反比例函数经典试题

合集下载

反比例函数题型专项练习试题

反比例函数题型专项练习试题

反比例函数题型专项(一)专题一、反比例函数的图像1.如图,反比例函数的图象经过点A(2,1),若y≤1,则x的范围为()A.x≥1 B.x≥2 C.x<0或0<x≤1 D.x<0或x≥22.在同一直角坐标系中,函数y=kx+1与y﹦(k≠0)的图象大致是()A.B.C.D.3.若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.4.若方程=x+1的解x0满足1<x0<2,则k可能是()A.1 B.2 C.3 D.65.在同一平面直角坐标系中,画正比例函数y=kx和反比例函数y=(k<0)的图象,大致是()A.B.C.D.6.函数y=,当y=a时,对应的x有两个不相等的值,则a的取值范围()A.a≥1 B.a>0 C.0<a≤2 D.0<a<27.已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.8.函数y=与y=kx﹣k(k≠0)在同一直角坐标系中的图象可能是()A. B. C. D.9.在同一坐标系中,表示函数y=ax+b和y=(a≠0,b≠0)图象正确的是()A.B.C. D.10.函数y=的图象在()A.第一,三象限 B.第一,二象限 C.第二,四象限 D.第三,四象限11.如果k<0,那么函数y1=kx﹣k,的图象可能是()A.B.C.D.12.如图,一次函数与反比例函数的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是()A.x<﹣1 B.x>2 C.﹣1<x<0,或x>2 D.x<﹣1,或0<x<212题图 13题图13.如图,反比例函数y1=,y2=,y3=的图象的一部分如图所示,则k1,k2,k3的大小关系是()A.k1<k2<k3 B.k2<k3<k1 C.k3<k2<k1 D.k1<k3<k2类型二、反比例函数图象的对称性1.若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是()A.(2,3) B.(3,2) C.(﹣2,3)D.(﹣2,﹣3)2.如图,有反比例函数y=,y=﹣的图象和一个圆,则图中阴影部分的面积是()A.π B.2π C.4π D.条件不足,无法求2题图 3题图 4题图 5题图 6题图3.图中正比例函数和反比例函数的图象相交于A、B两点,分别以A、B两点为圆心,画与y轴相切的两个圆,若点A的坐标为(1,2),则图中两个阴影部分面积的和是()A.π B.π C.4π D.条件不足,无法求4.如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y= B.y= C.y= D.y=5.如图,直线y=kx(k>0)与双曲线y=交于A,B两点,若A,B两点的坐标分别为A(x1,y1),B(x2,y2),则x1y2+x2y1的值为()A.﹣8 B.4 C.﹣4 D.06.如图,过原点的一条直线与反比例函数y=(k≠0)的图象分别交于A,B两点.若A点的坐标为(a,b),则B点的坐标为()A.(a,b) B.(b,a) C.(﹣b,﹣a) D.(﹣a,﹣b)7.已知正比例函数y=kx的图象与反比例函数的图象的一个交点坐标是(1,3),则另一个交点的坐标是()A.(﹣1,﹣3)B.(﹣3,﹣1)C.(﹣1,﹣2) D.(﹣2,﹣3)类型三、反比例函数的性质8.反比例函数y=的图象如图所示,以下结论正确的是()①常数m<1;②y随x的增大而减小;③若A为x轴上一点,B为反比例函数上一点,则S△ABC=;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.A.①②③ B.①③④ C.①②③④ D.①④9.己知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2 C.2<y<6 D.y>610.已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>1011.关于函数有如下结论:①函数图象一定经过点(﹣2,﹣3);②函数图象在第一、三象限;③函数值y随x的增大而减小;④当x≤﹣6时,y的取值范围为y≥﹣1.其中正确的有()个.A.1 B.2 C.3 D.412.下列函数中,y随x增大而增大的是()①;②;③y=2x﹣1;④;⑤.A.①②③⑤ B.②③④ C.③④ D.③④⑤13.已知函数,有下列结论:①两函数图象交点的坐标为(4,4);②当x>4时,y2>y1;③当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的个数是()A.0个B.1个 C.2个 D.3个14.已知函数y=﹣,当自变量的取值为﹣1<x<0或x≥2,函数值y的取值.15.我们已经知道函数y=与y=﹣的两个图象之间的联系与区别,那你知道函数y=的图象与上述两个函数图象之间又有怎样的关系吗?(1)试用描点法画出图象加以探究;(2)如果利用y=与y=或y=﹣的图象之间的关系,可怎样画y=﹣的图象?类型四、反比例函数K 的几何意义1.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A、B两点,则四边形MAOB的面积为()A.6 B.8 C.10 D.121题图 2题图 3题图 4题图2.如图Rt△ABC在平面坐标系中,顶点A在x轴上,∠ACB=90°,CB∥x轴,双曲线y=经过C点及AB的三等点D(BD=2AD),S△BCD=6,则k的值为()A.3 B.6 C.﹣3 D.﹣63.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.134.如图,直线x=t(t>0)与反比例函数y=(x>0)、y=(x>0)的图象分别交于B、C两点,A为y轴上任意一点,△ABC的面积为3,则k的值为()A.2 B.3 C.4 D.55.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是()A.一直不变 B.先增大后减小 C.先减小后增大 D.先增大后不变6.(2015秋•长清区期末)反比例函数的图象上有两点M,N,那么图中阴影部分面积最大的是()A.B.C.D.7.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线与边BC交于点D、与对角线OB交于点中点E,若△OBD的面积为10,则k的值是()A.10 B.5 C. D.8.如图,点A、B在反比例函数y=的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB 交x轴于点C,若OM=MN=NC,且△AOC的面积为9,则k的值为()A.9 B.3 C.6 D.8题图 9题图 10题图 11题图9.如图,已知反比例函数y=(k<0)的图象经过Rt△OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣4,2),则△AOC的面积为()A.4 B.2.5 C.3 D.210.如图,过反比例函数y=(x>0)图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得()A.S1>S2 B.S1<S2 C.S1=S2 D.S1、S2的大小关系不能确定11.如图是一个反比例函数(x>0)的图象,点A(2,4)在图象上,AC⊥x轴于C,当点A运动到图象上的点B(4,2)处,BD⊥x轴于D,△AOC与△BOD重叠部分的面积为()A.1 B.2 C. D.12.如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数y=(k≠0)的图象上,则点E的坐标为()A. B.()C.()D.()13.如图,在的图象上有A、B、C三点,边OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积为S1、S2、S3,则有()A.S1>S2>S3B.S1<S2<S3C.S1=S2=S3D.S1>S3>S2课后作业1.(1999•哈尔滨)下列各图中,能表示函数y=k(1﹣x)和y=(k≠0)在同一平面直角坐标系中的图象大致是()A.B. C. D.2.如图:三个函数,,,由此观察k1,k2,k3的大小关系是.3.函数y1=x (x≥0),如图所示,请你根据图象写出3个不同的结论:①;②;③.4.请你写出一个反比例函数的解析式使它的图象在第一、三象限.5.对于函数y=,当x>2时,y的取值范围是<y<.6.已知函数y=与y=k2x图象的交点是(﹣2,5),则它们的另一交点是.7.如图,直线y=﹣2x与双曲线的一个交点坐标为(﹣2,4),则它们的另一个交点坐标为.7题图 9题图 10题图 14题图8.已知函数y=2x与的图象的一个交点坐标是(1,2),则它们的图象的另一个交点的坐标是.9.已知,如图,正比例函数与反比例函数的图象相交于A、B两点,A点坐标为(2,1),分别以A、B为圆心的圆与x轴相切,则图中两个阴影部分面积的和为.10.如图,有反比例函数y=,y=﹣的图象和一个以原点为圆心,2为半径的圆,则S阴影= .11.若k<,则双曲线的图象经过第象限.12.函数①y=、②y=﹣、③y=(x>0)、④y=(x<0)、⑤y=﹣x+1中,y随x的增大而减小的有.13.已知反比例函数的图象在第二、四象限,其解析式为.14.如图,l1是反比例函数y=在第一象限内的图象,且过点(2,1),l2与l1关于y轴对称,那么图象l2的函数表达式为(x<0).三.解答题(共4小题)15.若函数y=(2m﹣9)x|m|﹣7是反比例函数,且它的图象分别位于第一象限和第三象限内,求m的值.16.如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,求k的值。

反比例函数测试题及答案(一)修改版

反比例函数测试题及答案(一)修改版

第26章 反比例函数测试题姓名___________班级__________学号__________分数___________(满分120分)一、选择题(每小题5分,共40分)1. 下列函数,①y =2x ,②y =x ,③y =x -1,④y =11x +是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个2. 反比例函数y =2x的图象位于( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限3. 已知矩形的面积为10,则它的长y 与宽x 之间的关系用图象表示大致为( )4. 已知点(3,1)是双曲线y =k x(k ≠0)上一点,则下列各点中在该图象上的点是( ) A .(13,-9) B .(1,3) C .(-1,3) D .(6,-12) 5. 某闭合电路中,电源电压为定值,电流I(A)与电阻R (Ω)成反比例,如右图所表示的是该电路中电流I 与电阻R 之间的函数关系的图象,则用电阻R 表示电流I 的函数解析式为( ).A .I =6R B .I =-6R C .I =3R D .I =2R第5题图 6. 函数y =1x 与函数y =x 的图象在同一平面直角坐标系内的交点个数是( ). A .1个 B .2个 C .3个 D .0个7. 若函数25(2)m y m x -=+ 是反比例函数,则m 的值是( ).A .2B .-2C .±2D .×28. 已知点A (-3,y 1),B (-2,y 2),C (3,y 3)都在反比例函数y =4x的图象上,则( ).A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3二、填空题(每小题4分,共20分)9.一个反比例函数y=kx(k≠0)的图象经过点P(-2,-1),则该反比例函数的解析式是________.10.已知关于x的一次函数y=kx+1和反比例函数y=6x的图象都经过点(2,m),则一次函数的解析式是.11.一批零件300个,一个工人每小时做15个,用关系式表示人数x与完成任务所需的时间y之间的函数关系式为.12.如图,P是反比例函数图象在第二象限上的一点,且矩形PEOF的面积为8,则反比例函数的表达式是_________.第12题图第13题图13.正比例函数y=x与反比例函数y=1x的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,如图所示,则四边形ABCD的面积为_______.三、解答题(要写出必要的解答过程,每小题12分,共60分)14.已知反比例函数的图象经过点A(3,2).(1)求这个函数的解析式;(2)请判断点B(6,1)、C(-2,3)是否在这个反比例函数的图象上,并说明理由.15.(2013•益阳)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?16.(2013浙江丽水)如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m,设AD的长为xm,DC的长为ym。

