f x f x -=即可求解. 【详解】设0x <,则0x ->, 所以()23f x x -=--,又()f x 为偶函数,所以()()f x f x -=, 所以()()230f x x x =--<. 故选:A.13.函数()y f x =是R 上的奇函数,当0x <时,()2f x x =-,则当0x >时,()f x =( ) A .2x - B .2x -C .2x --D .2x【答案】C 【解析】 【分析】直接利用代入法求函数解析式. 【详解】当0x >时,0x -<,所以()()2f x x f x -=+=-,所以()2f x x =--. 故选:C .14.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =-,则当0x >时,()f x =( ) A .2x x - B .2x x -- C .2x x -+ D .2x x +【答案】D 【解析】 【分析】利用奇函数的等式()()f x f x -=-求解.【详解】因为()f x 是定义在R 上的奇函数, 所以()()f x f x -=-,x ∈R .当0x >时,0x -<,()()()()22f x f x x x x x ⎡⎤=--=----=+⎣⎦. 故选:D.15.已知函数()f x 是定义在R 上的奇函数,当0x >时,()ln f x x =,则()f e -=( )A .1-B .1C .2D .2-【答案】A 【解析】根据奇函数的定义求函数值. 【详解】 ∵()f x 是奇函数,∵()()ln 1f e f e e -=-=-=-. 故选:A .针对练习四 根据单调性与奇偶性解不等式16.设函数||()x f x e =,则使得(21)()f x f x -<成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .1,(1,)3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】首先判断出函数为偶函数,再判断出函数的单调性,根据单调性可得21x x -<,解绝对值不等式即可求解. 【详解】||()x f x e =,则()()xxf x ee f x --===,函数为偶函数,当0x ≥时,()x f x e =,所以函数在[)0,+∞单调递增, 所以函数在(),0-∞上单调递减, 若(21)()f x f x -<,则21x x -<,即23410x x -+<,解得113x <<,所以不等式的解集为1,13⎛⎫ ⎪⎝⎭.故选:A17.若函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+,则实数m 的取值范围是( ) A .(1,0)- B .(2,1)- C .(0,1) D .(,1)(0,)-∞-+∞【答案】A 【解析】由函数y =f (x )在R 上单调递增,将2(1)(1)f m f m +<-+可化为211m m +<-+,解不等式可得答案 【详解】解:因为函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+, 所以211m m +<-+,解得10m -<<, 故选:A18.已知定义在实数集R 上的偶函数()f x 在区间[0,)+∞是单调增函数,若(1)(2)f a f -<,则实数a 的取值范围是( )A .13a -<<B .1a <-或3a >C .31a -<<D .3a <-或1a >【答案】A 【解析】由偶函数的性质将不等式(1)(2)f a f -<转化为(1)(2)f a f -<,再由其在[0,)+∞是单调增函数,可得12a -<,从而可求出a 的取值范围 【详解】解:因为()f x 是定义在实数集R 上的偶函数,且(1)(2)f a f -<, 所以(1)(2)f a f -<,因为函数()f x 在区间[0,)+∞是单调增函数, 所以12a -<,解得13a -<<, 故选:A19.函数()y f x =在R 上为增函数,且(2)(9)f m f m >+,则实数m 的取值范围是( )A .()9,+∞B .[)9,+∞C .(),9-∞-D .(],9-∞-【答案】A 【解析】根据单调性可得29m m >+,解出即可. 【详解】解:∵()y f x =在R 上为增函数,且(2)(9)f m f m >+, ∵29m m >+,解得9m >, 故选:A . 【点睛】本题主要考查根据函数的单调性解不等式,属于基础题. 20.已知函数21()ln(1)1f x x x=+-+,若实数a 满足313(log )(log )2(1)f a f a f +≤,则a 取值范围( ) A .[]1,3 B .10,3⎛⎤⎥⎝⎦C .(]0,3D .1,33⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】首先判断()f x 的单调性和奇偶性,由此化简不等式313(log )(log )2(1)f a f a f +≤,并求得a 的取值范围. 【详解】()f x 的定义域为R ,且()()f x f x -=,所以()f x 是偶函数.当0x >时,21()ln(1)1f x x x =+-+,2ln(1)y x =+和11y x=-+在()0,∞+上递增,所以()f x 在()0,∞+上递增,而()f x 是偶函数,故()f x 在(),0-∞上递减.依题意313(log )(log )2(1)f a f a f +≤,即33(log )(log )2(1)f a f a f +-≤,即332(log )2(1)(log )(1)f a f f a f ≤⇔≤,所以331log 11log 133a a a ≤⇔-≤≤⇔≤≤,所以a 的取值范围是1,33⎡⎤⎢⎥⎣⎦故选:D 【点睛】本小题主要考查解函数不等式,属于基础题.针对练习五 根据单调性与奇偶性比大小21.若定义在R 上偶函数()f x 在[)0,+∞上是减函数,下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-【答案】C 【解析】 【分析】由偶函数及在[)0,+∞上是减函数,知在(,0]-∞上是增函数,即可判断各项的正误. 【详解】A :在[)0,+∞上是减函数,即()()06f f >,错误;B :(3)(3)f f -=,()f x 在[)0,+∞上是减函数,有()()32f f <,即()()32f f -<,错误;C :(1)(1)f f -=,()f x 在[)0,+∞上是减函数,有()()31f f <,即()()13f f ->,正确;D :由题意,()f x 在(,0]-∞上是增函数,()()58f f ->-,错误; 故选:C22.设偶函数()f x 的定义域为R ,当(,0]x ∈-∞时,()f x 是增函数,则52f ⎛⎫⎪⎝⎭,(f ,()f π的大小关系是( )A .5()(2f f f π⎛⎫>> ⎪⎝⎭B .5(()2f f f π⎛⎫>> ⎪⎝⎭C .5(()2f f f π⎛⎫>> ⎪⎝⎭D .5()(2f f f π⎛⎫>> ⎪⎝⎭【答案】C 【解析】根据偶函数的性质可得(f f =,由函数的单调性可得函数值的大小关系. 【详解】根据偶函数的性质可知,(f f =当[)0,x ∈+∞时,()f x 是减函数,因为5π2<,所以5()2f f f π⎛⎫>> ⎪⎝⎭故选:C. 【点睛】思路点睛:在比较函数值大小的题目中,主要根据函数的单调性进行判断.当自变量不在同一单调区间时,可以结合偶函数的性质将自变量x 转化为同一单调区间,再进行判断即可.23.若函数()f x 是偶函数,且在区间[0,3]上单调递减,则( ) A .()()1(2)3f f f ->> B .()()()312f f f >-> C .()()()213f f f >-> D .()()()321f f f >>-【答案】A 【解析】由(1)(1)f f -=,结合单调性得出()()1(2)3f f f ->>. 【详解】因为函数()f x 是偶函数,所以(1)(1)f f -= 又()f x 在区间[0,3]上单调递减,且123<< 所以(1)(2)(3)f f f ∴>>,即()()1(2)3f f f ->> 故选:A24.定义在R 上的偶函数()f x 满足:对任意的()1212,(,0]x x x x ∈-∞≠,有()()()21210x x f x f x -->⎡⎤⎣⎦.则当n *∈N 时,有( )A .(1)()(1)f n f n f n +<-<-B .(1)()(1)f n f n f n -<-<+C .()(1)(1)f n f n f n -<-<+D .(1)(1)()f n f n f n +<-<-【答案】A 【解析】首先判断出函数的单调性,再根据函数为偶函数即可求解. 【详解】对任意的()1212,(,0]x x x x ∈-∞≠,()()()21210x x f x f x -->⎡⎤⎣⎦,所以函数在(,0]-∞上为增函数,又因为函数()f x 在R 上的偶函数,所以函数在[)0,+∞上为减函数,且()()f n f n -=, 因为11n n n -<<+,所以(1)()(1)f n f n f n ->>+. 所以(1)()(1)f n f n f n ->->+. 故选:A25.定义在R 上的偶函数()f x 在[)0+∞,上是减函数,则( ) A .(1)(2)(3)f f f <-< B .(3)(2)(1)f f f <-< C .(2)(1)(3)f f f -<< D .(3)(1)(2)f f f <<-【答案】B 【解析】由偶函数的性质将自变量转化到[)0+∞,上,再由函数在[)0+∞,上是减函数可比较大小 【详解】解:因为()f x 是定义在R 上的偶函数, 所以(2)(2)f f -=,因为()f x 在[)0+∞,上是减函数,且321>>, 所以(3)(2)(1)f f f <<,即(3)(2)(1)f f f <-<, 故选:B 【点睛】此题考查利用函数的奇偶性和单调性比较大小,属于基础题针对练习六 根据单调性求参数26.设函数()()12f x a x b =-+是R 上的增函数,则有( ) A .12a < B .12a >C .12a <-D .12a >-【答案】A 【解析】函数()()12f x a x b =-+是R 上的增函数,则120a ->,可得答案. 【详解】函数()()12f x a x b =-+是R 上的增函数,则120a ->,即12a < 故选:A27.函数221y x mx =++在[2,)+∞单调递增,则实数m 的取值范围是( ) A .[2,)-+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞【答案】A 【解析】直接由抛物线的对称轴和区间端点比较大小即可. 【详解】函数221y x mx =++为开口向上的抛物线,对称轴为x m =- 函数221y x mx =++在[2,)+∞单调递增,则2m -≤,解得2m ≥-. 故选:A.28.若函数()()212f x a x =-+为R 上的减函数,则实数a 的取值范围为( )A .a >1B .a <1C .11a -<<D .-1≤a ≤1【答案】C 【解析】利用用一次函数的单调性得到210a -<,再由二次不等式的解法,即可得解. 【详解】函数()()212f x a x =-+为R 上的减函数,则210a -<, 解得11a -<<; 故选:C.29.已知0a >且1a ≠,函数(1)34,(0)(),(0)xa x a x f x a x -+-≤⎧=⎨>⎩满足对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,则a 的取值范围是( )A .0,1B .1,C .51,3⎛⎤⎥⎝⎦D .5,23⎡⎫⎪⎢⎣⎭【答案】C 【解析】由2121()()0f x f x x x ->-可得函数()f x 在R 上为增函数,所以010134a a a a ⎧->⎪>⎨⎪≥-⎩,从而可求出a 的取值范围 【详解】解:因为()f x 对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,所以()f x 在R 上为增函数,所以010134a a a a ⎧->⎪>⎨⎪≥-⎩,解得513a <≤,所以a 的取值范围为51,3⎛⎤⎥⎝⎦,故选:C 30.已知(32)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩, 对任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,那么实数a 的取值范围是 A .()0,1 B .2(0,)3C .1173⎡⎫⎪⎢⎣⎭, D .22,73⎡⎫⎪⎢⎣⎭【答案】D 【解析】 【分析】根据题设条件可以得到()f x 为R 上的减函数,根据各自范围上为减函数以及分段点处的高低可得实数a 的取值范围. 【详解】因为任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,所以对任意的12x x <,总有()()12f x f x >即()f x 为R 上的减函数,所以01320720a a a <<⎧⎪-<⎨⎪-≥⎩,故2273a ≤<,故选D.