(最新)人大附中初一新生分班考试数学试题及答案
新初一_北京人大附中_分班考试(数学)_试题
数学1.计算:________。
【答案】998【解析】解:。
2.计算:________【答案】0.00036【解析】解:。
3.按规律报数:、、、、、、、、、、、、、、、,所报的第个数是________。
【答案】9【解析】解:按照自然数的顺序从开始报数,第一轮报个数,第二轮报个数,以此类推,可发现规律是每轮的个数比上一轮多个,则第个数是。
4.一个四位数与它的各位数字之和相加等于,那么这个数是________。
【答案】或【解析】解:设这个四位数是。
由题意得,,可得,,,或,,,,答:这个四位数有可能是或。
5.一列火车长米,它穿过一个隧道用分钟,如果它每小时加速千米,那么穿过隧道需要分钟,那么隧道长________米。
【答案】8960【解析】解:设隧道长米。
所以隧道长米。
6.、和被除,得到非零余数都为,则________。
【答案】343【解析】解:设已知三数除以的商分别为自然数、、。
①②③②-①得④③-②得⑤③-①得⑥从④、⑤、⑥三式可知,,则。
7.三角形的面积为,是的中点,,与交于点,则的面积为________。
【答案】2【解析】解:连接,由燕尾模型可得,,,设份,则份,所以。
8.表示平方等于的数,表示不大于的最大整数,计算:________。
【答案】217【解析】解:,,所以。
9.如图,________度。
【解析】解:由图可知:①,②,③,④,⑤,⑥,⑦,⑧,⑨,又因为、、、、、、、、为九边形的内角,所以内角和:外角和:所以。
10.以内有________个各位数字之和为的自然数。
【答案】36【解析】解:数字之和为的个位数有,十位数有、、、、,百位数有、、、、、、、、、、、、、、,千位数有、、、、、、、、、、、、、,,一共有个数字。
11.用数字、、组成四位数,相同的数字不相邻,这样的四位数共有________个。
【答案】18【解析】解:用数字、、、组成相同的数字不相邻的四位数是、、、、、,一共有个,同理可得用数字、、、组成相同的数字不相邻的四位数有个,用数字、、、组成相同的数字不相邻的四位数有个,一共个这样的四位数。
北京人大附中、北大附中、清华附中七年级数学分班真题试题(含答案)
沈进老师专用资料名校七年级数学分班考试真题一、计算题1. 计算:10 2 19 1211 7 1 2213225 135 63 2.计算: 1994 19931994 1993 199419941211111150%4533. 计算:1111 131 150%135150%213 34 54. 计算:1 1 1 3 1 132 3 94 5 111 2 1 2 3 1 2 3 4 1 2 20015. 计算:2 23 2 34 2 3 20016. 计算: 8.01 ×1.25+8.02 1×.24+8.03 1×1×.22+8.05 1×.21 的整数部分.二、填空题7. 小李计算从 1 开始的若干个连续自然数的和,结果不当心把 1 当作 10 来计算,获得错误的结果恰巧是 100。
那么小李计算的这些数中,最大的一个是多少?8.从 1 开始,按 1, 2, 3,4,5 ,,的次序在黑板上写到某数为止,把此中一个数擦掉后,剩下的数的均匀数是590,擦掉的数是多少?179. 一个各位数字互不同样的四位数,它的百位数字最大,比十位数字大 2 ,比个位数字大 1。
还知道这个四位数的 4 个数字和为27,那么这个四位数十多少?10.有一个等差数列,此中3项a, b, c能构成一个等比数列;还有3项d, e, f也能构成一个等比数列,假如这 6 个数互不同样,那么这个等差数列起码有几项?11.在乘法算式 ABCBD× ABCBD=CCCBCCBBCB 中,同样的字母代表同样的数字,不一样的字母代表不一样的数字,假如 D=9 ,那么 A+B+C 的值是多少?12.以下列图,在方框里填数,使得算式建立,那么所有方框内数的和是多少?19 8 8×口口——————————口7口口口口5口口口口———————————口口口口口口13. 假如 66能整除 22 2 ,那么自然数 n 的最小值是多少?100个6n 个 214. 已知: 999999999 能整除 2221,那么自然数 n 的最小值是多少?n 个 215. 12 22 3292 除以 3 的余数是多少?16. 50 个互不同样的非零自然数的和为101101,那么它们的最大条约数的最大值是多少?17.自然数 n 是 48 的倍数,但不是 28 的倍数,而且 n 恰巧有 48 个约数(包含 1 和它自己),那么n 的最小值是多少?18.某正整数被 63 除商为 31,余数为 42,那么这个正整数所有质因数的和是多少?19.我们能够找到n 个自然数,用它们的和乘以它们的积,结果恰巧等于2001,那么 n 的最小值是多少?20. 算式 1× 4× 7× 10× ×的计100算结果,末端有多少个连续的0?21.一群林场工人与学生一同在昨年冬季挖好的坑中植树,均匀1名林场工人 1 小时可植树15 棵, 1 名学生 1 小时可植树11 颗。
中国人民大学附属中学数学新初一分班试卷
中国人民大学附属中学数学新初一分班试卷一、选择题1.在一幅地图上,用20厘米的线段表示30千米的实际距离,那么这幅地图的比例尺是( )。
A .1:1500 B .1:15000 C .1:150000 D .1:1500000 2.一个钟图,在9:30时,时针与分针的最小夹角是( )度。
A .60B .90C .105D .1203.一本书看了29,还剩42页,这本书有多少页?正确的算式是( ). A .2429⨯B .242(1)9⨯-C .2429÷D .242(1)9÷-4.一个三角形三个内角的度数比是3:3:5,这个三角形按角分是( )。
A .等腰三角形B .锐角三角形C .直角三角形D .钝角三角形5.一堆煤,用去了20%后,还剩下60吨,这堆煤共有多少吨? 解:设这堆煤有x 吨。
所列方程正确的是( )。
A .20%60x =B .20%60+=x xC .20%60x x -=D .20%60x -=6.如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等,则这六个数的和为( )。
A .33B .39C .45D .不知道7.松树有78棵,杨树是松树的13,梧桐树是杨树的12,梧桐树有多少棵?下面列式错误的是( )。
A .117832⨯⨯B .117832⎛⎫⨯⨯ ⎪⎝⎭C .117832⎛⎫⨯+ ⎪⎝⎭8.把一个圆柱体的侧面展开,得到一个正方形,这个圆柱的底面半径是5厘米,高是( )厘米。
A .5B .10C .15.7D .31.49.一种商品先在原价的基础上提价20%,降价20%,现在的价钱( )。
A .等于原价B .高于原价C .低于原价10.一张长方形纸长24厘米,宽12厘米,把它对折、再对折,打开后,围成一个长方体的侧面,如果要为这个长方体配一个底面,最大面积是( )平方厘米。
A .288B .36C .72二、填空题11.0.8平方千米=(______)公顷;6m6cm=(______)m ; 2.3时=(______)时(______)分;7200mL=(______)L 。
北京市人大附中数学新初一分班试卷含答案
北京市人大附中数学新初一分班试卷含答案一、选择题1.在一幅地图上,用20厘米表示实际距离80千米.这幅地图的比例尺为()A.1:4 B.1:400000 C.1:4000 D.无答案2.丁丁参加团体操表演,他所在方阵队伍(正方形或长方形)的位置用数对表示是(8,9),参加团体操表演的同学至少有()人。
A.64 B.68 C.72 D.813.学校有排球32个,比篮球多,篮球有多少个?正确的算式是()A.32×(1+) B.32×(1﹣) C.32÷(1+) D.32÷(1﹣)4.一个三角形中,三个内角的度数比是2:3:5,这个三角形是()。
A.锐角三角形B.直角三角形C.钝角三角形D.不能确定5.一个正方形的棱长和一个圆柱体的底面直径、高均相等,比较它们的体积,结果是()A.圆柱体大B.正方体大C.一样大D.无法判断6.()滚得快,而且它的两个相对的面是平平的.A.球体B.长方体C.圆柱体D.正方体7.松树有78棵,杨树是松树的13,梧桐树是杨树的12,梧桐树有多少棵?下面列式错误的是()。
A.117832⨯⨯B.117832⎛⎫⨯⨯⎪⎝⎭C.117832⎛⎫⨯+⎪⎝⎭8.下列说法不正确的是()。
A.圆锥的体积一定等于圆柱体积的13。
B.圆柱的体积一定,底面积和高成反比例。
C.车轮周长一定,车轮行驶的路程和转数成正比例。
9.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元。
小明在该快递公司寄一件10千克的物品,需要付费()。
A.19元B.21元C.23元D.25元10.将正方形纸片对折三次(如图所示),再沿AB剪去一个等腰直角三角形,展开铺平得到的图形是()。