反比例函数经典测试题及答案解析

反比例函数经典测试题及答案解析

反比例函数经典测试题及答案解析一、选择题1.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1 【答案】A【解析】【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.2.已知点A (﹣2,y 1),B (a ,y 2),C (3,y 3)都在反比例函数4y x =的图象上,且﹣2<a <0,则( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3 【答案】D【解析】【分析】根据k >0,在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,逐一分析即可.【详解】∵反比例函数y=4x中的k=4>0, ∴在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,∵-2<a <0,∴0>y 1>y 2,∵C (3,y 3)在第一象限,∴y 3>0,∴213y y y <<,故选D .【点睛】本题考查了反比例函数的性质,熟练地应用反比例函数的性质是解题的关键.3.如图,在平面直角坐标系中,点A 是函数()0k y x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x =>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积( )A .不变B .逐渐变大C .逐渐变小D .先变大后变小【答案】A【解析】【分析】 根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE SCOF S = 12=,则四边形OFAE 的面积为定值1k -. 【详解】 ∵点A 是函数(0k y x x =>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,∴矩形ACOB 的面积为k ,∵点E 、F 在函数1y x =的图象上, ∴BOE S COF S = 12=, ∴四边形OFAE 的面积11122k k =--=-, 故四边形OFAE 的面积为定值1k -,保持不变,故选:A .【点睛】本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.4.在平面直角坐标系中,分别过点(),0A m ,()2,0B m﹢作x 轴的垂线1l 和2l ,探究直线1l 和2l 与双曲线 3y x= 的关系,下列结论中错误..的是 A .两直线中总有一条与双曲线相交B .当m =1时,两条直线与双曲线的交点到原点的距离相等C .当20m -﹤﹤ 时,两条直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2【答案】D【解析】【分析】根据题意给定m 特定值、非特定值分别进行讨论即可得.【详解】当m =0时,2l 与双曲线有交点,当m =-2时,1l 与双曲线有交点,当m 0m 2≠≠,﹣时,12l l 与和双曲线都有交点,所以A 正确,不符合题意;当m 1=时,两交点分别是(1,3),(3,1)B 正确,不符合题意;当2m 0-﹤﹤ 时,1l 在y 轴的左侧,2l 在y 轴的右侧,所以C 正确,不符合题意;两交点分别是33m (m 2m m 2++,和,),当m 无限大时,两交点的距离趋近于2,所以D 不正确,符合题意,故选D.【点睛】本题考查了垂直于x 轴的直线与反比例函数图象之间的关系,利用特定值,分情况进行讨论是解本题的关键,本题有一定的难度.5.下列函数中,当x >0时,函数值y 随自变量x 的增大而减小的是( )A .y =x 2B .y =xC .y =x+1D .1y x= 【答案】D【解析】【分析】需根据函数的性质得出函数的增减性,即可求出当x >0时,y 随x 的增大而减小的函数.【详解】解:A 、y =x 2是二次函数,开口向上,对称轴是y 轴,当x >0时,y 随x 的增大而增大,错误;B、y=x是一次函数k=1>0,y随x的增大而增大,错误;C、y=x+1是一次函数k=1>0,y随x的增大而减小,错误;D、1yx是反比例函数,图象无语一三象限,在每个象限y随x的增大而减小,正确;故选D.【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.6.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=8x上,过点C作CE∥x轴交双曲线于点E,则CE的长为( )A.85B.235C.3.5 D.5【答案】B 【解析】【分析】设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,根据AAS先证明△DHA≌△CGD、△ANB≌△DGC可得AN=DG=1=AH,据此可得关于m的方程,求出m的值后,进一步即可求得答案.【详解】解:设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,如图所示:∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD=CD,∠DHA=∠CGD=90°,∴△DHA≌△CGD(AAS),∴HA=DG,DH=CG,同理△ANB≌△DGC(AAS),∴AN=DG=1=AH,则点G(m,8m﹣1),CG=DH,AH=﹣1﹣m=1,解得:m=﹣2,故点G(﹣2,﹣5),D(﹣2,﹣4),H(﹣2,1),则点E(﹣85,﹣5),GE=25,CE=CG﹣GE=DH﹣GE=5﹣25=235,故选:B.【点睛】本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.7.如图直线y=mx与双曲线y=kx交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A 、B 两点关于原点对称,再由S △ABM =2S △AOM 并结合反比例函数系数k 的几何意义得到k 的值.【详解】根据双曲线的对称性可得:OA=OB,则S △ABM =2S △AOM =2,S △AOM =12|k |=1, 则k =±2.又由于反比例函数图象位于一三象限,k >0,所以k =2.故选B .【点睛】本题主要考查了反比例函数y =k x中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.8.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x=<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( ) A .3个 B .2个 C .1个 D .没有【答案】D【解析】【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择.【详解】∵()20y x x=<,过整点(-1,-2),(-2,-1), 当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W 内没有整点,∴4233b -≤≤-时图形W 增大过程中,图形内没有整点, 故选:D.【点睛】 此题考查函数图象,根据函数解析式正确画出图象是解题的关键.9.如图,ABDC 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线k y x=上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A【解析】【分析】 过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k .【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,则,CF DF ⊥ ABDC ,,CDF BAO ∴∠∠的两边互相平行,,AB DC =CDF BAO ∴∠=∠,90,DFC BOA ∠=∠=︒,DCF ABO ∴∆≅∆,,CF BO DF AO ∴== 设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)k D m m++, 四边形ACDE 的面积是ABE ∆面积的3倍,11()322BD BE DE CA h h BE ∴+=⨯⨯, ,,BD BE h h AC BD ==3DE AC BE ∴+=,4,DE BD BE BE ∴++=2,DB BE ∴=(1,3),(1,0),0,E k D m B x m++= ∴ 由中点坐标公式知:110,2m ++= 2m ∴=- ,(1,)1k D m m ++, 3212k k ∴=+-+-, 6.k ∴=-故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.10.函数kyx=与y kx k=-(0k≠)在同一平面直角坐标系中的大致图象是()A.B.C.D.【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y轴于负半轴,y 随着x的增大而增大,A选项错误,C选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y轴于正半轴,y 随着x的增大而增减小,B. D均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.11.若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数1yx=-的图象上,则y1、y2、y3的大小关系是( )A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y2【答案】C【解析】【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【详解】∵点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数1yx=-的图象上,∴111 44y=-=-,21122y=-=-,312y=-,又∵﹣12<14<12,∴y3<y1<y2,故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟知反比例函数图象上的点的坐标满足反比例函数的解析式是解题的关键.12.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数1yx=-、2yx=的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D【解析】【分析】如图,作辅助线;首先证明△BEO∽△OFA,,得到BE OEOF AF=;设B为(a,1a-),A为(b,2b),得到OE=-a,EB=1a-,OF=b,AF=2b,进而得到222a b=,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠2为定值,即可解决问题.【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴BE OE OF AF=,设点B为(a,1 a -),A为(b,2b),则OE=-a,EB=1a-,OF=b,AF=2b,可代入比例式求得222a b=,即222ab=,根据勾股定理可得:OB=22221OE EB aa+=+,OA=22224OF AF bb+=+,∴tan∠OAB=2222222212244baOB a bOAb bb b++==++=222214()24bbbb++=22∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.13.使关于x的分式方程=2的解为非负数,且使反比例函数y=图象过第一、三象限时满足条件的所有整数k的和为().A.0 B.1 C.2 D.3【答案】B【解析】试题分析:分别根据题意确定k的值,然后相加即可.∵关于x的分式方程=2的解为非负数,∴x=≥0,解得:k≥-1,∵反比例函数y=图象过第一、三象限,∴3﹣k>0,解得:k<3,∴-1≤k<3,整数为-1,0,1,2,∵x≠0或1,∴和为-1+2=1,故选,B.考点:反比例函数的性质.14.如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=kx(x>0)的图象与线段AB相交于点C,且C是线段AB的中点,若△OAB的面积为3,则k的值为 ()A.13B.1 C.2 D.3【答案】D 【解析】【分析】连接OC,如图,利用三角形面积公式得到S△AOC=12S△OAB=32,再根据反比例函数系数k的几何意义得到12|k|=32,然后利用反比例函数的性质确定k的值.【详解】连接OC,如图,∵BA⊥x轴于点A,C是线段AB的中点,∴S△AOC=12S△OAB=32,而S△AOC=12|k|,∴12|k|=32,而k >0,∴k=3.故选:D .【点睛】此题考查反比例函数系数k 的几何意义,解题关键在于掌握在反比例函数y=k x 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15.如图,已知点A ,B 分别在反比例函数12y x =-和2k y x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4- 【答案】A【解析】【分析】 设A (a ,b ),则B (2a ,2b ),将点A 、B 分别代入所在的双曲线解析式进行解答即可.【详解】解:设A (a ,b ),则B (2a ,2b ),∵点A 在反比例函数12y x =-的图象上, ∴ab =−2;∵B 点在反比例函数2k y x=的图象上, ∴k =2a•2b =4ab =−8.故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .16.如图,若点M 是x 轴正半轴上任意一点,过点M 作PQ ∥y 轴,分别交函数1(0)k y x x =>和2(0)k y x x=>的图象于点P 和Q ,连接OP 和OQ .则下列结论正确的是( )A .∠POQ 不可能等于90°B .12PM QM k k =C .这两个函数的图象一定关于x 轴对称D .△POQ 的面积是()1212k k + 【答案】D【解析】 【分析】【详解】解:根据反比例函数的性质逐一作出判断: A .∵当PM=MO=MQ 时,∠POQ=90°,故此选项错误;B .根据反比例函数的性质,由图形可得:1k >0,2k <0,而PM ,QM 为线段一定为正值,故12PM QM k k =,故此选项错误; C .根据1k ,2k 的值不确定,得出这两个函数的图象不一定关于x 轴对称,故此选项错误; D .∵|1k |=PM•MO ,|2k |=MQ•MO ,∴△POQ 的面积=12MO•PQ=12MO (PM+MQ )=12MO•PM+12MO •MQ=()1212k k +. 故此选项正确.故选D .17.如图,若直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x=-<交于点(),1A m ,则AOB 的面积为( )A .6B .5C .3D .1.5【答案】C【解析】【分析】 先根据题意求出A 点坐标,再求出一次函数解析式,从而求出B 点坐标,则问题可解.【详解】解:由已知直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x =-<交于点(),1A m ∴21m=-则m=-2 把A (-2,1)代入到2y x n =-+,得()122n =-⨯-+∴n=-3∴23y x =--则点B (0,-3)∴AOB 的面积为132=32⨯⨯ 故应选:C【点睛】本题考查的是反比例函数与一次函数的综合问题,解题关键是根据题意应用数形结合思想.18.如图,点A ,B 是双曲线18y x=图象上的两点,连接AB ,线段AB 经过点O ,点C 为双曲线k y x=在第二象限的分支上一点,当ABC 满足AC BC =且:13:24AC AB =时,k 的值为( ).A.2516-B.258-C.254-D.25-【答案】B【解析】【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出2()COFAOES OCS OA∆∆=,因为CA:AB=13:24,AO=OB,推出CA:OA=13:12,推出CO:OA=5:12,可得出2()COFAOES OCS OA∆∆==25144,因为S△AOE=9,可得S△COF=2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∴∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF=∠OAE,∴△CFO∽△OEA,∴2()COFAOES OCS OA∆∆=,∵CA:AB=13:24,AO=OB,∴CA:OA=13:12,∴CO:OA=5:12,∴2()COFAOES OCS OA∆∆==25144,∵S△AOE=9,∴S△COF=2516,∴||25216k=,∵k <0, ∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.19.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小 【答案】B【解析】【分析】反比例函数2y x =-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】解:反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.20.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l 与底面半径r 之间的函数关系图象大致是( )A .B .C.D.【答案】A【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到2πr=270180lπ⋅⋅,整理得l=43r(r>0),然后根据正比例函数图象求解.【详解】解:根据题意得2πr=270180lπ⋅⋅,所以l=43r(r>0),即l与r为正比例函数关系,其图象在第一象限.故选A.【点睛】本题考查圆锥的计算;函数的图象.。

初中数学反比例函数经典测试题及答案解析

初中数学反比例函数经典测试题及答案解析

初中数学反比例函数经典测试题及答案解析一、选择题1.下列函数:①y=-x;②y=2x;③1yx=-;④y=x2.当x<0时,y随x的增大而减小的函数有()A.1 个B.2 个C.3 个D.4 个【答案】B【解析】【分析】分别根据一次函数、反比例函数及二次函数的性质进行逐一判断即可.【详解】一次函数y=-x中k<0,∴y随x的增大而减小,故本选项正确;∵正比例函数y=2x中,k=2,∴当x<0时,y随x的增大而增大,故本选项错误;∵反比例函数1yx-=中,k=-1<0,∴当x<0时函数的图像在第二象限,此时y随x的增大而增大,故本选项错误;∵二次函数y=x2,中a=1>0,∴此抛物线开口向上,当x<0时,y随x的增大而减小,故本选项正确.故选B.【点睛】本题考查的是一次函数、反比例函数及二次函数的性质,解题关键是根据题意判断出各函数的增减性.2.如图,是反比例函数3yx=和7yx=-在x轴上方的图象,x轴的平行线AB分别与这两个函数图象相交于点,A B,点P在x轴上.则点P从左到右的运动过程中,APB△的面积是()A.10 B.4 C.5 D.从小变大再变小【答案】C【分析】连接AO 、BO ,由AB ∥x 轴,得ABP ABO SS =,结合反比例函数比例系数的几何意义,即可求解.【详解】连接AO 、BO ,设AB 与y 轴交于点C .∵AB ∥x 轴,∴ABP ABO SS =,AB ⊥y 轴, ∵73522ABO BOC AOC S S S -=+=+=, ∴APB △的面积是:5.故选C .【点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数图象上的点与原点的连线,反比例函数图象上的点垂直于坐标轴的垂线段以及坐标轴所围成的三角形面积等于反比例函数比例系数绝对值的一半,是解题的关键.3.已知反比例函数2y x-=,下列结论不正确的是( ) A .图象经过点(﹣2,1) B .图象在第二、四象限C .当x <0时,y 随着x 的增大而增大D .当x >﹣1时,y >2 【答案】D【解析】【分析】A 选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;B 选项:因为-2<0,图象在第二、四象限,故本选项正确;C 选项:当x <0,且k <0,y 随x 的增大而增大,故本选项正确;D 选项:当x >0时,y <0,故本选项错误.故选D .4.如图,点A 在双曲线4y x =上,点B 在双曲线(0)k y k x=≠上,AB x 轴,交y 轴于点C .若2AB AC =,则k 的值为( )A .6B .8C .10D .12【答案】D【解析】【分析】 过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,得出四边形ACOD 是矩形,四边形BCOE 是矩形,得出ACOD S 矩形=4,BCOE S k =矩形,根据AB=2AC ,即BC=3AC ,即可求得矩形BCOE 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【详解】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,∵AB ∥x 轴,∴四边形ACOD 是矩形,四边形BCOE 是矩形,∵AB=2AC ,∴BC=3AC ,∵点A 在双曲线4y x=上, ∴ACOD S 矩形=4,同理BCOE S k =矩形,∴矩形3BCOE ACOD S S =矩形矩形=12,∴k=12,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例系数k的几何意义,作出辅助线,构建矩形是解题的关键.5.如图,点A是反比例函数y=kx(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B、C在x轴上,点D在y轴上.已知平行四边形ABCD的面积为8,则k的值为()A.8 B.﹣8 C.4 D.﹣4【答案】B【解析】【分析】作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|k|.【详解】解:作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|k|,∴|k|=8,而k <0∴k=-8.故选:B .【点睛】本题考查了反比例函数y=k x (k≠0)系数k 的几何意义:从反比例函数y=k x(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.6.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x =<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( ) A .3个 B .2个 C .1个 D .没有【答案】D【解析】【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择.【详解】∵()20y x x=<,过整点(-1,-2),(-2,-1), 当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W 内没有整点,∴4233b-≤≤-时图形W增大过程中,图形内没有整点,故选:D.【点睛】此题考查函数图象,根据函数解析式正确画出图象是解题的关键.7.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线kyx=过点F,交AB于点E,连接EF.若BF2OA3=,S△BEF=4,则k的值为()A.6 B.8 C.12 D.16【答案】A【解析】【分析】由于23BFOA=,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=4m,然后即可求出E(3m,n-4m),依据mn=3m(n-4m)可求mn=6,即求出k的值.【详解】如图,过F作FC⊥OA于C,∵23 BFOA=,∴OA=3OC,BF=2OC ∴若设F(m,n)则OA=3m,BF=2m ∵S△BEF=4∴BE=4 m则E(3m,n-4m)∵E在双曲线y=kx上∴mn=3m(n-4m)∴mn=6即k=6.故选A.【点睛】此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E点坐标是解题关键.8.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数1yx=-、2yx=的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D【解析】【分析】如图,作辅助线;首先证明△BEO ∽△OFA ,,得到BE OE OF AF =;设B 为(a ,1a -),A 为(b ,2b ),得到OE=-a ,EB=1a-,OF=b ,AF=2b ,进而得到222a b =,此为解决问题的关键性结论;运用三角函数的定义证明知tan ∠OAB=22为定值,即可解决问题. 【详解】解:分别过B 和A 作BE ⊥x 轴于点E ,AF ⊥x 轴于点F ,则△BEO ∽△OFA ,∴BE OE OF AF=, 设点B 为(a ,1a -),A 为(b ,2b ), 则OE=-a ,EB=1a-,OF=b ,AF=2b , 可代入比例式求得222a b =,即222a b=, 根据勾股定理可得:OB=22221OE EB a a +=+,OA=22224OF AF b b+=+, ∴tan ∠OAB=2222222212244b a OB a b OA b b b b++==++=222214()24b b b b ++=22 ∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.9.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=1k x (x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象上,∠ABO=30°,则21k k =( )A .-3B .3C .13D .- 13【答案】A【解析】【分析】 根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A 、B 的坐标,表示出k 1、k 2,进而得出k 2与k 1的比值.【详解】如图,设AB 交x 轴于点C ,又设AC=a.∵AB ⊥x 轴 ∴∠ACO=90°在Rt △AOC 中,OC=AC·tan ∠OAB=a·tan60°3∴点A 3a ,a )同理可得 点B 3,-3a )∴k 1332 , k 23a×(-3a )3a∴213kk==-.故选A.【点睛】考查直角三角形的边角关系,反比例函数图象上点的坐标特征,设适合的常数,用常数表示出k,是解决问题的方法.10.若函数2myx+=的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<2【答案】B【解析】【分析】根据反比例函数的性质,可得m+2<0,从而得出m的取值范围.【详解】∵函数2myx+=的图象在其象限内y的值随x值的增大而增大,∴m+2<0,解得m<-2.故选B.11.函数y=1-kx与y=2x的图象没有交点,则k的取值范围是()A.k<0 B.k<1 C.k>0 D.k>1【答案】D【解析】【分析】由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出k的取值范围.【详解】令1-kx=2x,化简得:x2=1-2k;由于两函数无交点,因此1-2k<0,即k>1.故选D.【点睛】函数图象交点坐标为两函数解析式组成的方程组的解.如果两函数无交点,那么联立两函数解析式所得的方程(组)无解.12.如图,过反比例函数()0k y x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S ∆=,则k 的值为( )A .2B .3C .4D .5【答案】C【解析】【分析】 根据2AOB S ∆=,利用反比例函数系数k 的几何意义即可求出k 值,再根据函数在第一象限可确定k 的符号.【详解】解:由AB x ⊥轴于点B ,2AOB S ∆=,得到122AOB S k ∆== 又因图象过第一象限, 122AOB S k ∆==,解得4k = 故选C【点睛】本题考查了反比例函数系数k 的几何意义.13.如图,过点()1,2C 分别作x 轴、y 轴的平行线,交直线5y x =-+于A 、B 两点,若反比例函数(0)k y x x=>的图象与ABC 有公共点,则k 的取值范围是( )A .2524k ≤≤B .26k ≤≤C .24k ≤≤D .46k ≤≤【答案】A【解析】【分析】由点C的坐标结合直线AB的解析式可得出点A、B的坐标,求出反比例函数图象过点C时的k值,将直线AB的解析式代入反比例函数解析式中,令其根的判别式△≥0可求出k的取值范围,取其最大值,找出此时交点的横坐标,进而可得出此点在线段AB上,综上即可得出结论.【详解】解:令y=−x+5中x=1,则y=4,∴B(1,4);令y=−x+5中y=2,则x=3,∴A(3,2),当反比例函数kyx=(x>0)的图象过点C时,有2=1k,解得:k=2,将y=−x+5代入kyx=中,整理得:x2−5x+k=0,∵△=(−5)2−4k≥0,∴k≤254,当k=254时,解得:x=52,∵1<52<3,∴若反比例函数kyx=(x>0)的图象与△ABC有公共点,则k的取值范围是2≤k≤254,故选:A.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数图象过点A、C时的k值以及直线与双曲线有一个交点时k的值.14.若A(-3,y1)、B(-1,y2)、C(1,y3)三点都在反比例函数y=kx(k>0)的图象上,则y1、y2、y3的大小关系是()A. y1>y2>y3B. y3>y1>y2C. y3>y2>y1D. y2>y1>y3【答案】B【解析】【分析】反比例函数y=kx(k>0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y随x的增大而减小,而A(-3,y1)、B(-1,y2)在第三象限双曲线上的点,可得y2<y1<0,C(1,y3)在第一象限双曲线上的点y3>0,于是对y1、y2、y3的大小关系做出判断.【详解】∵反比例函数y=k x (k >0)的图象在一、三象限, ∴在每个象限内y 随x 的增大而减小,∵A (-3,y 1)、B (-1,y 2)在第三象限双曲线上,∴y 2<y 1<0,∵C (1,y 3)在第一象限双曲线上,∴y 3>0,∴y 3>y 1>y 2,故选:B .【点睛】此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.15.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x =图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D【解析】【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可.【详解】当12x =时,2y = ,当2x =时,12y = , ∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大.设直线AB 的解析式为y kx b =+ , 将11(,2),(2,)22A B 代入解析式中得 122122k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得152k b =-⎧⎪⎨=⎪⎩ , ∴直线AB 解析式为52y x =-+. 当0y =时,52x =,即5(,0)2P ', 115522222AOP A S OP y '∴=⋅=⨯⨯=. 故选:D .【点睛】 本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP -何时取最大值是解题的关键.16.已知反比例函数2y x =-,下列结论不正确的是 A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2 【答案】B【解析】【分析】此题可根据反比例函数的性质,即函数所在的象限和增减性对各选项作出判断.【详解】解: A 、把(-1,2)代入函数解析式得:2=-21-成立,故点(-1,2)在函数图象上,故选项正确;B、由k=-2<0,因此在每一个象限内,y随x的增大而增大,故选项不正确;C、由k=-2<0,因此函数图象在二、四象限内,故选项正确;D、当x=1,则y=-2,又因为k=-2<0,所以y随x的增大而增大,因此x>1时,-2<y<0,故选项正确;故选B.【点睛】本题考查反比例函数的图像与性质.17.如图,点A在反比例函数3(0)y xx=-<的图象上,点B在反比例函数3(0)y xx=>的图象上,点C在x轴的正半轴上,则平行四边形ABCO的面积是()A.6 B.5 C.4 D.3【答案】A【解析】【分析】因为四边形ABCO是平行四边形,所以点A、B纵坐标相等,即可求得A、B横坐标,则AB 的长度即可求得,然后利用平行四边形面积公式即可求解.【详解】解:∵四边形ABCO是平行四边形∴点A、B纵坐标相等设纵坐标为b,将y=b带入3(0)y xx=-<和3(0)y xx=>中,则A点横坐标为3b-,B点横坐标为3b∴AB=336()b b b --=∴66 ABCOS bb=⨯=故选:A.【点睛】本题考查了反比例函数以及平行四边形面积公式,本题关键在于两点间距离的求法.18.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数k y x =在第一象限内的图象经过点D ,交BC 于点E .若4AB =,2CE BE =,34AD OA =,则线段BC 的长度为( )A .1B .32C .2D .23【答案】B【解析】【分析】 设OA 为4a ,则根据题干中的比例关系,可得AD=3a ,CE=2a ,BE=a ,从而得出点D 和点E 的坐标(用a 表示),代入反比例函数可求得a 的值,进而得出BC 长.【详解】 设OA=4a根据2CE BE =,34AD OA =得:AD=3a ,CE=2a ,BE=a ∴D(4a ,3a),E(4a+4,a)将这两点代入解析得; 3444k a a k a a ⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32 故选:B【点睛】 本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D 、E 的坐标,然后代入解析式求解.19.若点()11,A y -,()22,B y -,()33,C y 在反比例函数8y x=-的图象上,则y 1,y 2,y 3的大小关系是( )A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y <<【答案】D【解析】【分析】由于反比例函数的系数是-8,故把点A 、B 、C 的坐标依次代入反比例函数的解析式,求出123,,y y y 的值即可进行比较.【详解】解:∵点()11,A y -、()22,B y -、()33,C y 在反比例函数8y x =-的图象上, ∴1881y =-=-,2842y =-=-,383y =-, 又∵8483-<<, ∴321y y y <<.故选:D .【点睛】本题考查的是反比例函数的图象和性质,难度不大,理解点的坐标与函数图象的关系是解题的关键.20.如图,一次函数1y ax b 和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >【答案】B【解析】【分析】 根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.。