【点睛】分段函数是单调函数,不仅要求各范围上的函数的单调性一致,而且要求分段点也具有相应的高低分布,我们往往容易忽视后者.针对练习七 根据奇偶性求参数31.若函数(31)()y x x a =+-为偶函数,则a =( )A .1B .-1C .13 D .2【答案】C【解析】【分析】若()y f x =,由奇偶性的性质有()()f x f x =-即可求参数a .【详解】若()y f x =,则()f x 23(13)x a x a =+--为偶函数,∵()()f x f x =-,即223(13)3()(13)()x a x a x a x a +--=-+---,∵2(13)0a x -=恒成立,可得13a =.故选:C32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .1-B .13 C .0 D .3【答案】B【解析】【分析】根据()f x 的奇偶性求得,a b ,从而求得a b +.【详解】由于()f x 是偶函数,所以0b =,且111233a a a a b -=-⇒=⇒+=.故选:B33.已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.则实数m 的值是( )A .0B .2C .4D .-2【答案】B【解析】【分析】利用函数为奇函数可得()()f x f x -=-,代入即可求解.【详解】取0x >,则0x -<,因为函数为奇函数,则()()f x f x -=-,即()()()222x m x x x -+-=--+, 整理可得2mx x -=-,即2m =.故选:B34.若()3351f x x x a =++-为奇函数,则a 的值为( )A .0B .-1C .1D .2【答案】C【解析】【分析】 根据奇函数的性质()00f =求解即可【详解】∵()f x 为R 上的奇函数,∵()00f =得a =1.验证满足题意.故选:C35.若函数()(21)()x f x x x a =+-为奇函数,则a =( ) A .12B .23C .34D .1 【答案】A【解析】【分析】根据奇函数性质取1和-1分别代入,函数值和为0,即可求得.【详解】 ∵()(21)()x f x x x a =+-为奇函数,∵(1)(1)0f f -+=,得12a =. 故选:A.。
归类题库——高一函数——抽象函数单调性奇偶性及解不等式题型解答题
抽象函数单调性奇偶性解不等式题型例1.函数y=f (x )的定义域为R ,且对任意a ,b ∈R ,都有f (a +b )=f (a )+f (b ),且x >0时,f (x )<0恒成立.(1)证明函数y=f (x )是R 上的单调性;(2)讨论函数y=f (x )的奇偶性;(3)若f (x 2﹣2)+f (x )<0,求x 的取值范围.解析:(1)证明:设x 1>x 2,则x 1﹣x 2>0,而f (a +b )=f (a )+f (b )∴f (x 1)﹣f (x 2)=f ((x 1﹣x 2)+x 2)﹣f (x 2)=f (x 1﹣x 2)+f (x 2)﹣f (x 2)=f (x 1﹣x 2),又当x >0时,f (x )<0恒成立,∴f (x 1)<f (x 2),∴函数y=f (x )是R 上的减函数;(2)由f (a +b )=f (a )+f (b ),得f (x ﹣x )=f (x )+f (﹣x ),即f (x )+f (﹣x )=f (0),而f (0)=0,∴f (﹣x )=﹣f (x ),即函数y=f (x )是奇函数.(3)(方法一)由f (x 2﹣2)+f (x )<0,得f (x 2﹣2)<﹣f (x ),又y=f (x )是奇函数,即f (x 2﹣2)<f (﹣x ),又y=f (x )在R 上是减函数,∴x 2﹣2>﹣x 解得x >1或x <﹣2.(方法二))由f (x 2﹣2)+f (x )<0且f (0)=0,得f (x 2﹣2+x )<f (0),又y=f (x )在R 上是减函数,∴x 2﹣2+x >0,解得x >1或x <﹣2.变式:1.已知函数y=f (x )满足f (x +y )=f (x )+f (y )对任何实数x ,y 都成立.(1)求证:f (2x )=2f (x );(2)求f (0)的值;(3)求证f (x )为奇函数.证明:(1)∵(x +y )=f (x )+f (y ),令y=x ,得f (x +x )=f (x )+f (x ),即f (2x )=2f (x );(2)令y=x=0,∵f (x +y )=f (x )+f (y ),∴f (0+0)=f (0)+f (0),即f (0)=2f (0),∴f (0)=0.(3)证明:由已知得定义域为R .满足若x ∈R ,则﹣x ∈R .令y=﹣x ,∵f (x +y )=f (x )+f (y ),∴f (0)=f (x )+f (﹣x ).∵f (0)=0,∴f (x )+f (﹣x )=0,即f (﹣x )=﹣f (x ).∴f (x )为奇函数.2.设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y -=-,且(2)1f =,当0x >时,()0f x >(1).求(0)f 的值; (2).判断函数()f x 的奇偶性;(3).如果()(2)2f x f x ++<,求x 的取值范围. 【解析】(1)令0x y ==,则(00)(0)(0)f f f -=-,(0)0f ∴=;(2)()()()f x y f x f y -=- (0)(0)()f x f f x ∴-=-,由(1)值(0)0f =,()()f x f x ∴=-- (0)0f =,∴函数()f x 是奇函数(3)设12,x x R ∀∈,且12x x >,则120x x ->,1212()()()f x x f x f x -=-当0x >时,()0f x >,12()0f x x ∴->,即12()()0f x f x ->,12()()f x f x ∴>∴函数()f x 是定义在R 上的增函数()()()f x y f x f y -=- ,()()()f x f y f x y ∴=+-211(2)(2)(2)(42)(4)f f f f f ∴=+=+=--= ()(2)2f x f x ++< ,()(2)(4)f x f x f ∴++<,(2)(4)()(4)f x f f x f x ∴+<-=-函数()f x 是定义在R 上的增函数,24x x ∴+<-,1x ∴<,∴不等式()(2)2f x f x ++< 的解集为{|1}x x <3.已知函数f(x)的定义域为R,对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且当x<0时,f(x)>0.(1)求证:f(x)是奇函数;(2)判断f(x)在R上的单调性,并加以证明;(3)解关于x的不等式f(x2)+3f(a)>3f(x)+f(ax),其中常数a∈R.解:(1)∵f(x)对一切x,y∈R都有f(x+y)=f(x)+f(y),令x=y=0,得:f(0)=f(0)+f(0),∴f(0)=0,令y=﹣x,得f(x﹣x)=f(x)+f(﹣x)=f(0)=0,∴f(﹣x)=﹣f(x),∴f(x)是奇函数.(2)∵f(x)对一切x,y∈RR都有f(x+y)=f(x)+f(y),当x<0时,f(x)>0.令x1>x2,则x2﹣x1<0,且f(x2﹣x1)=f(x2)+f(﹣x1)>0,由(1)知,f(x2)﹣f(x1)>0,∴f(x2)>f(x1).∴f(x)在R上是减函数.(3)f(2x)=f(x)+f(x)=2f(x),f(3x)=f(2x+x)=f(2x)+f(x)=3f(x),则不等式f(x2)+3f(a)>3f(x)+f(ax),等价为f(x2)+f(3a)>f(3x)+f(ax),即f(x2+3a)>f(3x+ax),∵f(x)在R上是减函数,∴不等式等价为x2+3a<3x+ax,即(x﹣3)(x﹣a)<0,当a=3时,不等式的解集为∅,当a>3时,不等式的解集为(3,a),当a<3时,不等式的解集为(a,3).单调+奇偶性+带常数的不等式例2.已知f(x)的定义域为R,且满足对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,且f(1)=﹣3;(1)求f(0)与f(3);(2)判断f(x)的奇偶性;(3)判断f(x)的单调性;(4)解不等式f(x2+1)+f(x)≤﹣9.【解答】解:(1)令y=0,则由条件得f(x+0)=f(x)+f(0),即f(0)=0,当x=y=1时,f(2)=f(1)+f(1)=2f(1)=2×(﹣3)=﹣6,f(3)=f(1+2)=f(1)+f(2)=﹣3﹣6=﹣9;(2)∵f(0)=0,∴令y=﹣x,得f(x﹣x)=f(x)+f(﹣x)=f(0)=0,即f(﹣x)=﹣f(x),则f(x)是奇函数;(3)设x1<x2,则设x2﹣x1>0,此时f(x2﹣x1)<0,即f(x2﹣x1)=f(x2)+f(﹣x1)<0,即f(x2)﹣f(x1)<0,则f(x2)<f(x1),即f(x)的单调递减;(4)不等式f(x2+1)+f(x)≤﹣9等价为f(x2+1)+f(x)≤f(3),即f(x2+1+x)≤f(3),∵f(x)的单调递减,∴x2+1+x≥3,即x2+x﹣2≥0,解得x≥1或x≤﹣2,即不等式的解集为{x|x≥1或x≤﹣2}.变式:1.已知函数f(x)的定义域为R,对于任意实数a,b∈R都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0,f (1)=﹣2,试判断f(x)在[﹣3,3)上是否有最大值和最小值?如果有,求出最大值和最小值,若没有,说明理由.解:令a=b=0知f(0)=0,令a=x,b=﹣x,则f(x)+f(﹣x)=0,∴f(x)为奇函数.任取两个自变量x1,x2且﹣∞<x1<x2<+∞,则f(x2)﹣f(x1)=f(x2﹣x1),∵x2>x1,∴x2﹣x1>0知f(x2﹣x1)<0,即f(x2)﹣f(x1)<0,故f(x2)<f(x1),∴f(x)在(﹣∞,+∞)上是减函数.因此f(x)在[﹣3,3)上有最大值f(﹣3),由于x≠3,则f(3)取不到,无最小值.由于f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=3f(1)=﹣6,故最大值为f(﹣3)=﹣f(3)=6.2.设函数f(x)的定义域为R,对于任意实数x,y都有f(x+y)=f(x)+f(y),又当x>0时,f(x)<0且f(2)=﹣1.试问函数f(x)在区间[﹣6,6]上是否存在最大值与最小值?若存在,求出最大值、最小值;如果没有,请说明理由.解:令x=y=0知f(0)=0,令x+y=0知f(x)+f(﹣x)=0,∴f(x)为奇函数.任取两个自变量x1,x2且﹣∞<x1<x2<+∞,则f(x2)﹣f(x1)=f(x2﹣x1),∵x2>x1,∴x2﹣x1>0知f(x2﹣x1)<0,即f(x2)﹣f(x1)<0,故f(x2)<f(x1),∴f(x)在(﹣∞,+∞)上是减函数.因此f(x)在[﹣6,6]上有最大值和最小值最小值为f(6)=f(4)+f(2)=f(2)+f(2)+f(2)=3f(2)=﹣3;最大值为f(﹣6)=﹣f(6)=3.3.已知函数f(x)的定义域为R,对于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,若f(﹣1)=2.(1)求证:f(x)为奇函数;(2)求证:f(x)是R上的减函数;(3)求函数f(x)在区间[﹣2,4]上的值域.解:(1)证明:∵f (x )的定义域为R ,令x=y=0,则f (0+0)=f (0)+f (0)=2f (0),∴f (0)=0.令y=﹣x ,则f (x ﹣x )=f (x )+f (﹣x ),即f (0)=f (x )+f (﹣x )=0.∴f (﹣x )=﹣f (x ),故f (x )为奇函数.(2)证明:任取x 1,x 2∈R ,且x 1<x 2,则f (x 2)﹣f (x 1)=f (x 2)+f (﹣x 1)=f (x 2﹣x 1).又∵x 2﹣x 1>0,∴f (x 2﹣x 1)<0,∴f (x 2)﹣f (x 1)<0,即f (x 1)>f (x 2).故f (x )是R 上的减函数.(3)∵f (﹣1)=2,∴f (﹣2)=f (﹣1)+f (﹣1)=4.又f (x )为奇函数,∴f (2)=﹣f (﹣2)=﹣4,∴f (4)=f (2)+f (2)=﹣8.由(2)知f (x )是R 上的减函数,所以当x=﹣2时,f (x )取得最大值,最大值为f (﹣2)=4;当x=4时,f (x )取得最小值,最小值为f (4)=﹣8.所以函数f (x )在区间[﹣2,4]上的值域为[﹣8,4].4.设函数f (x )的定义域为R ,对任意实数x 、y 都有f (x +y )=f (x )+f (y ),当x >0时f (x )<0且f (3)=﹣4.(1)证明:函数f (x )为奇函数;(2)证明:函数f (x )在(﹣∞,+∞)上为减函数.(3)求f (x )在区间[﹣9,9]上的最大值与最小值.【解答】(1)证明:令x=y=0知f (0)=0,令x +y=0知f (x )+f (﹣x )=0,∴f (x )为奇函数.