A.B.C.二、填空题11.8.4立方分米=(________)升=(________)毫升25分=(________)时35平方分米=(________)平方米十12.67的分数单位是(______);再添(______)个这样的分数单位就是2。
北京人大附中、北大附中、清华附中七年级数学分班真题试题(含答案)
名校七年级数学分班考试真题一、计算题1.计算:1019211122 217 1322513563-⨯÷+⨯÷2.计算:199419931994199319941994⨯-⨯3.计算:111211150% 145311111 31150%51150%21 33345⎛⎫-+⎪5+⨯⎪⎛⎫⎪++++-⎪⎝⎭⎝⎭4.计算:1313 1112435911⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⨯-⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭5.计算:121231234122001 223234232001 ++++++++⋯+⨯⨯⨯⋯⨯+++++⋯+6.计算:8.01×1.25+8.02×1.24+8.03×1.23+8.04×1.22+8.05×1.21的整数部分.二、填空题7.小李计算从1开始的若干个连续自然数的和,结果不小心把1当成10来计算,得到错误的结果恰好是100。
那么小李计算的这些数中,最大的一个是多少?8.从1开始,按1,2,3,4,5 ,… ,的顺序在黑板上写到某数为止,把其中一个数擦掉后,剩下的数的平均数是59017,擦掉的数是多少?9.一个各位数字互不相同的四位数,它的百位数字最大,比十位数字大2 ,比个位数字大1。
还知道这个四位数的4个数字和为27,那么这个四位数十多少?10.有一个等差数列,其中3项a, b, c能构成一个等比数列;还有3项d, e, f 也能构成一个等比数列,如果这6个数互不相同,那么这个等差数列至少有几项?11.在乘法算式ABCBD×ABCBD=CCCBCCBBCB 中,相同的字母代表相同的数字,不同的字母代表不同的数字,如果D=9,那么A+B+C的值是多少?12.如下图,在方框里填数,使得算式成立,那么所有方框内数的和是多少?1 9 8 8×口口——————————口7 口口口口5 口口口口———————————口口口口口口13. 如果1006266222n ⋯6⋯个个能整除,那么自然数n 的最小值是多少?14. 已知:999999999能整除22221n ⋯2个,那么自然数n 的最小值是多少?15. 22221239+++⋯+除以3的余数是多少?16. 50个互不相同的非零自然数的和为101101,那么它们的最大公约数的最大值是多少?17.自然数n是48的倍数,但不是28的倍数,并且n恰好有48个约数(包括1和它本身),那么n的最小值是多少?18.某正整数被63除商为31,余数为42,那么这个正整数所有质因数的和是多少?19.我们可以找到n个自然数,用它们的和乘以它们的积,结果恰好等于2001,那么n的最小值是多少?20.算式1×4×7×10×…×100的计算结果,末尾有多少个连续的0?21.一群林场工人与学生一起在去年冬天挖好的坑中植树,平均1名林场工人1小时可植树15棵,1名学生1小时可植树11颗。
人大附新初一分班-数学
人大附中篇1.165+312-284=______;2.1999+498-2008=______;3.10.16×15-21.5×4.6=______;4.12.5×45-36×101+86.5×45=______;5.(56÷60+0.5) ×(1-9/2÷43/3)=______;6.(2.5+1/3÷1/2)÷(75%×2/3+1/6)=______;7.(7×1-3×1)+(7×3-3×2)+(7×5-3×3)+……+(7×49-3×25)=______;8.131×17+51×123=______;9.a△b表示a、b的差(大减小)的一半。
例如:12△24=(24-12)÷2=6。
那么(1)1△(35/8△23/5)=______;(2)20△(7△x)=1,x的所有可能性____________;10.2.737373……用四舍五入法保留两位小数是______;11.陈老师花了600元买了48个本和72支笔。
已知每个本8元,那么每支笔______元(数忘了,瞎编的);12.一个长方形,周长24厘米,宽4厘米。
如果长增加2厘米,那么面积是______平方厘米;13.解比例:x:3.5=4(28/5);14.圆锥的体积是圆柱的体积的2倍,它们的底面积相等,圆锥和圆柱的高的比是______;15.(忘了);16.(图形题,不好画);17.一本书,小明看了9天,每天看12页。
如果他想15天看完,平均每天看16页,那么现在他该每天看______页;18.小红每天睡眠9小时,比小刚多1/9。
小刚每天睡眠______小时;19.一项工程,甲队15天干完,乙队30天干完。
两队合干4天后,由甲队单独干,还要______天干完;20.一个三角形,一个内角的度数是另两个内角度数和的2/3。
北京人大附中、北大附中、清华附中七年级分班真题试题含答案
名校七年级数学分班考试真题一、计算题1.计算:1019211122 217 1322513563-⨯÷+⨯÷2.计算:199419931994199319941994⨯-⨯3.计算:111211150% 145311111 31150%51150%21 33345⎛⎫-+⎪5+⨯⎪⎛⎫⎪++++-⎪⎝⎭⎝⎭4.计算:1313 1112435911⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⨯-⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭5.计算:121231234122001 223234232001 ++++++++⋯+⨯⨯⨯⋯⨯+++++⋯+6.计算:8.01×1.25+8.02×1.24+8.03×1.23+8.04×1.22+8.05×1.21的整数部分.二、填空题7.小李计算从1开始的若干个连续自然数的和,结果不小心把1当成10来计算,得到错误的结果恰好是100。
那么小李计算的这些数中,最大的一个是多少?8.从1开始,按1,2,3,4,5 ,…,的顺序在黑板上写到某数,擦掉的数为止,把其中一个数擦掉后,剩下的数的平均数是59017是多少?9.一个各位数字互不相同的四位数,它的百位数字最大,比十位数字大2 ,比个位数字大1。
还知道这个四位数的4个数字和为27,那么这个四位数十多少?10.有一个等差数列,其中3项a, b, c能构成一个等比数列;还有3项d, e, f 也能构成一个等比数列,如果这6个数互不相同,那么这个等差数列至少有几项?11. 在乘法算式ABCBD ×ABCBD=CCCBCCBBCB 中,相同的字母代表相同的数字,不同的字母代表不同的数字,如果D=9,那么A+B+C 的值是多少?12. 如下图,在方框里填数,使得算式成立,那么所有方框内数的和是多少?1 9 8 8× 口 口——————————口 7 口 口 口口 5 口 口 口 口———————————口 口 口 口 口 口13. 如果1006266222n ⋯6⋯个个能整除,那么自然数n 的最小值是多少?14. 已知:999999999能整除22221n ⋯2 个,那么自然数n 的最小值是多少?15. 22221239+++⋯+除以3的余数是多少?16. 50个互不相同的非零自然数的和为101101,那么它们的最大公约数的最大值是多少?17. 自然数n 是48的倍数,但不是28的倍数,并且n 恰好有48个约数(包括1和它本身),那么n 的最小值是多少?18. 某正整数被63除商为31,余数为42,那么这个正整数所有质因数的和是多少?19. 我们可以找到n 个自然数,用它们的和乘以它们的积,结果恰好等于2001,那么n 的最小值是多少?20.算式1×4×7×10×…×100的计算结果,末尾有多少个连续的0?21.一群林场工人与学生一起在去年冬天挖好的坑中植树,平均1名林场工人1小时可植树15棵,1名学生1小时可植树11颗。
最新人大附中分班考试试题及解答1-4