反比例函数试题及答案

反比例函数试题及答案

反比例函数测试题一、选择题1.下列函数,①y=2x,②y=x,③y=x-1,④y=11x是反比例函数的个数有()A.0个B.1个C.2个D.3个2.反比例函数y=2x的图象位于()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限3.已知矩形的面积为10,则它的长y与宽x之间的关系用图象表示大致为()4.已知关于x的函数y=k(x+1)和y=-kx(k≠0)它们在同一坐标系中的大致图象是(• )5.已知点(3,1)是双曲线y=kx(k≠0)上一点,则下列各点中在该图象上的点是()A.(13,-9)B.(3,1)C.(-1,3)D.(6,-12)6.某气球充满一定质量的气体后,当温度不变时,气球内的气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示,当气球内的气压大于140kPa时,•气球将爆炸,为了安全起见,气体体积应()A.不大于2435m3B.不小于2435m3C.不大于2437m3D.不小于2437m3第6题图第7题图7.某闭合电路中,电源电压为定值,电流I A.与电阻R(Ω)成反比例,如右图所表示的是该电路中电流I与电阻R之间的函数关系的图象,则用电阻R表示电流I•的函数解析式为().A .I =6R B .I =-6R C .I =3R D .I =2R 8.函数y =1x与函数y =x 的图象在同一平面直角坐标系内的交点个数是( ).A .1个B .2个C .3个D .0个 9.若函数y =(m +2)|m |-3是反比例函数,则m 的值是( ).A .2B .-2C .±2D .×210.已知点A (-3,y 1),B (-2,y 2),C (3,y 3)都在反比例函数y =4x的图象上,则( ). A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 2<y 1<y 3 二、填空题11.一个反比例函数y =kx(k ≠0)的图象经过点P (-2,-1),则该反比例函数的解析式是________. 12.已知关于x 的一次函数y =kx +1和反比例函数y =6x的图象都经过点(2,m ),则一次函数的解析式是________.13.一批零件300个,一个工人每小时做15个,用关系式表示人数x •与完成任务所需的时间y 之间的函数关系式为________.14.正比例函数y =x 与反比例函数y =1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD •⊥x 轴于D ,如图所示,则四边形ABCD 的为_______.第14题图 第15题图 第19题图15.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_________. 16.反比例函数y =21039n n x--的图象每一象限内,y 随x 的增大而增大,则n =_______.17.已知一次函数y =3x +m 与反比例函数y =3m x-的图象有两个交点,当m =_____时,有一个交点的纵坐标为6.18.若一次函数y =x +b 与反比例函数y =kx图象,在第二象限内有两个交点,•则k ______0,b _______0,(用“>”、“<”、“=”填空)19.两个反比例函数y=3x,y=6x在第一象限内的图象如图所示,点P1,P2,P3……P2005,在反比例函数y=6x的图象上,它们的横坐标分别是x1,x2,x3,…x2005,纵坐标分别是1,3,•5•……,•共2005年连续奇数,过点P1,P2,P3,…,P2005分别作y轴的平行线与y=3x的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…,Q2005(x2005,y2005),则y2005=________.20.当>0时,两个函数值y,一个随x增大而增大,另一个随x的增大而减小的是( •).A.y=3x与y=1xB.y=-3x与y=1xC.y=-2x+6与y=1xD.y=3x-15与y=-1x21.在y=1x的图象中,阴影部分面积为1的有()22.如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B•两点,且与反比例函数y=mx(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,•若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.第22题图23.如图,已知点A(4,m),B(-1,n)在反比例函数y=8x的图象上,直线AB•分别与x轴,y轴相交于C、D两点,(1)求直线AB的解析式.(2)C、D两点坐标.(3)S△AOC:S△BOD是多少?第23题图24.已知y=y1-y2,y1与x成正比例,y与x成反比例,且当x=1时,y=-14,x=4时,y=3.求(1)y与x之间的函数关系式.(2)自变量x的取值范围.(3)当x=14时,y的值.25.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点.(1)利用图中的条件,求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.第25题图26.如图,双曲线y=5x在第一象限的一支上有一点C(1,5),•过点C•的直线y=kx+b(k>0)与x轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA•的面积.第26题图反比例函数测试题(一)答案1.B.;2.D.;3.A.;4.A.;5.B.;6.B.;7.A.;8.B.;9.A.;10.D.;11.y=2x;12.y=x+1;13.y=20x;14.2;15.y=-8x;16.n=-3;17.m=5;18.<,>;19.2004.5;20.A.;B.;;21.A.;C.;D.;22.解:(1)∵OA=OB=OD=1,∴点A、B、D的坐标分别为A(-1,0),B(0,1),D(1,0).(2)∵点AB在一次函数y=kx+b(k≠0)的图象上,∴1k bb-+=⎧⎨=⎩解得11kb=⎧⎨=⎩∴一次函数的解析式为y =x +1,∵点C 在一次函数y =x +1的图象上,•且CD ⊥x 轴, ∴C 点的坐标为(1,2),又∵点C 在反比例函数y =mx(m ≠0)的图象上, ∴m =2,•∴反比例函数的解析式为y =2x.;23.(1)y =2x -6;(2)C (3,0),D (0,-6);(3)S △AOC :S △BOD =1:1.; 24.(1)y =216x 提示:设y =k-22k x,再代入求k 1,k 2的值. (2)自变量x 取值范围是x >0. (3)当x =14时,y =162=255.;25.解:(1)由图中条件可知,双曲线经过点A (2,1)∴1=2m ,∴m =2,∴反比例函数的解析式为y =2x. 又点B 也在双曲线上,∴n =21-=-2,∴点B 的坐标为(-1,-2).∵直线y =kx +b 经过点A 、B .∴122k b k b =+⎧⎨-=-+⎩ 解得11k b =⎧⎨=-⎩∴一次函数的解析式为y =x -1.(2)根据图象可知,一次函数的图象在反比例函数的图象的上方时,•一次函数的值大于反比例函数的值,即x >2或-1<x <0.;26.解:(1)∵点C (1,5)在直线y =-kx +b 上,∴5=-k +b , 又∵点A (a ,0)也在直线y =-kx +b 上,∴-ak +b =0,∴b =ak 将b =ak 代入5=-k +a 中得5=-k +ak ,∴a =5k+1. (2)由于D 点是反比例函数的图象与直线的交点∴599y y k ak⎧=⎪⎨⎪=-+⎩ ∵ak =5+k ,∴y =-8k +5 ③ 将①代入③得:59=-8k +5,∴k =59,a =10. ∴A (10,0),又知(1,5),∴S △COA =12×10×5=25.;。

反比例函数测试题及答案

反比例函数测试题及答案

反比例函数测试题及答案一、选择题1. 反比例函数y= \frac{k}{x}(k≠0)的图象是双曲线,下列说法正确的是()A. 函数图象在一、三象限内,k>0B. 函数图象在二、四象限内,k<0C. 函数图象在一、三象限内,k<0D. 函数图象在二、四象限内,k>0答案:A2. 若点(2,3)在反比例函数y= \frac{k}{x}(k≠0)的图象上,则k的值是()A. 6B. -6C. 2D. -2答案:A二、填空题3. 反比例函数y= \frac{k}{x}(k≠0)的图象经过点(1,-2),则k的值为______。

答案:-24. 反比例函数y= \frac{k}{x}(k≠0)的图象是中心对称图形,若点(a,b)在函数图象上,则点(-a,-b)也在函数图象上,且k=ab,若点(2,-1)在函数图象上,则点(-2,1)也在函数图象上,且k=______。

答案:-2三、解答题5. 已知反比例函数y= \frac{k}{x}(k≠0)的图象经过点(3,-1),求k的值,并判断图象在哪个象限。

解:将点(3,-1)代入反比例函数y= \frac{k}{x}得,-1=\frac{k}{3},解得k=-3。

因为k=-3<0,所以图象在第二、四象限。

6. 已知反比例函数y= \frac{k}{x}(k≠0)的图象经过点(2,3),求k的值,并写出函数的表达式。

解:将点(2,3)代入反比例函数y= \frac{k}{x}得,3=\frac{k}{2},解得k=6。

因此,函数的表达式为y= \frac{6}{x}。

结束语:通过以上题目的练习,可以检验你对反比例函数性质和图象特征的掌握程度,希望同学们能够通过这些题目加深对反比例函数的理解。

反比例函数经典测试题附答案解析

反比例函数经典测试题附答案解析

y k1 (x 0) 和 y k2 (x 0) 的图象于点 P 和 Q,连接 OP 和 OQ.则下列结论正确的是
x
x
()
A.∠POQ 不可能等于 90°
B. PM k1 QM k2
C.这两个函数的图象一定关于 x 轴对称
D.△POQ 的面积是 1 2
k1 k2
【答案】D
【解析】
【分析】
x 故选 D. 【点睛】 本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的 关键.
10.如图,在平面直角坐标系中,菱形 ABCD 在第一象限内,边 BC 与 x 轴平行,A,B 两
点的纵坐标分别为 4,2,反比例函数 y k (x>0)的图象经过 A,B 两点,若菱形 ABCD x
题个数是( )
A.0 【答案】D
B.1
C.2
D.3
【解析】
【分析】
根据反比例函数的性质,由题意可得
k<0,y1=
x
2
,
,
sin
x
cos
x
2 ,y2=
k x2

然后根据反比例函数 k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列
式计算判断③,由此即可求得答案.
【详解】
∵反比例函数 y k 的图象分别位于第二、第四象限, x
2.如图,点 A 是反比例函数 y= k (x<0)的图象上的一点,过点 A 作平行四边形 x
ABCD,使点 B、C 在 x 轴上,点 D 在 y 轴上.已知平行四边形 ABCD 的面积为 8,则 k 的值 为( )
A.8
B.﹣8
C.4
D.﹣4
【答案】B
【解析】

反比例函数》测试题(含答案)

反比例函数》测试题(含答案)

反比例函数》测试题(含答案)1、选择题(每小题5分,共50分)1、若点(x1.-1)、(x2.-2)、(x3.1)都在反比例函数y= k/x 上,则它们之间的大小关系是()A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x2<x3<x12、若反比例函数y=k/x的图象经过点(m,3m),其中m≠0,则此反比例函数的图象在()A.第一、二象限;B.第一、三象限;C.第二、四象限;D.第三、四象限3、在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=3/x上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小4、函数y=-kx与函数y=k/x的图象的交点个数是()A。