(2)证明:任取两个自变量x 1,x 2且﹣∞<x 1<x 2<+∞,则f (x 2)﹣f (x 1)=f (x 2﹣x 1),∵x 2>x 1,∴x 2﹣x 1>0知f (x 2﹣x 1)<0,即f (x 2)﹣f (x 1)<0,故f (x 2)<f (x 1),∴f (x )在(﹣∞,+∞)上是减函数.(3)解:∵f (x )在(﹣∞,+∞)上是减函数∴f (x )在[﹣9,9]上有最大值和最小值最小值为f (9)=f (6)+f (3)=f (3)+f (3)+f (3)=3f (3)=﹣12;最大值为f (﹣9)=﹣f (9)=12.5.已知函数f (x )对一切实数x ,y ∈R 都有f (x +y )=f (x )+f (y ),且当x >0时,f (x )<0,又f (3)=﹣2.(1)试判定该函数的奇偶性;(2)试判断该函数在R 上的单调性;(3)求f (x )在[﹣12,12]上的最大值和最小值.解 (1)令x=y=0,得f (0+0)=f (0)=f (0)+f (0)=2f (0),∴f (0)=0.令y=﹣x ,得f (0)=f (x )+f (﹣x )=0,∴f (﹣x )=﹣f (x ),∴f (x )为奇函数.(2)任取x 1<x 2,则x 2﹣x 1>0,∴f (x 2﹣x 1)<0,∴f (x 2)﹣f (x 1)=f (x 2)+f (﹣x 1)=f (x 2﹣x 1)<0,即f (x 2)<f (x 1),∴f (x )为R 上的减函数,(3)∵f (x )在[﹣12,12]上为减函数,∴f (12)最小,f (﹣12)最大,又f (12)=f (6)+f (6)=2f (6)=2[f (3)+f (3)]=4f (3)=﹣8,∴f (﹣12)=﹣f (12)=8,∴f (x )在[﹣12,12]上的最大值是8,最小值是﹣86.已知函数f (x )对任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=﹣.(1)求证:f (x )在R 上是减函数.(2)求函数在[﹣3,3]上的最大值和最小值.解:(1)证明:令x=y=0,则f (0)=0,令y=﹣x 则f (﹣x )=﹣f (x ),在R 上任意取x 1,x 2,且x 1<x 2,则△x=x 2﹣x 1>0,△y=f (x 2)﹣f (x 1)=f (x 2)+f (﹣x 1)=f (x 2﹣x 1)∵x 2>x 1,∴x 2﹣x 1>0,又∵x >0时,f (x )<0,∴f (x 2﹣x 1)<0,即f (x 2)﹣f (x 1)<0,有定义可知函数f (x )在R 上为单调递减函数.(2)∵f (x )在R 上是减函数,∴f (x )在[﹣3,3]上也是减函数.又f (3)=f (2)+f (1)=f (1)+f (1)+f (1)=3×(﹣)=﹣2, 由f (﹣x )=﹣f (x )可得f (﹣3)=﹣f (3)=2,故f (x )在[﹣3,3]上最大值为2,最小值为﹣2.7. 是定义在R 上的函数,对都有,且当时,。
专题7 抽象函数的单调性和奇偶性-高一数学必修一专题复习训练含答案
专题7 抽象函数的单调性和奇偶性-高一数学必修一专题复习训练含答案一、选择题1.设()f x 是定义在(),-∞+∞上的单调递减函数,且()f x 为奇函数.若()11f =-,则不等式()121f x -≤-≤的解集为A . []1,1-B . []0,4C . []2,2-D . []1,3【答案】D2.若函数()f x 的定义域为()32,1a a -+,且函数()1f x -为奇函数,则实数a 的值为( )A . 2B . 4C . 6D . 8【答案】C【解析】函数()f x 的定义域为()32,1a a -+,且函数()1f x -为奇函数,则函数()f x 的图象关于点()1,0对称,故有()132{3212a a a a +>--++=,求得2a =,故选A .3.已知()f x 是偶函数,它在[)0,+∞上是减函数,若()()lg 1f x f > ,则x 的取值范围是( ) A . 1,110⎛⎫⎪⎝⎭ B . 1,1010⎛⎫ ⎪⎝⎭ C . ()10,1,10⎛⎫⋃+∞ ⎪⎝⎭D . ()()0,110,⋃+∞ 【答案】B【解析】试题分析:偶函数()f x 在[)0,+∞上是减函数,则在(],0-∞上为增函数,由()()lg 1f x f >可知,得,故选项B 正确.考点:偶函数的单调性及其运用.【易错点睛】解答本题时考生容易错误的理解为:偶函数在整个定义域上的单调性是一致的,而列出不等式,解得,没有正确的选项可选.偶函数的图象关于y 轴对称,则其在原点两侧对称区间的单调性也是不同的,即一侧为单调增函数,则对称的另一侧为单调减函数.只有清楚了函数的单调性,才能正确的列出不等式,进而求出正确的解.4.已知函数()y f x =是R 上的偶函数,且在[)0+∞,上单调递增,则下列各式成立的是( )A . ()()()201f f f ->>B . ()()()102f f f >>-C . ()()()210f f f ->>D . ()()()120f f f >->【答案】A【解析】因为函数()y f x =是R 上的偶函数,所以()()22f f -= ,又因为()f x 在[)0+∞,上单调递增,所以()()()201f f f >>,故()()()201f f f ->>. 本题选择A 选项. 5.已知定义域为R 的偶函数在上是减函数,且,则不等式的解集为( )A .B .C .D .【答案】B 【解析】6.已知偶函数f (x )在[0,+∞)单调递增,若f (2)=﹣2,则满足f (x ﹣1)≥﹣2的x 的取值范围是 ( ) A . (﹣∞,﹣1)∪(3,+∞) B . (﹣∞,﹣1]∪[3,+∞) C . [﹣1,﹣3] D . (﹣∞,﹣2]∪[2,+∞) 【答案】B 【解析】根据题意,偶函数在单调递增,且,可得,若,即有, 可得,解可得: 即的取值范围是;故选:B .7.若偶函数()f x 在(],0-∞上单调递减, ()()3224log 3,log 5,2a f b f c f ⎛⎫=== ⎪⎝⎭,则满足( )A . a b c <<B . b a c <<C . c a b <<D . c b a <<【答案】B8.已知函数()f x 为定义在[]2,1b b -上的偶函数,且在[]0,1b -上单调递增,则()()1f x f ≤的解集为( )A . []1,2B . []3,5C . []1,1-D . 13,22⎡⎤⎢⎥⎣⎦【答案】C【解析】由函数奇偶性的定义可知2101b b b +-=⇒=-,所以函数()f x 在[]0,2单调递增,则不等式可化为1{1102x x x ≤⇒-≤≤≤≤,应选答案C .9.已知函数()f x 是定义在R 上的偶函数,在(],0-∞上有单调性,且()()21f f -<,则下列不等式成立的是 ( )A . ()()()123f f f -<<B . ()()()234f f f <<-C . ()()1202f f f ⎛⎫-<< ⎪⎝⎭D . ()()()531f f f <-<-【答案】D【解析】根据函数为偶函数,有()()()221f f f -=<,故函数在[)0,+∞上递减,所以()()()()()()10123452f f f f f f f ⎛⎫>>>>>> ⎪⎝⎭,故选D .10.若是奇函数,且在内是增函数,又,则的解集是( )A .B .C .D .【答案】D 【解析】11.定义在的函数,已知是奇函数,当时,单调递增,若且,且值( ).A . 恒大于B . 恒小于C . 可正可负D . 可能为【答案】A【解析】由是奇函数,所以图像关于点对称,当时,单调递增,所以当时单调递增,由,可得,,由可知,结合函数对称性可知12.已知是定义在上的奇函数,对任意的,均有.当时,,则()A. B. C. D.【答案】C【解析】f()=f()=14,∵<<,二、填空题13.设f(x)是R上的偶函数,且在[0,+∞)上单调递增,则f(–2),f(–π),f(3)的大小顺序是__________.【答案】f(–π)>f(3)>(–2)【解析】由已知是上的偶函数,所以有,,又由在上单调增,且,所以有,所以π),故答案为:.14.已知偶函数在区间上单调增加,则满足的的取值范围是__________.【答案】【解析】∵是偶函数,15.已知函数()f x 是定义在R 上的奇函数, 在区间(),0-∞上单调递减,且()10f =. 若实数a 满足()515log log f a f a ⎛⎫≥ ⎪⎝⎭, 则实数a 的取值范围是____________.【答案】][10,1,55⎛⎤⋃ ⎥⎝⎦【解析】因为函数()f x 是定义在R 上的奇函数, 在区间(),0-∞上单调递减, 根据对称性,所以函数()f x 在区间()0,+∞上也单调递减.又易推出()()()1100f f f -===.从而根据函数()f x 的性质作出图象, 即可求得()0f x ≥的解集为][(,10,1⎤-∞-⋃⎦.()515log log f a f a ⎛⎫≥ ⎪⎝⎭等价于()5log 0f a ≥,故5log 1a ≤-或50log 1a ≤≤,解得105a <≤或15a ≤≤. 16.定义在区间[]2,2-上的偶函数()g x ,当0x ≥时()g x 单调递减,若()()1g m g m -<,则实数m 的取值范围是____________.【答案】1 1,2⎡⎫-⎪⎢⎣⎭【解析】不等式等价于:212 {221mmm m-≤-≤-≤≤->,求解关于实数m的不等式组可得实数m的取值范围是1 1,2⎡⎫-⎪⎢⎣⎭.17.设偶函数在上为减函数,且,则不等式的解集为_________;【答案】【解析】18.已知函数是定义在区间上的偶函数,它在区间上的图像是如图所示的一条线段,则不等式的解集为__________.【答案】【解析】 由题意,函数过点,,∴,又因为是偶函数,关于轴对称,所以,即,又作出函数在上的图像,当的时候,的图像恒在的上方,当的时候,令,,即当的时候,满足,即.故答案为:. 19.定义在上的奇函数是增函数,且,则的取值范围为__________.【答案】【解析】20.已知定义在R 上的函数()f x 满足()()f x f x -=,且对于任意1x , [)20,x ∈+∞, 12x x ≠,均有()()21120f x f x x x ->-.若1132f ⎛⎫-=⎪⎝⎭, 182log 1f x ⎛⎫< ⎪⎝⎭,则x 的取值范围为__________. 【答案】()10,2,2⎛⎫⋃+∞ ⎪⎝⎭【解析】定义在R 上的函数()f x 满足()()f x f x -=,且对于任意1x , [)20,x ∈+∞, 12x x ≠,均有()()21120f x f x x x ->-, ()f x ∴ 在()0,+∞ 上递减,在(),0-∞ 上递增,12811112log ,log 2333f x f f x f ⎛⎫⎛⎫⎛⎫⎛⎫<=--<- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,因为()f x 是偶函数,所以2211log ,log 133x x ->->或2log 1x <- ,可得2x >或102x << ,故答案为()10,2,2⎛⎫⋃+∞ ⎪⎝⎭.三、解答题21.已知函数()y f x =是定义在()0,+∞上的增函数,对于任意的0,0x y >>,都有()()()f xy f x f y =+,且满足()21f =.(1)求()()14f f 、的值;(2)求满足()()32f x f x +->的x 的取值范围. 【答案】(1)()10f =, ()42f =;(2)4x >. 【解析】22.定义在R 上的函数()y f x =对任意的,x y R ∈,满足条件: ()()()1f x y f x f y +=+-,且当0x >时, ()1f x >. (1)求()0f 的值;(2)证明:函数()f x 是R 上的单调增函数;(3)解关于t 的不等式()221f t t -<.【答案】(Ⅰ) ()01f =;(Ⅱ)见解析;(Ⅲ) 10,2⎛⎫ ⎪⎝⎭. 【解析】23.若()f x 是定义在()0,+∞上的增函数,且对一切x , 0y >,满足()()x f f x f y y ⎛⎫=- ⎪⎝⎭. (1)求()1f 的值;(2)若()61f =,解不等式()1323f x f ⎛⎫+-< ⎪⎝⎭. 【答案】(1)0;(2)()3,9- 【解析】24.已知()f x 是定义在[]1,1-上的奇函数,且()11f =,若m , []1,1n ∈-, 0m n +≠时,有()()0f m f n m n+>+.(1)证明()f x 在[]1,1-上是增函数; (2)解不等式1121f x f x ⎛⎫⎛⎫+< ⎪ ⎪-⎝⎭⎝⎭; (3)若()221f x t at ≤-+对任意[]1,1x ∈-, []1,1a ∈-恒成立,求实数t 的取值范围. 【答案】(1)增函数;(2)3,12⎡⎫--⎪⎢⎣⎭;(3)0t =或2t ≥或2t ≤-. 【解析】∵()f x 在[]1,1-上是增函数∴()()max 11f x f == ∴2221120t at t at -+≥⇒-≥对任意[]1,1a ∈-恒成立. 