第一讲计算与几何✧分班讲义由各校分班考试题及点招题汇总而来;✧例题平均难度比各分班考试题要大;✧本讲义不设课后练习,但例题较多,老师可以选择讲授,将剩余题目作为课后练习;1.计算:12744 76511 1.857979⎛⎫⎛⎫++÷++⎪ ⎪⎝⎭⎝⎭【答案】42.(1)解方程组:99910022991______ 10019973011______ x y xx y y-==⎧⎧⎨⎨-==⎩⎩,【答案】5,2(2)已知x、y满足方程组76()130,72()10x x yy x y+-=⎧⎨--=⎩则x-y的值是().【答案】83.一个分数的分子与分母之和为25,将它化为小数后形如0.38…,则这个分数的分母是().【答案】184.下面几个分数中不能化成有限小数的是()A.512B.1325C.1435D.5265【答案】A5.1232433213331 123123332333333333333333333⎛⎫⎛⎫÷++++-+++⎪ ⎪⎝⎭⎝⎭【分析】原式12143332331 11(()() 332333333333333333333 =÷+-+-++-166332111332166551 333333333333333333111=++++=+=个计算教师必读6.已知11111611616A B C C -=+++++其中A 、B 、C 都是大于0且互不相同的自然数,则(A +B )÷C =___.【分析】根据题意,容易解出1191112286166-=++,所以137111911A B C C+=+++,而11B C C ++大于1,所以1A =,同理可知,5,6B C ==,则()1A B C +÷=7.计算:121231234122001223234232001+++++++++⨯⨯⨯⨯++++++ 【分析】先进行通项归纳:(1)12(1)12(2)(1)23(2)(1)122n n n n n n n n n n n n n n ++++++===⨯+-++++--+ ,所以,原式2334452001200214253620002003⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 2342001345200212320004562003⎛⎫⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭ 36003200120032003=⨯=8.计算:621739458739458378621739458378739458126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【分析】经还原整理得:原式=6213789126207⨯=.9.计算:35737123234345181920++++⨯⨯⨯⨯⨯⨯⨯⨯ .【分析】原式=1223341819123234345181920+++++++⨯⨯⨯⨯⨯⨯⨯⨯111111123341920132417191820111111122021192201131760⎛⎫⎛⎫=++++++++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭⎛⎫⎛⎫=-+⨯-+- ⎪ ⎪⎝⎭⎝⎭=10.如图,P 为平行四边形ABCD 外一点,已知三角形PAB 和三角形PCD 的面积分别为7平方厘米和3平方厘米,平行四边形ABCD 的面积为平方厘米.PD CBA NMPDCBA 【分析】设P 到AB 的距离为1h ,P 到CD 的距离为2h ,则平行四边形高12h h h =-再设AB=CD=a ,则有1117142ah ah =⇒=;211362ah ah =⇒=则ABCD 的面积=1212()1468ah a h h ah ah =-=-=-=11.如图,在ABC ∆中,D 为BC 中点,E 为AB 上一点,且13BE AB =.已知四边形BDME 的面积为35,那么三角形ABC 的面积为______.【分析】做辅助线如右图构造燕尾模型;根据两个线比标分数如图所示,则有4335530150a a a a +=⇒=⇒=12.如图,两个长方形大小相同,长和宽分别为12和8,求阴影部分的面积.812812【分析】如右图所示,连接AC .871DC =-=;根据勾股定理:22222AC AD DC AB BC =+=+,所以2222121881BC =+-=⇒9BC =.几何则四边形ABCD 的面积等于11121894222⨯⨯+⨯⨯=,阴影部分的面积为1284254⨯-=.13.如图所示,AC 和DF 平行,在AC 和DF 上各取点B 和点E .设AE 和BD 的交点为G ,CE 和BF的交点为H ,如果HC 的长度是EH 的1.5倍,三角形ADG 的面积是210cm ,三角形CEF 的面积是220cm ,四边形BGEH 的面积2cm .G HD E FA B C【分析】连接BE ,则有10BGE AGD S S ∆∆==,而BHF CHBS S ∆∆=:3:2CH EH =320125CHB S ∆=⨯=12BHF S ∆∴=101222BGEH S ∴=+=四边形 A B CD E FG H14.如图:已知在梯形ABCD 中,上底是下底的23,其中F 是BC 边上任意一点,三角形AME 、三角形BMF 、三角形NFC 的面积分别为14、20、12.求三角形NDE的面积.【分析】如图,设上底为2a ,下底为3a ,三角形ABE 与三角形ABF 的高相差为h .由于20146ABF ABE BMF AME S S S S ∆∆∆∆-=-=-=,所以1262ah ⨯=.即6ah =.又11336922CDE CDF DEN CFN S S S S ah ∆∆∆∆-=-=⨯=⨯⨯=,所以12921DEN S ∆=+=.15.如图,在正方形ABCD 中,E 、F 分别在BC 与CD 上,且2CE BE =,2CF DF =,连接BF ,DF ,相交于点G ,过G 作MN ,PQ 得到两个正方形MGQA 和正方形PCNG ,设正方形MGQA 的面积为1S ,正方形PCNG 的面积为2S ,则12:S S =________.QPN MABC D E FGQPNMABCD E FG【分析】做辅助线如右图根据“金字塔”相似易得:2:3EF BD =;再根据“沙漏”相似易得:2:3EG DG =;再根据另一“沙漏”易得:2:3PG QG =,即正方形的边长之比为2:3,则面积之比应为4:916.长方形ABCD 被分成四块甲、乙、丙、丁.其面积关系如下:甲+乙=162平方厘米;乙+丙=208平方厘米;丙+丁=126平方厘米;已知c 与a 的长度之差为4厘米,请问d 与b 的长度之差是多少?dc ba丁丙乙A 甲DCB【分析】根据题意,可得甲+乙+丙+丁=162+126=288.由于乙+丙=208,则甲+丁=288-208=80;在CD 上取点E ,使CE=AH=a ,过E 作平行线EF.则阴影部分EFGH=208-80=128平方厘米.因为c-a=4.所以AD=128÷4=32.对应的长方形的宽AB 为288÷32=9.同理,在BM 上取一点Q ,使得BQ=ND ,这样QM 即为d 与b 的差.而甲+乙的面积较丙+丁的面积大162-126=36平方厘米.即阴影部分PNQM 的面积为36平方厘米.而AB=9.所以QM=36÷9=4.即d 与b 的差为4厘米.H G Q P N MFE a 4BCD 甲A乙丙丁a b d17.在一个棱长为8的立方体上切去一个三棱柱(如图),那么表面积减少().【答案】2834818.在图中,红色部分的面积________阴影部分的面积.(填“>”、“<”或“=”)【分析】因为,大圆半径R 等于小圆半径r 的2倍,即2R r =,所以,大圆面积22π4πR r ==,小圆面积2πr =,所以,大圆面积4=个小圆面积.因为4S S S S =-⨯+大圆小圆阴影部分红色部分,4S S =⨯大圆小圆,所以S S =阴影部分红色部分.19.已知三角形ABC 是直角三角形,4AC =厘米,2BC =厘米,求阴影部分的面积.CBA【分析】ABCS S S S ∆=+-阴影大半圆小半圆2214121ππ24 2.5π4 3.8522222⎛⎫⎛⎫=⨯+⨯-⨯⨯=-= ⎪ ⎪⎝⎭⎝⎭(平方厘米).第二讲数论与数字谜1.小红、小明二人在讨论年龄,小红说:“我比你小,当你像我这么大时,我的年龄是个质数,”小明说:“当你长到我这么大时,我的年龄也是个质数.”小红说:“我发现现在咱俩的年龄和是个质数的平方.”那么小明今年()岁.(小明今年年龄小于31岁,年龄均为整数岁)【答案】162.将小于36的11个质数分别填入下列的方格内,使得A 是质数.A 最小是几?A +++++=+□□□+□□□□+□+□□□【分析】根据题意,设yA x=,得Ax y =,因()1160A x x y +=+=,显然A+1是160的约数,若A=3,则16040112931x ===++,12023571317192331y ==++++++++3.对四位数abcd ,若存在质数p 和正整数k ,使k a b c d p ⨯⨯⨯=,且5p a b c d p +++=-,求这样的四位数的最小值,并说明理由.【分析】因为2250-<,33522-=,555-太大,所以3p =.3k a b c d ⨯⨯⨯=,显然,,,a b c d 中不含3以外的质因子,只能为1,3,9.观察可知恰有139922+++=,所以最小的这样的四位数是1399.4.一个自然数的3次方恰好有100个约数,那么这个自然数本身最少有()个约数.【分析】3次方数质因数的指数都是3倍数,则指数加1后除以3余1100=1003993334x a x a ⇒=⇒=⇒个100=4×25332482918x a b x ab ⇒=⇒=⇒⨯=个100=10×10399334416x a b x a b ⇒=⇒=⇒⨯=个5.