0B。

1C。

2D.不确定5、函数y=6-x与函数y=k/x的图象交于A、B两点,设点A的坐标为(x1,y1),则边长分别为x1、y1的矩形面积和周长分别为()A。

4,12B。

4,6C。

8,12D。

8,66、已知y1+y2=y,其中y1与x成反比例,且比例系数为k1,而y2与x2成正比例,且比例系数为k2,若x=-1时,y=0,则k1,k2的关系是( )A.k1+k2=0B.k1k2=1C.k1-k2=0D.k1k2=-17、正比例函数y=2kx与反比例函数y=k/(x-1)在同一坐标系中的图象不可能是()18、如图,直线y=mx与双曲线y=k/(x-1)交与A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=2,则k的值是()A、2B、m-2C、mD、49、如图,点A在双曲线y=6/x上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )A.47B.5C.27D.2210、如图,反比例函数y= k/x的图象经过点(1,2),则k=()。

二、填空题(每小题5分,共20分)11、若y=k/x是反比例函数,且x1y1=x2y2,则k=______。

反比例函数测试题(含答案)

反比例函数测试题(含答案)

反比例函数测试题(含答案)(时间90分钟 满分100分)一、选择题(每题3分,共24分)1.假设x 、y 之间的关系是10(0)ax y a -+=≠,那么y 是x 的 ( )A .正比例函数B .反比例函数C .一次函数D .二次函数2.函数y =-4x的图象与x轴的交点的个数是( ) A .零个 B .一个 C .两个D .不能确定 3.反比例函数y =-4x的图象在( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 4.已知关于x 的函数y =k (x +1)和y =-kx(k ≠0)它们在同一坐标系中的大致图象是(• )5.已知反比例函数y =x k 的图象经过点(m ,3m ),则此反比例函数的图象在 ( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如下列图.当气球内的气压大于120 kPa 时,气球发将爆炸.为了安全起见,气球的体积应 ( )A .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m 37.假设点P 为反比例函数xy 4=的图象上一点,PQ ⊥x 轴,垂足为Q ,那么△POQ的面积为 ( )A .2B . 4C .6D . 88.已知:反比例函数xmy 21-=的图象上两点A (x 1,y 1),B (x 2, y 2)当x 1<0<x 2时,y 1<y 2,则m 的取值范围( ) A .m <0 B .m >0 C .m <21 D .m >21二、填空题(每题2分,共20分)9.有m 台完全相同的机器一起工作,需m 小时完成一项工作,当由x 台机器(x 为不大于m 的正整数)完成同一项工作时,所需的时间y 与机器台数x 的函数关系式是____.10.已知y 与x 成反比例,且当x 32=-时,y =5,则y 与x 的函数关系式为__________. 11.反比例函数xy 3=的图象在第一象限与第 象限. 12.某食堂现有煤炭500吨,这些煤炭能烧的天数y 与平均每天烧煤的吨数x 之间1.6 60 OV (m 3)P (kPa)(1.6,60)第6题的函数关系式是 . 13.若nxm y ++=2)5(是反比例函数,则m 、n 的取值是 .14.两位同学在描绘同一反比例函数的图象时,甲同学说:这个反比例函数图象上任意一点到两坐标轴的距离的积都是3;乙同学说:这个反比例函数的图象与直线y =x 有两个交点,你认为这两位同学所描绘的反比例函数的解析式是 .15.在ABC △的三个顶点A (2,-3)、B (-4,-5)、C (-3,2)中,可能在反比例函数(0)ky k x=>的图象上的点是 . 16.假设反比例函数4ny x-=的图象位于第二、四象限,则n 的取值范围是_______;假设图象在每个象限内,y 随x 的增大而减小,则n 的取值范围是 .17.如图,△P 1OA 1、△P 2A 1 A 2是等腰直角三角形,点P 1、P 2在函数4(0)y x x=>的图象上,斜边OA 1、A 1 A 2都在x 轴上,则点A 2的坐标是 . 18.两个反比例函数k y x =和1y x=在第一象限内的图象如下列图,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x=的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在ky x=的图象上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等; ④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定准确的是 (把你认为准确结论的序号都填上,少填或错填不给分).三、解答题(共56分) 19.(4分)反比例函数xky =的图象经过点A (2 ,3). (1)求这个函数的解析式;(2)请判断点B (1 ,6)是否在这个反比例函数的图象上,并说明理由.20.(4分)已知三角形的一边为x ,这条边上的高为y ,三角形的面积为3,写出y 与x 的函数表达式,并画出函数的图象.OA 1A 2第17题21.(4分)如图,一次函数y =kx +b 的图像与反比例函数xmy =的图像相交于A 、B 两点,(1)利用图中条件,求反比例函数和一次函数的解析式(2)根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围.22.(6分)某蓄水池的排水管每时排水8 m 3,6h 可将满池水全部排空. (1)蓄水池的容积是多少?(2)假设增加排水管,使每时排水量达到Q (m 3),那么将满池水排空所需的时间t (h )将如何变化?(3)写出t 与Q 之间的函数关系式.(4)假设准备在5小时之内将满水池排空,那么每时的排水量至少为多少? (5)已知排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?23.(6分)双曲线5y x=在第一象限的一支上有一点C (1,5),过点C 的直线y =kx +b (k >0)与x 轴交于点A (a ,0).(1)求点A 的横坐标a 与k 之间的函数关系式;(2)当该直线与双曲线在第一象限内的另一交点D 的横坐标是9时,求△COA 的面积.第23题图第21题图24.(6分)已知反比例函数xmy 3-=和一次函数1-=kx y 的图象都经过点m P (,)3m -(1)求点P 的坐标和这个一次函数的解析式;(2)若点M (a ,1y )和点N (1+a ,2y )都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明1y 大于2y25.(6分)近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知800度近视眼镜镜片的焦距为0.125米, (1)求y 与x 的函数关系;(2)若张华同学近视眼镜镜片的焦距为0.25米,你知道他的眼睛近视多少度吗?26.(6分)对于取消市场上使用的杆秤的呼声越来越高,原因在于一些不法商贩在卖货时将秤砣挖空,或更换较小称砣,使砣较轻,从而欺骗顾客. (1)如图,对于同一物体,哪个图用的是标准秤砣,哪个用的是较轻的秤砣? (2)在称同一物体时,所称得的物体质量y (千克)与所用秤砣质量x (千克)之间满足 关系.(3)当砣较轻时,称得的物体变重,这正好符合哪个函数的哪些性质?图1图227.(6分)联想电脑公司新春期间搞活动,规定每台电脑0.7万元,交首付后剩余的钱数y 与时间t 的关系如下列图: (1)根据图象写出y 与t 的函数关系式. (2)求出首付的钱数.(3)假设要求每月支付的钱数很多于400元,那么还至少几个才能将所有的钱全部还清?28.(8分)如图,直线b kx y +=与反比例函数xk y '=(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4.(1)试确定反比例函数的关系式; (2)求△AOC 的面积.新人教八年级(下)第17章《反比例函数》答案一、选择题1.B ;2. A ;3. B ;4. A ;5. B ;6. C ;7.A ;8. C .二、填空题9.y =x m 2 10.152y x=- 11.三 12.y =x 50013.m ≠-5 n=-3 14.y =x315.B 16.n >4,n <4 17.(420) 18.①②④ 三、解答题19.(1)y =x6;(2)在 20. y =6x,图像略 21.(1)2y x=-,1y x =--;(2) 2x <-或0x <<122.(1)348m ;(2)t 将减小;(3)48t Q =;(4)4859.6Q Q ==,;(5)48412t ==23.(1)51a k=-+, (2) 2524.(1)12--=x y ;(2)略 25.(1)100y x=,(2)400度 26.(1)图②是用与秤配套的秤砣,图①则使用较轻的秤砣.(2)反比例. (3)函数y =xk(k >0),当x 变小时,y 增大 600 t 月)y () (10,600)27.(1)y =t 6000 ;(2)7000-6000=1000(元);(3)400=t 6000,t =1528.(1)8xy =-;(2)126第二学期期末测试卷时间:120分钟满分:120分一、选择题(每题3分,共30分)1.已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于() A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限3.若Rt△ABC中,∠C=90°,sin A=23,则tan A的值为()A.53 B.52 C.32 D.2554.在双曲线y=1-3mx上有两点A(x1,y1),B(x2,y2),x1<0<x2,y1<y2,则m的取值范围是()A.m>13B.m<13C.m≥13D.m≤135.如图,在等边三角形ABC中,点D,E分别在AB,AC边上,假设△ADE∽△ABC,AD∶AB=1∶4,BC=8 cm,那么△ADE的周长等于()A.2 cm B.3 cm C.6 cm D.12 cm(第5题)6.小芳和爸爸在阳光下散步,爸爸身高1.8 m,他在地面上的影长为2.1 m.小芳比爸爸矮0.3 m,她的影长为()A.1.3 m B.1.65 m C.1.75 m D.1.8 m7.一次函数y1=k1x+b和反比例函数y2=k2x(k1k2≠0)的图象如下列图,若y1>y2,则x的取值范围是()A.-2<x<0或x>1 B.-2<x<1C.x<-2或x>1 D.x<-2或0<x<18.如图,△ABO缩小后变为△A′B′O,其中A,B的对应点分别为A′,B′,点A,B,A′,B′均在图中格点上,若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.⎝ ⎛⎭⎪⎫m 2,n B .(m ,n )C.⎝ ⎛⎭⎪⎫m ,n 2 D.⎝ ⎛⎭⎪⎫m 2,n 2 9.如图,在两建筑物之间有一旗杆GE ,高15 m ,从A 点经过旗杆顶点恰好看到矮建筑物的墙脚C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部点G 为BC 的中点,则矮建筑物的高CD 为( ) A .20 mB .10 3 mC .15 3 mD .5 6 m(第7题) (第8题) (第9题) (第10题)10.如图,已知第一象限内的点A 在反比例函数y =3x 的图象上,第二象限内的点B 在反比例函数y =k x 的图象上,且OA ⊥OB ,cos A =33,则k 的值为( ) A .-5B .-6C .- 3D .-2 3二、填空题(每题3分,共24分)11.计算:2cos 245°-(tan 60°-2)2=________.12.如图,山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,他上升了________m. (第12题)(第13题) (第14题) (第15题)13.如图,在△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积是8,则△ABC 的面积为________.14.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B 的值是__________.15.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80 n mile 的B 处,沿正西方向航行3 h 后到达小岛A 的北偏西45°方向的C 处,则该船行驶的速度为__________n mile/h.16.如图是一个几何体的三视图,若这个几何体的体积是48,则它的表面积是________.(第16题) (第17题) (第18题)17.如图,点A在双曲线y=1x上,点B在双曲线y=3x上,点C,D在x轴上,若四边形ABCD为矩形,则它的面积为________.18.如图,正方形ABCD的边长为62,过点A作AE⊥AC,AE=3,连接BE,则tan E=________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,△ABC三个顶点的坐标分别为A(4,6),B(2,2),C(6,4),请在第一象限内,画出一个以原点O为位似中心,与△ABC的相似比为12的位似图形△A1B1C1,并写出△A1B1C1各个顶点的坐标.(第19题)20.由几个棱长为1的小立方块搭成的几何体的俯视图如下列图,小正方形中的数字表示在该位置小立方块的个数.(第20题)(1)请在方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为________个平方单位(包括底面积).21.如图,一棵大树在一次强台风中折断倒下,未折断树干AB与地面仍保持垂直的关系,而折断部分AC与未折断树干AB形成53°的夹角.树干AB旁有一座与地面垂直的铁塔DE,测得BE=6 m,塔高DE=9 m.在某一时刻太阳光的照射下,未折断树干AB落在地面的影子FB长为4 m,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度(结果精确到0.1 m,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0).(第21题)22.如图,在平面直角坐标系xOy中,一次函数y=3x+2的图象与y轴交于点A,与反比例函数y=kx ()k≠0在第一象限内的图象交于点B,且点B的横坐标为1,过点A作AC⊥y轴,交反比例函数y=kx(k≠0)的图象于点C,连接BC.求:(第22题)(1)反比例函数的解析式;(2)△ABC的面积.23.如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于点E,连接AD.(1)求证△CDE∽△CAD;(2)若AB=2,AC=22,求AE的长.(第23题)24.如图,将矩形ABCD沿AE折叠得到△AFE,且点F恰好落在DC上.(1)求证△ADF∽△FCE;(2)若tan ∠CEF=2,求tan ∠AEB的值.(第24题)25.如图,直线y=2x+2与y轴交于A点,与反比例函数y=kx(x>0)的图象交于点M,过点M作MH⊥x轴于点H,且tan ∠AHO=2.(1)求k的值.(2)在y轴上是否存有点B,使以点B,A,H,M为顶点的四边形是平行四边形?假设存有,求出B点坐标;假设不存有,请说明理由.(3)点N(a,1)是反比例函数y=kx(x>0)图象上的点,在x轴上有一点P,使得PM+PN 最小,请求出点P的坐标.(第25题)答案一、1. D 2. C 3. D 4. B 5. C 6. C7.A8. D9.A点拨:∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线.∴AB=2EG=30.在Rt△ABC中,∠CAB=30°,则BC=AB·tan∠BAC=30×33=10 3.延长CD至F,使DF⊥AF.在Rt△AFD中,AF=BC=103,∠F AD=30°,则FD=AF·tan∠F AD=103×33=10.∴CD=AB-FD=30-10=20(m).10.B点拨:∵cos A=33,∴可设OA=3a,AB=3a(a>0),∴OB=(3a)2-(3a)2=6a.过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵点A在反比例函数y=3x的图象上,∴可设点A的坐标为⎝⎛⎭⎪⎫m,3m,∴OE=m,AE=3m.易知△AOE∽△OBF,∴AEOF=OAOB,即3mOF=3a6a,∴OF=32m.同理,BF=2m,∴点B的坐标为⎝⎛⎭⎪⎫-32m,2m.把B⎝⎛⎭⎪⎫-32m,2m的坐标代入y=kx,得k=-6.二、11. 3-112. 10013. 1814. 2315.40+403316.88点拨:由题中的三视图能够判断,该几何体是一个长方体.从主视图能够看出,该长方体的长为6;从左视图能够看出,该长方体的宽为2.根据体积公式可知,该长方体的高为486×2=4,∴该长方体的表面积是2×(6×2+6×4+2×4)=88.17.2点拨:如图,延长BA交y轴于点E,则四边形AEOD,BEOC均为矩形.由点A在双曲线y=1x上,得矩形AEOD的面积为1;由点B在双曲线y=3x上,得矩形BEOC的面积为3,故矩形ABCD的面积为3-1=2. (第17题)18. 23点拨:∵正方形ABCD的边长为62,∴AC=12.过点B作BF⊥AC于点F,则CF=BF=AF=6.设AC与BE交于点M,∵BF⊥AC,AE⊥AC,∴AE∥BF.∴△AEM∽△FBM.∴AMFM=AEFB=36=12,∴AMAF=13,∴AM=13AF=13×6=2.∴tan E =AMAE=23.三、19.解:画出的△A1B1C1如下列图.(第19题)△A1B1C1的三个顶点的坐标分别为A1(2,3),B1(1,1),C1(3,2).20.解:(1)如下列图.(第20题)(2)2421.解:根据题意,得AB⊥EF,DE⊥EF,∴∠ABC=90°,AB∥DE.∴△ABF∽△DEF.∴ABDE=BFEF,即AB9=44+6,解得AB=3.6.在Rt△ABC中,∵cos ∠BAC=AB AC,∴AC=ABcos 53°≈5.98.∴AB+AC≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m.22.解:(1)∵点B在一次函数y=3x+2的图象上,且点B的横坐标为1,∴y=3×1+2=5,∴点B的坐标为(1,5).∵点B在反比例函数y=kx的图象上,∴5=k1,∴k=5.∴反比例函数的解析式为y =5x .(2)∵一次函数y =3x +2的图象与y 轴交于点A ,当x =0时,y =2, ∴点A 的坐标为(0,2). ∵AC ⊥y 轴, ∴点C 的纵坐标为2.∵点C 在反比例函数y =5x 的图象上, 当y =2时,2=5x ,x =52, ∴AC =52. 过点B 作BD ⊥AC 于点D , ∴BD =y B -y C =5-2=3. ∴S △ABC =12AC ·BD =12×52×3=154.23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ∴∠ABD +∠BAD =90°. 又∵AC 是⊙O 的切线, ∴AB ⊥AC ,即∠BAC =90°, ∴∠CAD +∠BAD =90°. ∴∠ABD =∠CAD . ∵OB =OD ,∴∠ABD =∠BDO =∠CDE , ∴∠CAD =∠CDE , 又∵∠C =∠C , ∴△CDE ∽△CAD .(2)解:∵AB =2,∴OA =OD =1.在Rt △OAC 中,∠OAC =90°, ∴OA 2+AC 2=OC 2, 即12+(22)2=OC 2, ∴OC =3,则CD =2.又由△CDE∽△CAD,得CDCE=CACD,即2CE=222,∴CE= 2.∴AE=AC-CE=22-2= 2.24.(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°.∵矩形ABCD沿AE折叠得到△AFE,且点F在DC上,∴∠AFE=∠B=90°.∴∠AFD+∠CFE=180°-∠AFE=90°.又∠AFD+∠DAF=90°,∴∠DAF=∠CFE.∴△ADF∽△FCE.(2)解:在Rt△CEF中,tan ∠CEF=CFCE=2,设CE=a,CF=2a(a>0),则EF=CF2+CE2=5a.∵矩形ABCD沿AE折叠得到△AFE,且点F在DC上,∴BE=EF=5a,BC=BE+CE=(5+1)a,∠AEB=∠AEF,∴AD=BC=(5+1)a.∵△ADF∽△FCE,∴AFFE=ADCF=(5+1)a2a=5+12.∴tan ∠AEF=AFFE=5+12.∴tan ∠AEB=tan ∠AEF=5+1 2.25.解:(1)由y=2x+2可知A(0,2),即OA=2,∵tan ∠AHO=2,∴OH=1.∵MH⊥x轴,∴点M的横坐标为1.∵点M在直线y=2x+2上,∴点M的纵坐标为4,∴M(1,4).∵点M 在反比例函数y =kx (x >0)的图象上,∴k =1×4=4. (2)存有.如下列图. (第25(2)题)当四边形B 1AHM 为平行四边形时,B 1A =MH =4, ∴OB 1=B 1A +AO =4+2=6,即B 1(0,6). 当四边形AB 2HM 为平行四边形时,AB 2=MH =4,∴OB 2=AB 2-OA =4-2=2, 此时B 2(0,-2).综上,存有满足条件的点B ,且B 点坐标为(0,6)或(0,-2). (3)∵点N (a ,1)在反比例函数y =4x (x >0)的图象上, ∴a =4,即点N 的坐标为(4,1).如图,作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于P ,连接PN ,此时PM +PN 最小. (第25(3)题)∵N 与N 1关于x 轴对称,N 点坐标为(4,1), ∴N 1的坐标为(4,-1).设直线MN 1对应的函数解析式为y =k′x +b (k′≠0), 由⎩⎨⎧4=k ′+b ,-1=4k ′+b ,解得⎩⎪⎨⎪⎧k ′=-53,b =173.∴直线MN 1对应的函数解析式为y =-53x +173. 令y =0,得x =175, ∴P 点坐标为⎝ ⎛⎭⎪⎫175,0.。