令()22g a at t =-+,则0{00t =≥恒成立或()20{120t g t t >=-+≥或()20{120t g t t <-=+≥,∴0t =或2t ≥或2t ≤-∴实数t 的取值范围为0t =或2t ≥或2t ≤-.25.函数()f x 的定义域为{|0}D x x =≠,且满足对任意12,x x D ∈,有()()1212f x x f x x ⋅=+)(. (1)求()1f 的值;(2)判断()f x 的奇偶性并证明你的结论;(3)如果()41f =, ()12f x -<,且()f x 在()0,+∞上是增函数,求x 的取值范围. 【答案】(1)()10f =;(2)见解析:(3)()()15,11,17-⋃. 【解析】点睛:本题给出抽象函数,求特殊的函数值、讨论函数的奇偶性,并依此解关于x 的不等式.着重考查了函数的单调性、奇偶性和绝对值不等式的解法等知识,属于中档题.运用“赋值法”进行求值和化简,是解决抽象函数问题的一般方法.26.设函数()y f x =是定义在R 上的函数,并且满足下面三个条件:①对任意正数,x y ,都有()()()f xy f x f y =+;②当1x >时, ()0f x <;③()31f =-.(1)求()1f , 19f ⎛⎫⎪⎝⎭的值;(2)证明()f x 在()0,+∞上是减函数;(3)如果不等式()()22f x f x +-<成立,求x 的取值范围.【答案】(Ⅰ)2;(Ⅱ)见解析; (Ⅲ)(1,133-+). 【解析】点晴:本题属于对函数单调性的证明和单调性应用的考察,若函数()f x 在区间上单调递增,则()()1212,,x x D f x f x ∈>且时,有12x x >,事实上,若12x x ≤,则()()12f x f x ≤,这与()()12f x f x >矛盾,类似地,若()f x 在区间上单调递减,则当()()1212,,x x D f x f x ∈>且时有12x x <;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系. 27.已知函数的定义域为,若对于任意的实数,都有,且时,有.(1)判断并证明函数的奇偶性; (2)判断并证明函数的单调性;(3)设,若对所有,恒成立,求实数的取值范围.【答案】(1)奇函数,(2)单调递增函数,(3)或.【解析】(1)奇函数,证明如下:由题意知,令,得,所以;点睛:抽象函数单调性的证明绝大多数情况下都是用“定义法”去证,其步骤是:(1)取值:在给定区间上任取,且;(2)作差:将变形整理为其结果为因式乘积的形式或能够判断的符号的形式;(3)判断的符号;(4)根据定义得出结论.28.已知函数是定义在上的不恒为零的函数,对于任意非零实数满足,且当时,有.(Ⅰ)判断并证明的奇偶性;(Ⅱ)求证:函数在上为增函数,并求不等式的解集.【答案】(1)见解析;(2).【解析】分析:⑴先求出,继而,令代入得⑵构造,然后利用已知代入证明详解:(Ⅰ)是偶函数。
抽象函数函数之单调性及奇偶性部分
函数之单调性及奇偶性部分单调性问题 (抽象函数的单调性多用定义法解决)例1设函数f(x)对任意实数x,y ,都有f(x+y)=f(x)+f(y),若x>0时f(x)<0,且f(1)= -2,求f(x)在[-3,3]上的最大值和最小值. 解析:由单调性的定义步骤设x 1<x 2, 则f(x 2)=f(x 2-x 1+x 1)=f(x 2-x 1)+f(x 1)< f(x 1). (∵x 2-x 1>0,∴f(x 2-x 1)<0)所以f(x)是R 上的减函数, 故f(x)在[-3,3]上的最大值为f(3)=f(1)+f(2)=3f(1)=-6,最小值为f(-3),令x=y=0,得f(0)=0,令y=-x,得f(-x)+f(x)=f(0)=0,即f(x)为奇函数.∴f(-3)=-f(3)=6.练习1:设f(x)定义于实数集上,当x>0时,f(x)>1,且对于任意实数x 、y ,有f(x+y)=f(x)f(y),求证:f(x)在R 上为增函数。
证明:设R 上x 1<x 2,则f(x 2-x 1)>1,f(x 2)=f(x 2-x 1+x 1)=f(x 2-x 1)f(x 1),(注意此处不能直接得大于f(x 1),因为f(x 1)的正负还没确定) 。
取x=y=0得f(0)=0或f(0)=1;若f (0)=0,令x>0,y=0,则f(x)=0与x>0时,f(x)>1矛盾,所以f(0)=1,x>0时,f(x)>1>0,x<0时,-x>0,f(-x)>1,∴由0)(1)(1)()()0(>-==-=x f x f x f x f f 得,故f(x)>0,从而f(x 2)>f(x 1).即f(x)在R 上是增函数。
(注意与例4的解答相比较,体会解答的灵活性)练习2:已知函数f (x )的定义域为R ,且对m 、n ∈R ,恒有f (m +n )=f (m )+f (n )-1,且f (-21)=0,当x >-21时,f (x )>0. 求证:f (x )是单调递增函数;证明:设x 1<x 2,则x 2-x 1-21>-21,由题意f (x 2-x 1-21)>0, ∵f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1=f (x 2-x 1)+f (-21)-1=f [(x 2-x 1)-21]>0, ∴f (x )是单调递增函数.练习3、 定义在R 上的函数y =f (x ),f (0)≠0,当x >0时,f (x )>1,且对任意的a 、b ∈R ,有f (a +b )=f (a )·f (b ).(1)求证:f (0)=1; (2)求证:对任意的x ∈R ,恒有f (x )>0;(3)求证:f (x )是R 上的增函数;(4)若f (x )·f (2x -x 2)>1,求x 的取值范围.(1)证明:令a =b =0,则f (0)=f 2(0).又f (0)≠0,∴f (0)=1.(2)证明:当x <0时,-x >0,∴f (0)=f (x )·f (-x )=1.∴f (-x )=)(1x f >0.又x ≥0时f (x )≥1>0,∴x ∈R 时,恒有f (x )>0.(3)证明:设x 1<x 2,则x 2-x 1>0.∴f (x 2)=f (x 2-x 1+x 1)=f (x 2-x 1)·f (x 1).∵x 2-x 1>0,∴f (x 2-x 1)>1.又f (x 1)>0,∴f (x 2-x 1)·f (x 1)>f (x 1).∴f (x 2)>f (x 1).∴f (x )是R 上的增函数.(4)解:由f (x )·f (2x -x 2)>1,f (0)=1得f (3x -x 2)>f (0).又f (x )是R 上的增函数,∴3x -x 2>0.∴0<x <3.关键点注:解本题的关键是灵活应用题目条件,尤其是(3)中“f (x 2)=f [(x 2-x 1)+x 1]”是证明单调性的关键,这里体现了向条件化归的策略练习4、已知函数f(x)对任何正数x,y 都有f(xy)=f(x)f(y),且f(x)≠0,当x>1时,f(x)<1.试判断f(x)在(0,+∞)上的单调性,并说明理由.解:0)x (f ,0)x (f ,0)x (f )x x (f )x (f R x 2>≠≥=∙=∈+故又有对,则则且设,1x x ,x x ,R x ,x 122121><∈+ 1)x x (f )x (f )x (f )x x (f )x (f )x x x (f )x (f )x (f 121112111212<=∙=∙=,所以f(x 1)>f(x 2),故f(x)在R +上为减函数.)2()0,2()1,3()2()1,3()2,1()1,2()(0)1()1(0)2()0,()(5∞+⋃---∞+⋃-⋃-->+-=-∞,、、,、、的解集为,则上单调递减,且在、奇函数练习D C B A Cx f x f x f奇偶性问题例2. (1)已知函数f(x)(x ≠0的实数)对任意不等于零的实数x 、y 都有f(x ﹒y)=f(x)+f(y),试判断函数f(x)的奇偶性。
高中数学必修1函数单调性和奇偶性专项练习(含答案)
高中数学必修1函数单调性和奇偶性专项练习(含答案)高中数学必修1 第二章函数单调性和奇偶性专项练一、函数单调性相关练题1、(1)函数f(x)=x-2,x∈{1,2,4}的最大值为3.在区间[1,5]上的最大值为9,最小值为-1.2、利用单调性的定义证明函数f(x)=(2/x)在(-∞,0)上是减函数。
证明:对于x1<x2.由于x1和x2都小于0,所以有x1<x2<0,因此有f(x2)-f(x1)=2/x1-2/x2=2(x2-x1)/x1x2<0.因此,f(x)在(-∞,0)上是减函数.3、函数f(x)=|x|+1的图像是一条V型曲线,单调区间为(-∞,0]和[0,∞).4、函数y=-x+2的图像是一条斜率为-1的直线,单调区间为(-∞,+∞).5、已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,比较大小:(1)f(6)与f(4);(2)f(2)与f(15).1) 因为f(x)是开口向下的抛物线,所以对于x>3,f(x)是减函数,对于x<3,f(x)是增函数。
因此,f(6)<f(4).2) 因为f(x)是开口向下的抛物线,所以对于x3,f(x)是增函数。
因此,f(2)>f(15).6、已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(3a-2),求实数a的取值范围.因为f(x)在(-1,1)上是减函数,所以对于0f(3a-2)。
因此,实数a的取值范围为0<a<1.7、求下列函数的增区间与减区间:1) y=|x^2+2x-3|的图像是一条开口向上的抛物线,单调区间为(-∞,-3]和[1,+∞).2) y=1-|x-1|的图像是一条V型曲线,单调区间为(-∞,1]和[1,+∞).3) y=-x^2-2x+3的图像是一条开口向下的抛物线,单调区间为(-∞,-1]和[1,+∞).4) y=1/(x^2-x-20)的图像是一条双曲线,单调区间为(-∞,-4]和[-1,1]和[5,+∞).8、函数f(x)=ax^2-(3a-1)x+a^2在[1,+∞)上是增函数,求实数a的取值范围.因为f(x)在[1,+∞)上是增函数,所以对于x>1,有f(x)>f(1)。
专题7 抽象函数的单调性和奇偶性-高一数学必修一专题复习训练含答案
专题7 抽象函数的单调性和奇偶性-高一数学必修一专题复习训练含答案一、选择题1.设()f x 是定义在(),-∞+∞上的单调递减函数,且()f x 为奇函数.若()11f =-,则不等式()121f x -≤-≤的解集为A . []1,1-B . []0,4C . []2,2-D . []1,3【答案】D2.若函数()f x 的定义域为()32,1a a -+,且函数()1f x -为奇函数,则实数a 的值为( )A . 2B . 4C . 6D . 8【答案】C【解析】函数()f x 的定义域为()32,1a a -+,且函数()1f x -为奇函数,则函数()f x 的图象关于点()1,0对称,故有()132{3212a a a a +>--++=,求得2a =,故选A .3.已知()f x 是偶函数,它在[)0,+∞上是减函数,若()()lg 1f x f > ,则x 的取值范围是( ) A . 1,110⎛⎫⎪⎝⎭ B . 1,1010⎛⎫ ⎪⎝⎭ C . ()10,1,10⎛⎫⋃+∞ ⎪⎝⎭D . ()()0,110,⋃+∞ 【答案】B【解析】试题分析:偶函数()f x 在[)0,+∞上是减函数,则在(],0-∞上为增函数,由()()lg 1f x f >可知,得,故选项B 正确.考点:偶函数的单调性及其运用.【易错点睛】解答本题时考生容易错误的理解为:偶函数在整个定义域上的单调性是一致的,而列出不等式,解得,没有正确的选项可选.偶函数的图象关于y 轴对称,则其在原点两侧对称区间的单调性也是不同的,即一侧为单调增函数,则对称的另一侧为单调减函数.只有清楚了函数的单调性,才能正确的列出不等式,进而求出正确的解.4.已知函数()y f x =是R 上的偶函数,且在[)0+∞,上单调递增,则下列各式成立的是( )A . ()()()201f f f ->>B . ()()()102f f f >>-C . ()()()210f f f ->>D . ()()()120f f f >->【答案】A【解析】因为函数()y f x =是R 上的偶函数,所以()()22f f -= ,又因为()f x 在[)0+∞,上单调递增,所以()()()201f f f >>,故()()()201f f f ->>. 本题选择A 选项. 5.已知定义域为R 的偶函数在上是减函数,且,则不等式的解集为( )A .B .C .D .【答案】B 【解析】6.已知偶函数f (x )在[0,+∞)单调递增,若f (2)=﹣2,则满足f (x ﹣1)≥﹣2的x 的取值范围是 ( ) A . (﹣∞,﹣1)∪(3,+∞) B . (﹣∞,﹣1]∪[3,+∞) C . [﹣1,﹣3] D . (﹣∞,﹣2]∪[2,+∞) 【答案】B 【解析】根据题意,偶函数在单调递增,且,可得,若,即有, 可得,解可得: 即的取值范围是;故选:B .7.若偶函数()f x 在(],0-∞上单调递减, ()()3224log 3,log 5,2a f b f c f ⎛⎫=== ⎪⎝⎭,则满足( )A . a b c <<B . b a c <<C . c a b <<D . c b a <<【答案】B8.