一个自然数,加上4后就可表示3个连续的3的倍数的和,加上3后就可表示成4个连续的4的倍数之和,那么它最小需要加()后才能表示成6个连续的6的倍数之和.【分析】3个连续3倍数和应为9倍;4个连续4倍数和应为8倍;6个连续6倍数和应为18倍;则这个自然数除以9余5,除以8余5,则该数为725a +;其除以18也余5,则最小需要加13才行6.已知a,b,c 是三个自然数,且a 与b 的最小公倍数是60,a 与c 的最小公倍数是270.求b 与c 的最小公倍数.数论【分析】显然|(60,270)=30=235a ⨯⨯,而222333602352|23|[,]2702353|b b c c⎧=⨯⨯⇒⎪⇒⨯⎨=⨯⨯⇒⎪⎩则有23[,]23108b c =⨯=或23[,]235540b c =⨯⨯=7.一棵树木,2009年树龄是59岁,如果将这棵树木的树龄作为分子,当年的公元纪元年号作为分母写成分数,如2005年这棵树木的树龄是55岁,写成分数是552005,那么,这棵树木树龄从1岁至59岁,可以写出59个分数,其中最简分数有多少个?【分析】由题意可知,分子与分母差总为1950;设树龄为a ,则要求1950aa +中()(),19501,19501a a a +=⇒=,因为2195023513=⨯⨯⨯所以a 不是2,3,5,13的倍数.共14个数符合条件:1,7,11,17,19,23,29,31,37,41,43,47,49,538.已知238=1444,像1444这样能表示为某个自然数的平方,并且末3位数字为不等于0的相同数字,我们就定义为“好数”.(1)请再找出一个“好数”.(2)讨论所有“好数”的个位数字可能是多少?(3)如果有一个好数的末4位数字都相等,我们就称之为“超好数”,请找出一个“超好数”,或者证明不存在“超好数”.【分析】(1)210381077444=(2)平方数的个位只能是0,1,4,5,6,9考虑个位为1,则末两位11除以4余3,不能成为平方数;考虑个位为5,则末两位55除以4余3,不能成为平方数;考虑个位为6,则末三位666除以8余2,不能成为平方数;考虑个位为9,则末两位99除以4余3,不能成为平方数;可见,好数的个位只能是4;(3)末四位4444除以16余12,不能成为平方数因此不存在超好数9.一个自然数在四进制表示当中的各位数字之和是5,在五进制表示当中的各位数字之和是4,那么这个自然数除以3的余数是(),满足要求的最小自然数是(十进制表示)().【分析】四进制数码和为5,则除以3的余数等价于数码和5除以3的余数,也就是2;同理,五进制数码和为4,则除以4的余数等价于数码和4除以4的余数,也就是0;验证符合条件的最小的数8:48(20)=,舍去;验证8+12=20:420(110)=,舍去;验证20+12=32:432(200)=,舍去;验证32+12=44:4544(230)(134)==,舍去;验证44+12=56:4556(320)(211)==,符合要求.10.在下图的方格中填入合适的数,使每一行都为完全平方数,则最后结果为()【答案】1649784⨯=11.在下图所示的写有数字1的加法算式中,不同的汉字代表不同的数字,只有“仁”与“人”代表的数字相同,那么“仁华学校”代表的四位数字最小可能是().【分析】“人”只能为1,进而推知“大”只能为0,则“仁华学校”理论最小值为1234,经验证成立.12.已知123(2)n n ++++> 的和的个位数为3,十位数为0,则n 的最小值是【分析】(1)1232n n n +++++=的个位为3,则(1)n n +的个位为6,则n 的个位只能为2或71213,1718,2223,2727,3233,3738......⨯⨯⨯⨯⨯⨯经试,当37n =时符合条件.3738123377032⨯++++== .13.将数字1至9分别填入图中所示竖式的方格内使竖式成立(每个数字恰好使用一次),那么加数的四位数最小是.【分析】加数的数字和为46,而和数的数字和为10,说明运算中共4个进位.因为百位向千位数字谜进了1位,个位只能进1位()7892428++=<,所以十位向百位进了2位.因此三个个位数字之和为18,三个十位数字之和为19,三个百位数字之和为8.不难构造得出四位数最小为1125.14.下表中,A 、B 、C 、D 、E 、F 、G 、H 、M 各代表一个互不相同的非零数字,其中A +B =14,M ÷G =M -F =H -C ,D ⨯F =24,B +E =16,那么H 代表_________;A B C D E F GHM【分析】根据A+B=14,B+E=16,得到B=9,A=5,E=7,向下分析即可如图填写:59187324615.将0~9这十个数字分别填入下面算式的□内,每个数字只能用一次;那么满足条件的正确填法共有种.□+□□+□□□=□□□□【分析】设这个算式为A BC DEF GHIJ ++=,易见1G =,9D =,0H =.910AB C E F IJ+根据弃九法,易得加数数字和为36,和的数字和为9,则I+J=8=2+6=3+5=5+3=6+2⑴2I =且6J =时,113847B E +==+=+,对应的457358A C F ++=++=++.2类.⑵3I =且5J =时,81248B +==+,对应的267A C F ++=++.1类.⑶5I =且3J =时,1468B E +==+,对应的247A C F ++=++.1类.⑷6I =且2J =时,1578B E +==+,对应的345A C F ++=++.1类.对于以上每类,B ,E 可以调换,A ,C ,F 可以调换;所以,正确的填法共有:52!3!60⨯⨯=种.第三讲应用题(含行程)1.妈妈买来一箱桔子,若每天比计划多吃一个,则比计划少吃2天;若每天比计划少吃一个,则计划的时间过去后,还剩12个,那么这一箱桔子共()个?【答案】602.有一个分数,如果分子减1,那么这个分数就变为13,如果分母减1,那么这个分数就变为12,那么这个分数是______.【分析】分子减1与分母减1之后,约分之前,分子分母的和是不变的,因此13=39,14=28,说明之前的分数是49.3.有两块重量相同的铜锌合金.第一块合金中铜与锌质量比为2:5,第二块合金中铜与锌的重量比是1:3.现在把这两块合金铸成一块大的.求合铸所成的合金中铜与锌的重量之比.【分析】设每块合金的重量为“28”,则第一块合金中有铜“8”,有锌“20”;第二块合金中有铜“7”,有锌“21”.两块合金熔在一起后铜与锌的重量比为(87):(2021)15:41++=4.某俱乐部男、女会员的人数比是3︰2,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是10︰8︰7,甲组中男、女会员的人数比是3︰1,乙组中男、女会员的人数比是5︰3.求丙组中男、女会员的人数比.【分析】设共有男会员30份,女会员20份.则甲组有20份,男会员15份,女会员5份;乙组有人16份,男会员10份,女会员6份.所以丙组有30-15-10=5份男会员;20-5-6=9份女会员.男女会员人数比为5:9.5.民航规定:乘坐飞机普通舱的旅客每人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票.小芳的父亲出差带了40千克重的行李乘飞机,机票和行李费共付了1404元.请问:小芳的父亲购买的普通舱机票的票价是多少?【分析】设机票票价是x 元,则有()4020 1.5%1404x x +-⨯=解得1080x =应用题6.某小学租了汽车旅游,出租汽车公司规定:一辆车满30人,往返车费为500元,每多出1人,增加车费10元.(1)照这样计算,他们平均每人的车费15元.问有多少人乘坐这辆车?(2)为保障安全,如果限定超出人数不超过5人,那么平均每人的车费最少要多少元?(精确到0.01元)【分析】(1)设多出30人的人数为x 人,则可列方程()153050010x x +=+⇒10x =,所以乘车人数有301040+=人(2)()500503515.72+÷≈(元)7.学校组织老师进行智力竞赛,共20道题,答对一题得5分,不答不给分,答错扣2分,已知所有老师的总分为600多分,且男老师总分为女老师总分的2倍多1分,答对总题数为答错总数的3倍少1题.又知每人恰好有1道或2道题未答.求男老师的总分为多少?【分析】设女老师得分为a ,则男老师得分为21a +,则有60031700200232a a <+<⇒≤≤设男老师做错b 题,则做对31b -题,则有:13215(31)232ba b b a +=--⇒=-当b=32时,a=205,2a+1=411,此时男老师对错共127道,7人有20712713⨯-=题未答;当b=34时,a=218,2a+1=417,此时男老师对错共135道,7人有2071355⨯-=题未答;当b=36时,a=231,2a+1=463,此时男老师对错共143道,8人有20814317⨯-=题未答;根据每人恰好有1道或2道未答可知,男老师总分411分符合要求.8.