反比例函数专项提高经典练习试题整理

反比例函数专项提高经典练习试题整理

反比例函数专项提高练习1.下列函数中:①xy2=,②11+=xy,③2xy=④xy23-=⑤11+=xy⑥xy=5 ⑦xky=⑧y=4x-1其中是y关于x的反比例函数有:;(填写序号)2. 某反比例函数图象经过点(-1,6),则下列各点中此函数图象也经过的点是()A.(-3,2) B.(3,2) C.(2,3) D.(6,1)3.反比例函数xy6-=图象上有三个点)(11yx,,)(22yx,,)(33yx,,其中3210xxx<<<,则y1,y2,y3的大小关系是.4. 已知点(-1,y1),(2,y2),(3,y3)在反比例函数的图像上. 则y1,y2,y3的大小关系是.5.反比例函数,当x>0时,y随x的增大而增大则m的值是。

6.下列函数中,y值随x值的增大而增大的是()A、y=2x+3B、1y x=-+C、1yx=D、1yx=-7.如图是三个反比例函数xky1=,xky2=,xky3=在x轴上的图像,由此观察得到k1、k2、k3的大小关系为_____8.在同一直角坐标系中,函数y=kx+k,与xky-=y=(k0≠)的图像大致为()7题 8题9.若点 A(m, -2)在反比例函数xy4=的图像上,则当函数值y﹥-2时,自变量x的取值范围是___________.10.若一次函数y=kx+1的图像与反比例函数xy1=的图像没有公共点,则实数k的取值范围是11.已知反比例函数xy8-=与一次函数y=-x+2的图象交于A、B两点。

(1)求A,B两点的坐标; (2)求△AOB的面积。

(3)并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.12.如图,一次函数bkxy+=的图象与反比例函数xmy=的图象交于点A﹙-2,-5﹚,C﹙5,n﹚,交y轴于点B,交x轴于点D.(1) 求反比例函数xmy=和一次函数bkxy+=的表达式;(2) 连接OA,OC.求△AOC的面积.(3)并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.xky12--=13.如图,直线b kx y +=与反比例函数xk y '=(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,且其中点A 的坐标为(-2,4),点B 的横坐标为-4.(1)试确定反比例函数的关系式; (2)求△AOC 的面积. (3)观察图象,比较当x ﹤0时,1y 和2y 的大小.14.△OPQ 是边长为2的等边三角形,若反比例函数的图象过点P ,则它的解析式是 . 15.如图,在平面直角坐标系中,函数(,常数)的图象经过点,,(),过点作轴的垂线,垂足为.若的面积为2,则点的坐标为 .13题 14题 15题 18题 19题16直线)0(<=k kx y 与双曲线xy 2-=交于),(),,(2211y x B y x A 两点,则122183y x y x -的值为____ 17.过反比例函数的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______ 18.如图A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则S=_________ 19.如图,直线y=mx 与双曲线y=xk交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是________20. 如图,A 是反比例函数图象上一点,过点A 作y AB ⊥轴于点B ,点P 在x 轴上,△ABP 面积为2,则这个反比例函数的解析式为 。

初中数学反比例函数经典测试题及答案

初中数学反比例函数经典测试题及答案

初中数学反比例函数经典测试题及答案k/x(k>0),且2<a<。

函数图象为双曲线,开口朝左右两侧,且在第一象限和第三象限.XXX在双曲线上,且x<0,∴y1>0;XXX在双曲线上,且x>0,∴y3>0;XXX在双曲线上,且x>0,∴y2<0;2<a<,∴B在A和C的中间,即y1>y2>y3.故选D.点睛】此题主要考查了反比例函数的图象特征,正确分析图象上点的坐标特征是解题关键.二、填空题1.已知反比例函数y=k/x(x≠0)的图象过点(4,-6),则函数的解析式为y=答案】y=-24/x解析】分析】利用函数图象过定点的特点,代入坐标得出k的值,进而得出函数解析式.详解】由题意得:6=k/4k=-24y=-24/x故填-24/x.点睛】此题主要考查了反比例函数的解析式的确定方法,正确利用函数图象过定点的特点是解题关键.2.已知反比例函数y=k/x(x≠0)的图象经过点(1,-6),则函数的解析式为y=答案】y=-6/x解析】分析】利用函数图象过定点的特点,代入坐标得出k的值,进而得出函数解析式.详解】由题意得:6=k/1k=-6y=-6/x故填-6/x.点睛】此题主要考查了反比例函数的解析式的确定方法,正确利用函数图象过定点的特点是解题关键.三、解答题1.已知反比例函数y=k/x(x≠0)的图象过点(2,-3),且y=4时,x=().答案】-8解析】分析】利用函数图象过定点的特点,代入坐标得出k的值,进而代入已知条件解出x.详解】由题意得:3=k/2k=-6当y=4时,有:4=-6/xx=-8故填-8.点睛】此题主要考查了反比例函数的解析式的确定方法,正确利用函数图象过定点的特点和已知条件是解题关键.2.已知反比例函数y=k/x(x≠0)的图象过点(1,-2),且y=4时,x=().答案】-0.5解析】分析】利用函数图象过定点的特点,代入坐标得出k的值,进而代入已知条件解出x.详解】由题意得:2=k/1k=-2当y=4时,有:4=-2/xx=-0.5故填-0.5.点睛】此题主要考查了反比例函数的解析式的确定方法,正确利用函数图象过定点的特点和已知条件是解题关键.第4题:在平面直角坐标系中,点A是函数$y=k(x>0)$在第一象限内图象上一动点,过点A分别作AB⊥x轴于点B、AC⊥y轴于点C,AB、AC分别交函数$y=1(x>0)$的图象于点E、F,连接OE、OF。

初中数学 反比例函数测试题(含答案)

初中数学  反比例函数测试题(含答案)

反比例函数测试题一、填空: 1、如果函数122--=m xm y 是反比例函数,那么=m ____________.2、已知y 与x 成反比例,且当2-=x 时,3=y ,则y 与x 的函数关系是_________, 当3-=x 时,=y _____________。

3、若()2,2M 和()21,nb N --是反比例函数xk y =图象上的两点,则一次函数b kx y +=的图象经过_____________象限。

4、函数xy 32-=的图象在第_____象限,在每个象限内,图象从左向右_________. 5、弹簧挂上物体后会伸长,测得一弹簧的长度()cm y 与所挂物体的质量()kg x 有下面的关系。

那么弹簧总长()cm y 与所挂物体质量()kg x 之间的函数关系为_____________. 6、从A 市向B 市打长途电话,按时收费,3分钟收费2.4元,每加1分钟加收1元,按时间3≥t (时)分时电话费y (元)与t 之间的函数关系式为_________________. 7、某报报道了“养老保险执行标准”的消息,云龙中学数学课外活动小组根据消息中提供的数据给制出某市区企业职工养老保险个人月缴费y (元)随个人月工资x (元)变化的图象,请就图象回答下列问题: ⑴张总工程师五月份工资为3000元,这个月他个人应缴养老保险费______元。

⑵小王五月份工资为500元,这个月他应缴养老保险费________元。

⑶李师傅五月份个人缴养老保险费50元,则他五月份的工资为________元。

二、解答题:y(元)x(元)195.0238.992786557340BA8、杨嫂在再就业中心的扶持下,创办了报刊零售点,对经营的某种晚报,杨嫂提供了如下信息:①每份买进0.2元,每份卖出0.3元;②一个月内(以30天计),有20天每天可以卖出120份,其余10天每天只能卖出80份;③一个月内,每天从报社买进的报纸必须相同,当天卖不掉的报纸,以每份0.1元退回给报社。

最新初中数学反比例函数经典测试题

最新初中数学反比例函数经典测试题
15.点(2,﹣4)在反比例函数y= 的图象上,则下列各点在此函数图象上的是( )
A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)
【答案】D
【解析】
【详解】
∵点(2,-4)在反比例函数y= 的图象上,
∴k=2×(-4)=-8.
∵A中2×4=8;B中-1×(-8)=8;C中-2×(-4)=8;D中4×(-2)=-8,
∵S△CMN= NC•MC= ab=1,
∴ab=2,
∵AC= −b,BC= −a,
∴S△ABC= AC•BC= ( −b)•( −a)=4,即 ,
∴ ,
解得:k=6或k=−2(舍去),
故选:D.
【点睛】
本题考查反比例函数图象上点的坐标特征、三角形的面积计算等,解答本题的关键是明确题意,利用三角形的面积列方程求解.
【详解】
解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.
∵A、B关于原点对称,
∴OA=OB,
∵AC=BC,OA=OB,
∴OC⊥AB,
∴∠CFO=∠COA=∠AEO=90°,
∴∠COF+∠AOE=90°,∠AOE+∠EAO=90°,
∴∠COF=∠OAE,
∴△CFO∽△OEA,
∴ ,
∵CA:AB=13:24,AO=OB,
11.已知点 , 均在双曲线 上,下列说法中错误的是()
A.若 ,则 B.若 ,则
C.若 ,则 D.若 ,则
【答案】D
【解析】
【分析】
先把点A(x1,y1)、B(x2,y2)代入双曲线 ,用y1、y2表示出x1,x2,据此进行判断.
【详解】
∵点(x1,y1),(x2,y2)均在双曲线 上,
∴ , .

中考数学探究性试题精选之反比例函数综合题(含15大题)

中考数学探究性试题精选之反比例函数综合题(含15大题)