已知函数()f x 为定义在[]2,1b b -上的偶函数,且在[]0,1b -上单调递增,则()()1f x f ≤的解集为( )A . []1,2B . []3,5C . []1,1-D . 13,22⎡⎤⎢⎥⎣⎦【答案】C【解析】由函数奇偶性的定义可知2101b b b +-=⇒=-,所以函数()f x 在[]0,2单调递增,则不等式可化为1{1102x x x ≤⇒-≤≤≤≤,应选答案C .9.已知函数()f x 是定义在R 上的偶函数,在(],0-∞上有单调性,且()()21f f -<,则下列不等式成立的是 ( )A . ()()()123f f f -<<B . ()()()234f f f <<-C . ()()1202f f f ⎛⎫-<< ⎪⎝⎭D . ()()()531f f f <-<-【答案】D【解析】根据函数为偶函数,有()()()221f f f -=<,故函数在[)0,+∞上递减,所以()()()()()()10123452f f f f f f f ⎛⎫>>>>>> ⎪⎝⎭,故选D .10.若是奇函数,且在内是增函数,又,则的解集是( )A .B .C .D .【答案】D 【解析】11.定义在的函数,已知是奇函数,当时,单调递增,若且,且值( ).A . 恒大于B . 恒小于C . 可正可负D . 可能为【答案】A【解析】由是奇函数,所以图像关于点对称,当时,单调递增,所以当时单调递增,由,可得,,由可知,结合函数对称性可知12.已知是定义在上的奇函数,对任意的,均有.当时,,则()A. B. C. D.【答案】C【解析】f()=f()=14,∵<<,二、填空题13.设f(x)是R上的偶函数,且在[0,+∞)上单调递增,则f(–2),f(–π),f(3)的大小顺序是__________.【答案】f(–π)>f(3)>(–2)【解析】由已知是上的偶函数,所以有,,又由在上单调增,且,所以有,所以π),故答案为:.14.已知偶函数在区间上单调增加,则满足的的取值范围是__________.【答案】【解析】∵是偶函数,15.已知函数()f x 是定义在R 上的奇函数, 在区间(),0-∞上单调递减,且()10f =. 若实数a 满足()515log log f a f a ⎛⎫≥ ⎪⎝⎭, 则实数a 的取值范围是____________.【答案】][10,1,55⎛⎤⋃ ⎥⎝⎦【解析】因为函数()f x 是定义在R 上的奇函数, 在区间(),0-∞上单调递减, 根据对称性,所以函数()f x 在区间()0,+∞上也单调递减.又易推出()()()1100f f f -===.从而根据函数()f x 的性质作出图象, 即可求得()0f x ≥的解集为][(,10,1⎤-∞-⋃⎦.()515log log f a f a ⎛⎫≥ ⎪⎝⎭等价于()5log 0f a ≥,故5log 1a ≤-或50log 1a ≤≤,解得105a <≤或15a ≤≤. 16.定义在区间[]2,2-上的偶函数()g x ,当0x ≥时()g x 单调递减,若()()1g m g m -<,则实数m 的取值范围是____________.【答案】1 1,2⎡⎫-⎪⎢⎣⎭【解析】不等式等价于:212 {221mmm m-≤-≤-≤≤->,求解关于实数m的不等式组可得实数m的取值范围是1 1,2⎡⎫-⎪⎢⎣⎭.17.设偶函数在上为减函数,且,则不等式的解集为_________;【答案】【解析】18.已知函数是定义在区间上的偶函数,它在区间上的图像是如图所示的一条线段,则不等式的解集为__________.【答案】【解析】 由题意,函数过点,,∴,又因为是偶函数,关于轴对称,所以,即,又作出函数在上的图像,当的时候,的图像恒在的上方,当的时候,令,,即当的时候,满足,即.故答案为:. 19.定义在上的奇函数是增函数,且,则的取值范围为__________.【答案】【解析】20.已知定义在R 上的函数()f x 满足()()f x f x -=,且对于任意1x , [)20,x ∈+∞, 12x x ≠,均有()()21120f x f x x x ->-.若1132f ⎛⎫-=⎪⎝⎭, 182log 1f x ⎛⎫< ⎪⎝⎭,则x 的取值范围为__________. 【答案】()10,2,2⎛⎫⋃+∞ ⎪⎝⎭【解析】定义在R 上的函数()f x 满足()()f x f x -=,且对于任意1x , [)20,x ∈+∞, 12x x ≠,均有()()21120f x f x x x ->-, ()f x ∴ 在()0,+∞ 上递减,在(),0-∞ 上递增,12811112log ,log 2333f x f f x f ⎛⎫⎛⎫⎛⎫⎛⎫<=--<- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,因为()f x 是偶函数,所以2211log ,log 133x x ->->或2log 1x <- ,可得2x >或102x << ,故答案为()10,2,2⎛⎫⋃+∞ ⎪⎝⎭.三、解答题21.已知函数()y f x =是定义在()0,+∞上的增函数,对于任意的0,0x y >>,都有()()()f xy f x f y =+,且满足()21f =.(1)求()()14f f 、的值;(2)求满足()()32f x f x +->的x 的取值范围. 【答案】(1)()10f =, ()42f =;(2)4x >. 【解析】22.定义在R 上的函数()y f x =对任意的,x y R ∈,满足条件: ()()()1f x y f x f y +=+-,且当0x >时, ()1f x >. (1)求()0f 的值;(2)证明:函数()f x 是R 上的单调增函数;(3)解关于t 的不等式()221f t t -<.【答案】(Ⅰ) ()01f =;(Ⅱ)见解析;(Ⅲ) 10,2⎛⎫ ⎪⎝⎭. 【解析】23.若()f x 是定义在()0,+∞上的增函数,且对一切x , 0y >,满足()()x f f x f y y ⎛⎫=- ⎪⎝⎭. (1)求()1f 的值;(2)若()61f =,解不等式()1323f x f ⎛⎫+-< ⎪⎝⎭. 【答案】(1)0;(2)()3,9- 【解析】24.已知()f x 是定义在[]1,1-上的奇函数,且()11f =,若m , []1,1n ∈-, 0m n +≠时,有()()0f m f n m n+>+.(1)证明()f x 在[]1,1-上是增函数; (2)解不等式1121f x f x ⎛⎫⎛⎫+< ⎪ ⎪-⎝⎭⎝⎭; (3)若()221f x t at ≤-+对任意[]1,1x ∈-, []1,1a ∈-恒成立,求实数t 的取值范围. 【答案】(1)增函数;(2)3,12⎡⎫--⎪⎢⎣⎭;(3)0t =或2t ≥或2t ≤-. 【解析】∵()f x 在[]1,1-上是增函数∴()()max 11f x f == ∴2221120t at t at -+≥⇒-≥对任意[]1,1a ∈-恒成立. 令()22g a at t =-+,则0{00t =≥恒成立或()20{120t g t t >=-+≥或()20{120t g t t <-=+≥,∴0t =或2t ≥或2t ≤-∴实数t 的取值范围为0t =或2t ≥或2t ≤-.25.函数()f x 的定义域为{|0}D x x =≠,且满足对任意12,x x D ∈,有()()1212f x x f x x ⋅=+)(. (1)求()1f 的值;(2)判断()f x 的奇偶性并证明你的结论;(3)如果()41f =, ()12f x -<,且()f x 在()0,+∞上是增函数,求x 的取值范围. 【答案】(1)()10f =;(2)见解析:(3)()()15,11,17-⋃. 【解析】点睛:本题给出抽象函数,求特殊的函数值、讨论函数的奇偶性,并依此解关于x 的不等式.着重考查了函数的单调性、奇偶性和绝对值不等式的解法等知识,属于中档题.运用“赋值法”进行求值和化简,是解决抽象函数问题的一般方法.26.设函数()y f x =是定义在R 上的函数,并且满足下面三个条件:①对任意正数,x y ,都有()()()f xy f x f y =+;②当1x >时, ()0f x <;③()31f =-.(1)求()1f , 19f ⎛⎫⎪⎝⎭的值;(2)证明()f x 在()0,+∞上是减函数;(3)如果不等式()()22f x f x +-<成立,求x 的取值范围.【答案】(Ⅰ)2;(Ⅱ)见解析; (Ⅲ)(1,133-+). 【解析】点晴:本题属于对函数单调性的证明和单调性应用的考察,若函数()f x 在区间上单调递增,则()()1212,,x x D f x f x ∈>且时,有12x x >,事实上,若12x x ≤,则()()12f x f x ≤,这与()()12f x f x >矛盾,类似地,若()f x 在区间上单调递减,则当()()1212,,x x D f x f x ∈>且时有12x x <;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系. 27.已知函数的定义域为,若对于任意的实数,都有,且时,有.(1)判断并证明函数的奇偶性; (2)判断并证明函数的单调性;(3)设,若对所有,恒成立,求实数的取值范围.【答案】(1)奇函数,(2)单调递增函数,(3)或.【解析】(1)奇函数,证明如下:由题意知,令,得,所以;点睛:抽象函数单调性的证明绝大多数情况下都是用“定义法”去证,其步骤是:(1)取值:在给定区间上任取,且;(2)作差:将变形整理为其结果为因式乘积的形式或能够判断的符号的形式;(3)判断的符号;(4)根据定义得出结论.28.已知函数是定义在上的不恒为零的函数,对于任意非零实数满足,且当时,有.(Ⅰ)判断并证明的奇偶性;(Ⅱ)求证:函数在上为增函数,并求不等式的解集.【答案】(1)见解析;(2).【解析】分析:⑴先求出,继而,令代入得⑵构造,然后利用已知代入证明详解:(Ⅰ)是偶函数。
抽象函数的单调性和奇偶性
抽象函数的单调性和奇偶性抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数。
它是高中数学中的一个难点,因为抽象,解题时思维常常受阻,思路难以展开,而高考中会出现这一题型,本文对抽象函数的单调性和奇偶性问题进行了整理、归类,大概有以下几种题型:一、判断单调性和奇偶性1. 判断单调性根据函数的奇偶性、单调性等有关性质,画出函数的示意图,以形助数,问题迅速获解。
例1.如果奇函数f x ()在区间[]37,上是增函数且有最小值为5,那么f x ()在区间[]--73,上是 A. 增函数且最小值为-5 B. 增函数且最大值为-5 C. 减函数且最小值为-5 D. 减函数且最大值为-5 分析:画出满足题意的示意图,易知选B 。
例2.偶函数f x ()在(0),+∞上是减函数,问f x ()在()-∞,0上是增函数还是减函数,并证明你的结论。
分析:如图所示,易知f x ()在()-∞,0上是增函数,证明如下:任取x x xx 121200<<⇒->->因为f x ()在(0),+∞上是减函数,所以f x f x ()()-<-12。
又f x ()是偶函数,所以f x f x f x f x ()()()()-=-=1122,,从而f x f x ()()12<,故f x ()在()-∞,0上是增函数。
2. 判断奇偶性 根据已知条件,通过恰当的赋值代换,寻求f x ()与f x ()-的关系。
例3.若函数y f x f x =≠()(())0与y f x =-()的图象关于原点对称,判断:函数 y f x =()是什么函数。
解:设y f x =()图象上任意一点为P (x y 00,)y f x =()与y f x =-()的图象关于原点对称,∴P x y ()00,关于原点的对称点()--x y 00,在y f x =-()的图象上,∴-=--∴=-y f x y f x 0000()()又y f x 00=()∴-=f x f x ()()00即对于函数定义域上的任意x 都有f x f x ()()-=,所以y f x =()是偶函数。
抽象函数的单调性、奇偶性问题