康师傅加工一批零件,加工720个之后,他的工作效率提高了20%,结果提前4天完成任务;如果康师傅从一开始就把工作效率提高12.5%,那么也可以提前4天完成任务.这批零件共有多少个?【分析】若一开始就将工作效率提高12.5%,相当于效率89→,则所需时间98→可见原计划工作时间为9436⨯=天,加工720个零件后:工作效率56→,则所需时间65→,可见原计划这部分工作量所需时间为:6424⨯=天,这说明先加工的720个零件需362412-=天完成这批零件共有72036216012⨯=个9.甲、乙、丙三队要完成A ,B 两项工程,B 工程的工作量比A 工程的工作量要大14,如果让甲、乙、丙三队单独做,完成A 工程所需时间分别是20天,24天,30天.现在让甲队做A 工程,乙队做B 工程,为了同时完成这两项工程,丙队先与乙队合做B 工程若干天,然后再与甲队合做A 工程若干天.问丙队与乙队合做了多少天?【分析】设A 的工作量为[20,24,30]120=,则B 的工作量为112011504⨯=则甲效:120620=;乙效:120524=;丙效:120430=三队完成两项工程所需天数:12015018654+=++天;那么丙队帮乙队做的天数为:150518154-⨯=天.10.某天甲、乙两人完成一件工作,计划两人都从早上7:00开始工作,他们将在上午11:00完成;如果甲比原计划晚1小时开始工作,乙比甲再晚半小时开始,那么他们将比原计划晚1小时20分钟完成;如果乙比原计划提前半小时开始工作,甲比乙晚1小时开始,那么他们完成工作的时刻是______点______分.【分析】设甲的效率为a ,乙的速度是b ;则有154()43236a b a b b a +=+⇒=;设12a b =⎧⎨=⎩,则总工作量为:4(12)12⨯+=;设甲工作了t 小时,则乙工作了1t +小时,则12(1)1233t t t ++=⇒=;则最后完成的时刻为17:30310:503h +=;11.某商店花同样多的钱,购进甲、乙、丙三种不同的糖果.已知甲、乙、丙三种糖果每千克的价格分别是9.60元,16元和18元.如果把这三种糖果混合成什锦糖,按20%的利润定价,那么这种什锦糖每千克定价应为多少元?【分析】甲、乙、丙三种糖果的单价之比为9.6:16:1824:40:45=,由于购买这三种糖果所花的钱同样多,所以这三种糖果的量的比为111::15:9:8244045=.假设甲、乙、丙三种糖果分别有15千克、9千克和8千克,则购买这三种糖果的总成本为9.6153432⨯⨯=元.把这三种糖果混合成什锦糖,按20%的利润定价,每千克什锦糖的价格为432(120%)(1598)16.2⨯+÷++=元.12.有大、小两瓶酒精溶液,重量比为3:2,其中大瓶中溶液的浓度为8%.现在把这两瓶溶液混合起来,得到的酒精溶液浓度恰好是原来小瓶酒精溶液浓度的2倍.那么原来小瓶酒精溶液的浓度是()【分析】设原来小瓶溶液的浓度为%a ,则混合溶液的浓度为2%a ,则有:3233%282a a a a-=⇒=⇒-13.某工厂接到任务要用甲、乙两种原料生产A 、B 两种产品共50件,已知每生产一件A 产品需甲原料9千克和乙原料3千克;每生产一件B 产品需甲原料4千克和乙原料10千克.现在工厂里只有甲原料360千克和乙原料290千克,那么该工厂利用这些原料,应该生产A 、B 两种产品各多少件,才能完成任务?请求出所有的生产方案.【分析】设生产A 产品a 件,则生产B 产品b 件.则有:943605160321850a b a a b a b +≤⎧⇒≤⇒≤⇒≥⎨+=⎩并有:3102907140203050a b b b a a b +≤⎧⇒≤⇒≤⇒≤⎨+=⎩可见30321820a b ≤≤⎧⎨≤≤⎩,符合要求的生产方案为:3020a b =⎧⎨=⎩,3119a b =⎧⎨=⎩,3218a b =⎧⎨=⎩.14.甲、乙二人分别从A 、B 两地同时出发,他们计划在距A 地35处相遇,但中途甲休息了15秒钟,结果乙比计划多走36米才相遇,那么甲速为()米/秒.【分析】设甲速为3v ,则乙速为2v ,设AB 两地距离为5a ;则有:2363361523623a a v v v v+--=⇒=⇒=15.一支解放军部队从驻地乘车赶往某地抗洪抢险,如果行驶1个小时后,将车速提高五分之一,就可比预定时间提前20分钟赶到;如果先按原速度行驶72千米,再将车速提高三分之一,就可比预定时间提前30分钟赶到.问:这支解放军部队一共需要行多少千米?【分析】将车速提高五分之一,即车速56→,则所需时间65→,可见剩下的路程按原速需620120⨯=分钟=2小时,全程按原速走需1+2=3小时;行驶72千米后,将车速提高三分之一,即车速34→,则所需时间43→;可见剩下的路程按原速需430120⨯=分钟=2小时,可见前72千米用时1小时;即车速为72千米/小时,全程为72×3=216千米.16.一艘船从甲港顺水而下到乙港,到达后马上又从乙港逆水返回甲港,共用了12小时.已知顺水每小时比逆水每小时多行16千米,又知前6小时比后6小时多行80千米.那么,甲、乙两港相距______千米.【分析】设逆水速度为v ,则顺水速度为v+16,设顺水用了a 小时,逆水用了b 小时,则有[]12580(16)(6)67a b a a v a v v b +=⎧=⎧⎪⇒⎨⎨=++--=⎪⎩⎩则有5(16)740280S v v v S =+=⇒=⇒=.17.甲、乙两人分别骑车从A 地同时同向出发,甲骑自行车,乙骑三轮车.12分钟后丙也骑车从A 地出发去追甲.丙追上甲后立即按原速沿原路返回,掉头行了3千米时又遇到乙.已知乙的速度是每小时7.5千米,丙的速度是乙的2倍.那么甲的速度是多少?行程【分析】上图描绘了两个状态,丙出发时和丙追上甲时;丙出发时,落后乙127.5 1.560⨯=千米,丙追上甲时领先乙3 1.5 4.5+=千米;可见历时1.5 4.54157.55+=-小时;设甲的速度为a ,则根据丙追甲的过程有:124(15)12605a a a =-⇒=18.甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的1.5倍,而且甲比乙速度快.两人出发后1小时,甲与乙在离山顶600米处相遇,当乙到达山顶时,甲恰好下到半山腰.那么甲从出发到回到出发点共用了多少小时?【分析】设山顶到山脚的距离为S ,甲的上山速度为a ,乙的上山速度为b ;根据乙到达山顶甲下到半山腰有:124233S S abS +⨯==(将下山的路程折算成原速度的路程)根据甲乙在距山顶600米处相遇有:26004336006003S a S bS +⨯==⇒=-则乙速为3600-600=3000米/小时=3千米/小时;对应甲速应为4千米/小时,其下山速度为6千米/小时甲往返需时:3.6 3.61.546+=小时.第四讲组合数学1.初一4班第一组有6个座位和6名同学,如果他们每天安排一次座位,那么安排完所有不同的方法大约需要______年(得数只保留整数)【分析】安排完所有的方法大致需要有:6×5×4×3×2×1÷365≈1.9726≈2年,2.用1~9可以组成()个不含重复数字的三位数;如果再要求这三个数字中任何两个的差不能是1,那么可以组成()个满足要求的三位数.【分析】39504A =;两个数字差1的情况有:12,23,34,45,56,67,78,89;对应33(65555556)252A +++++++⨯=种;三个数字差1的情况有:123,234,345,456,567,678,789;对应33742A ⨯=种则不出现相邻数字的三位数有50425242210--=3.在下面的□中填入数字,使等式成立(注:每个□内只允许填0,1,2,……,9中的一个数字,允许重复)101⨯+=□□□□那么满足以上要求的等式可以填出______个.【分析】设101ab c d ⨯+=,1d =时,100502254205ab c ⨯==⨯=⨯=⨯,3种2d =时,99991333119ab c ⨯==⨯=⨯=⨯,3种3d =时,98981492147ab c ⨯==⨯=⨯=⨯,3种4d =时,97971ab c ⨯==⨯,1种5d =时,96961482323244166128ab c ⨯==⨯=⨯=⨯=⨯=⨯=⨯,6种6d =时,95951195ab c ⨯==⨯=⨯,2种7d =时,94941472ab c ⨯==⨯=⨯,2种8d =时,93931313ab c ⨯==⨯=⨯,2种9d =时,92921462234ab c ⨯==⨯=⨯=⨯,3种共有33316222325++++++++=种填法.4.用数字1,2组成一个8位数,其中至少有连续4位都是数字1的有多少个?【分析】连续8个1:1种连续7个1:2种连续6个1:1111112211111122111111,共2125++=种连续5个1:11111221111122111112211111,共22222212+++=种连续4个1:1111221111221111221111221111,共322232222228++++=种共有125122848++++=个.5.