中考数学探究性试题精选之反比例函数综合题(含15大题)1.如图1,在平面直角坐标系中,将锐角∠MON 的顶点与原点O 重合,角的一边OM 与x 轴正半轴重合,角的另一边ON 交函数y =kx (k >0,x >0)的图象(记为曲线l )于点A ,在射线ON 的右侧构造矩形ABCD ,对角线AC 和BD 交于点E ,满足AB ∥x 轴,AC =2AO ,作射线OB .(1)若点D (1,√2−1),点E (2+√2,√2),求k 的值; (2)求证:点D 在直线OB 上;(3)如图2,当∠MON =45°时,射线OB 交曲线l 于点F ,以点O 为圆心,12OB 为半径画弧交x 轴于点H ,求证:FH ⊥x 轴.2.如图1,一次函数y =k 1x +b 与反比例函数y =k2x 在第一象限交于M (1,4)、N (4,m )两点,点P 是x 轴负半轴上一动点,连接PM ,PN . (1)求反比例函数及一次函数的表达式; (2)若△PMN 的面积为9,求点P 的坐标;(3)如图2,在(2)的条件下,若点E 为直线PM 上一点,点F 为y 轴上一点,是否存在这样的点E 和点F ,使得以点E 、F 、M 、N 为顶点的四边形是平行四边形?若存在,直接写出点E 的坐标;若不存在,请说明理由.3.如图,直线y=mx+n交x轴于点A,交反比例函数y=kx的图象于C(2,4),D(4,a)两点.(1)求反比例函数的解析式和a的值;(2)根据图象直接写出不等式mx+n>kx的解集;(3)点M为y轴上任意一点,点N为平面内任意一点,若以C,D,M,N为顶点的四边形是菱形,直接写出点N的坐标.4.如图,在平面直角坐标系中,点A在第一象限内,点B(4,0)在x轴上,连接OA、AB,OA=AB,cos∠AOB=√55,反比例函数y=kx(k≠0)的图象经过A点.(1)求k的值;(2)如图,以OA为直角边作等腰直角△AOC,过点C作CD⊥x轴交反比例函数的图象于点E,求E点坐标.5.小明喜欢用几何画板学习研究数学问题.某周末他用几何画板绘制了两个反比例函数y=k1x和y=k2x在第一象限内的图象,分别记为l1和l2,设点E在l1上,EC⊥x轴于点C,交l2于点A,ED⊥y轴于点D,交l2于点B,延长OB交l1于点F,FG⊥y轴于点G.(1)小明利用几何画板的面积测量命令分别测量了四边形EAOB和四边形DBFG的面积,分别记为S1,S2.请推测S1和S2的数量关系并证明;(2)小明连接AB,CD后发现好像是平行关系.请判断AB和CD是否平行并说明理由;(3)若S1=2,DB:BE=1:2,直接写出这两个反比例函数的表达式.6.【定义】在平面内,把一个图形上任意一点与另一个图形上任意一点之间的距离的最小值,称为这两个图形之间的距离,即A,B分别是图形M和图形N上任意一点,当AB的长最小时,称这个最小值为图形M与图形N之间的距离.例如,如图1,AB⊥l1,线段AB的长度称为点A与直线l1之间的距离,当l2∥l1时,线段AB的长度也是l1与l2之间的距离.【应用】(1)如图2,在等腰Rt△BAC中,∠A=90°,AB=AC,点D为AB边上一点,过点D 作DE∥BC交AC于点E.若AB=6,AD=4,则DE与BC之间的距离是;(2)如图3,已知直线l3:y=﹣x+4与双曲线C1:y=kx(x>0)交于A(1,m)与B两点,点A与点B之间的距离是,点O与双曲线C1之间的距离是;【拓展】(3)按规定,住宅小区的外延到高速路的距离不超过80m时,需要在高速路旁修建与高速路相同走向的隔音屏障(如图4).有一条“东南﹣西北”走向的笔直高速路,路旁某住宅小区建筑外延呈双曲线的形状,它们之间的距离小于80m.现以高速路上某一合适位置为坐标原点,建立如图5所示的直角坐标系,此时高速路所在直线l4的函数表达式为y=﹣x,小区外延所在双曲线C2的函数表达式为y=2400x(x>0),那么需要在高速路旁修建隔音屏障的长度是多少?7.一次函数y=12x+2与x轴交于C点,与y轴交于B点,点A(2,a)在直线BC上,过点A做反比例函数y=k x.(1)求出a,k的值;(2)M为线段BC上的点,将点M向右平移4个单位,再向上平移2个单位得到点N,点N恰巧在反比例函数y=kx上,求出点M坐标;(3)在x轴上是否存在点D,使得∠BOA=∠OAD,若存在请直接写出点D坐标,若不存在请说明理由.8.如图,在平面直角坐标系xOy中,四边形ABOC为矩形,点A坐标为(6,3),反比例函数y=3x的图象分别与AB,AC交于点D,E,点F为线段DA上的动点,反比例函数y=kx(k≠0)的图象经过点F,交AC于点G,连接FG.(1)求直线DE的函数表达式;(2)将△AFG沿FG所在直线翻折得到△HFG,当点H恰好落在直线DE上时,求k的值;(3)当点F为线段AD中点时,将△AFG绕点F旋转得到△MFN,其中A,G的对应点分别为M,N,当MN∥DE时,求点N的坐标.9.如图1,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=kx(k>0)的第一象限内的图象上,OA=4,OC=3,动点P在y轴的右侧,且满足S△PCO=3 8S矩形OABC.(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、PC,求PO+PC的最小值;(3)若点Q是平面内一点,使得以B、C、P、Q为顶点的四边形是菱形,请你直接写出满足条件的所有点Q的坐标.10.如图,直线AB:y=﹣x+n与坐标轴交于A,B两点,点C为点O关于AB的对称点,连接AC,BC,双曲线y=mx(x>0)的图象经过AC的中点D,S△OAD=2.(1)求双曲线的解析式及n 的值;(2)P (x ,y )为双曲线上任意一点,过P 作y 轴的垂线交直线AB 于点E ,连接PC .求证:PE =PC ;(3)在(2)的条件下,若PC 的延长线交双曲线于另一点Q ,分别过P ,Q 两点作直线AB 的垂线,垂足分别为M ,N ,试判断PQ PM+QN是否为定值,若是,请求出该定值,若不是请说明理由.11.已知一次函数y =−12x +b 的图象与反比例函数y =6x(x >0)的图象交于A 、B 两点,与x 轴、y 轴分别交于C 、D 两点. (1)若A 点的横坐标为32,求b 的值;(2)如图,若AB =2AC ,求A 、B 两点的坐标;(3)在(2)的条件下,将一直角三角板的直角顶点P 放在反比例函数图象的AB 段上滑动,直角边始终与坐标轴平行,且与线段AB 分别交于Q 、R 两点,设点P 的横坐标为x 0,QR 的长为L .问:是否存在点P ,使L 的长为√52,存在请求出符合条件的P 的坐标,不存在请说明理由.12.如图,反比例函数y=kx的图象与正比例函数y=mx的图象交于A,C两点,其中点A的坐标为(2,2√3).(1)求反比例函数及正比例函数的解析式;(2)点E是反比例函数第三象限图象上一点,且EC⊥AC,过点C的直线l1与线段AE 相交,点A,点E到直线l1的距离分别为d1,d2,试求d1+d2的最大值;(3)点B(2,0),在x轴上取一点P(t,0)(t>2),过点P作直线OA的垂线l2,以直线l2为对称轴,线段OB经轴对称变换后得到O′B′,当O′B′与双曲线有交点时,求t的取值范围.13.如图,直线y=32x与双曲线y=k x(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;(3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形ABPQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系xOy中,一次函数y=﹣x+7的图象与反比例函数y=kx(x>0)的图象相交于A(1,6),B两点,P(0,﹣1)是y轴上的一个定点.(1)求反比例函数的表达式及点B的坐标;(2)H是线段AB上的一点,当△P AB的面积被线段PH分成面积比为2:3的两部分时,求点H的坐标;(3)在(2)的条件下,请在x轴上找点M,平面内找点N,使得四边形PHMN为矩形,求M,N两点的坐标.(直接写出答案)15.如图1,木匠陈师傅现有一块五边形ABFED木板,它是矩形ABCD木板用去△CEF后的余料,AD=4,AB=5,DE=1,F是BC边上一点.陈师傅打算利用该余料截取一块矩形材料,其中一条边在AD上.[初步探究](1)当BF=2时.①若截取的矩形有一边是DE,则截取的矩形面积的最大值是;②若截取的矩形有一边是BF,则截取的矩形面积的最大值是;[问题解决](2)如图2,陈师傅还有另一块余料,∠BAF=∠AFE=90°,AB=EF=1,CD=3,AF=8,CD∥AF,且CD和AF之间的距离为4,若以AF所在直线为x轴,AF中点为原点构建直角坐标系,则曲线DE是反比例函数y=kx图象的一部分,陈师傅想利用该余料截取一块矩形MNGH材料,其中一条边在AF上,所截矩形MNGH材料面积是736.求GN的长.。

反比例函数经典例题

反比例函数经典例题

《反比例函数》章末提升试题一.选择题1.反比例函数y=﹣中常数k为()A.﹣3B.2C.﹣D.﹣2.函数y=﹣图象上有两点A(x1,y1)和B(x2,y2),若y1<y2<0,则下列关于x1、x2的大小关系正确的是()A.x1>x2B.x1=x2C.x1<x2D.无法确定3.若反比例函数y=图象经过点(5,﹣1),该函数图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限4.在同一坐标系中函数y=kx和y=的大致图象必是()A.B.C.D.5.如图,平行四边形ABCD中,点A在反比例函数y=(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是()A.﹣10B.﹣5C.5D.106.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为()A.2B.1.5C.4D.67.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,且与直角边AB相交于点C.若点B的坐标为(4,6),则△AOC的面积为()A.3B.6C.9D.129.已知直线y=x与函数y=(k≠0)图象的一个交点的横坐标为4,则另一个交点的纵坐标是()A.2B.C.﹣D.﹣210.如图,点A在反比例函数y=(k≠0)的图象上,且点A是线段OB的中点,点D为x轴上一点,连接BD交反比例函数图象于点C,连接AC,若BC:CD=2:1,S△ADC=.则k的值为()A.B.16C.D.10二.填空题11.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x 轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S=.△AOC12.若正比例函数y=﹣x的图象与反比例函数y=(k≠)的图象有公共点,则k 的取值范围是13.如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=.14.如图,△ABC是等边三角形,顶点C在y轴的负半轴上,点A(1,),点B在第一象限,经过点A的反比例函数y=(x>0)的图象恰好经过顶点B,则△ABC的边长为.15.如图,在△AOB中,∠AOB=90°,点A的坐标为(4,2),BO=4,反比例函数y=的图象经过点B,则k的值为.16.如图:M为反比例函数y=图象上一点,MA⊥y轴于A,S△MAO=4时,k=.17.如图,已知反比例函数y=(x>0)的图象经过Rt△OAB斜边OB的中点C,且与直角边AB交于点D,连接OD,若点B的坐标为(2,3),则△OAD的面积为.三.解答题18.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.19.如图,已知A(﹣4,a),B(﹣1,2)是一次函数y1=kx+b与反比例函数y2=(m<0)图象的两个交点,AC⊥的值.(2)根据图象直接回答:在第二象限内,当y1>y2时,x的取值范围是.(3)若P是线段AB上的一点,连接PC,若△PCA的面积等于,求点P坐标.20.如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=(k≠0)的图象经过点B.(1)求反比例函数的解析式;(2)若点E恰好落在反比例函数y=上,求平行四边形OBDC的面积.21.如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.22.已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与时,求y的值.23.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.参考答案一.选择题(共10小题)1.解:反比例函数y=﹣中常数k为﹣,故选:D.2.解:∵函数y=﹣中,k=﹣2,∴在每个象限内,y随着x的增大而增大,又∵A(x1,y1)和B(x2,y2)中y1<y2<0,∴点A和点B在第四象限,∴x1<x2,故选:C.3.解:∵反比例函数y=的图象经过点(5,﹣1),∴k=5×(﹣1)=﹣5<0,∴该函数图象在第二、四象限.故选:D.4.解:在同一坐标系中函数y=kx和y=的大致图象必是,故选:C.5.解:作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|﹣k|,∴|﹣k|=10,∵k<0,∴k=﹣10.故选:A.6.解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE ⊥x轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD=S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC=S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.故选:B.7.解:作DH⊥OA于H.∵B(4,6),OD=DB,∴D(2,3),∴S△ODH=×2×3=3,∵S△AOC=S△ODH=,∴S△AOC=3,故选:A.8.解:A、由反比例函数图象得函数y=(k为常数,k≠0)中k>0,根据一次函数图象可得﹣k>0,则k<0,则选项错误;B、由反比例函数图象得函数y=(k为常数,k≠0)中k>0,根据一次函数图象可得﹣k>0,则k<0,则选项错误;C、由反比例函数图象得函数y=(k为常数,k≠0)中k<0,根据一次函数图象可得﹣k<0,则k>0,则选项错误;D、由反比例函数图象得函数y=(k为常数,k≠0)中k>0,根据一次函数图象可得﹣k<0,则k>0,故选项正确.故选:D.9.解:把x=4代入y=x,可得y=2,即一个交点的坐标为(4,2),∵直线y=x与函数y=(k≠0)图象的两个交点关于原点对称,∴另一个交点为(﹣4,﹣2),∴另一个交点的纵坐标是﹣2,故选:D.10.解:作AE⊥OD于E,CF⊥OD于F.∵BC:CD=2:1,S△ADC=,∴S△ACB=,∵OA=AB,∴B(2m,2n),S△AOC=S△ACB=,∵A、C在y=上,BC=2CD,∴C(m,n),∵S△AOC=S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,∴•(n+n)×m=,∴mn=16,故选:B.二.填空题(共7小题)11.解:∵BD⊥CD,BD=2,∴S△BCD=BD•CD=3,即CD=3,∵C(2,0),即OC=2,∴OD=OC+CD=2+3=5,∴B(5,2),代入反比例解析式得:k=10,即y=,则S△AOC=5,故答案为:512.解:∵正比例函数y=﹣x的图象与反比例函数y=(k≠)的图象有公共点,∴﹣x=,∴x2+4k﹣2=0有解,∴△=0﹣16k+8≥0,解得k≤且k≠∴k<故答案为:k<13.解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣314.解:如图延长AB到D,使得AB=BD,连接CD,作AH⊥y轴于H,DE⊥y轴于E.设C(0,c).∵△ABC是等边三角形,∴AB=AC=BC,∵AB=BD,∴BA=BC=BD,∴△ACD是直角三角形,∵∠CAD=60°,∴DC=AC,∵∠ACD=∠AHC=∠DEC=90°,∴∠ACH+∠DCE=90°,∵∠ECD+∠CDE=90°,∴∠ACH=∠CDE,∴△ACH∽△CDE,∴===,∵A(1,),∴AH=1,CH=﹣c,∴EC=,DE=﹣c,∴D(﹣c,c﹣),∵BA=BD,∴B(,),∵A、B在y=上,∴=×,整理得:4c2﹣16c﹣11=0,解得c=﹣或(舍弃),∴C(0,﹣),∴AC===2,故答案为2.15.解:过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C、D,则∠OCA=∠BDO=90°,∴∠DBO+∠BOD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠DBO=∠AOC,∴△DBO∽△COA,∴==,∵点A的坐标为(4,2),∴AC=2,OC=4,∴AO==2,∴==即BD=8,DO=4,∴B(﹣4,8),∵反比例函数y=的图象经过点B,∴k的值为﹣4×8=﹣32.故答案为﹣3216.解:∵MA⊥y轴,∴S△AOM=|k|=4,∵k<0,∴k=﹣8.故答案为﹣8.17.解:∵点B的坐标为(2,3),点C为OB的中点,∴C点坐标为(1,1.5),∴k=1×1.5=1.5,即反比例函数解析式为y=,∴S△OAD=×1.5=.故答案为:.三.解答题(共6小题)18.解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S△CDE=S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不高于反比例函数图象∴由图象得,x≥10,或﹣4≤x<019.解:(1)把B(﹣1,2)代入y=得m=﹣1×2=﹣2,把A(﹣4,a)代入y=﹣得a=﹣=,把A(﹣4,),B(﹣1,2)代入y=kx+b,得,解得:,∴k=,b=,m=﹣2;(2)结合图象可得:在第二象限内,当y1>y2时,x的取值范围是﹣4<x<﹣1,故答案为﹣4<x<﹣1;(3)设点P的横坐标为x P,∵AC⊥x轴,点A(﹣4,),∴AC=.∵△PCA的面积等于,∴××[x P﹣(﹣4)]=,解得x P=﹣2,∵P是线段AB上的一点,∴y P=×(﹣2)+=,∴点P的坐标为(﹣2,).20.解:(1)把B坐标代入反比例解析式得:k=12,则反比例函数解析式为y=;(2)∵B(3,4),C(m,0),∴边BC的中点E坐标为(,2),将点E的坐标代入反比例函数得2=,解得:m=9,则平行四边形OBCD的面积=9×4=36.21.解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得k=1×3=3,∴y与x之间的函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=BC=,或BP=BC=,∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).22.解:(1)由题意得,10xy=100,∴y=(时,y==5(cm).23.解:(1)∵反比例函数y=(m≠0)的图象过点A(3,1),∴3=∴m=3.∴反比例函数的表达式为y=.∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2).∴,解得:,∴一次函数的表达式为y=x﹣2;(2)令y=0,∴x﹣2=0,x=2,∴一次函数y=x﹣2的图象与x轴的交点C的坐标为(2,0).∵S△ABP=3,PC×1+PC×2=3.∴PC=2,∴点P的坐标为(0,0)、(4,0).。