抽象函数的单调性、奇偶性问题1.函数()f x 对任意的,a b R ∈,都有()()()1f a b f a f b +=+-, 并且当0x >时,()1f x >.(摘自《学案与测评(文)》第13页) (1)求证:()f x 是R 上的增函数;(2)若()45f =,解关于m 的不等式()2323f m m --<.解答:(1)提示:增减项()2211x x x x =-+;(2)41,3⎛⎫- ⎪⎝⎭. 2.设()f x 是定义域()0,+∞为上的函数,同时满足条件:①()()()f xy f x f y =+;②()21f =;③若1x >,则()0f x >. 如果()()32f x f x +-≤,求x 取值范围.(摘自教案maths-1函数的单调性) 解答:(]3,4.3.已知函数()f x 的定义域为R ,对任意,m n R ∈都有()()()12f m n f m f n +=++, 且102f ⎛⎫=⎪⎝⎭,又当12x >时,()0f x >.(摘自《世纪金榜》第21页——新题快递) (1)求()1f ; (2)求和:()()()()1232009f f f f ++++ ; (3)判断函数()f x 的单调性并加以证明. 解答:(1)12;(2)等差数列首项为12,公差为1;(3)证明:设12x x <, 则()()()()121211f x f x f x f x x x -=--+⎡⎤⎣⎦()()()121112f x f x x f x ⎡⎤=--++⎢⎥⎣⎦()2112f x x ⎡⎤=--+⎢⎥⎣⎦()211122f x x f ⎡⎤⎛⎫=--++ ⎪⎢⎥⎝⎭⎣⎦2112f x x ⎛⎫=--+ ⎪⎝⎭0<,即()()12f x f x <.所以函数()f x 为增函数.4. 定义在区间()1,1-上的函数)(x f 满足:(东北育才高中部2010期中文科)①对任意的()1,1,-∈y x ,都有)1()()(xyyx f y f x f ++=+; ②当0<x 时,0)(>x f . 问题:(1)求证f (x )为奇函数;(2)试解不等式)21()1()(f x f x f >-+. 解析:(1)解:令x = y = 0,则 f (0) + f (0) = )0()0100(f f =++ ∴ f (0) = 0 令x ∈(-1, 1) ∴-x ∈(-1, 1) ∴ f (x ) + f (-x ) = f (21x xx --) = f (0) = 0∴ f (-x ) =-f (x ) ∴ f (x ) 在(-1,1)上为奇函数(2)解:令-1< x 1 < x 2 < 1,则f (x 1) -f (x 2) = f (x 1) + f (-x 2) = )1(2121x x x x f --∵x 1-x 2 < 0,1-x 1x 2 > 0 ∴012121<--x x x x ∴ )1(2121x x x x f --> 0∴ f (x 1) > f (x 2) ∴ f (x ) 在(-1,1)上为减函数又f (x ) + f (x -1) >)21(f >-+-⇒)112(2xx x f )21(f∴ 不等式化为21111121112x x x x x -<<⎧⎪-<-<⎪⎪⎨⎪-⎪<⎪+-⎩⎪⎩⎪⎨⎧>+-<<⇒035102x x x⎪⎩⎪⎨⎧-<<<⇒213510x x 或2135+>x 21350-<<⇒x∴ 不等式的解集为}21350|{-<<x x . 变式:定义在区间()1,1- 上的函数()f x 满足:()()1x y f x f y f xy ⎛⎫--=⎪-⎝⎭.若()1,0x ∈- 时()0f x > ,若1157P f f ⎛⎫⎛⎫=+ ⎪⎪⎝⎭⎝⎭,12Q f ⎛⎫= ⎪⎝⎭ ,()0R f = , 则P 、Q 、R 的大小关系为(源自2015届高三上期末育才等五校联考文科T11)A.R>Q>PB.R>P>QC.P>R>QD.Q>P>R答案:B.提示:关注目标需要判定函数的单调性 进一步需要对P 进行合一变形进一步需要函数的奇偶性判定.①赋值法:在已知等式中令0x =得()()f y f y -=-,∴函数为奇函数; ②已知可变形为()()1x y f x f y f xy ⎛⎫-+-=⎪-⎝⎭,∴111115711573157P f f f f ⎛⎫+ ⎪⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪+⋅⎝⎭;【至此可以排除AC 】 ③定义判断单调性:设1211x x -<<< ,则()()1212121x x f x f x f x x ⎛⎫--=⎪-⎝⎭∵120x x -<,1210x x -⋅>,∴121201x x x x -<-⋅故由已知得121201x x f x x ⎛⎫->⎪-⎝⎭,即()()120f x f x ->.所以函数为单调减函数; 所以答案为B.2015/1/25 wht 解析5.已知函数()(),0y f x x R x =∈≠,对任意非零函数1x 、2x ,恒有()()()1212f x x f x f x ⋅=+.(源自《世纪金榜》教师版第50页)(1)试判断函数()f x 的奇偶性;(2)若()f x 在()0,+∞上是单调递增函数,且()164f =,解不等式23212f x x ⎛⎫-+> ⎪⎝⎭. 解析:(1)令1x =1,2x =1得()()()1111f f f ⋅=+,所以()10f =, 令1x =-1,2x =-1得()()()()()1111ff f -⋅-=-+-,()()121f f =-,所以()10f -=. 令1x x =,2x =-1,则()()()()11f x f x f ⋅-=+-,即()()f x f x -=, 所以()f x 是偶函数.(2)()164f =⇒()()()44444f f f ⋅=+=,∴()42f =,同理()21f =.()223121022x x x -+=-+>,又因为()f x 在()0,+∞上是单调递增函数,所以 23212f x x ⎛⎫-+> ⎪⎝⎭⇔23222x x -+>解得22x >或22x <. 6.定义在R 上的函数()f x 满足:对任意实数m ,n ,总有()()()f m n f m f n +=⋅,且当0x >时,()01f x <<. (1)判断()f x 的单调性;(2)设()()()(){}22,1A x y f x f y f =⋅>,()({},1,B x y f ax y a R =-+=∈,若A B =∅ ,试确定a 的取值范围.(源自2010东北育才高二文科月考19题) 解:(1)在中,令,得,因为,所以。
(完整版)函数的性质练习(奇偶性、单调性、周期性、对称性)(附答案)
函数的性质练习(奇偶性,单调性,周期性,对称性)1、定义在R 上的奇函数)(x f ,周期为6,那么方程0)(=x f 在区间[6,6-]上的根的个数可能是A.0B.1C.3D.52、f (x )是定义在R 上的以3为周期的偶函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数至少是( )A .1B .4C .3D .23、已知)(x f 是R 上的偶函数,)(x g 是R 上的奇函数,且)(x g =)1(-x f ,那么=)3120(fA.0B.2C. 2-D.2± 4、已知112)(-+=x x x f ,那么=+++++-+-+-)8()6()4()2()0()2()4()6(f f f f f f f f A.14 B.15 C. 16- D.165、已知)(x f 的定义域为R ,若)1()1(+-x f x f 、都为奇函数,则A.)(x f 为偶函数B.)(x f 为奇函数C.)(x f =)2(+x fD.)3(+x f 为奇函数6、定义在R 上的函数)(x f 对任意的实数x 都有)1()1(--=+x f x f ,则下列结论一定成立的是A.)(x f 的周期为4B. )(x f 的周期为6C. )(x f 的图像关于直线1=x 对称D. )(x f 的图像关于点(1 , 0) 对称 7、定义在R 上的函数)(x f 满足:)()(x f x f -=-,)1()1(x f x f -=+,当∈x [1-, 1] 时,3)(x x f =,则=)2013(fA.1-B.0C.1D.28、定义在R 上的函数)(x f 对任意的实数x 都有)2()2(x f x f -=+,并且)1(+x f 为 偶函数. 若3)1(=f ,那么=)101(fA.1B.2C.3D.49、已知f (x )(x ∈R)为奇函数,f (2)=1,f (x +2)=f (x )+f (2),则f (3)等于( )A.12 B .1 C.32 D .2 10、若奇函数f (x )(x ∈R)满足f (3)=1,f (x +3)=f (x )+f (3),则f ⎝⎛⎭⎫32 等于( )A .0B .1 C.12 D .-1211、已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12、设()f x 为定义在R 上的奇函数,满足()()2f x f x +=-,当01x ≤≤时()f x x =,则 ()7.5f 等于 ( )A .0.5B .0.5-C .1.5D . 1.5-13、设()f x 是定义在R 上的偶函数,且在(-∞,0)上是增函数,则()2f -与()223f a a -+ (a R ∈)的大小关系是 ( )A .()2f -<()223f a a -+B .()2f -≥()223f a a -+C .()2f ->()223f aa -+D .与a 的取值无关14、若函数()f x 为奇函数,且当0x >时,()1f x x =-,则当0x <时,有 ( )A .()f x 0>B .()f x 0<C .()f x ()f x -≤0D .()f x -()f x -0> 15、已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( )A .a ≤-3B .a ≥-3C .a ≤5D .a ≥317、已知函数()()221,f x x ax b b a b R =-++-+∈对任意实数x 都有()()11f x f x -=+ 成立,若当[]1,1x ∈-时,()0f x >恒成立,则b 的取值范围是 ( ) A .10b -<< B .2b >C .12b b <->或 D .不能确定 18、已知函数()()2223f x x x =+-,那么( )A .()y f x =在区间[]1,1-上是增函数B .()y f x =在区间(],1-∞-上是增函数C .()y f x =在区间[]1,1-上是减函数D .()y f x =在区间(],1-∞-上是减函数19、函数()y f x =在()0,2上是增函数,函数()2y f x =+是偶函数,则下列结论中正确的 是 ( ) A .()57122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()57122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ C .()75122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()75122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭20、设函数()f x 是R 上的奇函数,且当0x >时,()23xf x =-,则()2f -等于( )A .1-B .114C .1D .114-21、设函数)(x f 是R 上的偶函数,且在()+∞,0上是减函数,且12210x x x x >>+,,则 A.)()(21x f x f > B.)()(21x f x f = C.)()(21x f x f < D.不能确定23、已知函数=)(x f ⎩⎨⎧<-≥-0,10,sin x e x x x x ,若)()2(2a f a f >-,则实数a 取值范围是A. (1,-∞-)),2(+∞YB. (1,2-)C. (2,1-)D. (2,-∞-)+∞,1(Y )A .0B .1C .2D .3二、填空题:24、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为25、已知()f x 为偶函数,()g x 是奇函数,且()f x ()22g x x x -=+-,则()f x 、()g x 分别为 ; 26、定义在()1,1-上的奇函数()21x mf x x nx +=++,则常数m = ,n = ;28、.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+.(1)求证: ()f x 是奇函数;(2)若(3),(24)f a a f -=试用表示.29、若()f x 是定义在()0,+∞上的增函数,且()()x f f x f y y ⎛⎫=- ⎪⎝⎭⑴求()1f 的值;⑵若()61f =,解不等式()132f x f x ⎛⎫+-< ⎪⎝⎭.30.函数()f x 对于x>0有意义,且满足条件(2)1,()()(),()f f xy f x f y f x ==+是减函数。
函数单调性及奇偶性练习(含答案)(精品文档)_共4页