如果一个时刻的时、分、秒3个数构成递增的等差数列,则称这个时刻为幸运时刻(采用24小时制),例如00点02分04秒和17点20分23秒都是幸运时刻,那在一天中与()个幸运时刻.【分析】00开头:00:01:02,00:02:04,...,00:29:58,共29个;01开头:01:02:03,01:03:05,...,01:29:59,共29个;02开头:02:03:04,02:04:06,...,02:30:58,共28个;03开头:03:04:05,03:05:07,...,03:31:59,共28个;......共()292827182564++++⨯= 个6.在一个圆周上有1个红点和49个蓝点,所有顶点都是蓝点的凸多边形的个数,与有一个顶点是红点的凸多边形的个数,相差.【分析】所有顶点均为蓝点的凸多边形有:34484949494949C C C C ++++ ;有一个顶点为红点的凸多边形共有:23448494949494949C C C C C +++++ .两者相差:2491176C =.7.有10枚棋子,每次拿出2枚或3枚,要想将10枚棋子全部拿完,共有多少种不同的拿法?【分析】若设n 枚棋子的拿法为()f n ,则必有()(2)(3)f n f n f n =-+-已知(1)0f =,(2)1,(3)1,(4)1f f f ===,可生成如下数列:0,1,1,1,2,2,3,4,5,7,......可见(10)7f =8.(第八届走美杯六年级初赛)50个互不相同的正整数,总和是2010.这些数里至多有个偶数.【分析】最小的45个正偶数之和为:2469020702010+++=> 说明偶数数量应小于45,且因为2010是偶数,则50个数中奇数数量为偶数个最小的44个正偶数之和为246881980+++= ,这要求其余6个奇数和为30,无解;最小的42个正偶数之和为246841806+++= ,这要求其余8个奇数和为204;有解.这50个数中最多有42个偶数.9.(第八届走美杯六年级初赛)两个自然数,差为11,每一个的数字和都能被11整除.满足要求的最小一对自然数中较小的那个为.【分析】设11a b +=,设a 的数字和为11x ,b 的数字和为11y ;根据弃九法必有:1111911x k y ++-=,其中k 为进位次数;简化得:11()9211|9210min x y k k k -=-⇒-⇒=;此时891199min x y x x -=⇒=⇒=,即a 的数字和最小为99,此时a 最小是18999999999910.在一根长木棍上,有三种刻度线,第一种刻度线将木棍分成十等份;第二种将木棍分成十二等份;第三种将木棍分成十五等份;如果沿每条刻度线将木棍锯断,则木棍总共被锯成______段.【分析】设木棍长为[10,12,15]60=厘米则应在60610=倍、60512=倍和60415=倍处做标记;则标记的数量有:606060606060602865430122060⎛⎫⎛⎫⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤++-+++= ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎝⎭⎝⎭个这28个标记包含末端60厘米处,说明只需要据27次;但依然形成28段.11.从写有1~9的九张卡片中抽出一张,其余的八张平分成四组,使第一组两张卡片上的两数之和等于7,第二组两张卡片上的两数之积等于6,第三组两张卡片上的两数之差等于4,第四组两张卡片上的两数之商等于3.则抽出的卡片上的数是______.【分析】设7;6;4;3a b c d e f g h +=⨯=-=÷=623c d ⨯==⨯时,没有符合条件的3g h ÷=616c d ⨯==⨯时,393g h ÷==÷,则725a b +==+,则484e f -==-成立可见抽出的卡片是7.12.有人问赵、钱、孙三人的年龄.赵说:“我22岁,比钱小2岁,比孙大1岁”.钱说:“我不是年龄最小的,孙和我差3岁,孙25岁.”孙说:“我比赵年岁小,赵23岁,钱比赵大3岁.”以上每人所说的三句话中,都有一句是故意说错的,那么,孙的真实年龄是岁.【分析】重新梳理每人的说辞:赵:赵22岁;钱24岁;孙21岁;钱:孙25岁;钱22岁或28岁;钱不是最小的;孙:赵23岁;钱26岁;孙小于23岁显然“赵22岁”和“赵23岁”矛盾,只能对一个假设“赵22岁”是对的,则“赵23岁”就是错的;孙的三句话依次为:×√√;依此推理钱的三句话:√×√;再依次推理赵的三句话:√√×;而“钱24岁”和“钱26岁”矛盾;因此“赵22岁”是错的,推知孙21岁.13.4道选择题,每题都有A 、B 、C 、D 四个选项,其中每题只有一个选项是正确的,有800名学生做这四道题,至少有______人的答题结果是完全一样的.【分析】4道选择题有44256=种不同的选法,而800256332÷= ;根据抽屉原理,至少有314+=个人的答题结果是完全一样的.14.从1~12中选出7个自然数,要求选出的数中不存在某个自然数是另一个自然数的2倍,那么一共有()种选法.【分析】{1,2,4,8}中至多取2个;{3,6,12}中至多取2个;{5,10}中至多取1个;{7,9,11}可任取则最多可取2+2+1+3=8个;若{1,2,4,8}少取1个:41218⨯⨯⨯=种取法若{3,6,12}少取1个:332118⨯⨯⨯=种取法若{5,10}少取1个:31113⨯⨯⨯=种取法若{7,9,11}少取1个:312318⨯⨯⨯=种取法共81831847+++=种取法15.(15届华杯决赛)足球队A ,B ,C ,D ,E 进行单循环赛(每两队赛一场),每场比赛胜队得3分,负队得0分,平局两队各得1分.若A ,B ,C ,D 队总分分别是1,4,7,8,请问:E 队至多得几分?至少得几分?【分析】1分:1平3负;4分:1胜1平2负或4平;7分:2胜1平1负;8分:2胜2平;若B 队1胜1平2负,则四队合计5胜6负5平,此时E 队可能为2胜1负1平(7分),也可能为1胜3平(6分);若B 队4平,则四队合计4胜4负8平,此时E 队可能是1胜1负2平(5分),也可能是2胜2负(6分),可见E 队至多得7分,至少得5分.16.一个班有五十多名同学,上体育课时大家排成一行,先从左至右1234,1234报数,再从右至左123、123报数,后来统计了一下,两次报到同一个数的同学有15名,那么这个班一共有()名同学.【分析】以左起前12个人为研究对象:123412341234321321321321⎧⎨⎩,其中报同一个数的有3个,要保证15人报同一个数,至少要有125357⨯-=人(保证最右边的人从1起报);123412341234213213213213⎧⎨⎩,其中报同一个数的有3个,要保证15人报同一个数,至少要有125159⨯-=人;123412341234132132132132⎧⎨⎩,其中报同一个数的有3个,要保证15人报同一个数,至少要有125161⨯+=人,舍去17.圆周上放置有7个空盒子,按顺时针方向依次编号为1,2,3,4,5,6,7.小明首先将第1枚白色棋子放入1号盒子,然后将第2枚白色棋子放入3号盒子,再将第3枚白色棋子放入6号盒子,……,放置了第1k -枚白色棋子后,小明依顺时针方向向前数了1k -个盒子,并将第k 枚白色棋子放在下一个盒子中,小明按照这个规则共放置了200枚白色棋子.随后,小青从1号盒子开始,按照逆时针方向和同样的规则在这些盒子中放入了300枚红色棋子.请回答:每个盒子各有多少枚白色棋子?每个盒子各有多少枚棋子?【分析】根据编号规则,1号、8号、15号、...等形如71k +的号码都是1号;同理,2号、9号、16号、...等形如72k +的号码都是2号;......6号、13号、20号、...等形如76k +的号码都是6号;7号、14号、21号、...等形如77k +的号码都是7号;白棋子依次放入1,3,6,3,1,7,7,1,3,6,3,1,7,7,......;200个白棋子进行分组:200=7×28组+4个;对应红棋子依次放入1,6,3,6,1,2,2,1,6,3,6,1,2,2......;300个红棋子进行分组:300=7×42组+6个;列表统计如下:盒子编号1234567白子57058002956红子86854300860棋子总数1438510111556。
【七年级数学】七年级数学上册分班真题试题(北京人大附中、北大附中、清华附中含答案)
七年级数学上册分班真题试题(北京人大附中、北大附中、
清华附中含答案)
名校七年级数学分班考试真题
一、计算题
1计算
2计算
3计算
4计算
5计算
6计算801×125+802×124+803×123+804×122+805×121的整数部分.
二、填空题
7小李计算从1开始的若干个连续自然数的和,结果不小心把1当成10计算,得到错误的结果恰好是100。
那么小李计算的这些数中,最大的一个是多少?
8从1开始,按1,2,3,4,5 ,… ,的顺序在黑板上写到某数为止,把其中一个数擦掉后,剩下的数的平均数是,擦掉的数是多少?