反比例函数经典测试题及答案解析

反比例函数经典测试题及答案解析

反比例函数经典测试题及答案解析反比例函数经典测试题及答案解析一、选择题1.已知点M(-1,3)在双曲线y= k/x上,则下列各点一定在该双曲线上的是()A。

(3,-1)B。

(-1,-3)C。

(1,3)D。

(3,1)答案】A解析】分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在。

详解】∵点M(-1,3)在双曲线y= k/x上。

k= -1×3= -3。

3×(-1)= -3。

点(3,-1)在该双曲线上。

1)×(-3)=1×3=3×1=3。

点(-1,-3)、(1,3)、(3,1)均不在该双曲线上。

故选:A.点睛】此题考查反比例函数解析式,正确计算k值是解题的关键。

2.已知点A(-2,y1),B(a,y2),C(3,y3)都在反比例函数y=4/x上,2<a<3,则()A。

y1<y2<y3B。

y3<y2<y1XXX<y1<y2D。

y2<y1<y3答案】D解析】分析】根据k>0,在图象的每一支上,y随x的增大而减小,双曲线在第一三象限,逐一分析即可。

详解】∵反比例函数y=4/x的图象上,且- x<0。

在图象的每一支上,y随x的增大而减小,双曲线在第一三象限。

2<a<3。

4>y1.y2.y3。

C(3,y3)在第一象限。

y3>0。

y2<y1<y3。

故选D。

点睛】本题考查了反比例函数的性质,熟练地应用反比例函数的性质是解题的关键。

3.如图,在平面直角坐标系中,点A是函数y=k/x(x>0)在第一象限内图象上一动点,过点A分别作AB⊥x轴于点B、AC⊥y轴于点C,AB、AC分别交函数y=1/x的x图象于点E、F,连接OE、OF。

当点A的纵坐标逐渐增大时,四边形OFAE的面积()A。

不变B。

逐渐变大C。

逐渐变小D。

先变大后变小答案】A解析】分析】根据反比例函数系数k的几何意义得出矩形ACOB 的面积为k,四边形OFAE的面积为定值k-1.详解】∵点A是函数y=k/x(x>0)在第一象限内图象上一动点,过点A分别作AB⊥x轴于点B、AC⊥y轴于点C。

初三数学反比例函数经典试题

初三数学反比例函数经典试题

初三数学反比例函数经典试题一.选择题1. 在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A .B .C .D . 2. 如图所示的图象上的函数关系式只能是( ) .A. y x =B. 1y x =C. 21y x =+D. 1||y x =3. 已知0ab <,点P(a b ,)在反比例函数ay x=的图像上,则直线y ax b =+不经过的象限是( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 在函数21a y x--=(a 为常数)的图象上有三个点1(1)y -,,21()4y -,,31()2y ,,则函数值1y 、2y 、3y 的大小关系是( ).A .2y <3y <1yB .3y <2y <1yC .1y <2y <3yD .3y <1y <2y5. 如图,直线x=t (t >0)与反比例函数y=(x >0)、y=(x >0)的图象分别交于B 、C 两点,A 为y 轴上任意一点,△ABC 的面积为3,则k 的值为( )A.2B.3C.4D.512my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m>6. 如图,点A 、C 为反比例函数y=图象上的点,过点A 、C 分别作AB ⊥x 轴,CD ⊥x 轴,垂足分别为B 、D ,连接OA 、AC 、OC ,线段OC 交AB 于点E ,点E 恰好为OC 的中点,当△AEC 的面积为时,k 的值为( )A .4B .6C .﹣4D .﹣67.若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是( ) A .(2,3) B .(3,2) C .(﹣2,3) D .(﹣2,﹣3) 8. 函数与在同一坐标系内的图象可以是( )9. 反比例函数是y=的图象在( )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限 10. 数22(1)my m x -=-是反比例函数,则m 的值是( )A .±1B .1 C.-1 11. 如图所示,直线2y x =+与双曲线ky x=相交于点A ,点A 的纵坐标为3,k 的值为( ).A .1B .2C .3D .412. 点(-1,1y ),(2,2y ),(3,3y )在反比例函数21k y x--=的图象上.下列结论中正y x m =+(0)my m x=≠确的是( ).A .123y y y >>B .132y y y >>C .312y y y >>D .231y y y >> 13. 已知111(,)P x y 、222(,)P x y 、333(,)Px y 是反比例函数2y x=图象上的三点,且1230x x x <<<,则1y 、2y 、3y 的大小关系是( )A .321y y y <<B .123y y y <<C .213y y y <<D .231y y y << 14. 如图所示,点P 在反比例函数1(0)y x x=>的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P ',则在第一象限内,经过点P '的反比例函数图象的解析式是( ).A .5(0)y x x =->B .5(0)y x x =>C .6(0)y x x =->D .6(0)y x x=> 二、填空题15. 如图所示是三个反比例函数x k y 1=、x ky 2=、xk y 3=的图象,由此观察得到1k 、2k 、3k 的大小关系是____________________(用“<”连接).16. 如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 与点D 在反比例函数6y x=(x >0)的图象上,则点C 的坐标为 _________ .17. 已知y 1与x 成正比例(比例系数为k 1),y 2与x 成反比例(比例系数为k 2),若函数y=y 1+y 2的图象经过点(1,2),(2,),则8k 1+5k 2的值为. 18.已知A (11,x y ),B (22,x y )都在6y x =图象上.若123x x =-,则12y y 的值为 _________ .19. 如图,正比例函数3y x =的图象与反比例函数ky x=(k >0)的图象交于点A ,若k 取1,2,3…20,对应的Rt △AOB 的面积分别为12320,,....,S S S S ,则1220....S S S +++ = ________.20. 如图所示,点1A ,2A ,3A 在x 轴上,且11223OA A A A A ==,分别过点1A ,2A ,3A作y 轴的平行线,与反比例函数y =8x(x >0)的图象分别交于点1B ,2B ,3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别于y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为____________.21.若反比例函数的图象过点(3,﹣2),则其函数表达式为 . 22.若函数y=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围___________. 23.反比例函数)0(≠=k xky 的图象叫做__________.当0k >时,图象分居第__________象限,在每个象限内y 随x 的增大而_______;当0k <时,图象分居第________象限,在每个象限内y 随x 的增大而__________.24. 若点A(m ,-2)在反比例函数的图像上,则当函数值y ≥-2时,自变量x 的取值范围是___________.25.若变量y 与x 成反比例,且2x =时,3y =-,则y 与x 之间的函数关系式是________,在每个象限内函数值y 随x 的增大而_________.4y x=26.已知函数x m y =,当21-=x 时,6=y ,则函数的解析式是__________. 27.如图,面积为3的矩形OABC 的一个顶点B 在反比例函数xky =的图象上,另三点在坐标轴上,则_______k =.28.在一个可以改变容积的密闭容器内,装有一定质量的某种气体,当改变容积V 时,气体的密度ρ也随之改变.在一定范围内,密度ρ是容积V 的反比例函数.当容积为53m 时,密度是1.43/kg m ,则ρ与V 的函数关系式为_______________.三.解答题29.已知反比例函数的图象经过点P (2,﹣3). (1)求该函数的解析式; (2)若将点P 沿x 轴负方向平移3个单位,再沿y 轴方向平移n (n >0)个单位得到点P ′,使点P ′恰好在该函数的图象上,求n 的值和点P 沿y 轴平移的方向. 30. 如图所示,已知双曲线k y x =与直线14y x =相交于A 、B 两点.第一象限上的点M(m ,n )(在A 点左侧)是双曲线ky x =上的动点.过点B 作BD ∥y 轴交于x 轴于点D .过N(0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C .(1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式. 31. (2015春•耒阳市校级月考)如图,已知点A (﹣8,n ),B (3,﹣8)是一次函数y=kx+b 的图象和反比例函数my x=图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积,32. 一辆汽车匀速通过某段公路,所需时间t(h )与行驶速度v(/km h )满足函数关系:kt v=,其图象为如图所示的一段曲线且端点为A(40,1)和B(m ,0.5).(1)求k 和m 的值;(2)若行驶速度不得超过60/km h ,则汽车通过该路段最少需要多少时间? 33. 在压力不变的情况下,某物体承受的压强P (Pa )是它的受力面积S ()的反比例函数,其图象如图所示.(1) 求P 与S 之间的函数关系式; (2) 求当S =0.5时物体承受的压强P .34.如图,直线y=x 与双曲线y=(x >0)交于点A ,将直线y=x 向下平移个6单位后,与双曲线y=(x >0)交于点B ,与x 轴交于点C. (1)求C 点的坐标. (2)若=2,则k 的值为?35.如图所示,一次函数112y k x =+与反比例函数22k y x=的图象交于点A(4,m )和B(-8,-2),与y 轴交于点C .(1)1k = ________,2k =________;(2)根据函数图象可知,当12y y >时,x 的取值范围是________;(3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点.设直线OP 与线段AD 交于点E ,当31ODE ODAC S S =△四边形::时,求点P 的坐标.【答案与解析】 一.选择题1. C2. D3. C4. D5. D6. C7. D8. B9. B 10. D 11. C 12. B 13. C 14. D二.填空题15. 123k k k <<; 16.(3,6) 17. 9 18. -12 19. 105 20. 49921. y=﹣22. m <2 23. 双曲线;一、三;减小;二、四;增大;24. x ≤-2或0x >; 25. xy 6-=;增大 ; 26.3y x =-; 27. -3;28. 7Vρ=.三.解答题 29.【解析】解:(1)设反比例函数的解析式为y=, ∵图象经过点P (2,﹣3), ∴k=2×(﹣3)=﹣6,∴反比例函数的解析式为y=﹣;(2)∵点P 沿x 轴负方向平移3个单位, ∴点P ′的横坐标为2﹣3=﹣1, ∴当x=﹣1时,y=﹣=6,∴∴n=6﹣(﹣3)=9,∴沿着y 轴平移的方向为正方向. 30.【解析】解:(1)∵ D(-8,0),∴ B 点的横坐标为-8,代入14y x =中,得y =-2.∴ B 点坐标为(-8,-2).而A 、B 两点关于原点对称,∴ A(8,2) . 从而k =8×2=16.(2)∵ N(0,-n ),B 是CD 的中点,A 、B 、M 、E 四点均在双曲线上, ∴ mn k =,(2,)2n B m --,C(-2m ,-n ),E(-m ,-n ).22DCNO S mn k ==矩形,1122DBO S mn k ==△,1122OEN S mn k ==△, ∴ DBO OEN DCNO OBCE S S S S k =--=△△矩形四边形.∴ k =4. 由直线14y x =及双曲线4y x=, 得A(4,1),B(-4,-1),∴ C(-4,-2),M(2,2). 设直线CM 的解析式是y ax b =+,由C 、M 两点在这条直线上,得42,2 2.a b a b -+=-⎧⎨+=⎩ 解得23a b ==. ∴ 直线CM 的解析式是2233y x =+.31.【解析】解:(1)△B (3,﹣8)在反比例函数my x=图象上, △﹣8=3m,m=﹣24,反比例函数的解析式为y=﹣,把A (﹣8,n )代入y=﹣,n=3,设一次函数解析式为y=kx+b ,,解得,,一次函数解析式为y=﹣x ﹣5. (2)﹣x ﹣5=0,x=﹣5, 点C 的坐标为(﹣5,0),△AOB 的面积=△AOC 的面积+△BOC 的面积=×5×3+×5×8=.(3)点A (﹣8,3),B (3,﹣8)是一次函数y=kx+b 的图象和反比例函数my x=图象的两个交点, 方程kx+b ﹣mx=0的解是:x 1=﹣8,x 2=3, (4)由图象可知,当x <﹣8或0<x <3时,kx+b >m x, ∴不等式kx+b ﹣mx>0的解集为:x <﹣8或0<x <3.32.【解析】解:(1)将(40,1)代入k t v=,得140k=,解得k =40.∴ 该函数解析式为40t v =.∴ 当t =0.5时,400.5m=,解得m =80,∴ k =40,m =80.(2)令v =60,得402603t ==, 结合函数图象可知,汽车通过该路段最少需要23小时.33.【解析】解:(1)设所求函数解析式为kp s=,把(0.25,1000)代入解析式, 得1000=0.25k, 解得k =250 ∴所求函数解析式为250p s=(s >0)(2)当s =0.5时,P =500(Pa)34.【解析】解:(1)∵将直线y=x 向下平移个6单位后得到直线BC ,∴直线BC 解析式为:y=x ﹣6, 令y=0,得x ﹣6=0, ∴C 点坐标为(,0);(2)∵直线y=x 与双曲线y=(x >0)交于点A ,∴A(,),又∵直线y=x ﹣6与双曲线y=(x >0)交于点B ,且=2,∴B(+,),将B 的坐标代入y=中,得(+)=k ,解得k=12.35.【解析】 解:(1)12,16; (2)-8<x <0或x >4; (3)由(1)知,1122y x =+,216y x=. ∴ m =4,点C 的坐标是(0,2),点A 的坐标是(4,4).∴ CO =2,AD =OD =4.∴ 2441222ODAC CO AD S OD ++=⨯=⨯=梯形. ∵ 31ODE ODAC S S =△梯形::,∴ 1112433ODE ODAC S S =⨯=⨯=△梯形即142OD DE =,∴ DE =2.∴ 点E 的坐标为(4,2). 又点E 在直线OP 上,∴ DE =2.∴ 点E 的坐标为(4,2).由16,1,2y x y x ⎧=⎪⎪⎨⎪=⎪⎩得11x y ⎧=⎪⎨=⎪⎩22x y ⎧=-⎪⎨=-⎪⎩(不合题意舍去)∴ P的坐标为.。

(完整版)反比例函数综合测试题(含答案)

(完整版)反比例函数综合测试题(含答案)