1、已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( ) A .,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =031=a 2、已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y=x (|x |-1) C .y =|x |(x -2) D .y =x (|x |-2)3、函数是( )1111)(22+++-++=x x x x x f A .偶函数 B .奇函数 C .非奇非偶函数 D .既是奇函数又是偶函数4、若,g (x )都是奇函数,在(0,+∞)上有最大值5,)(x ϕ2)()(++=x bg a x f ϕ则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-35、已知是偶函数,,当时,为增函数,若,且()f x x R ∈0x >()f x 120,0x x <>,12||||x x <则 ( ). .A 12()()f x f x ->-B 12()()f x f x -<- . . C 12()()f x f x ->-D 12()()f x f x -<-6、定义在(-1,1)上的函数f(x)是奇函数,并且在(-1,1)上f(x)是减函数,求满足条件f(1-a)+f(1-a2)<0的a取值范围. ( ) A.(0,1) B.(-2,1) C.[0,1] D.[-2,1]7、已知函数f(x)是定义在区间[-2,2]上的偶函数,当x∈[0,2]时,f(x)是减函数,如果不等式f(1-m)<f(m)成立,求实数m的取值范围.( )A. B.[1,2] C.[-1,0] D.()1[1,2-11,2-8、已知函数⎩⎨⎧<-≥+=0,40,4)(22x x x x x x x f 若2(2)(),f a f a ->则实数a 的取值范围是( ) A (,1)(2,)-∞-⋃+∞ B (1,2)- C (2,1)- D (,2)(1,)-∞-⋃+∞9、已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________10、已知偶函数y =f(x)在区间[0,4]上是单调增函数,则f(-3)与f(π)的大小关系是__________11、若定义在R 上的函数f(x)满足:对任意x 1、x 2∈R 有f(x 1+x 2)=f(x 1)+f(x 2)+1,则下列说法一定正确的序号是__________.①f(x)为奇函数 ;②f(x)为偶函数 ;③f(x)+1为奇函数 ;④f(x)+1为偶函数12、若是奇函数,则___(1)()()x x a f x x++=a =13、已知f(x)是奇函数,定义域为{x|x R 且x 0},又f(x)在(0,+)上是增函数,且∈≠∞f(-1)=0,则满足f(x)>0的x 取值范围是.________14、已知是偶函数,当时,;若当时,)(x f y =0>x 2)1()(-=x x f ⎥⎦⎤⎢⎣⎡--∈21,2x 恒成立,则的最小值为m x f n ≤≤)(n m -15、 设函数y =f (x )(x R 且x ≠0)对任意非零实数x 1、x 2满足∈f (x 1·x 2)=f (x 1)+f (x 2),求证f (x )是偶函数.16、设函数f(x)=是定义在(-1,1)上的奇函数,且f()=,(1)确定函数f(x)21x b ax ++2152的解析式;(2)用定义证明f(x)在(-1,1)上是增函数;(3)解不等式f ( t -1)+ f (t) < 0。
抽象函数奇偶性与单调性
【1】►已知f(x)是定义域为R的奇函数,又在区间(0,+∞)上单调递增,且f(2)=0,则不等式x●f(x)<0的解集为__________.
【变式】已知f(x)是定义域为R的偶函数,又在区间[0,+∞)上单调递增,且f(2)=0,则不等式x●f(x)<0的解集为__________.
【2】►已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]内递减,则满足:f(1-m)+f(1-m2)<0的实数m的取值范围是__________.
【变式】设定义在[-2,2]上的偶函数f (x )在区间
[-2,0]上单调递减,若f (1-m )<f (m ),则实数m 的取值范围是__________.
【3】►已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________
【变式】(1)已知奇函数f (x )的定义域为R ,且在区间[0,+∞)上单调递增,则满足f (2x -1)<f (13)的实数x 的取值范围为 .
(2)已知奇函数f(x)的定义域为[-2,2],且在区间
)的实数x的[0,2]上单调递增,则满足f(2x-1)<f(1
3
取值范围为.
(3)已知偶函数f(x)的定义域为R,且在区间[0,+∞)上单调递增,则满足f(2x-1)<f(1
)的实数
3
x的取值范围为.
根据函数的奇偶性,讨论函数的单调区间是常用的方法.奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.所以对具有奇偶性的函数的单调性的研究,只需研究对称区间上的单调性即可.。
专题07 抽象函数的单调性和奇偶性-2018版高人一筹之高一数学特色专题训练 含解析 精品
专题7 抽象函数的单调性和奇偶性一、选择题1.【湖北省荆门市2016-2017学年期末】设错误!未找到引用源。
是定义在错误!未找到引用源。
上的单调递减函数,且错误!未找到引用源。
为奇函数.若错误!未找到引用源。
,则不等式错误!未找到引用源。
的解集为A. 错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【答案】D【解析】由题意可得错误!未找到引用源。
,不等式错误!未找到引用源。
可化为错误!未找到引用源。
,又因为错误!未找到引用源。
是定义在错误!未找到引用源。
上的单调递减函数,所以错误!未找到引用源。
即错误!未找到引用源。
,选D.2.【山东省烟台市2016-2017学年期末】若函数错误!未找到引用源。
的定义域为错误!未找到引用源。
,且函数错误!未找到引用源。
为奇函数,则实数错误!未找到引用源。
的值为()A. 2B. 4C. 6D. 8【答案】C3.【内蒙古赤峰市2016-2017学年期末】已知错误!未找到引用源。
是偶函数,它在错误!未找到引用源。
上是减函数,若错误!未找到引用源。
,则错误!未找到引用源。
的取值范围是()A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
【答案】B【解析】试题分析:偶函数错误!未找到引用源。
在错误!未找到引用源。
上是减函数,则在错误!未找到引用源。
上为增函数,由错误!未找到引用源。
可知,得,故选项B正确.考点:偶函数的单调性及其运用.【易错点睛】解答本题时考生容易错误的理解为:偶函数在整个定义域上的单调性是一致的,而列出不等式,解得,没有正确的选项可选.偶函数的图象关于y轴对称,则其在原点两侧对称区间的单调性也是不同的,即一侧为单调增函数,则对称的另一侧为单调减函数.只有清楚了函数的单调性,才能正确的列出不等式,进而求出正确的解.4.【海南省东方中学2016-2017学年期中】已知函数错误!未找到引用源。
必修一数学抽象函数习题精选含答案
抽象函数单调性和奇偶性1.抽象函数的图像判断单调性例1.如果奇函数f(x)在区间[3, 7]上是增函数且有最小值为5,那么f (x)在区间[7,3]上是()A.增函数且最小值为5B.增函数且最大值为5C.减函数且最小值为 5D.减函数且最大值为5分析:画出满足题意的示意图,易知选Bo2、抽象函数的图像求不等式的解集例2、已知定义在R上的偶函数f (x)满足f(2) 0,并且f (x)在(,0)上为增函数。
若(a 1)f(a) 0 ,则实数a的取值范围二、抽象函数的单调性和奇偶性1.证明单调性例3.已知函数f(x)= ,且f(x),g(x)定义域都是R,且g(x)>0,g(x) 1g(1) =2,g(x) 是增函数.g(m)g(n) g(m n)(m,n R)求证:f(x)是R上的增函数.解:设X1>X2因为,g(x)是R上的增函数,且g(x)>0。
故g(x 1) > g(x 2) >0 o g(X1)+1 > g(x 2)+1 >0 ,2 22> 2>0g(X2)1 g(xj 1g(x2) 1 g(xj 1>0 o增函数。
2.证明奇偶性例5.已知f(x)的定义域为R,且对任意实数x,y 满足f(xy) f(x) 求证:f(x)是偶函数。
分析:在 f(xy) f (x) f(y)中,令 x y 1,得 f(1) f (1) f (1) f (1) 0 令 x y 1,得 f (1) f( 1) f( 1) f( 1) 0于是 f( x) f( 1 x) f( 1) f (x) f (x),故 f (x)是偶函数。
三、求参数范围这类参数隐含在抽象函数给出的运算式中, 关键是利用函数的奇 偶性和它在定义域内的增减性,去掉“ f ”符号,转化为代数不等式 组求解,但要特别注意函数定义域的作用。
f(x 1)- f(x 2)=皿Jg(xj 1gg) 1 g%) 122=1——2——(1-2)g(xj 1 gg) 1>0 g(xj 1可以推出: f(x 1)>f(x 2),所以 f(x)是 R 上的上为减函数。
函数的单调性及奇偶性(含答案)
函数的单调性及奇偶性一、单选题(共10道,每道10分)1.已知函数是上的增函数,若,则下列不一定正确的是( )..答案:D解题思路:试题难度:三颗星知识点:函数单调性的定义]2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若,则实数a的取值范围是( )..答案:C解题思路:试题难度:三颗星知识点:函数单调性的定义3.已知定义在上的函数满足:对任意不同的x1,x2,都有.若,则实数a的取值范围是( )..答案:B、解题思路:试题难度:三颗星知识点:函数单调性的定义4.函数的单调递减区间是( )..无减区间答案:A解题思路:试题难度:三颗星知识点:含绝对值函数的单调性5.函数的单调递减区间是( ) (A.,B.,C.,D.,答案:A解题思路:试题难度:三颗星知识点:函数的单调性及单调区间6.函数的单调递增区间是( )..答案:B解题思路:#试题难度:三颗星知识点:含绝对值函数的单调性7.若是奇函数,则实数a的值为( )D.±1答案:A解题思路:试题难度:三颗星知识点:函数奇偶性的性质8.若是定义在上的偶函数,则a的值为( )A.±1~答案:C解题思路:试题难度:三颗星知识点:函数奇偶性的性质9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( )A.[-1,2]B.C.(0,1)D.答案:B解题思路:试题难度:三颗星知识点:奇偶性与单调性的综合10.已知是定义在上的奇函数,且在上单调递增,若,则不等式的解集为( )..答案:D解题思路:试题难度:三颗星知识点:奇偶函数图象的对称性。
抽象函数单调性及奇偶性练习及答案
1、已知的定义域为R ,且对任意实数x ,y 满足,求证:是偶函数。
2、已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x,y,f(x)都满足f(xy)=yf(x)+xf(y). (1)求f(1),f(-1)的值;(2)判断f(x)的奇偶性,并说明理由. 3、函数f(x)对任意x 、y ∈R,总有f(x)+f(y)=f(x+y),且当x>0时, <0,f(3)=-2.(1)判断并证明f(x)在区间(-∞,+∞)上的单调性; (2)求f(x)在[-3,3]上的最大值和最小值.4、已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xyyx ++1),试证明 (1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减5、已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,,a b R ∈都满足:()()()f a b af b bf a ∙=+.(1)求(0),(1)f f 的值;(2)判断()f x 的奇偶性,并证明你的结论;6、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1) 求证:f(0)=1;(2) 求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数;(4)若f(x)·f(2x-x 2)>1,求x 的取值范围。
7、已知函数()f x 的定义域为R,对任意实数,m n 都有1()()()2f m n f m f n +=++,且1()02f =,当12x >时, ()f x >0.(1)求(1)f ;(2) 判断函数()f x 的单调性,并证明.8、函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任意,x y R ∈,有()[()]y f xy f x =;③1()13f >.(1)求(0)f 的值;(2)求证: ()f x 在R 上是单调减函数;9、已知函数()f x 的定义域为R,对任意实数,m n 都有()()()f m n f m f n +=∙,且当0x >时,0()1f x <<.(1)证明:(0)1,0f x =<且时,f(x)>1; (2)证明: ()f x 在R 上单调递减; 10、函数()f x 对于x>0有意义,且满足条件(2)1,()()(),()f f xy f x f y f x ==+是减函数。
《抽象函数单调性和奇偶性》答案
f (x) 2 , f (3) 5,求不等式 f (a 2 2a 2) 3 的解集。
解:设 x1、x2 R 且 x1 x2 , 则 x2 x1 0 , f (x2 x1 ) 2 ,则 f (x2 x1 ) 2 0 , f (x2 ) f [(x2 x1) x1] f (x2 x1) f (x1) 2 f (x1)
f
(a) f (b) ab
0.(1)判断函数
f
(x)
在 [1,1]
上是增函数,还是减函数,并证明你的
结论;(2)解不等式:f(x+ 1 )<f( 1 ).