9一个各位数字互不相同的四位数,它的百位数字最大,比十位。
新初一分班考试数学试题和答案(人大附中)
新初一分班考试数学试题和答案(人大附中)一、计算和方程综合1、275+326×274275×326−512、分数3713可写成2+1xx+1的形式,则xx=,yy=,zz=yy+1zz3、148149+148×86149+48×74149=4、计算:51×3+53×5+55×7+⋯+595×97+597×99=()A.9899B.24599C.49099D. 49995、1990+19901990+1990199019901989+19891989+198919891989−11989=6、12+�13+23�+�14+24+34�+�15+25+35+45�+⋯+�110+210+⋯+910�=7、若xx=111980+11981+11982+⋯+11997,则xx的整数部分为8、已知A=1+12+13+14+15+16+17+18,则A的整数部分是9、1+2-3+4+5-6+7+8-9+10+11-12+……+997+998-999+1000=10、已知x、y满足x+[y]=2009,{x}+y=20.09;其中[x]表示不大于x的最大整数,{x}表示x的小数部分,即{x}=x-[x],那么x=11、12、真分数aa7化成循环小数之后,从小数点后第1位起若干位数字之和是9039,则aa是多少?13、观察下列等式是否成立:(1)3(xx+2)(xx+5)=1xx+2−1xx+5(2)7(xx+1)(xx+8)=1xx+1−1xx+8(3)3(xx+3)(xx+9)=1xx+3−1xx+9若成立,请表示它们的规律:mm−nn(xx+nn)(xx+mm)=据这个规律简化:(1)1xx(xx+1)+1(xx+1)(xx+2)+1(xx+2)(xx+3)+1(xx+3)(xx+4)+=(2)1xx(xx+4)+1(xx+4)(xx+8)+1(xx+8)(xx+12)+1(xx+12)(xx+16)+=二、几何与计数组合1、一个圆柱体和一个圆锥体,底面周长的比是2:3,它们体积是5:6,圆柱和圆锥高的最简单的整数比是().A. 8:5B. 12:5C. 5:8D. 5:122、如图所示,空白面积为90,BD=2AD,AG=2GC,BE=EF=FC,则阴影面积为()3、将一个正方形纸片按图1中(1)(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平所得的图案应为图2中的()A. B. C. D.4、如图所示,在△ABC中,CP=12CB,CQ=13CA,BQ与AP相交于点X,若△ABC的面积为6,则△ABX的面积等于5、已知如图,求阴影部分的面积(π取3.14)6、右图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形7、5块六边形的地毯拼成了图中的形状,每块地毯上都有一个编号.现在墨莫站在1号地毯上,他想要走到5号地毯上,如果墨莫每次都只能走到和他相邻的地毯上(两个六边形如果有公共边就称为相邻),并且只能向右边走,例如1->2->3->5就是一种可能的走法.请问:墨莫一共有()种不同的走法。
中国人民大学附属中学新初一分班数学试卷含答案
中国人民大学附属中学新初一分班数学试卷含答案一、选择题1.房屋每平方米物业管理费一定,房屋面积和所缴的物业管理费()。
A.成正比例B.成反比例C.不成比例D.不确定成什么比例2.下面4个正方体中,()可能是用下边的图形折成的。
A.B.C.D.3.7路公共汽车的行驶路线全长8 km,每相邻两站的距离是1 km.一共有几个车站?正确的算式是()A.7÷1+1 B.7÷1-1C.8÷1+1 D.8÷1-14.一个三角形三个内角度数的比是4∶3∶2,这个三角形是()。
A.钝角三角形B.等腰三角形C.直角三角形D.锐角三角形5.六(1)班有女生24人,比男生人数的57多4人,男生有多少人?解:设男生有x人,下列方程错误的是()。
A.524x47-=B.5x4247+=C.5x2447=-D.5x4247-=6.一块正方体木块,6个面分别写着a、b、c、d、e、f,6个字母(如下图),根据图中字母的排列,和字母f相对的字母是()。
A.a B.b C.c D.d7.我们可以用很多种方式表达一个数,下面表达错误的是()。
A.B.C.D.8.如下图,一个长方形长为a,宽为b。
分别以长为轴、宽为轴旋转,产生了两个圆柱甲、乙。
判断甲、乙两个圆柱侧面积的大小关系()。
A.甲>乙B.甲<乙C.甲=乙D.无法比较9.一种电视机提价25%,又降价20%,现在的价钱和原来的价钱相比,价钱().A.降低了B.没有变C.提高了D.不确定10.下面三幅图是在同样大的正方形中分别画出的图形,三幅图中的阴影面积相比较,结果是().① ② ③A.①面积最小B.②面积最大C.③面积最大D.同样大二、填空题11.在横线里填入>、<或=。
1小时30分_____1.3小时;1千米的78____7千米的18。
十12.78的分数单位是(________),它有(________)个这样的分数单位,再添上(________)个这样的分数单位就是最小的质数。
2024年七年级新生分班考试数学试卷(附答案)
2024年七年级新生分班考试数学试卷(全卷满分100分,考试时间90分钟)一、选择题(每小题2分,共10分)1.比较等底等高的圆柱、正方体、长方体的体积的大小,结果是()A.长方体体积大B.正方体体积大C.圆柱体积大D.一样大2.下面每组中的四个数不能组成比例的是()A.4:8和5:20B.6:9和12:18C.和D.9:12和0.9:1.23.时针围绕钟面中心顺时针方向旋转()才能从1:00走到4:00。
A.30°B.60°C.90°D.120°4.如图中,表示正比例图象的是()5.用下面的图表示各图形之间的关系,不正确的是()二、填空题(每空1分,共20分)1.学校组织开展植树活动。
同学们种了松树和柏树两种树,两种树的总棵数在170棵至180棵之间,松树的棵数是柏树的3/4。
那么种了棵松树和棵柏树。
2.去年冬至这一天,本市城区中午12时的气温是5℃,到晚上12时下降了7℃,那么这天晚上12时的气温是℃。
3.把2:0.25化成最简单的整数比是,它的比值是。
4.5米2分米=厘米 4.9L=mL3小时15分=小时860平方分米=平方米5.一只七星瓢虫的实际长度是5mm,画在图上后,量的长度是3cm,这幅图的比例尺是。
6.把如下图中的长方形以AD为轴旋转一周,得到一个圆柱体。
这个圆柱体的体积是cm3。
7.一个三角形的三个内角的度数比是2:5:2,这个三角形按角分是三角形;按边分是三角形。
8.一杯盐水重50克,它的含盐率为20%。
小青往这杯盐水中再倒入30克水,现在这一杯盐水的含盐率是。
9.根据算式的规律填空。
10.把一块长方体木料沿它的高锯掉2dm后,表面积减少72dm2,刚好成为一个正方体。
这个正方体的表面积是dm2,它的体积是dm3。
11.张爷爷家有121只鸽子,要保证至少有7只鸽子要飞进同一个鸽笼里,那么最多有个鸽笼。
12.劳动农场将一块长方形菜地分割成4个小长方形地对外出租(如图),其中小长方形地A、B、C 的面积分别是20m2、12m2、21m2,那么小长方形地D的面积是平方米。
人大附中分班考试班部分答案
人大附中分班考试班第四讲部分答案第四讲计数问题一. 加法原理与乘法原理例1.满足下面性质的数称为好数,它的个位比十位大,十位比百位大,百位比千位大,并且相邻两位数字差不超过2.例如1346为好数,3579为好数,但1456就不是好数.那么有四位好数.答案:36 .例2.用3种颜色把一个3´3的方格表染色,要求相同行和相同列的3个格所染的颜色互不相同,一共有________种不同的染色法例3.□□□+□□=□□+□□,把数字1~9填入上面的方框中,使等式成立.每个数字只能填1次,一共有多少种不同的填法?例4.如图,把A、B、C、D、E这5个部分用4种不同的颜色着色,且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色。
那么,这幅图共有多少种不同的着色方法?解析:4×3×2×2×2=96。
例5.有一种四位数,它与它的逆序四位数和为9999.例如7812+2187=9999,3636+6363=9999等.那么这样的四位数一共有多少个?二. 排列组合例6.3个男生,3个女生排成一排,要求男生不能相邻,求一共有多少种排法?如果女生也不能相邻,求一共有多少种排法?解析:72。
只可能是“男女男女男女”和“女男女男女男”。
例7.从10个人中挑出5人,求满足下列条件的选法有多少种。
(1)A,B必须入选;(2)A,B 至少有一个人入选;(3)A,B,C中恰好有一个人入选;(4)A,B,C不能同时入选。
例8.用数字1,2组成一个8位数,其中至少有连续4位都是数字1的有多少个?例9.从1、2、3、…、9中选取若干互不相同的数字(至少一个),使得其和是3的倍数,共有多少种选法?解析:按取出数的个数分类,总共有175种取法。
例10.老师要将20个相同的苹果分给3个小朋友,要求每个小朋友至少分得3个苹果,那么共有_____种分配方法.三. 计数综合例11.各位数字之和为33,而且能够被33整除的五位数有多少个?解析:288个。
北京市朝阳区中国人民大学附属中学朝阳学校2024-2025学年七年级上学期分班考数学试卷