反比例函数综合测试题一、选择题(每小题3分,共24分)1.已知点M (- 2,3 )在反比例函数xky=的图象上,下列各点也在该函数图象上的是( ).AA. (3,- 2)B. (- 2,- 3)C. (2,3)D. (3,2)2. 反比例函数(0)ky kx=≠的图象经过点(- 4,5),则该反比例函数的图象位于( ).BA. 第一、三象限B. 第二、四象限C. 第二、三象限D. 第一、二象限3. 在同一平面直角坐标系中,函数xy2-=与xy2=的图象的交点个数为( ). DA. 3个B. 2个C. 1个D. 0个4. 如图1,点A是y轴正半轴上的一个定点,点B是反比例函数y = 2 x(x> 0)图象上的一个动点,当点B的纵坐标逐渐减小时,△OAB的面积将( ). AA.逐渐增大B.逐渐减小C.不变D.先增大后减小5. (2009年恩施市)如图2,一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,设小矩形的长和宽分别为x,y,剪去部分的面积为20,若2 ≤x≤ 10,则y与x的函数图象是( ). A6. 已知点A(x1,y1),B(x2,y2)是反比例函数xky=(k > 0)的图象上的两点,若x1 < 0 < x2,则( ).AA. y1 < 0 < y2B. y2 < 0 < y1C. y1 < y2 < 0D. y2 < y1 < 07. 如图3,反比例函数3yx=的图象与一次函数y = x + 2的图象交于A,B两点,那么△AOB 的面积是( ).CA. 2B. 3C. 4D. 68. 如图4,等腰直角三角形ABC位于第一象限,AB= AC = 2,直角顶点A在直线y = x上,1212图2图4A B C Dy xOP 1P 2P 3P 4 P 5A 1 A 2 A 3 A 4 A 5 图7其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与△ABC 有交点,则k 的取值范围是( ). C A.1 < k < 2B.1 ≤ k ≤ 3C.1 ≤ k ≤ 4D.1≤ k < 4二、填空题(每小题4分,共24分) 9. 已知反比例函数k y x =的图象经过点(23),,则此函数的关系式是 .6y x= 10. 在对物体做功一定的情况下,力F (N)与此物体在 力的方向上移动的距离s (m)成反比例函数关系,其图 象如图5所示,点P (5,1)在图象上,则当力达到10 N 时,物体在力的方向上移动的距离是 m. 0. 511. 反比例函数xky =)0(<k 的图象与经过原点的直线l 相交于A ,B 两点,若点A 坐标为(-2,1),则点B 的坐标为 . (2,-1).12.一次函数y = x + 1与反比例函数ky x=的图象都经过点(1,m ),则使这两个函数值都小于0时x 的取值范围是___________. x < - 113. (2009年兰州市)如图6,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 反比例函数1y x=(x > 0)的图象上,则点E 的坐标是_________. (215+,215-)14. (2009年莆田市)如图7,在x 轴的正半轴上依次截取OA 1 = A 1A 2 = A 2A 3 = A 3A 4 = A 4A 5,过点A 1,A 2,A 3,A 4,A 5,分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点P 1,P 2,P 3,P 4,P 5,得直角三角形OP 1A 1,A 1P 2A 2,A 1P 2A 2,A 2P 3A 3,A 3P 4A 4,A 4P 5A 5,并设其面积分别为S 1,S 2,S 3,S 4,S 5,则S 5的值为 . 三、解答题(共30分)15.(6分) 已知点P (2,2)在反比例函数xky =(k ≠ 0)的图象上. (1)当x = - 3时,求y 的值; (2)当1 < x < 3时,求y 的取值范围.F / N图5s / mO图616.(8分)已知图8中的曲线是反比例函数5myx-=(m为常数)图象的一支. 若该函数的图象与正比例函数y = 2x的图象在第一象内限的交于点A,过点A作x轴的垂线,垂足为点B,当△OAB的面积为4时,求点A的坐标及反比例函数的解析式.17.(8分)如图9,点P的坐标为322⎛⎫⎪⎝⎭,,过点P作x轴的平行线交y轴于点A,交反比例函数kyx=(x > 0)于点点N,作PM ⊥AN交反比例函数kyx=(x > 0)的图象于点M,连接AM.若PN = 4,求:(1)k的值.(2)△APM的面积.18.(8分)为预防“手足口病”,某校对教室进行“药熏消毒”. 已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例;燃烧后,y与x成反比例(如图10所示). 现测得药物10 min燃烧完,此时教室内每立方米空气含药量为8 mg. 根据以上信息,解答下列问题:(1)求药物燃烧时y与x的函数关系式;(2)求药物燃烧后y与x的函数关系式;(3)当每立方米空气中含药量低于1.6 mg时,对人体无毒害作用. 那么从消毒开始,经多长时间学生才可以返回教室?四、探究题(共22分)19.(10分) 我们学习了利用函数图象求方程的近似解,例如,把方程2x – 1 = 3 - x 的解看成函数y = 2 x - 1的图象与函数y = 3 - x 的图象交点的横坐标. 如图11,已画出反比例函数1y x=在第一象限内的图象,请你按照上述方法,利用此图象求方程x 2 – x – 1 = 0的正数解(要求画出相应函数的图象,求出的解精确到0.1).20.(12分)一次函数y = ax + b 的图象分别与x 轴、y 轴交于点M ,N ,与反比例函数k y x=的图象相交于点A ,B .过点A 分别作AC ⊥x 轴,AE ⊥y 轴,垂足分别为点C ,E ;过点B 分别作BF ⊥x 轴,BD ⊥y 轴,垂足分别为点F ,D ,AC 与BC 相交于点K ,连接CD . (1)如图12,若点A ,B 在反比例函数ky x=的图象的同一分支上,试证明: ①A E D K C F B K S S =四边形四边形;②A N B M =. (2)若点AB ,分别在反比例函数ky x=的图象的不同分支上,如图13,则AN 与BM 还相等吗?试证明你的结论.反比例函数综合测试题参考答案一、选择题 1. A. 2. B. 3. D.4. A.5. A.6. A.7. C.8. C.二、填空题 9. 6y x=. 10. 0. 5. 11. (2,-1).12. x < - 1. 13. (215+,215-). 14.15. 三、解答题 15.(1)34-=y ;(2)y 的取值范围为434<<y . 16.∵第一象限内的点A 在正比例函数y = 2x 的图象上,∴设点A 的坐标为(m ,2m )(m > 0),则点B 的坐标为(m ,0). ∵S △OAB = 4,∴12m • 2m = 4. 解得m 1 = 2,m 2 = - 2(不符合题意,舍去).∴点A 的坐标为(2,4).又∵点A 在反比例函数5m y x -=的图象上,∴542m -=,即m – 5 = 8. ∴反比例函数的解析式为8y x=.17.(1)∵点P 的坐标为322⎛⎫ ⎪⎝⎭,,∴AP = 2,OA =32. ∵PN = 4,∴AN = 6. ∴点N 的坐标为362⎛⎫ ⎪⎝⎭,. 把点362N ⎛⎫ ⎪⎝⎭,代入ky x=中,得k = 9. (2)由(1)知k = 9,∴9y x =. 当x = 2时,92y =. ∴93322M P =-=. ∴12332A P MS =⨯⨯=△. 18.(1)设药物燃烧阶段函数关系式为y = k 1x (k 1 ≠ 0).根据题意,得8 = 10k 1,k 1 = 45. ∴此阶段函数关系式为45y x =(0 ≤ x < 10).(2)设药物燃烧结束后函数关系式为22(0)ky k x=≠.根据题意,得2810k=,280k =. ∴此阶段函数关系式为80y x=(x ≥ 10).(3)当y < 1.6时,801.6x<. ∵0x >,∴1.680x >,50x >. ∴从消毒开始经过50 min 学生才返可回教室. 四、探究题19. 方程x 2 – x – 1 = 0的正数解约为1.6.提示:∵x ≠ 0,将x 2 – x – 1 = 0两边同除以x ,得110x x --=.即11x x=-. 把x 2 – x – 1 = 0的正根视为由函数1y x=与函数y = x - 1的图象在第一象限交点的横坐标. 20.(1)①A C x ⊥轴,A E y ⊥轴,∴四边形AE O C 为矩形. BF x ⊥轴,B D y ⊥轴,∴四边形BD O F 为矩形.A C x ⊥轴,B D y ⊥轴,∴四边形A E D K D OC K C F B K ,,均为矩形.1111O C x A C y x y k ===,,,∴11A E O CS O C A C x y k ===矩形2222O F x F B y x yk ===,,,∴22B D O F S O F F B x y k ===矩形.∴A E O C B D O F S S =矩形矩形.A E D K A E O C D O C K S S S =-矩形矩形矩形,C FB K B D O F D OC K S S S =-矩形矩形矩形,∴A ED K C F B K S S =矩形矩形. ②由(1)知,AE D K CF B KS S =矩形矩形.∴A K D K B K C K =.∴AK BKCK DK=. 90A K B C K D ∠=∠=°,∴A K B C K D △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AC D N 是平行四边形.∴A N C D =.同理可得B M C D =.A N B M∴=. (2)AN 与BM 仍然相等.A E D K A E O C O D K C S S S =+矩形矩形矩形,B KC F BD O F O D K CS S S =+矩形矩形矩形, 又A E O CB D O F S S k ==矩形矩形,∴A E D K B KC FS S =矩形矩形. ∴A K D K B K C K=.∴CK DKAK BK=. K K ∠=∠,∴C D K A B K △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AN D C 是平行四边形.∴A N C D =.同理B M C D =.∴A N B M =【教学标题】反比例函数 【教学目标】1、 提高学生对反比例函数的学习兴趣2、 使学生掌握反比例函数基础知识3、让学生熟练地运用反比例知识【重点难点】图像及性质 【教学内容】反比例函数一、基础知识1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数经典试题二
姓名___________班级__________学号__________分数___________
1.下列函数,①y =2x ,②y =x ,③y =x -
1,④y =
1
1
x 是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个 2.反比例函数y =
2
x
的图象位于( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限 3.已知矩形的面积为10,则它的长y 与宽x 之间的关系用图象表示大致为( )
4.已知关于x 的函数y =k (x +1)和y =-
k
x
(k ≠0)它们在同一坐标系中的大致图象是(• )
5.已知点(3,1)是双曲线y =
k
x
(k ≠0)上一点,则下列各点中在该图象上的点是( ) A .(13,-9) B .(3,1) C .(-1,3) D .(6,-1
2
)
6.某气球充满一定质量的气体后,当温度不变时,气球内的气体的气压P (kPa )是气体体积V (m 3)的反比例函数,其图象如图所示,当气球内的气压大于140kPa 时,•气球将爆炸,为了安全起见,气体体积应( ) A .不大于
2435m 3 B .不小于2435m 3 C .不大于2437m 3 D .不小于2437
m 3
7.某闭合电路中,电源电压为定值,电流I A .与电阻R (Ω)成反比例,如右图所表示的是
该电路中电流I 与电阻R 之间的函数关系的图象,则用电阻R 表示电流I •的函数解析式为( ).
A .I =
6R B .I =-6R C .I =3R D .I =2R 8.函数y =1
x
与函数y =x 的图象在同一平面直角坐标系内的交点个数是( ).
A .1个
B .2个
C .3个
D .0个 9.若函数y =(m +2)|m |
-3
是反比例函数,则m 的值是( ).
A .2
B .-2
C .±2
D .×2
10.已知点A (-3,y 1),B (-2,y 2),C (3,y 3)都在反比例函数y =
4
x
的图象上,则( ). A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 2<y 1<y 3 11.一个反比例函数y =k
x
(k ≠0)的图象经过点P (-2,-1),则该反比例函数的解析式是________.
12.已知关于x 的一次函数y =kx +1和反比例函数y =6
x
的图象都经过点(2,m ),则一次函数的解析式是________.
13.一批零件300个,一个工人每小时做15个,用关系式表示人数x •与完成任务所需的时间y 之间的函数关系式为________. 14.正比例函数y =x 与反比例函数y =1
x
的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD •⊥x 轴于D ,
示,则四边形ABCD 的为_______.
15.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例
函数的表达式是
_________.
16.反比例函数y =
2
1039n n x
--的图象每一象限内,y 随x 的增大而增大,则n =_______.
17.已知一次函数y =3x +m 与反比例函数y =3
m x
-的图象有两个交点,当m =_____时,有一个交点的纵坐标为6.
18.若一次函数y =x +b 与反比例函数y =
k
x
图象,在第二象限内有两个交点,•则k ______0,b _______0,(用“>”、“<”、“=”填空) 19.两个反比例函数y =3x ,y =6
x
在第一象限内的图象如图所示,点P 1,P 2,P 3……P 2005,在反比例函数y =
6
x
的图象上,它们的横坐标分别是x 1,x 2,x 3,…x 2005,纵坐标分别是1,3,•5•……,•共2005年连续奇数,过点P 1,P 2,P 3,…,P 2005分别作y 轴的平行线与y =
3
x
的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2005(x 2005,y 2005),则y 2005=________.
20.当>0时,两个函数值y ,一个随x 增大而增大,另一个随x 的增大而减小的是( •).
A .y =3x 与y =
1x B .y =-3x 与y =1x
C .y =-2x +6与y =1x
D .y =3x -15与y =-1
x
21.在y =1
x
的图象中,阴影部分面积为1的有( )
22.如图,已知一次函数y =kx +b (k ≠0)的图象与x 轴、y 轴分别交于A 、B •两点,且与反比例函数y =
m
x
(m ≠0)的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D ,•若OA =OB =OD =1.
(1)求点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式.
23.如图,已知点A (4,m ),B (-1,n )在反比例函数y =8
x
的图象上,直线AB •分别与x 轴,y 轴相交于C 、D 两点,
(1)求直线AB 的解析式.(2)C 、D 两点坐标.(3)S △AOC :S △BOD 是多少?
24.已知y =y 1-y 2,y 1与x 成正比例,y 与x 成反比例,且当x =1时,y =-14,x =4时,y =3.
求(1)y 与x 之间的函数关系式. (2)自变量x 的取值范围. (3)当x =1
4
时,y 的值.
25.如图,一次函数y =kx +b 的图象与反比例函数y =
m
x
的图象交于A 、B 两点.
(1)利用图中的条件,求反比例函数和一次函数的解析式.
(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.
26.如图,双曲线y =
5
x
在第一象限的一支上有一点C (1,5),•过点C •的直线y =kx +b (k >0)与x 轴交于点A (a ,0).
(1)求点A 的横坐标a 与k 的函数关系式(不写自变量取值范围).
(2)当该直线与双曲线在第一象限的另一个交点D 的横坐标是9时,求△COA •的面积.
反比例函数测试题(一)答案
1.B .;2.D .;3.A .;4.A .;5.B .;6.B .;7.A .;8.B .;9.A .;10.D .; 11.y =
2x ; 12.y =x +1; 13.y =20x ; 14.2; 15.y =-8
x
; 16.n =-3; 17.m =5; 18.<,>; 19.2004.5; 20.A .;B .;; 21.A .;C .;D .;
22.解:(1)∵OA =OB =OD =1,
∴点A 、B 、D 的坐标分别为A (-1,0),B (0,1),D (1,0). (2)∵点AB 在一次函数y =kx +b (k ≠0)的图象上,
∴01k b b -+=⎧⎨=⎩ 解得1
1k b =⎧⎨=⎩
∴一次函数的解析式为y =x +1,
∵点C 在一次函数y =x +1的图象上,•且CD ⊥x 轴, ∴C 点的坐标为(1,2),
又∵点C 在反比例函数y =
m
x
(m ≠0)的图象上, ∴m =2,•∴反比例函数的解析式为y =2
x
.;
23.(1)y =2x -6;(2)C (3,0),D (0,-6);(3)S △AOC :S △BOD =1:1.; 24.(1)y =2x -
216
x 提示:设y =k 1x -22
k x ,再代入求k 1,k 2的值. (2)自变量x 取值范围是x >0. (3)当x =
1
4时,y =214
-162=255.; 25.解:(1)由图中条件可知,双曲线经过点A (2,1)
∴1=
2m ,∴m =2,∴反比例函数的解析式为y =2x
. 又点B 也在双曲线上,∴n =2
1
-=-2,∴点B 的坐标为(-1,-2).
∵直线y =kx +b 经过点A 、B . ∴122k b k b =+⎧⎨
-=-+⎩ 解得1
1
k b =⎧⎨=-⎩ ∴一次函数的解析式为y =x -1.
(2)根据图象可知,一次函数的图象在反比例函数的图象的上方时,•一次函数的值大于反比例函数的值,即x >2或-1<x <0.;
26.解:(1)∵点C (1,5)在直线y =-kx +b 上,∴5=-k +b , 又∵点A (a ,0)也在直线y =-kx +b 上,∴-ak +b =0,∴b =ak
将b=ak代入5=-k+a中得5=-k+ak,∴a=5
k
+1.
(2)由于D点是反比例函数的图象与直线的交点

5
9
9
y
y k ak

=


⎪=-+

∵ak=5+k,∴y=-8k+5 ③
将①代入③得:5
9
=-8k+5,∴k=
5
9
,a=10.
∴A(10,0),又知(1,5),∴S△COA=1
2
×10×5=25.;。

相关文档
最新文档