2
x 1
解:(1)设任意 x1,x2∈[-1,1],且 x1<x2.
由于 f(x)是定义在[1,1] 上的奇函数,
∴f(x2)-f(x1)=f(x2)+f(-x1). 因为 x1<x2,所以 x2+(-x1)≠0,
f (x1)
1 0, f (x1)
f (x2 )
f (x2 x1) f (x1)
f (x1) f (x)在R上为增函数。
(3)由 f (x 2 ) f ( y 2 ) f (1) 得 x 2 y 2 1 (1)
f (ax by c) 1 得 ax by c 0 (2)
(2)证明: f (x) 在 R 上是增函数;(3)设 A (x,y)| f (x 2 ) f ( y 2 ) f (1) ,
B {(x,y)| f (ax by c) 1,a,b,c R,a 0} ,若 A B ,求 a,b,c 满 足的条件。 解:(1)令 m n 0 得 f (0) f (0) f (0) , f (0) 0 或 f (0) 1。
(2) f (x ) 在 (0, ) 上是增函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、已知的定义域为R ,且对任意实数x ,y 满足,求证:是偶函数。
2、已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x,y,f(x)都满足f(xy)=yf(x)+xf(y). (1)求f(1),f(-1)的值;(2)判断f(x)的奇偶性,并说明理由. 3、函数f(x)对任意x?y ∈R,总有f(x)+f(y)=f(x+y),且当x>0时, <0,f(3)=-2.(1)判断并证明f(x)在区间(-∞,+∞)上的单调性; (2)求f(x)在[-3,3]上的最大值和最小值.4、已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xyyx ++1),试证明 (1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减5、已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,,a b R ∈都满足:()()()f a b af b bf a •=+.(1)求(0),(1)f f 的值;(2)判断()f x 的奇偶性,并证明你的结论;6、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1) 求证:f(0)=1;(2) 求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数;(4)若f(x)·f(2x-x 2)>1,求x 的取值范围。
7、已知函数()f x 的定义域为R,对任意实数,m n 都有1()()()2f m n f m f n +=++,且1()02f =,当12x >时, ()f x >0.(1)求(1)f ;(2) 判断函数()f x 的单调性,并证明.8、函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任意,x y R ∈,有()[()]y f xy f x =;③1()13f >.(1)求(0)f 的值;(2)求证: ()f x 在R 上是单调减函数;9、已知函数()f x 的定义域为R,对任意实数,m n 都有()()()f m n f m f n +=•,且当0x >时,0()1f x <<.(1)证明:(0)1,0f x =<且时,f(x)>1; (2)证明: ()f x 在R 上单调递减; 10、函数()f x 对于x>0有意义,且满足条件(2)1,()()(),()f f xy f x f y f x ==+是减函数。
(1)证明:(1)0f =;(2)若()(3)2f x f x +-≥成立,求x 的取值范围。
11、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (3) 求证:f(0)=1;(4) 求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数;(4)若f(x)·f(2x-x 2)>1,求x 的取值范围。
12、 已知函数,在R 上有定义,对任意的有 且 (1)求证:为奇函数 (2)若, 求的值13、已知函数)(x f 对任意实数y x ,恒有)()()(y f x f y x f +=+且当x >0,.2)1(.0)(-=<f x f 又(1)判断)(x f 的奇偶性;(2)求)(x f 在区间[-3,3]上的最大值; (3)解关于x 的不等式.4)()(2)(2+<-ax f x f ax f14、定义在R 上的函数f (x )对任意实数a 、b 都有f (a +b )+ f (a -b )=2 f (a )·f (b )成立,且f ()00≠。
(1)求f (0)的值; (2)试判断f (x )的奇偶性;15、已知定义在R 上的函数()f x 满足:(1)值域为()1,1-,且当0x >时,()10f x -<<; (2)对于定义域内任意的实数,x y ,均满足: 试回答下列问题: (Ⅰ)试求()0f 的值;(Ⅱ)判断并证明函数的单调性;16、定义域为R 的函数f(x)满足:对于任意的实数x ,y 都有f(x+y)=f(x)+f(y)成立,且当x >0时f(x)<0恒成立.(1)判断函数f(x)的奇偶性,并证明你的结论;(2)证明f(x)为减函数;若函数f(x)在[-3,3)上总有f(x)≤6成立,试确定f(1)应满足的条件;)0a ,n (),a (f )x a (f n 1)x (f )ax (f n 1x )3(22<->-是一个给定的自然数的不等式解关于参考答案1、分析:在中,令,得令,得于是故是偶函数2、解析:(1)∵f(x)对任意x,y 都有f(xy)=yf(x)+xf(y),令x=y=1,有f(1×1)=1·f(1)+1·f(1). ∴f(1)=0,令x=y=-1,有f[(-1)×(-1)]=(-1)·f(-1)+(-1)·f(-1), ∴f(-1)=0.(2)∵f(x)对任意x,y 都有f(xy)=yf(x)+xf(y), 令y=-1,有f(-x)=-f(x)+xf(-1). 将f(-1)=0代入,得f(-x)=-f(x). ∴函数f(x)是(-∞,+∞)上的奇函数.3、解析:(1)令x=y=0,f(0)=0, 令x=-y,可得f(-x)=-f(x),设x1?x2∈(-∞,+∞)且x1>x2,则f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2) ∵x1>x2,∴x1-x2>0. 又∵x>0时,f(x)<0. ∴f(x1-x2)<0. 即f(x1)-f(x2)<0.由定义可知f(x)在区间(-∞,+∞)上为单调递减函数.(2)∵f(x)在区间(-∞,+∞)上是减函数,∴f(x)在[-3,3]上也是减函数. ∴f(-3)最大,f(3)最小.f(-3)=-f(3)=2. 即f(x)在[-3,3]上最大值为2,最小值为-2.4、思路分析:对于(1),获得f (0)的值进而取x =-y 是解题关键;对于(2),判定21121x x x x --的范围是焦点证明 (1)由f (x )+f (y )=f (xyyx ++1)可令x =y =0,得f (0)=0, 令y =-x ,得f (x )+f (-x )=f (21x xx --)=f (0)=0 ∴f (x )=-f (-x )∴f (x )为奇函数(2)先证f (x )在(0,1)上单调递减令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴12121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0,∴x 2-x 1<1-x 2x 1, ∴0<12121x x x x --<1,由题意知f (21121x x xx --)<0,即 f (x 2)<f (x 1)∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0∴f (x )在(-1,1)上为减函数5、(1)解:令0a b ==,则(0)0f = 令1a b ==,则(1)2(1)(1)0f f f =⇒=(2)证明:令1a b ==-,则(1)2(1)f f =-,∵(1)0f =,∴(1)0f -= 令,1a x b ==-,则()(1)()()f x xf f x f x -=--=- ∴()f x 是奇函数。
6、解:(1)令a=b=0,则f(0)=[f(0)]2∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0(3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数(4)f(x)·f(2x-x 2)=f[x+(2x-x 2)]=f(-x 2+3x)又1=f(0), f(x)在R 上递增∴由f(3x-x 2)>f(0)得:3x-x 2>0 ∴ 0<x<37、(1)解:令12m n ==,则1111()2()2222f f +=+1(1)2f ⇒=(2)任取1212,,x x R x x ∈<且,则21211121112111()()[()]()()()()()22f x f x f x x x f x f x x f x f x f x x -=-+-=-++-=-+=211()02f x x -+>∴12()()f x f x <∴函数()f x 是R 上的单调增函数.8、(1)解: ∵对任意x R ∈,有()f x >0, ∴令0,2x y ==得,2(0)[(0)](0)1f f f =⇒= (2)任取任取1212,,x x R x x ∈<且,则令112211,33x p x p ==,故12p p < ∵函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任意,x y R ∈,有()[()]y f xy f x =;③1()13f >∴1212121111()()()()[()][()]3333p p f x f x f p f p f f -=-=-0>∴12()()f x f x >∴函数()f x 是R 上的单调减函数.9、解: (1)证明:令0,1m n ==,则(01)(0)(1)f f f +=•∵当0x >时,0()1f x <<,故(1)0f >,∴(0)1f =, ∵当0x > 时,0()1f x <<∴当0x <时,0x ->,则(0)1()()()()1()()f f x x f x f x f x f x f x -+=-•⇒==>-- (2)证明: 任取1212,,x x R x x ∈<且,则2121112111()()[()]()()()()f x f x f x x x f x f x x f x f x -=-+-=-•-211[()1]()f x x f x =--∵210x x ->,∴0<210()1f x x <-<,故21()1f x x --<0,又∵1()0,f x > ∴211[()1]()0f x x f x -->,故12()()f x f x > ∴函数()f x 是R 上的单调减函数.10、(1)证明:令1x y ==,则(11)(1)(1)f f f ⨯=+,故(1)0f =(2)∵(2)1f =,令2x y ==,则(22)(2)(2)2f f f ⨯=+=, ∴(4)2f =()(3)2f x f x +-≥⇒22[(3)](4)(3)(4)3414f x x f f x x f x x x -≥⇒-≥⇒-≤⇒-≤≤∴()(3)2f x f x +-≥成立的x 的取值范围是13x -≤≤。