北京市朝阳区中国人民大学附属中学朝阳学校2024-2025学年七年级上学期分班考数学试卷一、填空题1化简比并求比值1(1)25%:7最简比是 .比值是 .(2)40分钟︰2小时最简比是 .比值是 .2学校对学生午餐的剩饭情况进行调查,下面扇形统计图表示了调查的结果.(1)没有剩饭的人数占调查总人数的 %.(2)在这次调查中,剩饭量大约一半和超过一半的共有60人,这次调查的总人数是 人.3有一个立方体,棱长是4厘米,在这个立方体上打4个洞,两个是从上直通到下,两个是从前直通到后.打 洞之后,这个立方体的体积是 立方厘米.4若2a-b=5,则多项式6a-3b-5的值是 .5有一项工程,有三个工程队竞标,已知甲乙丙三个工程队都是以工作时间长短来付费的,由甲、乙两队合 作,10天可以全部完工,共需要支付18000元;由乙、丙两队合作,20天可以完工,共需要支付12000元; 由甲、丙两队合作,12天可以完成,共需要支付15000元.如果该工程只需要一个工程队承建,即只能一个 队伍单独施工,那么最快的比最慢的会早完工 天,需要支付速度最快的队伍 元.6 如图,正方形 ABCD 的面积为 1,DF =2FC ,BE =2EC ,DE 与 BF 相交于 M 点,DE 与 AF 相交于 N 点, 那么阴影三角形 MFN 的面积是.7 三个两两不同的正整数,和为 126,则它们两两最大公因数之和的最大值为.8 按照下列程序运算(如图)规定:程序运算到“判断结果是否大于 244”为一次运算,若进行了 5 次才停止,则 x 的取值范围是.二、选择题9 下列说法中,正确的有( ).①两个端点都在圆上的线段叫做圆的直径: ②一包水果重3/5千克,也就是 60%千克:③一个圆的半径增加 3厘米,面积就增加9平方厘米;④一根绳子剪成两段,第一段长为7/11 米,第二段占全长的 7/11,那么第二段比第一段长; ⑤现存有关圆周率的最早记载是 2000 多年前的《周髀算经》.A.1个B.2个C.3 个D.4个10 甲数是 a ,乙数是甲数的 多 5,求甲乙两数和的算式是(A. B. C. D. 11 一只小蚂蚁,想从圆柱体无盖纸筒的左下角的 A 点爬到右上角的 B 点,已知圆柱体底面周长是 24 分米, 高是 5 分米,求小蚂蚁最少要走多少距离?().C.16 分米D.20 分米12 从 1 至 36 个数中,最多可以取出 个数,使得这些数中没有两数的差是 5 的倍数.()D.6 个1 ).4 A.10 分米A.3 个B.13 分米B.4 个C.5 个13 如图所示,图 1 是一个由 27 块棱长为 1 的小正方体粘合而成的棱长为 3 的大正方体:① 若如图 2 所示,去掉顶点上的一列共 3 个小正方体,那么这个立方图形的表面积是多少, ② 若如图 3 所示,去掉棱上的一列共 3 个小正方体,那么这个立方图形的表面积是多少.()A.54,56B.52,58C.52,56D.54,5814 如图所示,在正方形 ABCD 内,红色、绿色正方形面积分别是 48 和 12,且红、绿两个正方形有一个顶 点重合.黄色正方形的一个顶点位于红色正方形两条对角线的交点,另一个顶点位于绿色正方形的两条对角 线交点,那么黄色正方形的面积是().A.2515 如图所示,在一个正方形的四个顶点处,按逆时针方向各写了一个数:2,0,0,1,然后取各边中点, 并在各中点处写上其所在边两端点处的平均值,这四个中点构成一个新的正方形,又在这个新的正方形四边中点处写上其所在边两端点处的平均值,连续这样做到第 10 个正方形,则图上写出的所有数的和是.( )A.10B.26C.27D.28B.20C.30D.4016 检查篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:篮球编号12 34 5与标准质量的差(克)+4+7-3-8+9最接近标准质量的是号篮球;质量最大的篮球比质量最小的篮球重 克.A.3;17三、计算题17 计算下列各题,能简算的要简算. (1)(2)(3)(5)计算下列各式B.4;17C.4;18D.3;1818 (4)(1)(2)(3)(4)(5)19计算:20计算:21解方程:(1)(2) (3)x:(3x-1)=2:522若x1,x2,x3,x4,x5满足方程组:,求3x4+2x5的值.四、解答题23小华登山,从山脚到途中A点的速度是米/时,从A点到山顶的速度是2千米/时,他达到山顶后立即按原路下山,下山速度是 4 千米/时,下山比上山少用了 小时,已知途中B点到山顶的路程比A点到山顶的路程少500米,且小华从A点开始上山至下山达到B点恰好用了1小时,问:从山脚到山顶的路程是 多少千米?24阅读材料:规定一种新的运算:=ad-bc,例如:(1)按照这个规定,请你计算2 4(2)按照这个规定,当时,求x 的值.56的值.25甲、乙、丙三个人一起买一件古董,他们三个人出钱的比是2︰2︰1,第一次三个人只付了总钱数的50%, 乙比丙多付了2750元,但是这些钱中包含乙替甲垫付的550元,几天之后甲又单独向丙借了2000元,向乙借了500元,几天之后这三人发现古董的价格提高了20%,并且由于甲缺钱,三个人的出钱的比改成了1︰ 2︰2,请问:三个人还要分别各付多少元,才能使得他们在付完古董的钱后互不相欠?26甲、乙二人在同一条圆形跑道上作特殊训练:他们同时从同一地出发,沿相反方向跑,每人跑完一圈达到出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲的速度的 ,甲跑第二圈的速度比第一圈提高了 ,乙跑第二圈的速度提高了 ,已知沿跑道看从甲、乙两人第二次相遇点到第一次相遇点的最短路程是 190 米,问这条跑道长多少米?北京市-朝阳区-人大附朝阳-分班考试卷答案一、填空题1 【答案】(1)7︰4; 432【答案】 (1)55 (2)4003【答案】4【答案】5【答案】6【答案】7【答案】 8【答案】二、选择题9【答案】10【答案】7 1 (2)1︰3; 5010 45;183751 4472 2<x ≤4BC11【答案】 B12【答案】 C 13【答案】 B 14【答案】 C15【答案】 C16【答案】 A三、计算题17 【答案】(1)(2)25(3)(4)(5) 24118 【答案】50(2)(3)(4)11 72 5 443 (1) 1 6 811 2 101(5)19【答案】20【答案】21【答案】(1)x=(2)x=24(3)x=222【答案】181四、解答题23【答案】5.524【答案】(1)8 (2)x=125【答案】甲5690元,乙4230元,丙3280元26【答案】400。
人大附中新初一分班考试数学
人大附中新初一分班考试数学1.165+312-284=______;2.1999+498-2008=______;3.10.16×15-21.5×4.6=______;4.12.5×45-36×101+86.5×45=______;5.(56÷60+0.5) ×(1-9/2÷43/3)=______;6.(2.5+1/3÷1/2)÷(75%×2/3+1/6)=______;7.(7×1-3×1)+(7×3-3×2)+(7×5-3×3)+……+(7×49-3×25)=______;8.131×17+51×123=______;9.a△b表示a、b的差(大减小)的一半。
例如:12△24=(24-12)÷2=6。
那么(1)1△(35/8△23/5)=______;(2)20△(7△x)=1,x的所有可能性____________;10.2.737373……用四舍五入法保留两位小数是______;11.陈老师花了600元买了48个本和72支笔。
已知每个本8元,那么每支笔______元(数忘了,瞎编的);12.一个长方形,周长24厘米,宽4厘米。
如果长增加2厘米,那么面积是______平方厘米;13.解比例:x:3.5=4(28/5);14.圆锥的体积是圆柱的体积的2倍,它们的底面积相等,圆锥和圆柱的高的比是______;15.(忘了);16.(图形题,不好画);17.一本书,小明看了9天,每天看12页。
如果他想15天看完,平均每天看16页,那么现在他该每天看______页;18.小红每天睡眠9小时,比小刚多1/9。
小刚每天睡眠______小时;19.一项工程,甲队15天干完,乙队30天干完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人大附中新初一分班考试真题
2.在下图的方格中填入合适的数,使每一行都为完全平方数,则最后结果为〔〕。
3.在下图所示的写有数字1的加法算式中,不同的汉字代表不同的数字,只有"仁"与"人" 代表的数字相同,那么"仁华学校"代表的四位数字最小可能是().
4.请你从1~100中选出12个数填入下图的圆圈里,使得每个数均为与它相邻的两个数的最大公约数或最小公倍数。
5.找出5个互不相同的大于1的自然数,使得其中两个数的积等于其余三个数的积,两个数的和(不一定是刚才的两个数)等于其余三个数的和,请写出满足条件的式子。
7.小红、小明二人在讨论年龄,小红说:"我比你小,当你像我这么大时,我的年龄是个质数。
"小明说:"当你长到我这么大时,我的年龄也是个质数。
"小红说:"我发现现在咱俩的年龄和是个质数的平方。
"那么小明今年〔〕岁。
(小明今年年龄小于3 1岁,且年龄均为整数岁)
8.用A、B、C、D、E、F六种燃料去染下图的两个调色盘,要求每个调色盘里的六种颜色不能相同,且相邻四种颜色在两个调色盘里不能重复,那么共有〔〕种不同的染色方案(旋转算不同方法〕。
9.在一个棱长为8的立方体上切去一个三棱柱(如图〕,那么表面积减少〔〕。
10.—次10分钟的知识竞赛,小明每分钟能做1 5道题,但做3道错一道,而且他做2 分钟要休息1分钟,那么小明这次竞赛做对了〔〕道题。
11.妈妈买来一箱桔子,若每天比计划多吃一个,则比计划少吃2天;若每天比计划少吃一个,则计划的时间过去后,还剩1 2个,那么这一箱桔子共〔〕个?
12.学校组织老师进行智力竞赛,共2 0道题,答对一题得5分,不答不给分,答错扣2 分,已知所有老师的总分为6 0 0分,且男老师总分为女老师总分的2倍多1分,答对总题数为答错总题数的3倍少1题。
又知每人恰好有1道或2道题未答。
求男老师的总分为多少?
13.甲、乙二人分别从A、B两地同时出发,他们计划在距A地3/5处相遇,但中途甲休息了15秒钟,结果乙比计划多走3 6米才相遇,那么甲速为〔〕米/秒。
参考答案。